
Compressive Representation of Three-dimensional
Models

José Paulo R. de Lima, Helton Hideraldo Bı́scaro
Escola de Artes, Ciências e Humanidades – Universidade de São Paulo (USP)

josepaulolima@gmail.com, heltonhb@usp.br

Abstract—Due to recent developments in data acquisition
mechanisms, called 3d scanners, mesh compression has become an
important tool for manipulating geometric data in several areas.
In this context, a recent approach to the theory of signs called
Compressive Sensing states that a signal can be recovered from
far fewer samples than those provided by the classical theory.
In this paper, we investigate the applicability of this new theory
with the purpose of to obtain a compressive representation of
geometric meshes. We developed an experiment which combines
sampling, compression and reconstruction of various mesh sizes.
Besides figuring compression rates, we also measured the relative
error between the original mesh and the recovered mesh. We also
compare two measurement techniques through their processing
times, which are: the use of Gaussian matrices; and the use of
Noiselet matrices. Gaussian matrices performed better in terms
of processing speed, with equivalent performance in compression
capacity. The results indicate that compressive sensing is very
useful for mesh compression showing quite comparable results
with traditional mesh compression techniques.

I. INTRODUCTION

Geometrical meshes play a very important role in areas such
as computer graphics, virtual reality and numerical simulation.
Meshes with high level of details can have high computational
cost for storing and processing. In this paper, we provide a
comparative study of mesh compressive sensing on Geometric
meshes, which offer an effective way of representing 3D
geometric models in a compressive representation. Meshes
are obtained from several sources such as modelling software
and 3D scanning.

There are several important areas of application involving
meshes, for instance: finite elements simulation, where the
polygonal meshes and the equation solvers are used to find
numerical solution for differential equations with different
boundary conditions; 3D printing; Interactive environments for
Virtual Reality; Medical training simulators and even simple
entertainment applications, where highly complex models are
used to achieve satisfactory levels of realism. Currently, its
is possible to acquire highly detailed and arbitrary topology
surfaces with millions or even billions of vertices. Compressive
representations on Meshes are very important in that type of
scenario.

We explore, in this work, an approach that uses an acquisi-
tion paradigm named Compressive Sensing applied to geometric
meshes. We performed an experiment that runs compressive
sampling and subsequent reconstruction of geometric models
of various sizes, proving that it is feasible to apply this theory
in more efficient acquisition protocols for geometric models.

Conventional approaches to signal theory follow the Shan-
non/Nyquist theorem: “the sampling rate must be at least
twice the maximum frequencies in the signal”. According to
Candès and Wakin [1], that result underlies almost all signal
acquisition protocols used for audio and visual electronics,
medical image devices, radio receivers and so on. However,
most of those signals must be compressed in order to be stored.
This fact suggests that the Shannon/Nyquist principle supposes
the worst possible case and most of the acquired coefficients are
redundant. The Compressive Sensing (CS) theory, also know as
Compressive Sampling, is a paradigm that asserts that one can
recover a signal or an image from far fewer samples or measures
than traditional methods. The reconstruction is performed using
an optimization procedure and, of course, the word “sample”
has an entirely new meaning. Instead of collecting points in
different regions of an n−dimensional signal X or averages
in small areas, each measurement yk in CS acquisition is the
inner product of X with different test functions φk.

y1 = 〈φ1, X〉 , . . . , ym = 〈φm, X〉 (1)

In this paper we use a sparse representation of geometric
information contained on meshes to obtain a compressive
representation. Also, we use different types of test functions
and compare the results in terms of how many “samples”need
to be stored to obtain a reconstructed mesh as close as possible
to the original.

II. BASIC THEORY

In an early paper, Emamnuel J. Candès [2] suggests the
possibility of new data acquisition protocols that translate
analogical information into digital with less sensors than it
was previously considered necessary. In the same work, the
author provides the key mathematical results underlying this
new theory. Candès and Wakin [3] discuss sensing mechanics
in which a signal f(t) is stored using inner product with linear
functions

yk = 〈f(t), φk(t)〉 . (2)

Specifically, given an n−dimensional k−sparse signal S,
we aim to find an m× n measurement matrix ΦΩ and solve
the optimization problem:

min ‖S‖l1 , (3)
subject to ΦΩS = Y

76 SBC Journal on Interactive Systems, volume 6, number 1, 2015

ISSN: 2236-3297

The components y1, . . . , ym of the Y vector are called
measurements of the signal S, and Ω is a random measurement
subset of size |Ω| = m. CS theory aims to choose ΦΩ to take
as little measurements as possible and yet, to produce a reliable
reconstruction of S.

