SBC Journal on Interactive Systems, volume 6, number 1, 2015

Why and how to investigate interaction design of
software development tools

Juliana Jansen Ferreira'?, Clarisse Sieckenius de Souza' and Renato Cerqueira'>?
2

!Semiotic Engineering Research Group (SERG)
Departamento de Informatica, PUC-Rio
Rio de Janeiro — RJ, Brasil
2IBM Research Brazil
Rio de Janeiro - RJ, Brasil
{jjansen, rcerq}@br.ibm.com, clarisse@inf.puc-rio.br

Abstract— The existence of some relationship between the
usability of software development tools and the quality of end
users’ interaction with the product these tools contribute to build
would not be surprising. Should this be the case, a developer's
problematic use experience with these tools would increase the
workload of HCI experts, whose aim is to promote high quality
user experience with software products. Yet, this connection has
not deserved much attention from researchers, and it is unclear
how investigations should be conducted to verify if it is true. Our
contribution in this paper is a first step in this direction. We
propose an inspection method to characterize communicability
and usability aspects of software modeling tools. By combining
both aspects and articulating our analysis around tool, notations
and people, we provide valuable conceptual links that, we argue,
may in the long run of subsequent research contribute
significantly to verify the (extent of the) relation between HCI
quality of development tools and developed products.

Keywords—Human-computer interaction; software
development tools; notations; cognitive dimensions of notations;
usability; communicability; semiotic engineering

L INTRODUCTION

Software development is heavily supported by tools. From
the design phase through the testing phase, various tools are
used to support people in producing intermediary artifacts as
well as the finally achieved piece of software. The quality of
development tools can certainly impact the quality of produced
software in a number of ways, including the end user’s
interaction experience. What we do not know is the potential
magnitude of this impact, where and how it originates, and
finally how negative impacts might be avoided (probably by
improving the quality of development tools themselves). The
challenge for researchers who want to know the answers to
these questions is that software development tools — and
modeling tools in particular — are very complex, hard to design
and hard to evaluate [1].

Our long-range research goal is to investigate specifically if
some of the breakdowns that end-users experience while
interacting with computer technologies are related to

breakdowns that software designers have experienced
themselves while using software development tools to produce
such technologies. We frame this question as a conjecture,
named the Propagation Conjecture. The very first step in the
long way towards finding an answer to the question is to
identify how, where, when and why interactive breakdowns
may happen while software designers are acting as users of
software development tools.

Several types of tools are used along the development
process (e. g. coding tools, database definition tools, etc.). We
began our investigation with modeling tools because modeling
is an important activity at some point in all software
development projects [2]. Methodologically, we chose to start
by inspecting modeling tools’ interfaces. One of the reasons for
it is that inspection methods are lower-cost evaluation aids than
user observation methods. The other reason is that inspection
methods — and in particular theory-based inspection methods,
as we propose to use — can frame evidence collected during
inspections in such a way that the analyst can more easily
establish certain relations among various instances and kinds of
data. These relations naturally feed the elaboration of inferred
abstractions from meaningful correspondence verified between
types of evidence, which can be translated into qualified
hypotheses for experimental research projects or into qualified
possibilities to be explored in subsequent qualitative research
projects as well as in professional practice cases. Our
evaluation of modeling tool interfaces addresses two specific
aspects of human-computer interaction: usability and
communicability. Whereas usability is a notion strongly rooted
in cognitive HCI perspectives [3][4][5][6], communicability
originates from a semiotic approach [7].

The evaluation of modeling tools needs to consider some
particular characteristics of software modeling tasks, which
involves three tightly related factors [8]. First, most
professional software models are built with foo/ support.
Therefore, tools can clearly influence the final quality of
models composed with them. Second, software models are

ISSN: 2236-3297

SBC Journal on Interactive Systems, volume 6, number 1, 2015

49

Inspection scenario
and user profile
+

0. Preparation
TNP baseline

[

Ideal Motation Profile

o ;
of

1. Segmented Analysis
Metacommunication 4

Template -
5.

g

Cognitive Dimensions
Check

Comparison with Ideal
Notation Profile

2. Contrast and
Comparison of
Segmented Templates

3. Final Evaluation of
Metacommunication

>

[P —

(step, issue)

SdEsEmssssEE s R
sssEmsEEEEEEEEEEEEmEEESE

Metacommunication Fe""=ssssssssmsns
issues

{[step, issue], associated

am Cognitive Annotated
Metacommunication

6. TNP Characterization.

Plot findings onto final
Metacommunication
Template

A psycho (cognitive)
social (semiotic)
characterization of

Y = - -
HCI issues in the

Modeling Tool’s
interface

with CDs)

L

issues

Fig. 1. Combined Semiotic-Cognitive Evaluation method (CSCE) using the Tool-Notation-People triplet (CSCE+TNP)

expressed by specific notations. OMG [9], for example,
specifies the most widely used set of software development
modeling notations, the Unified Modeling Language (UML)
[10]. As a result, software modeling tools’ designers need to
work with notation specifications, including semantic
definitions and current updates to provide proper support for
software modeling tasks. Third, software models are built by
people and usually also for people, who collaborate to build a
single shared artifact: the final software product.

In this paper, we present the Combined Semiotic-Cognitive
Evaluation method (CSCE). As implied, CSCE combines
communicability and usability perspectives into an integrated
inspection procedure. Its purpose is to evaluate user interfaces
of modeling interface tools, that is, the product of an HCI
design process aimed at attending to the needs of a special class
of users — software modelers. The result is a rich multi-
perspective analysis of human-computer interaction in this very
specific but nevertheless critical context for a long-term
investigation of the Propagation Conjecture.

Since our inspection must take into account special
modeling characteristics previously mentioned, we use a
structure with three interconnected dimensions to guide CSCE
analysis, namely the Tool-Notation-People #riplet (TNP).
Moreover, we use the Semiotic Inspection Method, SIM
[7][11][12] and the Cognitive Dimensions of Notations
Framework, CDNf [13] as a basis for the communicative and
cognitive analysis in CSCE. As a consequence, the complete
inspection tool we propose is CSCE+TNP (Fig. 1).

Given our long-term research goal to verify the
Propagation Conjecture, which is centered on breakdowns

ISSN: 2236-3297

experienced by end users and software developers (see above),
CSCE+TNP focuses on identifying and characterizing
interaction issues in modeling tools. The results achieved with
the proposed method give us a solid base from which to infer
some of the potential consequences of developers’ interaction
with the tool in the broader context of software development.

We illustrate the power of CSCE+TNP with findings from
an evaluation of Enterprise Architect Ultimate (EA) [14], a
well-known and widely used software modeling tool. The
illustration shows that, in addition to a seemingly richer and
more contextualized interaction evaluation per se, the proposed
method of analysis has the potential to provide HCI designers
with an integrative conceptual framework with which to
claborate on important aspects of interactive design.
Individually, none of the combined components can achieve
comparable results.

The work reported in this paper builds on previous work
published in a conference paper in 2014 [15]. The current
version, however, presents considerable improvements
compared to the previous one. Such improvements are the
result of interim research. The CSCE version presented in this
version is more robust and perspicuous than the previous one,
mainly because we are now using SIM in its full-fledged form
for the semiotic analysis, rather than just a fill-out of the
designer-to-user message template. In the first author’s Ph.D.
thesis [16], the interested reader will find inspections of four
software modeling tools using the combined method as
presented in this paper.

The next sections are organized as follows. We begin by
briefly discussing the broader investigation context where we

50

SBC Journal on Interactive Systems, volume 6, number 1, 2015

are positioned. Then we describe the individual HCI
perspectives with which we explore wusability and
communicability features in this particular domain. Next, we
describe our proposed method in detail and illustrate the main
results we have achieved with an evaluation of EA. In the last
two sections, we discuss some of the implications of our
current findings and outline future work on the path towards
investigating the Propagation Conjecture.

II. WHY INVESTIGATE SOFTWARE MODELING TOOLS

The Propagation Conjecture, as defined in the opening
paragraphs of the introduction above, may seem trivial and
uninteresting at first sight. Some may find it obviously true that
if software developers have to deal with poorly designed
software engineering support tools, this may eventually
influence the quality of the final software product in one way
or another. Moreover, probably because most software
developers will admit that they have to deal, more or less
frequently, with poorly designed interfaces, it may be tacitly
assumed that part of the HCI experts’ job in formative or
summative evaluations of the end user interface is to absorb
and eliminate problems that may have been caused by bad user
experience with software development tools. Yet, such guesses
about whether the Propagation Conjecture is true or false, and
why, are in fact a weak argument against carrying out an
extensive investigation, given the possibility that the impact of
the propagation can be costly in terms of wasted HCI expert
resources. For example, what if we find out that developers
face numerous interaction problems with their tools and that,
not only do such problems propagate and impact the end user’s
experience, but that they can actually be avoided if more effort
is devoted to designing better interfaces for software
development tools? This would be a grim scenario of wasted
efforts. And the only way to know if we are justified in paying
little attention to the Propagation Conjecture (and protected
against grim scenarios such as this one) is to make the first step
and investigate the quality of HCI design in software
development tools.

Another reason to investigate the quality of HCI design in
software development tools as a whole is the same as why we
investigate it in computer technology in general: people do
want and deserve to have better use experiences, especially if —
as is the case with development tools — their productivity may
be at stake because of human-computer interaction issues.

Among the various kinds of software development tools to
be investigated, we begin with those that support modeling
tasks. Modeling tools share some characteristics with other
development tools that create notational artifacts, such as
specification and programming tools. Compare to other tools,
however, software modeling tools tend to privilege conceptual,
meaning-intensive, design tasks rather than implementational,
form-intensive, engineering tasks. Moreover, given that
professional software development is typically a social process,
in addition to their role in triggering a modeler’s reflection
about the characteristics of a particular system, models are also
a means to communicate team members’ ideas and decisions to
one another. Since communication is one of the prime
mechanisms to propagate meanings (and misunderstandings,

too), software modeling contexts constitute a good starting
point to investigate the Propagation Conjecture.

