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Abstract—This paper introduces a tool to semi-automatically 

generate meta-data from game sprite sheets. MuSSE is a tool 

developed to extract XML data from sprite sheet images with 

non-uniform – multi-sized – sprites. MuSSE (Multi-sized Sprite 

Sheet meta-data Exporter) is based on a Blob detection algorithm 

that incorporates a connected-component labeling system. Hence, 

blobs of arbitrary size can be extracted by adjusting component 

connectivity parameters. This image detection algorithm defines 

boundary blobs for each individual sprite in a sprite sheet. Every 

specific blob defines a sprite characteristic within the sheet: 

position, name and size, which allows for subsequent data 

specification for each blob/image. Those blobs are carefully 

optimized through an imbued threshold selection. This work also 

presents a parser to organize these meta-data into a readable 

solution for game engines. The parser is built to read XML meta-

data generated through MuSSE and allow developers to set up 

game objects that can be used by an engine. Several examples on 

real images illustrate the performance of the proposed algorithm 

and working tool. 

Keywords—blob detection, sprite sheet, development tool 

I.  INTRODUCTION 

Digital Games uses sprites for visual representation of 
characters, objects and entities composing a scene.  Sprites are 
two-dimensional images or animations embedded inside the 
game and loaded according to the graphical hardware 
constraints [1]. Sprites are usually represented inside a game by 
their bounding box rectangle: a shape definition for the 
corresponding image represented by their position (offset_x, 
offset_y) and size (width, height). A sprite's bounding box 
represent the entity that matches that image and is used to 
manage collision, screen display and other object 
manipulations. Those images need to be load on screen, but 
binding the texture is a time-consuming processing in a 
standard computer. It is ideal to store many smaller images on 
a larger one and bind it to memory only once, then draw 
portions of it as many times as needed [2].  

A sprite sheet is a collection of sprites (individual game 
image textures) that can be loaded only once and rendered as 
many times as necessary. Using sprite sheets allows for better 
memory allocation and smoother texture rendering [3]. 
However, in order to load a sprite from a sprite sheet, the game 
needs to know the respective sprite position and size inside the 

sheet. Thus, the developer needs to know every sprite 
information from the sprite sheet to obtain the individual 
images. 

Sprite sheets in which all sprites have identical sizes can be 
loaded by indexing the sprites according to their position in the 
sheet: starting at 0 for the top-left image and increasing their 
width to get adjacent columns and their height for subsequent 
lines [1]. In Fig. 1, we see an example of a sprite sheet where 
sprites have the same size. 

 

Fig. 1. Sprites with identical size. Source: Final Fantasy© game. 

Nevertheless, developers and artists will usually need to 
work with sprites with different sizes inside the same sprite 
sheet. In Fig. 2, we see an example of a sprite sheet with non-
uniform sprite sizes: 

 

Fig. 2. Sprites with different sizes. Source: Super Mario Bros 3© game. 

Since the programmer does not know every specific sprite 
position and size, a game engine might need to specify image 
meta-data for every single sprite in that sheet. That meta-data 
file can be stored along with the sprite sheet images, among the 
project assets (audio and graphic files for a game), and used at 
run-time to access each corresponding sprite. This information 
can be manually composed by a programmer or an artist. 
Although, that process is not optimal and consumes a high 
amount of time, since meta-data for each sprite in the sheet 
must be individually write down on file. This process can also 
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be done during build-time by using feature detection 
algorithms to automatically generate the meta-data from sprite 
sheets but are susceptive to machine errors: the programmer 
might get different sizes for the same sprite in distinct builds or 
non-optimal size for the sprite bounding box. 

This paper suggests an approach that allows users to semi-
automatically extract individual sprite information through a 
more ambitious feature detection scheme. The tool developed 
in this work: MuSSE, uses a Blob detection algorithm to 
identify bounding boxes from sprites inside a sprite sheet and 
generate meta-data for that information. 

As it stands, Blob detection implements a connectivity 
technique which provides a good threshold selection that can 
solve some of the machine problems cited. One of the most 
important advantages is the ability of the algorithm to isolate 
significant regions in a picture, producing bounding boxes with 
correct sizes and identifying isolated parts of a sprite as an 
included segment. Related work is discussed in Section II. The 
proposed algorithm is described in Section III: Blob Detection 
Algorithm. The developed tool: MuSSE (Multi-sized Sprite 
Sheet meta-data Exporter), is presented in details at Section IV. 