Most times, a signal X must be rewritten as (ΨX = S) in
a proper basis in order to have a sparse representation, where
Ψ is a change of basis matrix. So, instead of S in Equation 3,
we have:

ΨX = S ⇐⇒ Ψ∗S = X

ΘΩS = Y,where ΘΩ = ΦΩΨ∗

The problem, as illustrated in Figure 1, of finding S such
that ΘΩS = Y is ill posed since the matrix ΘΩ is not invertible
and not all the solutions satisfy the sparsity property. Therefore,
a simple choice consists of taking, among all possible solutions,
the one that makes S sparsest.

Figure 1: Illustration of the algebraic problem. Extracted from
Schulz et al. [4]

Compressive sensing rely on two basic ideas: sparsity as
well as incoherence.

Sparsity expresses the idea that the number of degrees
of freedom of a known signal is significantly smaller
than its length. Many natural signals such as images,
sounds and, specially, geometrical meshes are sparse
or they have a sparse representation in a proper basis
Ψ.
Incoherence extends the duality between time and
frequency. The basic idea is that signals that have a
sparse representation in Ψ must be spread out of this
domain. A formal definition of coherence between
two bases Φ and Ψ is:

µ(Φ,Ψ) =
√
nmax

j,i
|〈φj , ψi〉| (4)

‖φj‖l2 , ‖ψi‖l2 = 1

The definition in Equation 4 gives a measurement of the
correlation between the sensing waveforms φj and those where
the signal is supposed to be sparse ψk. Notice that µ(Φ,Ψ) is
an angle measurement between the sensing and the sparsity
waveforms. Thus, high incoherence means that the vectors are
nearly orthogonal. The main idea underlying this concept is
that, if a random combination of the entries are measured,

something new about the sparse vector is learned in every
measure.

Incoherence also can be defined in terms of the matrix Θ
as:

µ(Θ) = max
j,i
|Θi,j | (5)

Actually, this definition is equivalent to the definition given
in Equation 4, since the matrix Θ can be written as:

Θ =

φT1
...
φTn

 [ψ1 · · · ψn] =

φT1 ψ1 · · · φT1 ψn

...
. . .

...
φTnψ1 · · · φTnψn

(6)

Results from CS [5], [2], [6], [7] theory establish that, in
general, an image signal can be reconstructed by taking only
O(K ∗ log(n)) coefficients.

In fact, while classical sampling theory presumes an
infinite length, continuous signal, the CS theory focuses on
the measurements of finite vectors in Rn. Another important
difference is that rather than sampling a signal at a specific
point in time, the CS theory “sense” the signal in terms of
an inner product between the signal and some test functions.
In fact, the randomness of these test functions play a key
role in the sensing process. The third main difference between
the Shannon-Nyquist framework and the CS approach is that
in the first, the recovery is achieved through sync functions
interpolation, a linear procedure that uses little computation,
while in the second, the recovery is achieved using highly non
linear methods. An overview of those methods can be found
in the work of Tropp et al. [8].

III. RELATED WORK

In this section, we describe some previous work in Com-
pressive Sensing theory and Mesh Compression.

A. Compressive Sensing

Medical imaging was one of the areas that benefited most
from Compressive Sensing [9], [10]. In that area, processing
times were speed up by a factor of seven for the same diagnostic
quality. Moreover, this framework has inspired researches that
extend the CS theory to practical implementations, compressive
imaging and compressive sensor networks. The literature has
demonstrated that data acquisition and compression can be
combined to reduce the time and the space to acquire many
signals os interest.

In fact, CS has made possible to perform a drastic reduction
in acquisition times. Duarte et al. [11] have proposed a new
camera architecture, which they call “single-pixel camera”. The
camera combines sampling and compression in a single non
adaptive acquisition process.