III. USABILITY DRIVEN AND COMMUNICABILITY DRIVEN

INSPECTIONS OF SYSTEMS INTERFACES

The theoretical underpinning of our research comes from
two HCI perspectives that have comparable depth, but
significant contrasts: Semiotic Engineering [17] and Cognitive
Engineering [5].

Semiotic Engineering, the theoretical foundation of our
communicability-driven analysis, focuses on communication
and signification processes taking place in human-computer
interaction. Following the same line as the work of pioneers in
semiotic approaches to HCI such as Nadin [18][19] and
Andersen [20], Semiotic Engineering views HCI as a special
case of computer-mediated human communication, in this case
between designers (or systems conceptual producers) and users
(or systems consumers). Thus, this theoretical framing brings
HCI designers onto the stage of human-computer interaction,
something that no other kind of HCI theory has done to-date.
Signs are the main concept in Semiotic Engineering, which
adopts Peirce’s definition for them. In Peircean Semiotics signs
are defined as anything that stands for something else, to
somebody, in some respect or capacity [21]. Therefore, in
Semiotic Engineering, systems’ interface signs convey the
systems’ creators’ message to the users [17]. Through their
interfaces, systems thus behave as their designers’ proxy during
interaction, thus achieving mediated designer-user
communication. The designers’ communication to users is
about how, when, where and why to communicate with the
system to achieve various kinds of goals and effects. In other
words, it is communication about communication or
metacommunication.

Cognitive Engineering and Norman’s Seven-Step Theory
of Action [5], the theoretical foundation of our usability-driven
analysis and one of the more widely known characterizations
of user-centered human-computer interaction, focuses on users’
physical and mental activity during interaction. According to
this theory, systems project an image (representations and
behaviors) that users can control and perceive by performing
physical actions that are causally related to mental actions that
users perform based on their intentions, plans, interpretations,
and decisions. Human-computer interaction is characterized as
an iterated cycle of seven steps: (1) the establishment of an
overall goal; (2) the definition of an immediate intention to be
achieved towards the overall goal; (3) the elaboration of a plan
of actions; (4) the execution of such actions; (5) the perception
of the system’s reaction; (6) the interpretation of perceived
reaction; and (7) an assessment of whether the overall goal has
been achieved (if not, a new immediate intention is defined). In
the Cognitive Engineering model, after the overall goal is
established, the process of human-computer interaction is
defined as the user’s iterated traversal of two gulfs between
user and system: the Execution Gulf (steps 2, 3 and 4); and the
Evaluation Gulf (steps 5, 6 and 7).

The most relevant difference between the two HCI
perspectives that we adopt is who are the people each one of
them takes into account while characterizing the process of

ISSN: 2236-3297

SBC Journal on Interactive Systems, volume 6, number 1, 2015

51

human-computer interaction. While the only agent involved in
Noman’s 7 Step Theory of Action, which serves as the
foundation for Cognitive Engineering, is the user (hence the
user-centered perspective it defines with great clarity), in
Semiotic Engineering there are actually three agents involved
in interaction: systems builders (especially HCI designers); the
users; and also the systems, themselves, which represent their
builders at interaction time. Therefore, in Semiotic
Engineering, unlike in Cognitive Engineering, systems
designers and systems user are equally important parts to be
accounted for in the study of our phenomenon of interest.
Moreover, although systems are not hAuman agents, they play
the same prominent role as systems designers and systems
users, in Semiotic Engineering, since it is through their
mediation that the other two achieve communication.

The combination of communicability-driven and usability-
driven perspectives promotes a more comprehensive inspection
of relevant parts of the object of analysis and the relations
between them. However, as already mentioned, CSCE+TNP
inspections focus on identifying and characterizing interaction
problems, which is a special way of using the combined
methods, namely the Semiotic Inspection Method (SIM [7]
[11][12]) and the Cognitive Dimensions of Notation
framework (CDNf [13]). Both methods, presented in further
detail below, have been originally designed to support an
assessment of HCI problems and merits alike.

A. Inspecting Communicability with SIM

Every communication process involves senders and
receivers. SIM is a five-step inspection method (Fig. 2) where
we look at the sender’s activity'. As a top-level description, we
can say that the method deconstructs the designers’ message,
analyzes deconstructed parts, and finally reconstructs the
message. In the deconstruction and reconstruction processes,
the designers’ message and communicative strategies become
visible to the analyst, who can then appreciate the quality of
metacommunication. The deconstruction phase is achieved
with a segmented analysis of the interaction designers’
message. SIM analyzes the emission of the designers’
metacommunication, that is, it looks at the message itself and
produces a rich description of what it is telling to its receivers,
and how.

In the segmented analysis, metacommunication is analyzed
in layers, each one of them geared by one of the three sign
classes proposed by Semiotic Engineering: Metalinguistic,
Static and Dynamic signs. Metalinguistic signs are interface
signs that refer to other interface signs and provide
information, explanation, illustration or warnings about these.
A typical example of metalinguistic signs is what users see in
screen tips, usually a short phrase (verbal signs)
communicating what a button, an icon or an information field
means. Static signs are non-metalinguistic interface signs
whose meaning users can productively interpret without having
to engage in interaction. They are the ones that can be seen in
interface snapshots, which instantly communicate something to
users. Finally, dynamic signs are those found in a temporally

! The Semiotic Engineering method focused on receivers is
CEM, the Communicability Evaluation Method [7].

ISSN: 2236-3297

or causally related sequence of interface signs. Unlike static
signs, which users can fully interpret as soon as they see them,
dynamic signs only make sense to users over time, that is, as
users engage in interaction and see what happens (i. e. see the
designers’ message unfold through interaction). The time it
takes for users to make sense of dynamic signs can vary.
Sometimes a simple before-after sequence will be enough to
tell what a dynamic sign means. Other times the user will have
to go as far as to open a dialog or even effect some action (and
then possibly ‘undo’ it) in order to understand what the
designers are trying to say. This is the essence of dynamic
signs: they only communicate what they mean through
interaction. Therefore ‘the sign’ is the entire sequence, made of
various static signs and possibly also by metalinguistic signs.

The above classification of signs, as is the case of most
classifications in interpretive methods like SIM, is the result of
the inspector’s judgment. For example, there is no automatic
way to determine a priori whether a button with the label
‘Cancel’ is a static sign or part of an unfolding dynamic sign
when users of an e-commerce application find it during a
purchasing process. For instance, if they ‘Cancel’ the third step
in the process, does it mean that they go back to the second
step? Or does it mean that all previous steps will be canceled?
If metacommunication (especially the one achieved with
metalinguistic signs, in this case) is not clear, the user will have
to ‘learn by doing’. In other words, the meaning of the static
label ‘Cancel’ may not be enough to communicate the
designers’ entire message. Hence, the inspector should be alert
to whether meanings anticipated by static signs are confirmed
(or not) by the associated dynamic signs.

The comment in the previous paragraph also points at a
critically important requirement in SIM: that the inspector has
clearly defined the profile of the user to whom the designers
are sending their message (i. e. the intended receiver of the
message), as well as a purpose for the entire communication (i.
e. the task or activity that metacommunication should achieve)
as well as the context in which it takes place. Unless these
factors are clearly established, decisions about what interaction
signs mean (to intended users) are vacuous. This requirement is
common to many other HCI inspection methods and is
attended to at the preparation step shown in Fig. 2.

52

SBC Journal on Interactive Systems, volume 6, number 1, 2015

Step 1: Analysis
of metalinguistic
signs

Preparatory
step
(Common to all

inspection
methods) Step 2: Analysis

of static signs

SUTEEEEEEEEEEEEEEEEEE

Step 3: Analysis
of dynamic signs

Inspection
scenario and
user profile

Fig. 2. Semiotic Inspection Method - SIM

In order to meet inspection requirements, in the
preparatory step (Fig. 2) the inspector carries out an informal
walkthrough of the selected artifact, aiming at establishing the
focus of analysis. The evaluator determines the elements and
conditions of communication processes, in general, namely: the
senders, receivers, message contents, message codes,
communication channels and context. Since communication is
meant to achieve the users’ goals, evaluators must clearly
identify the targeted users of the system and the top-level goals
and activities that the system supports. The result of the
preparatory step is an inspection scenario, in which the
designers’ metacommunication is being sent to an identified
receiver (a targeted user with a clearly established profile), in
the context of a clearly established activity, for a clearly
established purpose.

The semiotic inspection proceeds with phase 1, the three-
step Segmented Analysis of Metacommunication Template,
an abstract representation of the designers’ message to the
users. The content and structure of the metacommunication
template, which the analyst iteratively composes for every class
of sign, is the following:

“Here is my understanding of who you are, what I've
learned you want or need to do, in which preferred ways, and
why. This is the system that I have, therefore, designed for you,
and this is the way you can or should use it in order to fulfill a
range of purposes that fall within this vision.” [17].

The first person of discourse in the template (referred to as
“TI”, “my”) stands for the designer and the second (referred to
as “you”, “your”) stands for the user. The third person in
discourse (referred to as “it”, “this”) stands for the system,
represented by its interface. Together, they characterize the
participants in an elaborate metacommunication process that
takes place during human-computer interaction.

At each one of the three steps in this phase, the analyst
inspects metacommunication focusing on a single class of sign
(metalinguistic, static and dynamic), hence the ‘segmentation’.
In step 1, the inspector takes metalinguistic signs, which has

Segmented Analysis of
Metacommunication Template

Step 4: Collate and Step 5: Final
Compare the 3 Evaluation of
metacommunicatio system’s
n messages communication

Final Evaluation of
Metacommunication

Contrast and Comparison of
Segmented Templates

already mentioned refer to other interface signs, static,
dynamic, or even metalinguistic. With metalinguistic signs,
designers explicitly communicate to users the meanings
encoded in the system and how they can be used. Thus, in step
1 the inspector will determine which parts of the
metacommunication template can be filled out exclusively with
meanings expressed by metalinguistic signs. Note that there
may be gaps in the template, that is, parts of it that the
designers have chosen not to communicate in the form of help
information, explanations, illustrations, screen tips, warnings,
and the like. This does not mean that there is a problem in
metacommunication. It simply reveals the designers’ choice.