This paper is an extension of the previous work published 
on a conference paper in 2015 [4]. The current version, 
however, come up with considerable improvements. A new 
view on the differences between MuSSE and other related tools 
is shown in Session II, bringing forward the contributions more 
clearly. An improved version of the Table of Label equivalence 
algorithm and the meanings and importance on defining a 
correct threshold are presented at Section III, along with 
multiple examples on threshold selection. Furthermore, a 
parser developed to read the data from the XML files generated 
through MuSSE is also introduced in Section IV, alongside a 
more understanding explanation on the XML format proposed. 

II. RELATED WORK 

Feature detection refers to methods that aim to solve 
machine vision problems [5; 6]. According to [5], the central 
problem of computer vision is to understand an object or scene 
– from one or a sequence of images of a moving or stationary 
object – and their corresponding properties. Feature detection 
works on how to find interest points (features) in an image, 
computing abstractions of image information and making 
decisions regarding on how to represent those interest points 
and how to compare them with other interesting points in the 
image. 

There is currently a series of techniques used for feature 
detection. These methods are usually applied to specific 
machine vision problems, like Edge detection and Corner 
detection [7]. 

Detecting corners is an essential operation in many 
computer vision and image processing applications such as 
motion tracking, shape representation, image registration, 
camera calibration, object recognition and stereo matching. 
Corners are important features in two-dimensional (2D) images 
as they can represent the shape of an object very well [8]. A 
corner can be defined as a location on an edge where the angle 

of the slope changes abruptly i.e. where the absolute curvature 
is high. 

Edges provide important information towards human image 
understanding. It is the most important processing step in 
human picture recognition system. Edge detection procedure is 
used to find the discontinuities in depth, discontinuities in 
surface orientation, changes in material properties and 
variations in scene illumination [9]. 

Texture images treated by Edge detection and Corner 
detection algorithms contain their own particularities. At these 
computer vision problems, usually a given image has a limited 
extent or window (the "outer scale") as well as a limited 
resolution (the "inner scale"). These limits are set by the format 
of the image, e.g. the size of the photographic plate and the 
graininess of the emulsion [10]. Relevant details of images 
exist only over a restricted range of scale. Hence, it is 
important to study the dependence of image structure on the 
level of resolution [10; 11]. It is worth noticing that sprite 
sheets have fixed-scale: our scale space is pixel-related as 
opposed to being related to a scale of observation. 
Furthermore, there is no need for smoothing or image 
segmentation [12; 13]. Another feature detection technique 
more suitable for our solution is Blob detection. 

Blob detection methods aims at identifying regions in an 
image that clearly differ in property from their surroundings. A 
blob is a region of an image that contains approximately close 
characteristics, such as brightness or color. In image 
processing, Blob detection main function is to identify same 
gray level pixels in the image. These pixels are separated into 
different blobs based on relationships of inter-connection [14]. 
In other words, a blob is defined as a region of connected 
pixels. Blob detection is used to identify these regions in 
images [15]. The algorithm discerns pixels by their values and 
place them into one of two categories: the foreground 
(typically pixels with a non-zero value) or the background 
(pixels with a zero value). 

Defining a sprite meta-data from a game sprite sheet is a 
typical feature detection problem that can be solved by 
selecting a region of interest or interest points, which is a 
feature extraction solution approached by Blob detection 
algorithms. 

Even though, to accommodate the huge variety of 
applications, Hinz [16] argues that a Blob detection algorithm 
must fulfill a number of general requirements, most notably: 

 Reliability / noise insensitivity: Clearly, a low-level 
vision algorithm should be in some way robust against 
under- and over-segmentation due to noise. 

 Accuracy: Many applications — especially in vision 
metrology — need highly accurate results in sub-pixel 
resolution. 

 Scalability: The algorithm should be scalable so that 
primitives of different size can be extracted. 