Patel et al. [12] present an algorithm called “GradientRec
”that uses a CS technique to recover the horizontal and vertical
gradients and then, estimates the original image from these
gradients. They also present two methods so solve the inverse

SBC Journal on Interactive Systems, volume 6, number 1, 2015 77

ISSN: 2236-3297

problem: least-square optimization and a generalized Poisson
solver. Fang and his collaborators [13] present a technique
based on CS concepts for reconstruction and enhancement of
multi-dimensional image data. Their method utilizes sparse rep-
resentation dictionaries constructed from previously collected
datasets. Lingala and Jacob [14] proposed what they called
Blind Compressive Sensing frame work to to recover dynamic
magnetic resonance images form undersampled measurements.
Their approach use combinations of temporal basis function
chosen from a large dictionary.

B. Mesh Compression

The 3D mesh information can be divided into geometric
information, parameter information, and topology or connec-
tivity information. The geometric information concerns the
vertices coordinates and the normal vectors at the vertices;
the parameter information refers to any information that can
be stored in the mesh, for instance, color, heat information,
forces, etc.; the connectivity information is related to the
neighborhood information among the vertices, the genus of
the surfaces and so on. The compression of topology, in
general, aims at reducing repeated references to vertices that
are shared by numerous polygons in a mesh, while compression
of geometrical information uses signal processing methods to
represent or remove highly detailed features.

Touma and Gotsman [15] offered an algorithm, called
“valence-driven approach,” that achieves a compression rate
lower than 1.5 bpv on average to encode the mesh connectivity.
The main drawback of this approach is that it is applicable
only to orientable surfaces and manifold meshes. A similar
approach, proposed by Gumhold and Strasser [16], divides the
mesh into conquered and unconquered parts, inserting triangle
by triangle into the conquered parts.

Rossignac [17] presents a popular example of triangle
conquest approach, the Edgebreaker. In summary, this approach
is a depth-first traversal of the dual graph of the mesh and it can
encode an orientable manifold mesh with multiple boundaries
and arbitrary genus with a guaranteed worst-case cost of 4 bpv
for simple meshes. Several variations of Rossignac’s approach
were developed [18], [19], [20].

Khodakovsky et al. [21] offer a progressive compression
scheme that can handle arbitrary surface topology and highly
detailed geometry. They use semi-regular wavelet transforms,
zero tree coding and subdivision-based reconstruction scheme
to improve their approach. Karni and Gotsman [22] project the
x, y and z coordinate vectors onto basis functions to obtain a
geometric spectrum for each coordinate. Those basis functions
are, in fact, the Fourier basis functions. Therefore, encoding
and decoding are performed by means of the Fast Fourier
Transform (FFT). The connectivity is mapped on a 6-regular
connectivity without using geometry information in the process.
That approach is non-optimal, but provides an acceptable trade
off between performance and computational cost.

The work of Du and Geng [23] provides a compressive
sensing based method for mesh compression by using a Laplace
operator. According to the authors, the results are suitable for
large-scale data compression, however, no experiments about
bpv rates or PSNR of the results are presented.

Lobaz and Vasa [24] introduced an efficient algorithm for
encoding triangle meshes based on their Laplacian coordinates
that provides a globla rigidity and low absolute error even for
large meshes.

Maglo and co-authors [25] present an survey that summarize
the early works on mesh compression and put in evidence the
new approaches. They evaluate the algorithms performance
and provide synthetic comparisons. The authors classified the
approach to static mesh compression in three types: Single-rate
- that build a compact representation of a mesh and, in the
decompression process, produces a mesh that is either identical
to the input model or only slightly different. Progressive -
algorithms that, during decompression, reconstruct successive
levels of detail as more data are decoded. Random accessible
- methods that are used to decompress only requested parts
of the input mesh in order to save resources. According to
then, progressive and random accessible algorithms are not as
efficient as pure single rate methods.

IV. EXPERIMENTS AND METHODOLOGY

To apply Compressive Sensing to geometric meshes, we pro-
pose an algorithm in Matlab [26] that performs measurements
which are, then, used in the reconstruction of an approximation
mesh that can be compared with the original mesh.