In step 2 the inspector does the same thing with static
signs. As already mentioned, these are non-metalinguistic signs
whose meaning can be interpreted independently of temporal
and causal relations. In other words, the context of
interpretation is limited to the elements that are present on the
interface at a single moment in time. Some examples of static
signs are layout structure, menu options and toolbar buttons. It
is important to bear in mind that signs are classified as static
only if they do not communicate explanation, information, tips,
warnings and illustration referring to other signs. If they do,
they must be classified as metalinguistic signs. At the end of
this step, like in the previous one, the inspector fills out the
metacommunication template with messages expressed through
static signs. Again there may be gaps in the template.

Finally, in step 3 the inspector iterates the process now
looking only at dynamic signs, that is, signs that require
interaction, and hence time, to make sense to users. They
emerge with interaction and must be interpreted with reference
to it. Strictly speaking, all static signs in an interface are part of
some larger dynamic sign. For example, when a user selects the
option “save as . . .” of a menu “file,” systems typically exhibit
a dialog window with a conversation about the file’s name,
location, format, etc. The causal association between the menu
selection and the dialog that follows it is a dynamic sign.
However, the communication conveyed by the static signs at
the beginning of the interactive sequence is usually equivalent

ISSN: 2236-3297

SBC Journal on Interactive Systems, volume 6, number 1, 2015

53

to the one that unfolds in a subsequent interaction. In other
words, metacommunication receivers can easily infer the
dynamic sign that will follow if they activate a static sign.
Hence, for a semiotic inspection, meanings that can only be
expressed over time ([7], p. 19) are the most relevant dynamic
signs to take into consideration. They tel/ the inspector which
elements of the metacommunication template will only be
communicated if users actually engage in interaction, that is,
which part of the designers’ message cannot be inferred from
the system’s single states alone. Note that once the user has
encountered the first instance of a particular message
communicated through a dynamic sign, he may well infer its
occurrence the next time he sees the static sign that triggers it.
This inferential process is the semiotic account of the user’s
learning of an interface language, which means that in time, as
users become familiar with an interface, they will have to rely
less on dynamic signs and metalinguistic signs. Static signs
will become more and more meaningful to them. Not also that,
for this reason, the inspector must be absolutely clear about the
metacommunication receiver’s profile in his analysis. An
experienced user will interpret an interface in a different
manner than a novice does.

Once the entire inspection scenario has been analyzed
focused on dynamic signs, the inspector again fills out the
metacommunication template with content communicated only
through dynamic signs, as defined above. So, by the end of
phase 1 the analyst will have filled out three independent
metacommunication templates. All of them may have gaps,
which has already mentioned do not necessarily mean that
there is a problem in metacommunication.

In phase 2, Contrast and Comparison of Segmented
Templates, the inspector takes the three metacommunication
templates from the segmented analysis phase and looks at
crucially important aspects of what metacommunication is
saying and how it is saying it. First, it will be possible to check
if all three segmented messages are consistent with each other.
Consistency is not the same as identity or equivalence.
Therefore, we are not trying to see that the messages are the
same, but only that they do not contradict each other. Second, it
will be possible to check which messages figure in more than
one segmented instance of the template, which is an indication
of redundancy, a powerful communication strategy. By the
same token, it will be possible to see which ones figure in only
one of the three templates, that is, which ones (if any) are
communicated by a single class of signs. The inspector will
thus be able to appreciate how the designer distributes
communication of complex messages among the three classes
of signs. For example, it will be possible to see which parts of
the message are communicated with (or without) the use of
supporting metalinguistic signs, which parts are mainly
achieved with the use of dynamic signs, and so on. All of these
have a direct impact on the message receiver’s (the end user’s)
experience.

ISSN: 2236-3297

With the result of contrasts and comparisons, in phase 3,
the Final Evaluation of Metacommunication, the inspector
can reconstruct (i. e. integrate the three templates into one) the
designers’ metacommunication message, paying attention to
consistency, redundancy, and distribution, which should all
make sense in view of the targeted receivers. The inspector can
also identify which metacommunication strategies have been
used and decide how well they are likely to achieve the
designers’ intent when addressing the targeted user population.
In this last phase it is important to bear in mind that the concept
of targeted users in Semiotic Engineering are the equivalent of
the ideal receivers (or readers) in semiotic traditions that are
interested in human communication. Although messages (in
our case interface messages) exchanged by interlocutors are
open to indefinitely many interpretations, “interpretive
operations [...] are by no means indefinite and must be
recognized as imposed by the semiotic strategies displayed by
the text”, that is, the way the message is expressed ([22], p. 36).
Thus, SIM application may occasionally reveal that the
reconstructed targeted users — that is, the ideal receivers that
are inferred from the message itself — do not coincide with the
intended targeted users. This is the most severe type of
communicability problem for Semiotic Engineering, which
SIM can contribute to solve by detecting the origins of the
problem and the logical chain of signs that must be changed in
order to communicate a different message.

Compared to other inspection methods commonly used in
HCT [23], SIM yields a precise characterization of who are in
fact the designers’ interlocutors in the process of
metacommunication (first part of the template). It also
acknowledges explicitly the possibility of creative user
appropriations enabled by the designers’ vision (last part of the
template). Most HCI methods concentrate on how the system
works and how it is (or can, or must be) used.

B. Usability-driven perspective inspection

CDNf is a prime candidate for evaluating the usability of
tools dealing with notations. It defines a set of design principles
for creating or evaluating notations, user interfaces and
programming languages used with information artifacts. This
framework provides a common vocabulary for discussing
many cognitive factors of such representation-building
systems. Its aim is to improve the quality of discussions and
decisions in design and evaluation activity [13]. CDNf has
been used to analyze notations in a variety of contexts, all of
them related to systems where notations play a central role
[13][24][25].

SBC Journal on Interactive Systems, volume 6, number 1, 2015

Ideal
:IIIIIIIIIIIIIII Prnfile ------------------------:
L] -
L] -
L] -
L] -
L] -
= A 4
. . (- i (- . . Step 5: Compare
Step 1: Gettn] (Step 2: Decide] Step 3: Choosew Step.d. Cog_]nltlve) the observed
what the user some Dimension - .
know the profile with the
system will be doing representative Analysis (for each ideal notation
with the notation tasks step in each task) -
profile
.
PREPARATION STEPS ? . ?
L] L]
M - "
L]
Cognitive . . .
Dimension of : . Observed .
notations e Illl’ Profile Ly
definition .

Fig. 3. Cognitive Dimension of Notation framework

The evaluation of a notation system design with CDNf is
carried out in five steps, as shown in Fig. 3. In step one, the
analyst gets to know the system and all of its components and
all information artifacts, which are composed by one or more
notations. In step two, the analyst decides what the user will be
doing with identified notations. In the step three, he chooses
some representative tasks to serve as a reference for the
inspection itself, which amounts to a verification of how
notations behave or qualify in terms of fourteen cognitive
dimensions [13] presented in TABLE 1.

Tasks are typically achieved by means of subtasks. The first
three steps of CDNT are the usual preparation steps of most
inspection methods. Thus, in the step four, for every subtask of
every representative task, the analyst must ask whether the user
can choose where to start, how an occasional mistake will be
corrected, what will happen if there are second thoughts, what
abstractions are being used, and so on. These questions spring
directly from the definition of the fourteen cognitive
dimensions (CD) used in CDNf. Moreover, once the user
profile is defined, the CD can be taken as guidelines, like, for
example: “Make it easy to change things”; “Make entities
visible”; “Avoid constraining the order of doing things”;
“Show relevant relation between entities”; and so on. The clear
definition of a user profile (and the tasks to be achieved) is
important because guidelines can change depending on who the
user is and what he or she is trying to do. For instance, there
may be reasons to wish for viscosity, that is, for “making it
difficult to change things”. Think of games, for example, where
the challenge for advanced gamers would be to make it difficult
to achieve changes.

For other examples that are closer to our domain of interest,
we can take Secondary Notation. It refers to the situation when
the inspected notation allows for the inclusion of additional
information, typically using a different and often informal
code. This is a way of expanding the notation. Therefore,

during the inspection, the analyst will judge whether this
expansion is possible, necessary, easy to express, easy to
understand, and so on. Another dimension is Error-Proneness,
which refers to the situation when the notation leads to
mistakes, and the system (where the notation is used) gives
little protection against them. During the inspection, the analyst
will, therefore, seek to verify that notations are not prone to
erTor.

TABLE I - LiST OF COGNITIVE DIMENSION OF NOTATIONS (ADAPTED FROM

P.116-118,[13])
Cognitive Dimension Description
Viscosity Resistance to change
Visibility Ability to view entities easily

Premature Commitment Constraints on the order of doing things
Hidden Dependencies Relevant relations between entities are not visible
Role-Expressiveness The purpose of an entity is readily inferred

Error-Proneness The notation invites mistakes and the system gives little protection

Abstraction Types and availability of abstraction mechanisms
Secondary Notation Extra information in means other than formal syntax
Closeness of Mapping Closeness of representation to domain

Consistency Similar semantics are expressed in similar syntactic forms
Diffuseness Verbosity of language

Hard Mental Operations High demand on cognitive resources
Provisionality Degree of commitment to actions or marks

Progressive Evaluation ~ Work-to-date can be checked at any time

The iterated analysis in the fourth step, for all fourteen CD,
will incrementally generate the involved notations’ profile.
Therefore, in step five, the final one, the analyst compares the
resulting observed profile with an ideal notation profile for the
selected type(s) of activity defined for the inspection. Again, as

ISSN: 2236-3297

SBC Journal on Interactive Systems, volume 6, number 1, 2015

55

with SIM, an ideal standard is assumed by the inspector.
Cognitive ideals can be provided by psychological theories that
define the amount of mental effort required to achieve
operations with notations. The smaller the mental effort, the
higher the usability of the notation.