 Speed: The algorithm should be applicable also to 
(near-)real-time processing. 
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Since our application deals with a specific subset of images, 
more precisely game sprite sheet images, we can define these 
limitations as is: 

 Reliability / noise insensitivity: Sprite sheets have well 
defined backgrounds. There is no need for noise 
treatment between image foreground and image 
background. In our solution, a RGB filter is applied to 
set a relevant color key for the sprite sheet background. 
It also enables to dynamically define background 
settings for each specific sheet. 

 Accuracy: Our solution uses a connected-component 
labeling that allows for per-pixel accuracy blob 
detection. 

 Scalability: Proposed solution applies a connected-
component algorithm with a threshold parameter that 
allows for specific set up on blob sizes accuracy based 
on sprites contained on the sheet. Sprites with smaller 
sub-images will need a bigger threshold. Furthermore, 
sprites with no sub-images or close-edges can be 
extracted with smaller thresholds. In other words, the 
higher the threshold, more precise a blob is to detect 
separate parts in a single sprite. 

 Speed: Meantime, no limit definitions for speed are 
necessary in our solution since it is a pre-
processing/build-time activity and not a run-time 
procedure. 

There is also a series of licensed and free tools already built 
in game frameworks or engines for similar functionality. 
Although, most of these tools are meant for the opposite 
purpose: to convert individual sprites into mapped — meta-
data referenced — sprite sheets, alias: Texture Atlas. Some of 
these tools are: 

Texture Packer [17]: a licensed software for sprite sheet 
generation. Packages a series of separate sprites and export into 
a list of specific formats. Exported sprite sheets can be read by 
the engines: AndEngine (android), Cocos2DX (mobile), V-
Play (cross-platform), Unity and others. 

Unity Sprite Packer [18]: this is a built-in tool into Unity game 
development framework. It is used to pack graphics from 
several sprite textures tightly together within a single texture 
sheet, known as an Atlas. This process is applied to increase in-
game image reading performance. Sprite Packer is a utility tool 
to automate the process of generating these Atlases. However, 
there is no or little documentation on how this is done, at least 
on how the algorithm is implemented. 

LibGDX Texture Packer [19]:  LibGDX engine has a Texture 
Packer tool which is a command line application that also 
packs many smaller images into larger images. These Atlas 
files containing sprites meta-data are saved in a “minimal” 
(simplified) JSON format. There is a parser built-in the 
LibGDX engine for reading those files. 

Sprite Cutter [20]: this is a freeware tool that allows the user to 
manually cut/crop and export individual sprites into a new 
sprite sheet (Atlas). It has a built-in auto-cut option, but also no 
implementation details on internal algorithm functionality. 

Construct 2 [21]: Construct 2 game framework has a built-in 
image editor that allows for automatic bounding box shaping 
for image sprites with fixed size. It uses Edge detection 
algorithm (no implementation details acquired) to set a sprite 
bounding box polygon or an image full size to define their 
bounding box rectangle. Although it is a helpful tool, it has no 
size optimization. Also, there is an Animation editor that 
allows to load full sprite sheets and convert it into individual 
sprites but – again – works only with fixed size sprite sheets. 
The user needs to manually adjust sprites positions for multi-
sized sprites. 

Most of these tools, such as Texture Packer, Unity Sprite 
Packer and LibGDX Texture Packer, pack and create new 
sprite sheets. Creating a texture atlas will save memory space 
in the game build. LibGDX Texture Packer uses multiple 
packing algorithms, in which case, the most important is based 
on maximal rectangle algorithm. They all have an internal 
algorithm for cropping and trimming sprites into optimal size, 
but don't provide implementation details, except Construct 2 
that states using an Edge detection algorithm for bounding box 
polygons. 

Unity Sprite Packer, Sprite Cutter and Construct 2 
generates no meta-data for those sprite sheets. The data 
generated in Unity is used internally only. Texture Packer and 
LibGDX Texture Packer generates meta-data, but while the 
former generates the meta-data in no standard format (export to 
a lot of engines with different formats), the second generates 
meta-data in JSON that can be read only by LibGDX engine. 

In short, those tools provide little to no algorithm 
information and they mainly engage on building sprite sheets 
through packing. Our goal is just the opposite: to acquire data 
from sprites. When they do provide sprite’s data, the meta-data 
generated is engine sensitive, binding their use to specific 
frameworks and platforms. Meanwhile, MuSSE strictly 
generates meta-data through Blob detection algorithm, but the 
advantage is that it produces data in a standard pattern that can 
be used by any engine. 