Our algorithm decomposes the mesh into two data sets:
vertices and faces. We focused our study on the mesh geometry,
i.e., the set of vertices. Thus, the set of faces was kept untouched.
We decompose the set of vertices into three vectors called X ,
Y and Z, each of these vectors represent the data set of vertices
in an axis of R3. However, the data from these vectors are not
in a sparse representation. So, we need to perform a spectral
decomposition using a Laplacian matrix defined as follows:

First, consider E the set of edges of a mesh M and let di
be the number of immediate neighbours of a particular vertex
vi (the valence or degree of vi). Let A be the adjacency or
connectivity matrix of M :

Aij =

{
1, if (vi, vj) ∈ E
0, otherwise (7)

and let D be a diagonal matrix such that Dii = di. Then, the
Laplacian Matrix in relative coordinates is defined as:

L = I −D−1A. (8)

Next, we calculate the first k eigenvectors through an SVD
decomposition, L = UΣV ∗ where U is a unitary matrix n×k;
Σ is a k× k diagonal matrix and the k× n unitary matrix V ∗,
denotes the conjugate transpose of n×k matrix V . Each vector
X,Y and Z is multiplied by U to obtain a sparse representation.
Figure 2 shows the result of this transformation. In Figure 2
a we can see the dense nature of the vertices’ coordinates of
the mushroom model . After applying the change of basis, the
coordinates become more sparse (Figure 2 b).

In our experiments, we computed k as C × log(#(X)),
where #() is the number os elements of the set X and C is
an empirical constant.

78 SBC Journal on Interactive Systems, volume 6, number 1, 2015

ISSN: 2236-3297

a) b)

Figure 2: Plot of the spectral x Cartesian coordinates of a single
mesh. a) Cartesian coordinates. b) spectral coordinates.

Then, we apply a quantization step in the spectral coordi-
nates to obtain a sparse set of integer coordinates. This step
is important because it gives an idea of the compression rate
achieved by the method.

Finally, we multiply the vectors by the measurement matrix
Φ. Our experiment uses two arrays of different measurements:
a Gaussian matrix and a Noiselet matrix [27]. Both matrices
satisfy the incoherency property.

Accordinng to Coifman, Geshwind and Meyer [27], Noiselet
matrices are constructed via a multi-scale iteration in exactly the
same way as wavelet packets and have several good properties.
For example, they help to distinguish that the few large values
in the transformed data describe the “interesting” part of the
data, and the vast majority of values, which are small, represent
noise terms.

Data: A Mesh M
1 Create a matrix Ov with the mesh’s vertices ;
2 Create a matrix Of with the mesh’s faces (connectivity) ;
3 Set Vk = U ∗Ov for k meaning coefficients ;
4 Set the measurement variable meas as 2k ;
5 Set the initial PSNRold as 0 and the initial PSNRnew

2× ε ;
6 while |PSNRnew − PSNRold| > ε do
7 PSNRold = PSNRnew ;
8 s = FunctionSparsity() ;
9 iter = 0;

10 while iter < δ do
11 Compute the measurements matrix Φ ;
12 Compute the vectors Vmx

, Vmy
and Vmz

from
Vk and Φ;

13 Apply the L1 norm minimization (see Equation
3) and recompute Orec

v ;
14 Construct M ′ from Orec

v and Of ;
15 Store the Hausdorff distance from M and M ′ in

matrix D;
16 Increment iter and s;
17 Compute the BPV and PSRNnew ;
18 Increment meas ;
19 return D

Algorithm 1: CS application in geometric information.

Our experiments use two variables: sparsity s and number
of measurements meas. We initialize s with the value k

10 and
the increment of s also as k

10 . The internal loop of algorithm

1 always executes 10 times (the value of δ is set to 10). Every
step of that loop, the vectors Vmx , Vmy and Vmz are built with
only s significant coefficients.

The variable meas is initialized as 2k and incremented
by k

4 . Varying both parameters, we calculate the Hausdorff
distance [28] between the original mesh and the reconstructed
mesh, as well as Bits per Vertex ratio BPV [29] and PSNR
(Peak Signal Noise Ratio), which is an error metric widely
used to compare compression strategies.

The PSNR metric produces a dimensionless measure and
is less sensitive to small variations. Considering Ov a 3 × n
matrix of original vertices and Orec

v the set of reconstructed
ones, PSNR may be defined as:

PSNR = 20log10

(
maxi | Vi |
RMSE

)
(9)

where RMSE is the root mean square error which is computed
as:

RMSE =

(
1

n

n∑

i=1

(
Ovi −Orec

vi

)2
) 1

2

. (10)

In fact PSNR is dimensionless, however, because of the
use of logarithm, it is usual to express it in decibels. According
to Salomon [30], absolute values of PSNR have no meaning.
The values are used only to compare different strategies. For
image compression, for example, typical PSNR values are
between 20 and 40.

Other authors [31] [32] also argue that PSNR is not
suitable for human perception, but, as a matter of fact, other
metrics would also be subjective and costly. Besides, according
to Lee et al.[33], humans cannot recognize difference between
two images when the PSNR is larger than 30-50 dB.

