
Proposing a practical approach to extract and read

XML meta-data from sprite sheets using Blob

detection algorithm

Marcelo de Barros Barbosa, Cecília de Barros Barbosa, André Freitas Barbosa

Federal Institute of Education, Science and Technology of Rio Grande do Norte (IFRN)

Natal, RN, Brazil

marcelo.barbosa@ifrn.edu.br, ccilia.barbosa@gmail.com, andre.freitas@ifrn.edu.br

Abstract—This paper introduces a tool to semi-automatically

generate meta-data from game sprite sheets. MuSSE is a tool

developed to extract XML data from sprite sheet images with

non-uniform – multi-sized – sprites. MuSSE (Multi-sized Sprite

Sheet meta-data Exporter) is based on a Blob detection algorithm

that incorporates a connected-component labeling system. Hence,

blobs of arbitrary size can be extracted by adjusting component

connectivity parameters. This image detection algorithm defines

boundary blobs for each individual sprite in a sprite sheet. Every

specific blob defines a sprite characteristic within the sheet:

position, name and size, which allows for subsequent data

specification for each blob/image. Those blobs are carefully

optimized through an imbued threshold selection. This work also

presents a parser to organize these meta-data into a readable

solution for game engines. The parser is built to read XML meta-

data generated through MuSSE and allow developers to set up

game objects that can be used by an engine. Several examples on

real images illustrate the performance of the proposed algorithm

and working tool.

Keywords—blob detection, sprite sheet, development tool

I. INTRODUCTION

Digital Games uses sprites for visual representation of
characters, objects and entities composing a scene. Sprites are
two-dimensional images or animations embedded inside the
game and loaded according to the graphical hardware
constraints [1]. Sprites are usually represented inside a game by
their bounding box rectangle: a shape definition for the
corresponding image represented by their position (offset_x,
offset_y) and size (width, height). A sprite's bounding box
represent the entity that matches that image and is used to
manage collision, screen display and other object
manipulations. Those images need to be load on screen, but
binding the texture is a time-consuming processing in a
standard computer. It is ideal to store many smaller images on
a larger one and bind it to memory only once, then draw
portions of it as many times as needed [2].

A sprite sheet is a collection of sprites (individual game
image textures) that can be loaded only once and rendered as
many times as necessary. Using sprite sheets allows for better
memory allocation and smoother texture rendering [3].
However, in order to load a sprite from a sprite sheet, the game
needs to know the respective sprite position and size inside the

sheet. Thus, the developer needs to know every sprite
information from the sprite sheet to obtain the individual
images.

Sprite sheets in which all sprites have identical sizes can be
loaded by indexing the sprites according to their position in the
sheet: starting at 0 for the top-left image and increasing their
width to get adjacent columns and their height for subsequent
lines [1]. In Fig. 1, we see an example of a sprite sheet where
sprites have the same size.

Fig. 1. Sprites with identical size. Source: Final Fantasy© game.

Nevertheless, developers and artists will usually need to
work with sprites with different sizes inside the same sprite
sheet. In Fig. 2, we see an example of a sprite sheet with non-
uniform sprite sizes:

Fig. 2. Sprites with different sizes. Source: Super Mario Bros 3© game.

Since the programmer does not know every specific sprite
position and size, a game engine might need to specify image
meta-data for every single sprite in that sheet. That meta-data
file can be stored along with the sprite sheet images, among the
project assets (audio and graphic files for a game), and used at
run-time to access each corresponding sprite. This information
can be manually composed by a programmer or an artist.
Although, that process is not optimal and consumes a high
amount of time, since meta-data for each sprite in the sheet
must be individually write down on file. This process can also

SBC Journal on Interactive Systems, volume 7, number 1, 2016 17

ISSN: 2236-3297

be done during build-time by using feature detection
algorithms to automatically generate the meta-data from sprite
sheets but are susceptive to machine errors: the programmer
might get different sizes for the same sprite in distinct builds or
non-optimal size for the sprite bounding box.

This paper suggests an approach that allows users to semi-
automatically extract individual sprite information through a
more ambitious feature detection scheme. The tool developed
in this work: MuSSE, uses a Blob detection algorithm to
identify bounding boxes from sprites inside a sprite sheet and
generate meta-data for that information.

As it stands, Blob detection implements a connectivity
technique which provides a good threshold selection that can
solve some of the machine problems cited. One of the most
important advantages is the ability of the algorithm to isolate
significant regions in a picture, producing bounding boxes with
correct sizes and identifying isolated parts of a sprite as an
included segment. Related work is discussed in Section II. The
proposed algorithm is described in Section III: Blob Detection
Algorithm. The developed tool: MuSSE (Multi-sized Sprite
Sheet meta-data Exporter), is presented in details at Section IV.