Compared with SIM, the use of CDNf is more straight
forward. Different factors contribute to this. First, as is the case
with most usability methods and the user-centered approach in
general, the inspector is focused only on the user (not having to
deal with designers and users, as well as with the relations
between them that are established by metacommunication).
Second, whereas SIM involves a deconstruction and a
reconstruction phase in addition to the main analytical activity
(i. e. the Contrast and Comparison of Segmented Templates),
once the preparation step is completed; the inspector is ready to
carry out CDNf analysis. Third, whereas with SIM the
inspector must explicitly classify all signs and explicitly
determine what they mean, in CDNT the inspector can look at
notations as a unit, an information artifact, not having to dissect
how the compound is structured and how the various parts
contribute to express what they mean. Having done this, his job
is to determine how the artifact behaves or qualifies in terms of
the fourteen CD, given the ideal behavior and qualification that
targeted users should expect.

IV. THE COMBINED SEMIOTIC-COGNITIVE EVALUATION
METHOD AND THE TNP TRIPLE

In this section, we explain how we combined both methods
and illustrated it step by step to show the kinds of results that
we can achieve in evaluations guided by CSCE+TNP. The
CSCE method, without the TNP triplet, has been shown to
enrich HCI evaluation of different kinds of systems
[26][27][28]. However, as already mentioned, the long-range
goal of our research in the context of this specific paper is to be
able to verify the conjecture that some of the problems that end
users experience while interacting with computer technologies
are related to problems that systems designers experience
themselves while using software development tools. To this
end, we have been focusing on the usability and
communicability of modeling tools [15][16][27].

As briefly outlined in the introduction, the main features of
the method are: (a) that it incorporates the core steps of existing
semiotic (SIM) and cognitive (CDNfY) inspection methods; (b)
that the semiotic analysis is carried out before the cognitive
analysis; (c) that given the long-range goal of our research, the
analysis is centered on interactive problems detected in the
process; (d) that an additional structuring resource (TNP) has
been added to articulate how tools, notations, and people
function are related to each other in the context of computer-
supported modeling tasks; and finally (e) that the result of the
combined inspection is a rich characterization of interaction
issues in view of psychological (cognitive) and social
(semiotic) dimensions of metacommunication carried out by
modeling tools’ interfaces.

Before we describe the process of analysis with
CSCE+TNP, let us explain the roles of the semiotic and the
cognitive analysis, as well as the role of the tool-notation-
people triplet. The role of the initial semiotic analysis is to

ISSN: 2236-3297

provide a broad contextualization of modeling tools. The
metacommunication template [17], already presented in section
111, is the main instrument for the combined analysis.

In TABLE II, we show the template subdivided into five
portions: the designers’ vision of who the users are (A); what
they believe the users need or want to do (B); where, when,
how and why (C); as well as the correspondence between this
vision (E) and the way how the artifact looks and behaves (D).
The metacommunication template, therefore, sets the keynote
for the entire analysis.

TABLE II - PORTIONS OF THE METACOMMUNICATION TEMPLATE

A. Here is my understanding of who you are...

B. ... what I’ve learned you want or need to do, ...

C. ... in which preferred ways, and why.

D. ... This is the system that I have, therefore,
designed for you, and this is the way you can or
should use it ...

E. ... in order to fulfill a range of purposes that fall
within this vision.

The role of the CDNf analysis, which focuses only on
information artifacts directly associated with the issues found
during the core steps of SIM analysis, is to expand the semiotic
account of these issues with a cognitive account specifically
centered on mental workloads required to work with the
notations involved in communicative issues. Finally, the role of
TNP is to structure semiotic and cognitive findings around the
central elements of our HCI analysis (tool, notation and people)
as applied to modeling tools’ interfaces. In practice it serves as
a classification resource, helping the analyst to organize
findings in terms of which elements of the triplet, and relations
between them, are affected by which ones of the semiotic and
cognitive aspects of detected interface issues.

SIM evaluation deals with all elements of the triplet, but
because of its communication perspective its strengths are
more focused on “P”, whose instances (designers, users and —
depending on the designers’ vision — other stakeholders and
participants that affect, or are affected by, the users’ activities)
are brought together by “T”. Although the designers’
metacommunication message is encoded in signs (roughly
equivalent to notations), unlike CDNf, SIM does not focus on
individual units of information artifacts (each one having a
specific notation system associated with it) [24]. Therefore,
SIM provides a comparatively shallower characterization of
“N”.

Likewise, CDNf also deals with all elements of the triplet,
although, as anticipated, in a completely different perspective.
The “N” part is the main focus of a detailed analysis where
multiple notational systems can be identified and decomposed
into notational units. The “P” in CDNf, unlike in SIM,
typically refers to a single person, the user. Finally, the “T”
part in CDNf is virtually absent from the scope of analysis as

56

SBC Journal on Interactive Systems, volume 6, number 1, 2015

such. This is because tools are viewed as notational systems or
information artifacts in CDNT, that is, “T” translates into “N”.

The characterization of issues considering T, N and P
presents a more broadly contextualized and detailed feedback
to designers. It allows them to think about how local issues,
with a particular interface item or notation feature, affect the
users’ overall activity and context. Hence the quality of new
solutions — as well as the knowledge derived from it — can be
better.

In the CSCE+TNP presentation that follows, we illustrate
every step with significant findings and conclusions from a
study carried out with Enterprise Architect (EA) [14], one of
Gartner’s Magic Quadrant of Enterprise Architecture tools
[29]. The aim of the study was to investigate the various ways
in which software modeling tools support software modelers.
The results of the study, presented in complete detailed form in
[16], were organized into four categories of breakdown issues:

1) Problems with resources to extend/add functionality.

2) Problems with resources for meaning construction based
on multiple notations.

3) Problems with resources for meaning construction based
on UML alone.

4) Problems with supporting the software development
process.

As its name suggests, category 1 refers to semiotic and
cognitive issues that spring from extension mechanisms
provided by the most popular modeling tools among
professional developers. Categories 2 and 3 could be organized
as sub-categories of a single more abstract category (Problems
with resources for meaning construction): in one of them
meaning construction is supported by multiple notations; in the
other by UML alone. Another possibility would be to keep
only the more abstract category, dealing with all notations —
UML and others — as part of the same problem. However, we
decided to keep the distinction because of the general interest
in UML, the most widely used modeling notation. The option
to avoid subcategories was mainly due to the fact that this
would be the only instance where subcategories would be used
in the results of the EA study. Note that meaning construction
refers to sense-making activities carried out both when creating
a model and when interpreting a model (potentially created by
someone else). Category 4 refers to the role played by models —
the end product of modeling activity — in the broader context of
software development.

For lack of space in the format of a journal paper, we
selected evidence from category 1, “Problems with resources
to extend/add functionalities”, to illustrate all steps of
CSCE+TNP, depicted in Fig. 1 (in the Introduction section). In
the following subsections we present, describe and illustrate
each step of the method, providing enough information for
readers who are interested in applying CSCE+TNP in
evaluation projects of their own.

A. Step 0— Preparation — TNP Baseline

We start by defining the study’s inspection scenario, which
projects the research question (“in which ways do software

modeling tools support software modelers”) upon the territory
of possible interactions with the chosen artifact(s) [30]. We
must then select the tool to be inspected, the task(s) to be
performed, and the targeted user profile(s). With these, we can
define the TNP triplet baseline of the study. Note that because
of the semiotic perspective of our method, the “P” portion in
the baseline triplet must not only take into consideration the
user(s) and possibly development team members with whom
the users work or interact through the modeling tool itself or
the product it creates, but also include the designers of the
selected tool (who communicate with tool users through its
interface). Moreover, the inspector must describe which
relations are to be considered, in the specified scenario, among
tool, notation, and people. These definitions serve as a
reference for the entire inspection procedure. Note that, as
shown in Fig. 1, this preparation provides the necessary
inspection context for both, the semiotic (SIM) and the
cognitive (CDNf) analyzes that follow. This is why the first
three steps in the original CDNf method (all of them being
preparation steps) can be skipped when transitioning between
SIM and CDNf in CSCE. In the study with EA, the following
definitions were established at the end of Step 0.

Inspection scenario. The chosen task was to build a UML
activity model for a vacation request process, which is usually
part of human resources management systems in large
companies. The activity model should describe a flow that
features a vacation request made by an employee, her
manager’s approval, the system notification and other
subsidiary activities. The activity model is a UML behavior
diagram that shows the flow of control or object flow,
emphasizing the sequence and conditions of the flow. Activity
models deal with both computational and organizational
processes. Their role is that of an “interface model” between
business and technology facets of the system being developed.
Activity models can be used to describe either more abstract
activities (like interactions between system and users or
between systems) or specific object parts of the system,
showing how such parts change along the process and over
time [10]. This interface role of activity models was the reason
for selecting them for our study scenario. They naturally span
over a larger context of development decisions than other
models.

User profile. The targeted user profile was that of an active
professional in business modeling, requirements modeling, and
conceptual modeling. However, we assumed that the user had
never used EA (novice user for EA) and that he had little
experience with UML activity models in real projects. All he
knew about them was what he had learned in professional
training and education, in the past.

TNP baseline relations. Our baseline triplet features EA as
“T” and as a proxy for its designer (Pg). It also features the
UML activity model notation as “N” and an active professional
modeler (P,), who doesn’t have experience with EA (T) and
knows of UML activity models (N) only in theory. The model
consumer (Ppc) is also part of the baseline as “P”. When P,
builds the model, he has an intended consumer for that model
(Pmc). While producing the model, P, takes Pm needs into
account, considering how the model will be used later as an
artifact in the software development process.