Figure 3 shows the meshes that were used to conduct our
experiment. Mesh (a) (Mushroom) has 226 vertices and 448
faces; mesh (b) (Venus) has 711 vertices and 1,396 faces; mesh
(c) (Elephant) has 2,775 vertices and 5,558 faces; mesh (d)
(David’s Head) has 23,889 vertices and 47,280 faces; mesh (e)
(Fandisk) has 25,894 vertices and 51,784 faces and mesh (f)
(Stanford Bunny) has 34,835 vertices and 69,473 faces.

All experiments where performed using a computer with
the following characteristics: intel 4 x Core i5 3330S CPU @
2.7 GHz with 8.0 Giga of RAM memory under a Ubuntu 14.04
Operating System.

V. RESULTS AND DISCUSSION

In this section, we present the results of all mesh compres-
sion and reconstruction experiments. In order to avoid excessive
repetition in the results, we display only the results of three
models with the largest number of vertices. Figures 4 to 9
show the Hausdorff distances between the original meshes and
those that where reconstructed using the CS technique. The
distances shown in the even-numbered figures were obtained
using Noiselet measurement matrices; the distances shown

SBC Journal on Interactive Systems, volume 6, number 1, 2015 79

ISSN: 2236-3297

a) b) c)

d) e) f)

Figure 3: Meshes used in our experiment. (a) Mushroom.
(b) Venus. (c) Elephant. (d) David’s Head. (e) Fandisk. (f)
Stanford Bunny.

Figure 4: David’s head (Hausdorff Distance between the original
mesh and the reconstructed mesh): Noiselet measurement
matrix. The average processing time for reconstruction was
35.2912 seconds.

in the odd-numbered figures were obtained with Gaussian
measurement matrices.

In all the cases, Gaussian and Noiselet matrices produced
similar results in terms of distance scale for the same mesh. The
upper right corner of each graph shows the shortest distances
obtained during our experiment. That area, colored in blue,
displays the same magnitude for both measuring matrices tested
in this work. However, only the distances are not sufficient to
have a clear idea about the quality of the reconstruction, which
is why we also present the Hausdorff distance depending on
compression rate (bit per vertex), and the PSNR values as a
function of compression ratio. In Figures 12, 14 and 16, we
present the rates of compression (bits per vertex and PSNR) for
three models: David’s Head, Fandisk and Stanford Bunny. In
all cases, we note an asymptotic behavior of the error measures.
Moreover, the PSNR values are consistent with those obtained
in the literature [30] and its asymptotic behavior were also
consistent with the behavior observed in images, as can be seen
in the work of Schulz et al. [34]. This trend indicates that it
would be ineffective to take a larger number of measurements

Figure 5: David’s head (Hausdorff Distance between the original
mesh and the reconstructed mesh): Gaussian measurement
matrix. The average processing time for reconstruction was
27.2517 seconds.

Figure 6: Fandisk (Hausdorff Distance between the original
mesh and the reconstructed mesh): Noiselet measurement
matrix. The average processing time for reconstruction was
42.7562 seconds.

than what has been used in our experiments.

In all cases, the compression rate, measured in bits per
vertex, behaved as expected, i.e., the smaller the Hausdorff
distance is, the smaller the compression rate becomes (more
bits per vertex have to be used for encoding). Thus, good
compression rates imply smaller numbers of bits per vertex in
the encoding process. The compression ratio (bits per vertex)
ranged between 1 and 3.5 BPV in the David’s Head mesh
(Figure 11), between 0.8 and 2.6 in Fandisk’s mesh (Figure 13)
and between 1 and 4 in the Stanford Bunny’s mesh (Figure 15).
As a benchmark, Table I shows the compression rates achieved

80 SBC Journal on Interactive Systems, volume 6, number 1, 2015

ISSN: 2236-3297

Figure 7: Fandisk (Hausdorff Distance between the original
mesh and the reconstructed mesh): Gaussian measurement
matrix. The average processing time for reconstruction was
27.2336 seconds.

Figure 8: Stanford Bunny (Hausdorff Distance between the
original mesh and the reconstructed mesh): Noiselet measure-
ment matrix. The average processing time for reconstruction
was 89.3495 seconds.

by the main geometric compression algorithms found in the
literature.