III. BLOB DETECTION ALGORITHM 

Our Blob detection approach consists of two major tasks. 
The first one comprises the extraction of potential blobs in sub-
pixel precision using a connected-component algorithm 
(Section A). The second task outlined in Section B consists of 
reconstructing the boundary around a given point based on a 
table of label equivalence. 

Both tasks can be presented as a sequential image detection 
algorithm. This algorithm is defined by the following steps: 

(1) Check if a pixel is foreground or background 
(transparency). 

(2) Apply a connected-component labeling. It will define 
the current pixel's label according to nearby labels 
(neighborhood) or assign a new label. 

(3) Reduce labels based on a table of label's equivalence. 

(4) Define minimum boundaries around target image based 
on identified blob. 
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The proposed algorithm uses a connected-component 
labeling with an imbued threshold for applying minimum pixel 
distance for subsequent label equivalence. A threshold is used 
to detect candidate blobs and label it accordingly [22; 23]. 
Usually, we will have sprites with full connectivity within their 
parts – generating easy-to-represent blobs – as seen in Fig. 3: 

 
Fig. 3. Sprites where all pixels are connected. Source: Super Mario World© 

game.  

In Fig. 3, there are no “loose” points: every pixel in the 
image is connected. Thus, checking for label equivalence is 
trivial. Although, that is not always what we see in individual 
sprite images. Some sprite sheets may contain sprite images 
with separated small parts (Fig. 4). That is why we need an 
imbued threshold: to adjust our algorithm to these situations 
and correctly identify which parts relate to the same blob. 

 
Fig. 4. Sprites in which some small parts are detached. Source: Undertale© 

game.  

Another example can be seen in Fig. 5. Character sprites 
may have visual effects that somehow detach from the main 
part of the sprite. 

 
Fig. 5. Sprites in which some small parts are detached. Source: Nuclear 

Throne© game.  

Having a minimum pixel threshold for equivalence is 
important to deal with sprite images with small, isolated parts, 
or sprites with elements that have no connectivity to the “main 
body”. Another example (Fig. 6): 

 
Fig. 6. Sprites where most pixels are detached from the others. Source: 

Ragnarok Online© game. 

In the sections below, we fully describe our algorithm. 
Given that the algorithm is implemented in distinct parts, we 
will present each separately for better understanding. In Section 
A: Connected-component Labeling, we describe steps 1 and 2 
of the algorithm, while on Section B: Table of Label 
Equivalence, we describe steps 3 and 4. 

A. Connected-component Labeling 

The first step of our Blob detection consists on a pixel-
based image detection algorithm that uses sub-pixel precision 
to extract potential blobs. This step has two main tasks: 

I. Check if a pixel is foreground or background 
(transparency). 

II. Apply a connected-component labeling. It will define 
the current pixel's label according to nearby labels 
(neighborhood) or assign a new label. 

The first step is responsible to find parts of the picture — 
sprite sheet — that differ significantly from the background 
(likely sprites). The second is used to find common connected 
parts among these images, based on a labeling system. 

Connected-component labeling is used in computer vision 
to detect connected regions in binary digital images, although 
color images and data with higher dimensionality can also be 
processed [24]. A common set of labels is defined among an 
image. Blob extraction is generally performed on the resulting 
subtracted label set. 

Connected-component labeling is a fundamental task 
common to virtually all image processing applications in two 
and three dimensions [24]. For a binary image, represented as 
an array of d-dimensional pixels or image elements (Fig. 7), 
connected-component labeling is the process of assigning 
labels to the BLACK image elements in such a way that 
adjacent BLACK image elements are assigned the same label 
[25; 26]. 

 
Fig. 7. Labeling example. 

In our proposed solution, instead of specific BLACK and 
WHITE images, we use a verification algorithm to define if a 
pixel is foreground (BLACK) or background (WHITE). A 
pixel is classified as background if it is transparent or matches 
the color key defined for the sprite sheet background. 
Otherwise, the pixel is classified as foreground, e.g. it belongs 
to one sprite. 
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The connected-component part of our algorithm works by 
building a succession of small boundaries around a given point 
using a specific threshold. Further, it is possible to label that 
point using a very simple method based on the labels obtained 
from the region around that position. 