ISSN: 2236-3297

SBC Journal on Interactive Systems, volume 6, number 1, 2015 57

B. Step 1 — SIM Inspection: Segmented Analysis 2). However, he makes it clear that such extensions are
something other than EA by referring the user to the third-
party’s website when it comes to explaining the details of the
extension (Fig. 5-3). Add-ins are explained in the user’s guide

SIM starts with a segmented analysis of the designer’s
metacommunication message. The analysis is guided by
Semiotic Engineering’s three classes of signs: metalinguistic, .
static and dynamic signs. The analyst iteratively deconstructs (Fig. 4).
the designer’s complete message carried out by the interface . _ .
into three segments: the metacommunication template message u
conveyed by metalinguistic signs alone; that conveyed by static e
signs alone; and finally that conveyed by dynamic signs alone.

Add-Ins enable you to add functionality to Enterprise Architect. The Enterprise Architect Add-

The results are '[hree segments, none of them necessarﬂy In model builds on_the features provi_ded by the Automation Interface to enable you to
complete in itself. That is, segmented templates may have gaps R RS ARRa

of il’lfOI'l’l’latiOﬂ. We ﬁlled out the metacommunication template Add-Ins are ActiveX COM objects that expose public Dispatch methods. They have several
for each class of sign, considering the portions indicated in AN geaOvaR K2 G i T Clen s

TABLE II. + Add-Ins can define Enterprise Architect menus and sub-menus

+ Add-Ins receive notifications about various Enterprise Architect user-interface
Metalinguistic ~ signs analysis. The FEA designers’ A i e i -

. e » Add-Ins can (and should) be written as in-process (DLL) components. This provides
metacommunication about extensions and add-ins 1S lower call overhead and better integration into the Enterprise Architect environment :
extensively conveyed through metalinguistic signs located in 2 WWWW_{‘WFHMI#WW
EA’s website or in the user’s guide that is installed with EA in

X
the user’s machine. .In Fig. 5 we see that the designer is te;llmg Fig. 4. Portion of User Guide (online) about "Add-in" functionality
the user that extensions are developed by other people (Fig. 5-

1). He also provides a list of recommended extensions (Fig. 5-

Third Party Extensions for Enterprise Architect

Third Party Extensions for Enterprise Architect

ny of our partners have developed extension technologies for Enterprise Architect,
eated with Enterprise Architect's powerful customization frameworks. These Third Party
tensions provide specialist tools to the wider Enterprise Architect Community.

AMUSE can validate your Enterprise Architect UML Medel to correct errers or application legic and reuse source
cogde.

APG ModelFlow™

AMUSE

archiSpark neat et

ey A |USE

Lieber

Detecting issues early in the project lifecycle can save a lot of time and money. With AMUSE you can
Architect UML Model to correct errors in your business workflow or application logic before your soft
single line of code. You also can reuse the source code generated by AMUSE for yvour applications (C#
standard package).

Ning Ao b4

&

With AMUSE you can create models on any level of abstraction
integrating mock-objects, existing applications and external ha
F_

[« For more information go to: www.lieberlieber.com
[——

==
O'U
J"“""

Fig. 5. Enterprise Architect Third Party Extensions — User Guide

ISSN: 2236-3297

58

SBC Journal on Interactive Systems, volume 6, number 1, 2015

The metacommunication message
metalinguistic signs was defined as follows:

conveyed by

(A) You are an experienced user of EA. You are also familiar
with the use and creation of extensions and add-ins for tools
that you may use, possibly a professional software developer.
You know that extensions can be developed by third parties
and that they typically provide documentation for their
extensions on their websites.

(B) You need to use or create extensions and add-ins to expand
the functionalities or interface (elements and behaviors)
provided by me to build activity models.

(C) You may want to use extensions created by me or third
parties to expand the functionalities provided by me. And you
may also want to create your own add-ins to expand the
possible interface elements provided by me.

(D) [have therefore designed Extension and Add-In
functionality to support you in modeling tasks. I indicate some
Extensions developed by third parties. If you want to know
about them, please visit my website. I give you some basic
information about those extensions there and, if you want to
know more I give you the link to the extension’s owners’
website. If you want to use other extensions, you should follow
the pointers to where the information resides in the Internet,
and then study the documentation in order to install the
extension. 1 can help you with Add-ins. Please look for
information in the User Guide.

(E) My vision is that you, just like me, are a professional
software developer. As a professional developer, you need to
be efficient, even as unpredicted situations arise. Therefore, I
leave an open door in EA for your own extensions and
additions. In this way you can customize EA and make it your
own tool.

Static signs analysis. Both extensions and add-ins are objects
of metacommunication achieved with static signs (Fig. 6). A
menu structure labeled “Extensions” contains two sub-lists of
menu items separated by a horizontal line. This communicates
that there are two different messages from the designer. The
upper sub-lists is a mix of proper names and verbs, static signs
that can be used to invoke (trigger) the corresponding
functionality. Some of the signs in the list allow us to make
reasonable sense of their meaning (e. g. “Publish”), whereas
others are likely to be meaningless to the targeted user (e. g
“CodeTrigger V4.2”).

The lower sub list in Fig. 6 refers to add-ins. Unlike the
upper sub-lists, this one contains two signs that are clearly
related with each other (“Add-In Windows” and “Manage Add-
Ins...”).

When installed, EA already incorporates some extensions,
which appear in the upper sub-lists of Fig. 6. If other
extensions are incorporated to EA by the user, their names are
inserted in the upper sub-lists. As a consequence, the static
metacommunication does not distinguish between items
recommended by the EA designer at installation time and items
included by users at use time. Neither does it distinguish
between items created by the user and items created by third

parties nor even by the EA designer, as is the case of Extension
menu items in the lower sub-lists shown in Fig. 6.

GML
CodeTrigger V4.2

Schema Objecis
Open CodeTrigger Tab

Impart

Publish

tomerCustomarDame

merDamographics g
mers ! %

Fig. 6. Extensions organized in a specific menu item

The metacommunication message conveyed by static
signs was defined as follows:

(A) You are familiar with the use and creation of extensions
and add-ins for tools that you may use, possibly a professional
software developer.

(B) You need or want to use extensions and add-ins to expand
the functionalities or interface (elements and behaviors) to
build activity models. You are probably not intimidated by the
complexity of using various extensions at the same time.

(C) You want to use the set of extensions that I provide for you.
And you might also want to work with add-ins, but I don’t think
it is necessary to provide further information about them.

(D) [have therefore designed Extension and Add-In
Sfunctionality to support you in modeling tasks. I offer you an
initial list of Extensions (which can be expanded). I also
indicate that you can work with add-ins.

(E) My vision is that you are more advanced than a novice
user, so you need extensions and additions. Therefore I offer
some extensions for you, but you need to get information about
add-ins elsewhere.

Dynamic signs analysis. In order to grasp the meaning of
cryptic items in the Extensions menu the user may resort to
dynamic signs (i. e. engage in interaction, select the menu item,
interact with dialogs, see what happens and then try to make
sense of what metacommunication tells him). One of the items
(“Manage Add-Ins...”) is followed by the standard indication
of follow-up dialog (“...”), which communicates an invitation
for the user to engage in interaction and unfold the meaning of
an associated dynamic sign. However, after clicking on the
menu item ‘“Manager Add-ins...” the user does not get more
information about it (Fig. 7). For the extensions, each one has a
different sequence of screens presented once the user clicks the
menu items. Some of those items open a screen, and the user
needs to choose a file and inform specific settings to perform
some task related to the extension (Fig. 8). The dynamic sign
only presents the screen, considering that the user know what
to do with it.

ISSN: 2236-3297

SBC Journal on Interactive Systems, volume 6, number 1, 2015

59

[Btensions | settings _ window el
A N anamnE
com
an
mpart

Publish

Add-in Windows

Manage Add-ins

Manage Add-ns...
Viewhe status of the aveilable

addins and configure the add-ins
Click On mMenu o8 thatare loaded on startup
item "Manage

Add-ins..."

pesaiptons

Fig. 7. Click on "Manage Add-ins..."

Root Model
Package

Filename ‘ | |

Options
Create Diagrams

¥/ Strip GUIDs [l write Log Fie

View XML Close Help

Import Progress

Fig. 8. Extension>Import> BPMN 2.0

The metacommunication message conveyed by dynamic
signs was not completely filled out for the illustration case
scenario (“Problems with resources to extend/add
functionalities”). The dynamic signs did not communicate
anything about portions A, C, D and E of the
metacommunication template. The only portion filled out by
dynamic signs is:

(B) You might want or need extension and add-ins to build
activity models.

The message conveyed by dynamic signs is incomplete.
This situation needs to be further investigated by the analyst in
the next step. It might be related to a communication strategy
of the EA’s designer, who decided to convey his message using
other classes of signs. Another possibility is that there might be
a gap in the message, in the sense that the designer failed to
communicate clearly to the user what his system does.

Issues detected in the segmented analysis (e. g the
presence of ambiguous, vague or incomprehensible signs) are
included in a list for further evaluation with CDNf. All issues
are accompanied by information about where supporting
evidence for it has been found during the analysis.

C. Step 2— SIM Inspection: Contrast and Comparison

In this step, the analyst takes the three segmented templates
and, by contrast and comparison, he examines if messages
conveyed by all templates are consistent. He also examines if
communication contents appear in more than one template,

ISSN: 2236-3297

which is an indication of redundancy. Finally, he verifies how,
the content communicated in the templates is used to fill out
the complete metacommunication template. This is a
verification of how metacommunication content is distributed
among the three classes of interactive signs.

Issues detected in this step (e. g. inconsistency, inadequate
level of redundancy, lack of metalinguistic signs to explain
static or dynamic interface signs) are included in the current list
for further evaluation with CDNf. Again, all included issues
are accompanied by information about where supporting
evidence for it has been found during the analysis.

For the illustration case, EA’s metacommunication is
strongly associated to metalinguistic signs. There are static
signs communicating about extensions and add-ins, but they
communicate only parts of the message. The static signs need
to be combined with metalinguistic signs for the designer’s
message to become entirely clear. The same happens with
dynamic signs. The only portion of the message fully
communicated by dynamic signs regarding extensions and add-
ins is that the user wants or needs them while building an
activity model (B. “...what I've learned you want or need to
do...”).