We also measured the average execution time for each
mesh and each measurement method. The results are shown in
Figure 10. We observed, for both techniques, an increase of
the average time as the number of vertices increase. However,
the use of Gaussian matrix provided a shorter execution time
for all cases. The biggest mesh (Stanford Bunny’s mesh), for
example, took 55 seconds, on average, to process, when the
Gaussian matrix was used; and 90 seconds, when the Noiselet
matrix was employed.

Figure 9: Stanford Bunny (Hausdorff Distance between the
original mesh and the reconstructed mesh): Gaussian measure-
ment matrix. The average processing time for reconstruction
was 57.2708 seconds.

Figure 10: Average of processing times (in seconds) for the
meshes used in our experiment.

Compared with traditional techniques from the theory of
signals, in which reconstruction is done by interpolation, the
cost minimization performed in CS techniques is still high.
However, the increase of memory capacity and speed of today’s
processors tends to minimize this problem.

VI. CONCLUSION AND FUTURE WORK

Compressive Sensing is a recent paradigm for signal acquisi-
tion. Its application is an interesting way to obtain a compressive
representation of a signal from fewer measurements than those
used in the Shanon-Nyquist theorem. The basics of CS are
sparsity and incoherence. In this study we show that CS can be
applied to geometric meshes showing quite comparable results
with traditional mesh compression techniques.

SBC Journal on Interactive Systems, volume 6, number 1, 2015 81

ISSN: 2236-3297

Algorithm Connect. Compress Embed comp. rates (bpv)
Deering [35] 11

Topological surgery [36] 6 max. 2 to 6
Valence coder [15] 2.3 on average
Edgebreaker [37] 3.55 max. 2.1 on average

Valence polygonal [21] 1.8 on average
Valence coder [38] 2.1 on average

Table I: Compression Rate in BPV of the main single rate
mesh compression algorithms (extracted from [25])

Figure 11: Hausdorff distance depending on the compression
rate (BPV) to the David’s Head model

Figure 12: PSNR error depending on the compression rate
(BPV) to the David’s Head model.

In this work, we used two different settings for our
experiments: Gaussian matrix with L1 norm minimization
and Noiselet matrix, using L1 norm minimization. The results
obtained with the application of CS suggest that the use of
Gaussian matrix provides a more efficient set-up than that
obtained with the use of Noiselet matrices.

The limitations applying CS to meshes are: the high cost of
reconstruction, because of the necessity of using optimization
methods; and the increasing amount of RAM memory for
storing measurement matrices that become larger and larger
as the number of vertices increases. Although we used only
L1 norm minimization, there are algorithms that are faster and

Figure 13: Hausdorff distance depending on the compression
rate (BPV) to the Fandisk model

Figure 14: PSNR error depending on the compression rate
(BPV) to the Fandisk model.

Figure 15: Hausdorff distance depending on the compression
rate (BPV) to the Bunny model

provide better minimization results [39].

82 SBC Journal on Interactive Systems, volume 6, number 1, 2015

ISSN: 2236-3297

Figure 16: PSNR error depending on the compression rate
(BPV) to the Bunny model.

Therefore, we conclude that CS techniques will be useful
for geometric meshes because they allow compressive repre-
sentation of meshes. Also, the reconstructed meshes from CS
techniques are reliable and close to the original meshes; and
also because the number of bits per vertex used for encoding
is comparable to or, some times, better than those provided by
classical compression techniques.

For future work, the experiment will be performed with
lager meshes, to observe how the technique behaves under
those circumstances. Other combinations of measure matrix
such Wavelets will be used to compare results. The application
of CS in the context of meshes (which mostly represent objects
composed of points in R3) may provide satisfactory results,
turning the grid points in a sparse matrix and applying CS.
There is a growing interest in the use of three-dimensional
models, particularly for entertainment, so the use of compressive
representations are relevant. There are a few exploratory studies
on the subject [40], thus further study is relevant.

We would also like to study the creation of protocols for
compressive acquisition of geometric information, similar to
the one described by Duarte et al. [11]. With such protocols,
it could be possible to acquire geometric information from far
fewer sensors than the current process.

REFERENCES

[1] E. J. Candès and M. Wakin, “An introduction to compressive sampling
[a sensing/sampling paradigm that goes against the common knowledge
in data acquisition],” IEEE Signal Processing Magazine, vol. 25, no. 2,
pp. 21–30, 2007.