This paper is an extension of the previous work published
on a conference paper in 2015 [4]. The current version,
however, come up with considerable improvements. A new
view on the differences between MuSSE and other related tools
is shown in Session II, bringing forward the contributions more
clearly. An improved version of the Table of Label equivalence
algorithm and the meanings and importance on defining a
correct threshold are presented at Section III, along with
multiple examples on threshold selection. Furthermore, a
parser developed to read the data from the XML files generated
through MuSSE is also introduced in Section IV, alongside a
more understanding explanation on the XML format proposed.

II. RELATED WORK

Feature detection refers to methods that aim to solve
machine vision problems [5; 6]. According to [5], the central
problem of computer vision is to understand an object or scene
– from one or a sequence of images of a moving or stationary
object – and their corresponding properties. Feature detection
works on how to find interest points (features) in an image,
computing abstractions of image information and making
decisions regarding on how to represent those interest points
and how to compare them with other interesting points in the
image.

There is currently a series of techniques used for feature
detection. These methods are usually applied to specific
machine vision problems, like Edge detection and Corner
detection [7].

Detecting corners is an essential operation in many
computer vision and image processing applications such as
motion tracking, shape representation, image registration,
camera calibration, object recognition and stereo matching.
Corners are important features in two-dimensional (2D) images
as they can represent the shape of an object very well [8]. A
corner can be defined as a location on an edge where the angle

of the slope changes abruptly i.e. where the absolute curvature
is high.

Edges provide important information towards human image
understanding. It is the most important processing step in
human picture recognition system. Edge detection procedure is
used to find the discontinuities in depth, discontinuities in
surface orientation, changes in material properties and
variations in scene illumination [9].

Texture images treated by Edge detection and Corner
detection algorithms contain their own particularities. At these
computer vision problems, usually a given image has a limited
extent or window (the "outer scale") as well as a limited
resolution (the "inner scale"). These limits are set by the format
of the image, e.g. the size of the photographic plate and the
graininess of the emulsion [10]. Relevant details of images
exist only over a restricted range of scale. Hence, it is
important to study the dependence of image structure on the
level of resolution [10; 11]. It is worth noticing that sprite
sheets have fixed-scale: our scale space is pixel-related as
opposed to being related to a scale of observation.
Furthermore, there is no need for smoothing or image
segmentation [12; 13]. Another feature detection technique
more suitable for our solution is Blob detection.

Blob detection methods aims at identifying regions in an
image that clearly differ in property from their surroundings. A
blob is a region of an image that contains approximately close
characteristics, such as brightness or color. In image
processing, Blob detection main function is to identify same
gray level pixels in the image. These pixels are separated into
different blobs based on relationships of inter-connection [14].
In other words, a blob is defined as a region of connected
pixels. Blob detection is used to identify these regions in
images [15]. The algorithm discerns pixels by their values and
place them into one of two categories: the foreground
(typically pixels with a non-zero value) or the background
(pixels with a zero value).

Defining a sprite meta-data from a game sprite sheet is a
typical feature detection problem that can be solved by
selecting a region of interest or interest points, which is a
feature extraction solution approached by Blob detection
algorithms.

Even though, to accommodate the huge variety of
applications, Hinz [16] argues that a Blob detection algorithm
must fulfill a number of general requirements, most notably:

 Reliability / noise insensitivity: Clearly, a low-level
vision algorithm should be in some way robust against
under- and over-segmentation due to noise.

 Accuracy: Many applications — especially in vision
metrology — need highly accurate results in sub-pixel
resolution.

 Scalability: The algorithm should be scalable so that
primitives of different size can be extracted.

 Speed: The algorithm should be applicable also to
(near-)real-time processing.

18 SBC Journal on Interactive Systems, volume 7, number 1, 2016

ISSN: 2236-3297

Since our application deals with a specific subset of images,
more precisely game sprite sheet images, we can define these
limitations as is:

 Reliability / noise insensitivity: Sprite sheets have well
defined backgrounds. There is no need for noise
treatment between image foreground and image
background. In our solution, a RGB filter is applied to
set a relevant color key for the sprite sheet background.
It also enables to dynamically define background
settings for each specific sheet.

 Accuracy: Our solution uses a connected-component
labeling that allows for per-pixel accuracy blob
detection.

 Scalability: Proposed solution applies a connected-
component algorithm with a threshold parameter that
allows for specific set up on blob sizes accuracy based
on sprites contained on the sheet. Sprites with smaller
sub-images will need a bigger threshold. Furthermore,
sprites with no sub-images or close-edges can be
extracted with smaller thresholds. In other words, the
higher the threshold, more precise a blob is to detect
separate parts in a single sprite.

 Speed: Meantime, no limit definitions for speed are
necessary in our solution since it is a pre-
processing/build-time activity and not a run-time
procedure.