At the of this phase, in CSCE+TNP, we found
communicative issues with EA’s metacommunication about
extensions and add-ins. Extensions are pieces of software
developed by third parties, different from EA’s designers, that
can be plugged into EA. Add-ins are typically simpler
functions that users themselves can create and incorporate to
the original set of functions.

D. Step 3 — SIM Inspection: Final Evaluation

In this step, the analyst takes the results of previous steps to
a higher level of abstraction. His aim is to evaluate if the
designer’s communicative strategies are good (i. e. likely to
achieve the expected effects on the targeted user) or not, and
why. The evaluation is organized around categories that
emerge from the analyst’s interpretation and reasoning. For
example, at this stage the analyst may realize that the
designer’s communication is heavily dependent on dynamic
signs. Compared with static signs, which might be able to
achieve equivalent communication in a redesigned version of
the interface, this decision implies that the user will often have
to wait longer for communication to unfold before he can
interpret what some particular interface message means. The
analyst may then create a category of analysis named
“Interaction length”, which he will now use to revisit prior
findings and/or produce new ones.

Issues detected in this step (e. g. lack of informative and
explanatory communication) are included in the current list for
further evaluation with CDNf. Again, all included issues are
accompanied by information about where supporting evidence
for it has been found during the analysis.

For the illustration case, after SIM analysis, we have
evidence indicating that the designer’s communicative
strategies were focus on another kind of users different than the
user profile defined for the combined evaluation (novice user
for EA). The user who is able to use extensions and create add-

60

SBC Journal on Interactive Systems, volume 6, number 1, 2015

ins are not novice for EA, he is an experienced user that knows
EA enough to recognize when he needs other functionalities,
different from those already provided by EA’s designer.

At the end of the semiotic analysis with SIM, we also have
a list of communicability issues, which will be the input for
the cognitive analysis with CDNf. We identified three
communicability issue:

Lack of differentiation for extensions’ ownership. We
learned that extensions may have been developed by EA
designers and also by third parties, which are indicated in EA
website. The default EA interface, which is the one presented
to the user after installation, includes the extension provided by
EA designers. However, if the user adds third parties
extensions, there is no distinction between the two kinds of
extensions. They are grouped under the same menu item and,
by looking at the menu, the user cannot tell who is the owner of
each extension. Over time, if many extensions are added, this
situation can lead to confusion about the origin of extensions.

Extension’s learning spread over different sources. We
learned that the user needs to interact with different means to
fully understand extensions. Sometimes the user needs just the
resources in the EA interface, others he needs information from
the EA website, and, in some cases, he may even need to visit
third parties’ website. This scenario imposes heavy learning
costs for the user who wants to master EA extensions and add-
in functionality.

User communicating with different designers. We also
learned that the user might be communicating with different
designers while interacting with EA. First, while interacting
with functionality and extensions provided by the EA standard
interface, the user is communicating with EA designers.
Second, while interacting with third parties’ extensions, the
user is communicating with another design team. And, third, if
he has or gains enough, expertise, he will be communicating
with his own design, that is, ‘talking to himself’, so to speak. If
he wishes, the user can create or change interface elements and
behavior through way of add-ins. This is the mechanism that
implements specific interfaces to extensions created by
different authors. Therefore this issue is related to the first one,
mentioned above. Note that third-party extensions do not
necessarily follow the same interaction patterns. So, the user
may have to face different signification systems and
communicative strategies every time he switches from one
extension to the other.

E. Step 4 — CDNf Inspection: Cognitive Dimensions Check

As shown in Fig. 1, the CDNf inspection carried out in
CSCE is partial in two important ways. First, the first three
steps from a standard CDNf analysis (Fig. 3) are skipped and
the analyst uses the information available from the preparation
phase, performed before the semiotic analysis, to define its
ideal notation profile. Second, the object of CDNf analysis at
this step is not the entire set of notational systems and
information artifacts included in the software tool being
analyzed, but only the portions of it where communicative
issues have been detected.

Thus, for every item in the current list of issues, the analyst
identifies the tasks and subtasks in it. Then, for every task or
subtask at hand, given the profile of the targeted user and the
set of notational systems with which the user must interact to
carry them out, the analyst checks all fourteen cognitive
dimensions (TABLE 1) in search of evidence regarding the
user’s mental workload.

For the illustration case with EA, we identified cognitive
issues that can be composed with the communicative issues
identified at EA semiotic evaluation that are used as input to
the CDNf inspection.

The problem of losing ownership distinctions of items
included in the “Extension” (“Lack of differentiation for
extensions’ ownership” issue) menu list is associated with
CDN “Hidden Dependencies”. By looking at the notation (a
label), the user cannot tell who the owner of the extension is,
that is, on whose decisions the meaning of the extension
depends on. Of course, if the user himself has created the item,
he may (or may not) remember that. Another cognitive
dimension comes then into play, “Visibility”, revealing the
cognitive load imposed by the lack of a notational element that
indicates which items have been created by the user, for
example.

Another important contribution of CDNT for our analysis is
to show the cognitive cost of “Diffuseness” of information if
the user seeks to understand the meaning of the item
“CodeTrigger V4.2”, for example (“Extension’s
understanding spread over different sources” issue). The
search begins in one notational environment (EA), then
proceeds to a second one (the EA website), where a link refers
the user to a third one (the extension owner’s website).
“Diffuseness” occurs when information is dispersed over an
extended notational space.

Finally, converging with SIM results that showed how
metacommunication coming from different designers (“User
communicating with different designers” issue) can disrupt
the structure of the EA designer’s metacommunication
message, CDNf confirms this fact with “Consistency”. From a
user’s cognitive point of view, uncontrolled additions of
notational systems into an existing notational system are a
threat to consistency in the collection of information artifacts.
By the same token, this lack of consistency can lead users into
error, that is, we have to add the cognitive loads of yet another
cognitive dimension, “Error Proneness”.

F. Step 5 — CDNf Inspection: Comparison with Ideal
Notation Profile

Once the analyst has scanned the entire list of
communicative issues with the fourteen cognitive dimensions
used in CDNf, he compares his findings with ideal situations,
that is, notations that impose low cognitive workloads. He
identifies all cognitive issues revealed in this comparison and
adds them to the corresponding record of communicative issues
detected by SIM in previous steps. If no cognitive issues are
found, the record is not changed.

All issues detected in this step are added to the
corresponding communicative issue record in the current list

ISSN: 2236-3297

SBC Journal on Interactive Systems, volume 6, number 1, 2015

61

for further evaluation with TNP. As before, all included issues
are accompanied by information about where supporting
evidence for it has been found during the analysis.

In EA’s illustration case, at this step we could see which
cognitive dimensions of notations were associated with the
communicative issues reported by SIM. The dimensions did
not point to further issues, but rather to further details about the
notation used in the metacommunication message. Such is the
case of “Role Expressiveness”, for instance. This dimension
refers to the ability of the notation to express roles of the object
they refer. Our analysis showed that the “Extension” menu was
in itself an information artifact (a unitary notational system)
whose role is to congregate all unpredictable notations created
at use time by means of including extensions or add-ins. Rather
than a cognitive issue, this is a cognitive feature. Delimiting
the space of metacommunication produced by others is a good
strategy in design. However, in EA, this strategy needs
improvement, as the communication issue

G. Step 6 - TNP Characterization: Check all three factors

In this step, we analyze the listed issue items against the
“T”, “N” and “P” parts of the triplet and the relations between
them. This step effects the contextual binding of
communicability issues, along with its associated cognitive
extensions, in the modeling domain. We take into account the
fact that people use tools and notations to build models that are,
themselves, notational artifacts, and will be used by other
people (or even the same people) at later stages of development
process.

In EA’s illustration case, the current list of issues with
communicative (communicability) and cognitive (usability)
annotations coming from SIM and CDNf{ inspections can be
structured using all the three factors in TNP. Here is a portion
of the instantiated structure:

T (EA) communicates Pd (the EA designer’s) intention to
provide Pu (EA users) with powerful resources to extend T
(EA’s) functionality at use time. Pu thus creates and includes
new N (Extensions and Add-Ins) in T (EA) while manipulating
T-N (EA’s notational systems). However, some other Px (third-
party extension owners) can interfere with Pd and Pu ongoing
communication through N (EA’s original interface). Px will
use his own N (modeling language notations and interface
controls), which will probably be different from the N
(metacommunication message signs) with which Pd and Pu
communicate, mediated by T (EA). If Pu needs clarification
about new N (extensions and add-ins) included in T (EA), Pu
will have to use other T (EA’s website and Px’s website), and
their respective N.

H. Step 7— TNP: Plotting findings onto the final
metacommunication template

In the final step of the method, the analyst takes all findings
and annotations coming from previous steps and tries to fill out
a new version of the metacommunication template, considering
the portions presented in TABLE II. Note that because the
analyzed data comes from interactive breakdowns, alone, it is
possible (and even desirable) that the template will have gaps

ISSN: 2236-3297

in it. Gaps mean that no issues have been found regarding the
corresponding content.

In EA’s illustration case, in the last step of the analysis, the
entire list of issues, structured with TNP elements and relations
among them is plotted onto the metacommunication template.
The template is a message reconstructed by the analyst,
considering the list of HCI issues detected in EA’s interface.
The illustration of results is presented incrementally. The
analyst now speaks for the designer, that is, he assumes the first
person of discourse (“I”, “my”) and incorporates into the
metacommunication message the acknowledgment of
communicative and cognitive issues that the user (addressed as
the second person in discourse, “you”) will have to avoid,
circumvent or resolve. In the case presented in this paper, we
have breakdowns in all portions of the metacommunication
template, as follows:

“Here is my understanding of who you are,”. You are an
experienced user of EA. You are familiar with the use and
creation of extensions and add-ins for tools that you may use,
possibly a professional software developer. You know that
extensions can be developed by third parties and that they
typically provide documentation for their extensions on their
websites. You are probably not intimidated by the complexity
of using various extensions at the same time. You can look for
documentation to learn how to use each one of them on your
own, and if errors occur you believe you can detect and correct
them without my help.