Threshold selection involves choosing a search area 
adjacent to the given point, based on a fixed number of pixels 
around it. Here, “adjacent” may mean 4-adjacent or 8-adjacent 
[24]. In our algorithm, we use an 8-adjacent search path, likely: 
8-neighborhood connectivity (Fig. 8), to ensure more precise 
accuracy. 

 
Fig. 8. 8-Neighborhood connectivity search path. 

The overall goal of connected-component is to label each 
pixel within a blob with the same identifier. These identifiers 
are represented by label numbers. 

The first stage is to circle through all the pixels inside the 
selected area and verify the corresponding label numbers from 
neighbor pixels. In the 8-neighborhood connectivity, we only 
check the upper-left labels because those are the ones 
guaranteed to be labeled in our search path. That happens 
because we circle the image using a raster scan: from top to 
bottom, left to right. Fig. 9 shows an example on how it is 
applied: 

 
Fig. 9. Labeling example using 8-neighborhood connectivity. 

All the labels must be stored in a matrix of equal dimension 
as the original image. This way, we can set one label entry per 
pixel in the image. This matrix starts completely unlabeled and, 
as the algorithm iterate through the image, we fill the matrix 
using the 8-neighborhood connectivity method.  

The algorithm is applied per given pixel in the image thus 
identifying the labels of neighborhood pixels L1, L2, L3 and 
L4, and applying to the position C. 

The connected-component labeling algorithm is described 
below: 

for each pixel in selected area 

   if current pixel is foreground 

       check nearest neighbors for a valid 

       label 

       if there's no valid label on neigh- 

       borhood 

           get a new label 

       else 

           get neighbor's label 

       end if 

       save pixel label on the list 

   end if 

done 

Fig. 10 shows an input monochrome image and the result of 
the labeling process. We can see that the labeling process 
sometimes gives multiple labels to the same blob. One critical 
question is that the blob which is easily identifiable by human 
eye as a single blob is often interpreted by the algorithm as 
several distinct [14]. 

 
Fig. 10.  Labeling example (with more than one label per blob). 

To understand why this happens, take a look at the blob 
comprising labels 2, 3, 4 and 5. When the algorithm reaches the 
first pixel labeled 3, it has no way of knowing at this stage that 
it is connected to those labeled 2. Same applies to pixels 
labeled 4 and 5. However, this can be solved. 
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The solution is to create a table to keep note of which labels 
refer to the same blob when the two labeled sections eventually 
connect. During this step, the surrounding labels for each 
labeled pixel will also be added to a list. The algorithm fills a 
table of equivalence between associated labels, checking all 
neighbors to mark equivalence. If we have multiple neighbors 
with different labels, we assign for that pixel the first label 
found and indicate that all the other ones are equivalent. In 
short, the filled table contains every label in the image and the 
labels from their surrounding neighbors too. That makes an 
equivalence. 

B. Table of Label Equivalence 

The second step of our Blob detection consists on 
reconstructing the boundary around a given point based on the 
connected-component labeling algorithm. This step also has 
two main tasks: 

I. Reduce labels based on a table of label's equivalence. 

II. Define minimum boundaries around target image 
based on identified blob. 

Our label connectivity is made based on a two-pass 
algorithm. The first pass uses the table of equivalence 
generated by our connected-component algorithm presented in 
Section A. In this step, the algorithm first reduces the labels to 
their corresponding representatives. A representative is given 
by the minimum value in the table of equivalence, i.e. 
minimum label id compared to surrounding neighbors. That 
process is described below: 

for each pixel in selected area 

   if pixel is labeled 

      relabel pixel with the lowest equivalence 

      label 

   end if 

done 

In the second pass, the algorithm creates a list for every 
blob in the selected area and matches it accordingly to the 
reduced labels. This step of the connected-component labeling 
algorithm is described below: 

for every label in list 

   if this is first time checking this  

   label id 

      create a new blob for that label 

   else 

      add label to existing blob (repre- 

      sentative) based on their table of  

      equivalence 

   end if 

done 

That will guaranty that all equivalent labels are assigned the 
same region value. We can apply this to the examples shown in 
Section A. The example in Fig. 10 has the following table of 
label equivalence: 

TABLE I.  TABLE OF LABEL EQUIVALENCE FOR EXAMPLE FIG. 10. 