[2] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Ex-
act signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 489–509, 2006.

[3] E. Candès and J. Romberg, “Sparsity and incoherence in compressive
sampling,” Inverse Problems, vol. 23, pp. 969–985, 2007.

[4] A. Schulz, L. Velho, and E. A. B. da Silva, “Uma investigação empı́rica
do desempenho da amostragem compressiva em codificação de imagens,”
XXVII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES, 2009.

[5] E. Candès and J. Romberg, “L1-magic : Recovery of sparse
signals via convex programming,” 2005. [Online]. Available:
http://users.ece.gatech.edu/ justin/l1magic/

[6] E. J. Candès, , and T. Tao, “Near-optimal signal recovery from random
projections and universal encoding strategies?” IEEE Trans. Inform.
Theory, vol. 52, no. 2, pp. 5406–5445, 2006.

[7] M. F. Duarte, S. Sarvotham, D. Baron, M. B. Wakin, and R. G. Baraniuk,
“Distributed compressed sensing of jointly sparse signals,” Conference
Record of the ThirtyNinth Asilomar Conference onSignals Systems
and Computers 2005, vol. vol, pp. 1537–1541, 2005. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1600024

[8] J. A. Tropp and S. J. Wright, “Computational methods for
sparse solution of linear inverse problems,” Proceedings of the
IEEE, vol. 98, no. 6, pp. 948–958, 2010. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5456165

[9] M. Lustig, D. L. Donoho, and J. M. Pauly, “Rapid mr imaging with
compressed sensing and randomly under-sampled 3dft trajectories,” in
in Proc. 14th, 2006.

[10] J. Trzasko and A. Manduca, “Highly undersampled magnetic resonance
image reconstruction via homotopic l(0) -minimization.” IEEE
Transactions on Medical Imaging, vol. 28, no. 1, pp. 106–121, 2009.
[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/19116193

[11] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F.
Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive
sampling,” IEEE Signal Processing Magazine, 2008.

[12] V. Patel, R. Maleh, A. Gilbert, and R. Chellappa, “Gradient-based
image recovery methods from incomplete fourier measurements,” Image
Processing, IEEE Transactions on, vol. 21, no. 1, pp. 94–105, Jan 2012.

[13] L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt,
and S. Farsiu, “Fast acquisition and reconstruction of optical coherence
tomography images via sparse representation.” IEEE Trans Med Imaging,
vol. 32, no. 11, pp. 2034–49, 2013.

[14] S. Lingala and M. Jacob, “Blind compressive sensing dynamic mri,”
Medical Imaging, IEEE Transactions on, vol. 32, no. 6, pp. 1132–1145,
June 2013.

[15] C. Touma and C. Gotsman, “Triangle mesh compression,” in Proceedings
of Graphics Interface, 1998, pp. 26–34.

[16] S. Gumhold and W. Strasser, “Real time compression of triangle mesh
connectivity,” in SIGGRAPH ’98: Proceedings of the 25th annual
conference on Computer graphics and interactive techniques. New
York, NY, USA: ACM, 1998, pp. 133–140.

[17] J. Rossignac, “Edgebreaker: Connectivity compression for triangle
meshes,” IEEE Transactions on Visualization and Computer Graphics,
vol. 5, no. 1, pp. 47–61, 1999.

[18] M. Isenburg and J. Snoeyink, “Spirale reversi: Reverse decoding of the
edgebreaker encoding,” in 12th Canadian Conference on Computational
Geometry, 2000, pp. 247–256.

[19] D. King and J. Rossignac, “Guaranteed 3.67v bit encoding of planar
triangle graphs,” in 11TH CANADIAN CONFERENCE ON COMPUTA-
TIONAL GEOMETRY (CCCG 99, 1999, pp. 146–149.

[20] A. Szymczak, D. King, and J. Rossignac, “An edgebreaker-based efficient
compression scheme for regular meshes,” Comput. Geom. Theory Appl.,
vol. 20, no. 1-2, pp. 53–68, 2001.

[21] A. Khodakovsky, P. Schröder, and W. Sweldens, “Progressive geometry
compression,” SIGGRAPH ’00 Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques, pp. 271–278,
2000.