“...what I’ve learned you want or need to do...” You want or
need extensions and add-ins to expand the functionality or
interface (elements and behaviors) provided by me to build
activity models.

“... in which preferred ways, and why.”. Y ou may want to use
extensions created by me or by third parties to expand the
functionality I provide with EA. And you may also want to
create your own add-ins to expand the possible interface
elements I provide.

“This is the system that I have, therefore, designed for you,
and this is the way you can or should use it...” 1 have
therefore designed Extension and Add-In functionality to
support you in modeling tasks. I already include in EA a couple
of Extensions developed by me and indicate some developed
by third parties. If you want to know about the last one, please
visit my website. I give you some basic information about
those extensions there and, if you want to know more, I give
you the link to the extension’s owners’ website. If you want to
use other extensions, you should follow the pointers to where
the information resides on the Internet, then study the
documentation to install the extension. Once it is installed, I
give you easy access to it in the “Extensions” menu. All
extensions installed are listed there. If you click on their names
you will call the extension’s interface, which you can use as
instructed by owners. I cannot help you if errors occur during
use. So, be sure to get yourself the necessary resources to use
extensions effectively and efficiently. You can also create and
manage Add-Ins with a simple tool I provide you. I assume that
you will do this only occasionally, which means you can
recognize — in the Extensions menu — which items are third-
party’s extensions and which ones are you’re your own add-

62

SBC Journal on Interactive Systems, volume 6, number 1, 2015

ins. You can also manage your Add-ins with an Add-in
Manager. [can help you with Add-ins. Please look for
information in the User Guide.

“in order to fulfill a range of purposes that fall within this
vision.”. My vision is that you, just like me, are a professional
software developer. Therefore, you are used to solving
problems using your own resources rather than being helped by
others. As a professional developer, you need to be efficient,
even as unpredicted situations arise. Therefore, I leave an open
door in EA for your own extensions and additions. In this way,
you can customize EA and make it your own tool.

We can see by the partial template fill-out above that the
effect of design choices is explicitly expressed in the
metacommunication messages. The designer acknowledges his
own values and beliefs in building EA, which may strongly
contrast with the actual user’s profile. One of the most obvious
contrasts is the fact that in our inspection scenario, the user’s
profile was that of a novice EA user. Hence, the partial
template above shows that the designer’s entire message above
is meant for someone else. Put in another way, if extensions
and add-ins are fundamental for any modeler to use, then the
conversation must be extensively redesigned to reach novice
users. If not, one of the points that can be elaborated is the
explicit communication of which conversations are for novices
and which ones are for experienced users. If they are
completely intertwined in the interface, then a novice may
suddenly begin to talk about things that he or she cannot
understand. In general, the organization of conversations per
profile of the receiver is a major semiotic engineering task,
where bad solutions typically charge their cost in terms of the
user experience.

V. DISCUSSION

The combination of HCI inspections driven by
communicability and usability achieved with CSCE+TNP
produces rich characterizations of issues related to breakdowns
identified during the interaction with modeling tools. CSCE
incorporates the core steps of existing semiotic (SIM) and
cognitive (CDNf) methods.

In view of our long-range goal in research, we focus on
issues related to breakdowns occurring in interaction with
modeling tools. This means that we do not produce a
characterization of the entire metacommunication message,
annotated with cognitive dimensions and structured with TNP
relations. We work with problematic fragments of
metacommunication. This is more efficient for the long-range
goal of our research, but we cannot be sure of what we are
missing because of our choice.

In CSCE+TNP execution, the semiotic analysis is carried
out before the cognitive analysis. We decided for that order
because SIM takes a much larger perspective on human-
computer interaction (including the designer and his design
rationale) than CDNf (which concentrates on users and
notations). We must, however, acknowledge the possibility of
the reversed order producing interesting results. SIM, in this
reversed order, would impose an a posteriori intentional
structure to a series of observations produced with CDNf. The
ideal notations used in the final step of CDNf inspections might

challenge the justification of communicative strategy choices,
for example (“if there is a better communication language, why
have I not used it in my design?”).

Both SIM and CDNTf account for all factors of TNP, but
from completely different perspectives. In the specific context
of software modeling tools, the communicative perspective of
SIM highlights “P” and “T” more than “N”. In fact, SIM
cannot produce the kind of detailed analysis that CDNf
produces for notations. However, SIM can go into the details of
various P-P relations, or P-T-P relations, which CDNTf is not
prepared to handle, as we showed with the illustration case.
Moreover, the rich and contextualized collections of issues
gathered with CSCE+TNP can be explored by software tools’
designers for at least two purposes: (a) to solve the evidenced
issues and; (b) to learn from those issues and think about the
cause-effect relation of their design decisions and the user
experience while building artifacts in the software development
process.

Moreover, when the final metacommunication template is
reconstructed by the analyst, in spite of its biases and gaps, the
contribution of SIM and CDNf dimensions to the end result of
the analysis becomes clearer. The reconstructed designer’s
message is now changed by concessions and justifications (or
excuses) for materially supported evidence that some design
choices cause problems for the users, whether within the
limited scope of user-system interactions, or in the broader
scope of interaction that includes its antecedent (the designer’s
decision) and consequent (the social purpose of using the
technology).

As mentioned in the introduction section, the complete
results achieved in the EA’s study were divided into four
breakdown categories and we only illustrated the results for
one of them (Problems with resources to extend/add
Sfunctionality). In TABLE III, presented at the beginning of the
next page, we present the relation between breakdown
categories (rows) and basic interaction elements accounted by
semiotic and cognitive perspectives (columns). Items marked
with “*” have been added on each side by elements and
relations in the triplet. Gray cells mark the presence of relevant
findings in the study. “Signification System” refers to the
nature of signs being used to convey the designer’s message.
So, for example, regarding the semiotic analysis, issues in this
illustrated category were related to signification systems, Ist
Person — DESIGNER and 2nd Person - USER at interaction
time. To understand how the relation is established, think of the
results illustrated in the previous section, especially as reported
in the reconstructed metacommunication template. Regarding
the cognitive analysis, this category was related to Interface
Notation and 1st Person - USER (tasks/goals). Once again, the
illustrated findings indicate how the relation is established. The
TNP items were not directly related to that category. The
illustration case does not bring in different software
development team members, like evidence in other issue
categories like “Problems with supporting the software
development process”. Hence, we cannot relate this category
with the user’s social role in the development process, for
instance. The other rows in the table show how many relations
have been established in the study and strengthen our argument
that CSCE+TNP can produce a rich semiotic-cognitive,

ISSN: 2236-3297

SBC Journal on Interactive Systems, volume 6, number 1, 2015

63

psycho-social characterization of HCI design issues in the
design of the inspected artifact’s interface.

TABLE III

SEMIOTIC AND COGNITIVE REFERENCE FOR ANALYSIS

Semiotic Perspective Cognitive Perspective

Issue categories/Analysis item reference

Signification System
Ist Person - DESIGNER
*an Person - USER in a Social
Interface Notation
% . .
Modeling Notation (UML)
1st Person - USER (tasks/goals)

2nd Person - USER at interaction time
Context (Software Development
EERe

Problems with resources to extend/add functionality

Problems with resources for meaning construction with
multiple notations

Problems with resources for meaning construction with UML

Problems with supporting the software development process

* Analysis item reference added by TNP triplet

Since 2012, we have been developing and improving the
combined semiotic-cognitive evaluation method for software
engineering tools. The method has already been applied for
evaluating visual programming notations [28], application
programming interface languages [26], as well as other
modeling tools [15][27]. We acknowledge that researchers with
less experience in Semiotic Engineering may initially achieve
only part of the results achieved by experienced researchers.
However, because there is so much more to uncover and
discover in this field of research, our priority at the moment is
not to produce “off-the-self” solutions for software industry
professionals to use right away. The value of our contribution,
as we see it, is to advance research. Nevertheless, with the
illustrations provided in the previous section, we believe that
interested researchers can carry out studies of their own,
especially — as is expected in research — if they resort to further
publications about SIM [7][11][12] and CDNf [13][24][25].

VL

In this paper, we have described and illustrated the
procedures and results of the CSCE+TNP method. We have
also discussed how some of its features (like focusing on
breakdowns and working with a fixed semiotic-cognitive order
of analysis) may impose limitations in the process of analysis.
These are presumed limitations. There must be other
limitations that we are aware of, however. One of the topics
that, as we already know, deserve further studies is the fact —
shared by most qualitative methods [31] — that our analysis is
extensively dependent on data produced by the analyst. That is,
in the process of interpretation, intermediate findings are taken
as input (hence data) for subsequent stages of interpretation.

FINAL CONSIDERATIONS AND FUTURE WORK

ISSN: 2236-3297

The standard way to attenuate this effect in qualitative methods
is triangulation. One way to triangulate CSCE+TNP findings is
to contrast findings with those from studies with user
observation methods, like the Communicability Evaluation
Method [7]. We will then be able to see the validity of achieved
results against stronger empirical evidence. Another form of
triangulation is to contrast results achieved by multiple
analysts. Our results have been critiqued by a peers (which is
one of the forms to validate qualitative research [31]), but they
haven’t been contrasted with the results of analysis fully
carried out by a second (or third) analyst. The contrast of
independent results would certainly strengthen the conclusions
we achieved. In sum, the most critical methodological
limitations of our work have to do with knowing what kinds of
triangulations are more productive to validate CSCE+TNP
findings. Hence the importance of proceeding with our project
and improve our knowledge. In this respect, we hope that other
researchers will use CSCE+TNP, even if partially, in their
investigations and provide us with an informed critique of the
work we have done.