Label id  Equivalent Labels 

1 1,6 

2 2,3,4,5 

3 2,3,4,5 

4 2,3,4,5 

5 2,3,4,5 

6 1,6 

 

As a result, the algorithm will reduce labels 1 and 6 to label 
1, and labels 2, 3, 4 and 5, to label 2. Notice that labels 7 and 8 
were excluded to simplify this illustration. See Fig. 11 for an 
example: 

 

Fig. 11.  Labeling example (with correct label equivalence). 

Unfortunately, that won't work for all images. According to 
our algorithm, the images referenced by labels 7 and 8 (Fig. 
12) would both be reduced to label 7, however, the threshold 
value must be adjusted first. 

 
Fig. 12.  Labeling example (with wrong threshold). 

Selecting a small threshold will split the image into two 
different blobs: one for the whole image corresponding to label 
7 and one for the small image corresponding to label 8. This 
will result in the following table of label equivalence: 
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TABLE II.  TABLE OF LABEL EQUIVALENCE FOR EXAMPLE FIG. 12. 

Label id  Equivalent Labels 

7 7 

8 8 

 

This happens mainly because we will be looking only at a 
small area around each pixel. Thus, we need to increase the 
threshold to look further away from each pixel, identifying 
separated parts: elements that are detached from the “main 
body” of the image. Applying the process to the example in 
Fig. 12 will result in the corresponding table of label 
equivalence: 

TABLE III.  TABLE OF LABEL EQUIVALENCE FOR EXAMPLE FIG. 12. 

Label id  Equivalent Labels 

7 7, 8 

8 8, 8 

 

As a consequence, the algorithm will correctly identify 
labels 7 and 8 as belonging to the same sprite. This generates 
the blob displayed in Fig. 13. A more practical example on 
threshold values will be shown in Section IV-A. 

 
Fig. 13.  Labeling example (with correct threshold). 

IV. MUSSE 

MuSSE is a tool developed to extract meta-data from sprite 
sheets with non-uniform sprites. MuSSE (Multi-sized Sprite 
Sheet meta-data Exporter) is an open-source Groovy program 
with a simple Swing interface, available online [27] and 
distributed under the terms and conditions of the zlib/png 
license [28]. It can load sprite sheets from multiple image 
formats, including: jpg/jpeg, png, bmp, gif and wbmp. 

The software implements the Blob detection algorithm 
described in Section III and a document generator that exports 
the meta-data obtained from the sprite sheet into an XML file. 
The data extracted through MuSSE contains: position, name 
and size from the individual sprites contained in the sprite 
sheet. 

XML (Extensible Markup Language) is a widely used 
international text processing standard [29] and is used to create 
human-legible, clear and straightforward data documentation. 
According to [30], an XML document doesn’t do anything by 

itself: it must be combined with an application program that 
does something useful with it.  

In our case, MuSSE will save the extracted meta-data into 
an XML file which can be read through a parser and used by 
the developer preferred engine. A parser is the interface 
between an XML document and the application program that 
uses it.  The parser reads XML documents and provides 
application programs with access to the documents’ internal 
structure and content [30]. 

A. MuSSE Interface 

The user has two options to apply the Blob detection 

algorithm on the sprite sheets: 

 

(1) manual selection of a target area from the sheet; or 

(2) “Cut entire sheet” option from the “Actions” menu. 

Option 1 can be activated by clicking and dragging the 
mouse over the image. This way, the Blob detection algorithm 
is only applied to that selection of the sprite sheet (Fig. 14).  

 

Fig. 14.  Select target area using MuSSE. Source: MuSSE with sprite sheet 

image from the game Braid©. 

If the user chooses Option 2, the algorithm is applied to the 
whole sprite sheet image. Fig. 15 illustrate the process. 