[22] Z. Karni and C. Gotsman, “3d mesh compression using
fixed spectral bases,” in No description on Graphics interface
2001, ser. GRIN’01. Toronto, Ont., Canada, Canada: Canadian
Information Processing Society, 2001, pp. 1–8. [Online]. Available:
http://portal.acm.org/citation.cfm?id=780986.780988

[23] Z.-M. Du and G.-H. Geng, “3-d geometric signal compression method
based on compressed sensing,” in Image Analysis and Signal Processing
(IASP), 2011 International Conference on, 2011, pp. 62–66.

[24] P. Lobaz and L. Vása, “Hierarchical laplacian-based
compression of triangle meshes,” Graphical Models, vol. 76,
no. 6, pp. 682 – 690, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1524070314000502

[25] A. Maglo, G. Lavoué, F. Dupont, and C. Hudelot, “3d mesh
compression: Survey, comparisons, and emerging trends,” ACM Comput.
Surv., vol. 47, no. 3, pp. 44:1–44:41, Feb. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2693443

SBC Journal on Interactive Systems, volume 6, number 1, 2015 83

ISSN: 2236-3297

[26] MATLAB, version 7.10.0 (R2010a). Natick, Massachusetts: The
MathWorks Inc., 2010.

[27] R. Coifman, F. Geshwind, and Y. Meyer, “Noiselets,” Applied and
Computational Harmonic Analysis, vol. 10, pp. 27–44, 2001.

[28] Y. Gao, M. Wang, R. Ji, X. Wu, and Q. Dai, “3d object retrieval with
hausdorff distance learning,” Industrial Electronics, IEEE Transactions
on, vol. PP, no. 99, pp. 1–1, 2013.

[29] G. Peyré, “Fourier on meshes,” 2008, acesso em Novembro de 2013.
[Online]. Available: https://www.ceremade.dauphine.fr/ peyre

[30] D. Salomon, Data Compression: The Complete Reference. Springer,
2007, with contributions by Giovanni Motta and David Bryant.

[31] A. Smolic, K. Mueller, N. Stefanoski, J. Ostermann, A. Gotchev, G. Akar,
G. Triantafyllidis, and A. Koz, “Coding algorithms for 3dtv ;a survey,”
Circuits and Systems for Video Technology, IEEE Transactions on, vol. 17,
no. 11, pp. 1606–1621, 2007.

[32] A. Khodakovsky, P. Schröder, and W. Sweldens, “Progressive geometry
compression,” in SIGGRAPH ’00: Proceedings of the 27th annual
conference on Computer graphics and interactive techniques. New
York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 2000, pp.
271–278.

[33] J. Lee, S. Choe, and S. Lee, “Compression of 3d mesh geometry and
vertex attributes for mobile graphics.” JCSE, vol. 4, no. 3, pp. 207–224,
2010.

[34] A. Schulz, L. Velho, and E. A. B. Da Silva, “On the empirical
rate-distortion performance of compressive sensing,” in Proceedings
of the 16th IEEE International Conference on Image Processing, ser.
ICIP’09. Piscataway, NJ, USA: IEEE Press, 2009, pp. 3013–3016.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1819298.1819573

[35] M. Deering, “Geometry compression,” Proceedings of the 22nd annual
conference on Computer graphics and interactive techniques, SIG-
GRAPH ’95, vol. 29, pp. 13–20, 1995.

[36] G. Taubin and J. Rossignac, “Geometric compression through topological
surgery,” ACM Transactions on Graphics (TOG), vol. 17, pp. 84–115,
1998.

[37] J. Rossignac, “Edgebreaker: Connectivity compression for triangle
meshes,” GVU Center, Georgia Institute of Technology, Tech. Rep.,
Julho 1998.

[38] P. Alliez and M. Desbrun, “Progressive compression for lossless
transmission of triangle meshes,” in Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, ser.
SIGGRAPH ’01. New York, NY, USA: ACM, 2001, pp. 195–202.
[Online]. Available: http://doi.acm.org/10.1145/383259.383281

[39] E. Candés, M. Wakin, and S. Boyd, “Enhancing sparsity by reweighted
l-1 minimization,” Journal of Fourier Analysis and Applications, vol. 14,
no. 5-6, pp. 877–905, 2008.

[40] S. M. Yoon and A. Kuijper, “View-based 3d model retrieval using com-
pressive sensing based classification,” in Image and Signal Processing
and Analysis (ISPA), 2011 7th International Symposium on, sept. 2011,
pp. 437 –442.

84 SBC Journal on Interactive Systems, volume 6, number 1, 2015

ISSN: 2236-3297