Regardless of limitations, however, CSCE in its current
state can produce rich characterizations of HCI issues in the
design of software modeling tools’ interfaces. These
characterizations are evidently better than the ones achieved
with SIM or CDNf, individually. For this research, we focused
on modeling tools, and that is why we used CSCE associated
with TNP. However, we understand that CSCE can be used to
evaluate other kinds of tools that support the software
development process. Moreover, the TNP structure is a step in
the direction of including the social dimensions of group work
in the scope of analysis. It can, in fact, be viewed as a light-

64

SBC Journal on Interactive Systems, volume 6, number 1, 2015

weight version of group models that have been already used to
investigate software development processes [32][33].

The limitations of this work open the path to further
research and future work. We plan to investigate the method’s
potential to handle not only the fragments of faulty interaction
evidence, but also the entire scope of user-system
communication enabled by modeling tools in a particular
scenario of inspection. This could be achieved by repeating the
EA study with two evaluators, having the same technical
capacity, one looking at the entire scope of interaction, while
the other focuses on semiotic and cognitive issues. By
comparing achieved results, we should know how much
information about the design rationale we may be missing by
not taking into consideration the positive aspects of interaction
in the inspection scenario, since we only focused on issues, on
negative aspects. Even if our long-term goal is unchanged, and
we proceed to investigate the Propagation Conjecture.

Other interesting points to be investigated include the
power of model-drawing tools, compared with semantic
modeling tools. If the user has the freedom to add new
notations or expand the provided notation, we might see the
emergence of socially-negotiated secondary notations that can
fill up expressive gaps of the base notation supported by the
tool. This might give us an insight into the social protocols that
are sometimes used to complement (and compensate for the
limitations of) technological protocols commonly used in
collaborative tasks such as software development [34].

Finally, we should not lose sight of why we are
investigating the communicability and usability of modeling
tools used in the software engineering process. Because models
are in and of themselves a message about how an individual (or
a group of) software designer(s) or developer(s) has (have)
interpreted a certain aspect of the system that is under
construction, all breakdowns encountered in modeling
activities have the potential to impact the quality of the model,
and thus the resulting system’s end user experience once the
development phase is concluded and the system is deployed.
We actually do not know what this impact is or can be, but this
is partly because we lack the appropriate instruments to track
the problem from its origin. So, our research is an initial step in
a long path that can lead us to know the answer for relevant
HCI questions. In spite of all influences coming from our
context of work — Software Engineering — we are investigating
HCI topics, having to do with how, where, when and why
interactive breakdowns can happen while software designers
are acting as users of software development tools. Our next
short-term steps involve new evaluations of modeling tools
already inspected, but with different scenarios, to broaden our
knowledge about the communicability and usability
characteristics of those tools. Furthermore, we are planning to
evaluate other modeling tools wused during software
development. We also intend to evaluate other kinds of tools
that support software development process.

ACKNOWLEDGMENT

Juliana Ferreira thanks CAPES for a Ph.D. scholarship and
CNPq for a postdoctoral scholarship supporting the continuity
of this research. Clarisse de Souza thanks CNPq and FAPERJ

for partially supporting her research on this topic. All authors
thank the kind contribution of anonymous reviewers who
helped them improve this paper. All remaining faults are,
however, the authors’ own responsibility.

REFERENCES

[1] D. Budgen, “The Cobbler’s Children: Why Do Software Design
Environments Not Support Design Practices?”, Software Designers in
Action: A Human-Centric Look at Design Work. Abingdon: Chapman
and Hall/CRC, 2013, 199-215.

[2] R.S. Pressman, Software engineering: a practitioner’s approach, 7th ed.
NY: McGraw-Hill, 2010.

[3] G. Cockton, "Revisiting usability's three key principles.” In Proceeding
of CHI '08 Extended Abstracts on Human Factors in Computing
Systems (CHI EA '08). ACM, New York, NY, USA, 2008, 2473-2484.

[4] J.D. Gould, Lewis, C. "Designing for usability: key principles and what
designers think." Communications of the ACM, 28(3), 1985, 300-311.

[5] E.L. Hutchins, J.D. Hollan, D.A. Norman, “Direct manipulation
interfaces”, In D. A. Norman, S.W. Draper. User Centered System
Design; New Perspectives on Human-Computer Interaction. L. Erlbaum
Assoc. Inc., Hillsdale, NJ L. Erlbaum Assoc. Inc., Hillsdale, NJ , 1986,
87-124.

[6] B.E. John, D.E. Kieras, “Using GOMS for user interface design and
evaluation: Which technique?”, ACM Transactions on Computer-
Human Interaction (TOCHI), v. 3, n. 4, 1996, p. 287-319.

[7] C.S. De Souza, C.F. Leitdo, Semiotic engineering methods for scientific
research in HCI. Princeton: NJ. Morgan & Claypool. 2009.

[8] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, R. Heldal,
“Industrial Adoption of Model-Driven Engineering: Are the Tools
Really the Problem?”, MoDELS 2013: 2013, 1-17.

[91 OMG, Object Management Group -http://www.omg.org/

[10] OMG, Unified Modeling Language (UML),
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF

C.S., De Souza, C.F. Leitdo, R.O. Prates, E.J. da Silva, “The semiotic
inspection method”, In Proceedings of 7th Brazilian Symposium on
Human Factors in Computing Systems. New York, NY: ACM. ACM
International Conference Series. pp. 148-157, 2006.

C.S. De Souza, C.F. Leitdo, R.O. Prates, S.A. Bim, E.J. Da Silva, “Can
inspection methods generate valid new knowledge in HCI? The case of
semiotic inspection.” International Journal of Human-Computer Studies
68, 2010., 22-40.

A.F. Blackwell, T.R. Green, “Notational systems—the cognitive
dimensions of notations framework”, HCI Models Theories and
Frameworks Toward a Multidisciplinary Science, 2003, 103—134.
Enterprise Architect Ultimate 11 -
http://www.sparxsystems.com.au/products/ea/index.html

V2.4.1-

(1]

[12]

[13]

[14]
[15] 1.J. Ferreira, C.S. De Souza, R.F.G. Cerqueira, “Characterizing the Tool-
notation-people Triplet in Software Modeling Tasks”, In Proceeding of
the 13th Brazilian Symposium on Human Factors in Computing Systems
(IHC’2014), Brazilian Computer Society, Foz do Iguagu, Brazil, 2013,
p. 31-40.

J.J. Ferreira, Communication through models in the context of software
development. Rio de Janeiro, 2015. 194p. D.Sc. Thesis - Departamento
de Informatica, Pontificia Universidade Catélica do Rio de Janeiro,
2015. (to appear in Portuguese)

[16]

[17] C.S. De Souza, The Semiotic Engineering of Human—Computer

Interaction. Cambridge, MA. The MIT Press, 2005.
M. Nadin, "Interface design: A semiotic paradigm." Semiotica 69.3-4,
1988, 269-302.

M. Nadin, “Interface design and evaluation.” In R. Hartson, D. Hix
(Eds.) Advances in Human-Computer Interaction, vol. 2. Norwood, NJ.
Ablex Publishing Corp. 1988, pp. 45-100.

P.B. Andersen, A theory of computer semiotics. Cambridge University
Press (2nd edition), Cambridge, 1997.

(18]

[19]

[20]

ISSN: 2236-3297

SBC Journal on Interactive Systems, volume 6, number 1, 2015

65

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]

[31]

[32]

[33]

[34]

C.S. Peirce, The essential Peirce: Selected Philosophical Writings. Vols.
I, II. N. Houser and C. J. W. Kloesel (Eds.). Bloomington, IN. Indiana
University Press, 1992-1998.

U. Eco, The theory of signs and the role of the reader, The Bulleting of
Midwest Modern Language Association. Vol. 14(1), 1981, pp. 35-45.

J. Nielsen, “Usability inspection methods”, In Proc. Conference
companion on Human factors in computing systems, ACM, 1994, 413-
414.

A.F. Blackwell, C. Britton, A. Cox, T.R. Green, C. Gurr, G. Kadoda,
R.M. Young, “Cognitive dimensions of notations: Design tools for
cognitive technology”, In: Cognitive Technology: Instruments of Mind.
Springer Berlin Heidelberg, 2001. p. 325-341.

T.R. Green, M. Petre, “Usability analysis of visual programming
environments: a ‘cognitive dimensions’ framework”, Journal of Visual
Languages & Computing 7.2, 1996, 131-174.

L.M. Afonso, R.F.G. Cerqueira, C.S. De Souza, “Evaluating application
programming interfaces as communication artefacts”, In Proceedings of
PPIG’2012, London, UK, 2012, pp. 151-162.

J.J. Ferreira, C.S. De Souza, “Communicating ideas in computer-
supported modeling tasks: A case study with BPMN”, In Human-
Computer Interaction. Human-Centered Design Approaches, Methods,
Tools, and Environments, Springer Berlin Heidelberg, 2013, 320-329.

J.J. Ferreira, , C.S. De Souza, L.C.C. Salgado, C. Slavieiro, C.F. Leitdo,
F.F. Moreira, “Combining cognitive, semiotic and discourse analysis to
explore the power of notations in visual programming”, In Proceedings
of VL-HCC 2012, 2012, 101-108.

Gartner Group - https://www.gartner.com/doc/2601526

J.M. Carroll, Making use: Scenario-based design of human—computer
interactions. Cambridge, MA: MIT Press, 2000.

J.W. Creswell, Research design: Qualitative, quantitative, and mixed
methods approaches. Sage publications, 2013.

R.M. Araujo, F.M. Santoro, P. Brézillon, M.R.S. Borges, M.G.P. Rosa,
“Context Models for Managing Collaborative Software Development
Knowledge”, In: Modeling and Retrieval of Context (MRC2004), 2004,
Ulm, Alemanha. CEUR Workshop Proceedings. Berlin: CEUR
Workshop Proceedings, 2004. v. 114. p. 61-72.

J. Grudin, “Groupware and social dynamics: Eight challenges for
developers”, Communications of the ACM, v. 37, n. 1, 1994. 92-105.

C. Ellis, S. Gibbs, “Groupware: some issues and experiences”,
Communications of the ACM, 34, 1991.

ISSN: 2236-3297