 

Fig. 15.  Select entire sprite sheet using MuSSE. Source: MuSSE with sprite 

sheet image from the game Braid©. 
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Every time the user cuts a selection, MuSSE saves it as a 
new animation inside the XML file. Every image inside the 
selection is saved as a new sprite for that animation, with their 
corresponding name, position and size. An animation is the 
quick succession of game images (sprites) to give the illusion 
of movement. Thus, those various animations are used inside a 
game to give entities the idea of movement: running characters, 
attacks, special effects, moving scenarios, and others. Fig. 16 
shows an example XML with two animations. 

 
Fig. 16.  Example XML created using MuSSE with multiple animations. 

Example applications of MuSSE are shown in Fig. 17 and 
18, where the Blob detection algorithm is applied to entire 
sprite sheet and to a subset of sprites: 

 

Fig. 17.  Sprite sheet with high connectivity. Source: MuSSE with sprite sheet 

image from the game Angry Birds©. 

 

Fig. 18.  Sprite sheet with low connectivity. Source: MuSSE with sprite sheet 

image from the game Ragnarok Online©. 

Fig. 19 shows a close-up from Fig. 18. The sprite sheet 
used for this example has sprites with low connectivity. In 
other words, sprites with detached parts from the “main body”. 
As described in Section III, that particularity causes the smaller 
– disconnected parts – to be mapped as new blobs: 

 

Fig. 19.  Sprite sheet with low connectivity (close-up). Source: MuSSE with 

sprite sheet image from the game Ragnarok Online©. 

As pointed out before, smaller thresholds for our 
connected-component method will result in a higher number of 
blobs in the selected image, as seen in Fig. 19. That problem 
can be solved by selecting a more suitable threshold for the 
sheet. 

The user can choose a specific threshold for the Blob 
detection algorithm in MuSSE by selecting the option 
“Sensibility (threshold)” from the “Actions” menu (Fig. 20).  

 
Fig. 20.  MuSSE's menu. 
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Threshold value starts at 1 (one) pixel and must be 
manually set according to the distance between the small parts 
and the sprite body. MuSSE will correct the bounding boxes 
for sprites with isolated parts if the threshold is adjusted to a 
higher value. For this example, a threshold of 8 (eight) pixels 
where necessary. As a result, the following sheet (Fig. 21) can 
be attained: 

 

Fig. 21.  Example from Figure 19 using correct threshold. Source: MuSSE 

with sprite sheet image from the game Ragnarok Online©. 

MuSSE's XML is ready to be used into developers’ engine 
but – as practical as it is – some compatibility adjustments are 
necessary in the suggested XML structure. These adjustments 
relate mostly to missing meta-data that might be required by 
some engines. 

Most engines graphic component will need the color-key 
value of the sprite sheet background to adjust correct 
transparency for the image files. Those values can be extracted 
in the first part of our algorithm (described in Section III-A) 
and saved to the generated XML file. 

Some other meta-data such as the sprite sheet image path 
might also be added into the XML file in order to concentrate 
information in the document. Facilitating the developer’s work 
of having to pass it inside the code. 

Regarding the Animation, two improvements might be 
made: 

(1) Add the duration of each individual sprite in the 
animation to the sprite meta-data in the XML.  

Every frame in the animation may have different 
duration timers. This will make some sprites stay 
longer on the screen or display them faster in the 
animation. 

(2) Add an anchor point to the sprite images.  

Given that sprites may have different sizes, 
inappropriate overlapping of the images during the 
animation may occur. Particularly, sprites with 
different sizes may be rendered by the engine without 
being centered to one other. Adding an anchor point 
to these images will identify in which position they 
need to be drawn during the animation. 

B. Using a Parser for MuSSE's XML 

MuSSEXMLParser is an open source XML parser 
available online [31] in C++ and Java to read XML meta-data 
generated through MuSSE. A Parser is a program that receives 

input in the form of structured files or scripts and breaks them 
up into parts that can be treated in a particular context. In other 
words, a parser is a program to help programmers extract data 
from XML and other document files [32] and may also check 
the validity of those files. 

In our case, MuSSEXMLParser was developed to break 
MuSSE XML into data files that could be used by an engine. 

MuSSEXMLParser works like this: 

open sprite sheet from xml file 

for every animation in list 

   register animation name 

   for every sprite in the animation 

      register sprite name 

      register sprite size and position 

   done 

done 

The parser organizes data in a way that developers can 
easily set up the corresponding game objects and later use these 
objects as game sprites and animations. 

While registering animation data, MuSSEXMLParser 
extracts an object structure that can be organized by the 
developer in their preferred programming language. In C++, 
developers would need to do something like the structure 
shown in Fig. 22. In which SPRITE_QUANTITY is the 
number of sprite entities inside the animation and is 
automatically provided by the parser. 

 

Fig. 22.  Example object structure for animations. 

MuSSEXMLParser also extract object structures for the 
individual sprites inside the animation. In C++, that object 
definition is shown in Fig. 23. 

 
Fig. 23.  Example object structure for sprites. 

Thus, developers could organize animation into objects and 
arrange lists of sprites for each respective animation. 
Implementation of these objects would be adaptable to the 
users’ engine. 

Association with an engine could be made by creating a 
sprite sheet interface connecting animations to the parsed files. 
Developer could make a dependency from the animation to the 
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parser trough this interface. An example is shown in the Class 
Diagram in Fig. 24. 

 
Fig. 24.  Class Diagram for a possible implementation. 

In this example, the MuSSEXMLParser is the component 
that realizes the SpriteSheet interface. The Animation class is 
connected to the SpriteSheet interface with a dependency 
relationship line and uses this interface to access the parser 
services. 

V. CONCLUSION 

MuSSE is a development tool intended to create XML files 
containing meta-data for a set of sprites on a sprite sheet. The 
software applies a Blob detection algorithm to the image – be it 
a subset or an entire sprite sheet – and extracts the information 
for the contained sprites. Both tool and algorithm are open 
source and available online [27]. 

The Blob detection algorithm is used to extract important 
sprite characteristics: position in the sprite sheet, name 
reference for the image and matching sizes (width and height). 
That meta-data is used to build the corresponding bounding 
box rectangles for the sprite images. Those shapes are really 
important in-game as they are meant to be used for collision 
detection between entities and to manipulate objects in a scene. 

MuSSE's Blob detection algorithm is based on a connected-
component labeling method and a table of label equivalence. 
The connected-component labeling identifies every pixel inside 
an image with a label, where matching labels corresponds to a 
unique blob. The proposed algorithm also uses a table of label 
equivalence to identify different labels that belongs to same 
blob, reducing errors and optimizing the results. Blob detection 
implements a connectivity technique which provides a good 
threshold selection that can solve some machine vision 
problems, presenting important advantages over other 
implementations. 

This paper presents an academic view on using feature 
detection techniques to develop a tool to generate sprite sheet 
information. Studied tools with similar functionality presents 
poor documentation regarding the techniques applied. Also, 
most tools are used for the opposite purpose: to convert 
individual sprites into sprite sheets. New researches should 
further investigate MuSSE algorithm efficiency against 
Construct 2 and Unity Sprite Packer algorithms. 

A parser to read and manage sprite sheet meta-data is also 
presented. MuSSEXMLParser open up XML files created 
using MuSSE and break up the information into readable – 
easy to manipulate – data, ready to convert into sprite and 
animation objects. 

As future work, we aim at improving MuSSE's interface by 
adding a color pallet for the user to dynamically select the 
background color from the sprite sheet. And also improve the 
tool by complementing functionality in two paths:  

First one, implementing a threshold detection method to 
automatically search for a minimum (optimal) pixel range 
threshold. That is intended to avoid overlaying blobs in auto-
detect mode and may be achieved by applying a function that 
takes on account the number of blobs intersections vs the 
threshold level. We can solve that by finding a minimum 
threshold level that has no blobs inside one another. 

As a second option, MuSSE can also be improved by 
constructing a packing algorithm. Sprites can be packed – 
arranged into smaller sprite sheets – by applying a series of 
rotation and translation operations. This way, MuSSE can 
produce more compact and optimized sprite sheets. 

The parser can also be improved. Some new meta-data 
might also be added to the MuSSE's XML files to improve 
integration with game engines, such as the color-key values for 
the background, the sprite sheet image file path and the sprites 
duration and anchor point in the animation.  

Finally, we can also make the generated XML editable 
before being saved. Adding an interface to easily change the 
animation and the sprite names before saving the file may ease 
the programmer’s work while loading the data. 
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