There is also a series of licensed and free tools already built
in game frameworks or engines for similar functionality.
Although, most of these tools are meant for the opposite
purpose: to convert individual sprites into mapped — meta-
data referenced — sprite sheets, alias: Texture Atlas. Some of
these tools are:

Texture Packer [17]: a licensed software for sprite sheet
generation. Packages a series of separate sprites and export into
a list of specific formats. Exported sprite sheets can be read by
the engines: AndEngine (android), Cocos2DX (mobile), V-
Play (cross-platform), Unity and others.

Unity Sprite Packer [18]: this is a built-in tool into Unity game
development framework. It is used to pack graphics from
several sprite textures tightly together within a single texture
sheet, known as an Atlas. This process is applied to increase in-
game image reading performance. Sprite Packer is a utility tool
to automate the process of generating these Atlases. However,
there is no or little documentation on how this is done, at least
on how the algorithm is implemented.

LibGDX Texture Packer [19]: LibGDX engine has a Texture
Packer tool which is a command line application that also
packs many smaller images into larger images. These Atlas
files containing sprites meta-data are saved in a “minimal”
(simplified) JSON format. There is a parser built-in the
LibGDX engine for reading those files.

Sprite Cutter [20]: this is a freeware tool that allows the user to
manually cut/crop and export individual sprites into a new
sprite sheet (Atlas). It has a built-in auto-cut option, but also no
implementation details on internal algorithm functionality.

Construct 2 [21]: Construct 2 game framework has a built-in
image editor that allows for automatic bounding box shaping
for image sprites with fixed size. It uses Edge detection
algorithm (no implementation details acquired) to set a sprite
bounding box polygon or an image full size to define their
bounding box rectangle. Although it is a helpful tool, it has no
size optimization. Also, there is an Animation editor that
allows to load full sprite sheets and convert it into individual
sprites but – again – works only with fixed size sprite sheets.
The user needs to manually adjust sprites positions for multi-
sized sprites.

Most of these tools, such as Texture Packer, Unity Sprite
Packer and LibGDX Texture Packer, pack and create new
sprite sheets. Creating a texture atlas will save memory space
in the game build. LibGDX Texture Packer uses multiple
packing algorithms, in which case, the most important is based
on maximal rectangle algorithm. They all have an internal
algorithm for cropping and trimming sprites into optimal size,
but don't provide implementation details, except Construct 2
that states using an Edge detection algorithm for bounding box
polygons.

Unity Sprite Packer, Sprite Cutter and Construct 2
generates no meta-data for those sprite sheets. The data
generated in Unity is used internally only. Texture Packer and
LibGDX Texture Packer generates meta-data, but while the
former generates the meta-data in no standard format (export to
a lot of engines with different formats), the second generates
meta-data in JSON that can be read only by LibGDX engine.

In short, those tools provide little to no algorithm
information and they mainly engage on building sprite sheets
through packing. Our goal is just the opposite: to acquire data
from sprites. When they do provide sprite’s data, the meta-data
generated is engine sensitive, binding their use to specific
frameworks and platforms. Meanwhile, MuSSE strictly
generates meta-data through Blob detection algorithm, but the
advantage is that it produces data in a standard pattern that can
be used by any engine.

III. BLOB DETECTION ALGORITHM

Our Blob detection approach consists of two major tasks.
The first one comprises the extraction of potential blobs in sub-
pixel precision using a connected-component algorithm
(Section A). The second task outlined in Section B consists of
reconstructing the boundary around a given point based on a
table of label equivalence.

Both tasks can be presented as a sequential image detection
algorithm. This algorithm is defined by the following steps:

(1) Check if a pixel is foreground or background
(transparency).

(2) Apply a connected-component labeling. It will define
the current pixel's label according to nearby labels
(neighborhood) or assign a new label.

(3) Reduce labels based on a table of label's equivalence.

(4) Define minimum boundaries around target image based
on identified blob.

SBC Journal on Interactive Systems, volume 7, number 1, 2016 19

ISSN: 2236-3297

The proposed algorithm uses a connected-component
labeling with an imbued threshold for applying minimum pixel
distance for subsequent label equivalence. A threshold is used
to detect candidate blobs and label it accordingly [22; 23].
Usually, we will have sprites with full connectivity within their
parts – generating easy-to-represent blobs – as seen in Fig. 3:

Fig. 3. Sprites where all pixels are connected. Source: Super Mario World©

game.

In Fig. 3, there are no “loose” points: every pixel in the
image is connected. Thus, checking for label equivalence is
trivial. Although, that is not always what we see in individual
sprite images. Some sprite sheets may contain sprite images
with separated small parts (Fig. 4). That is why we need an
imbued threshold: to adjust our algorithm to these situations
and correctly identify which parts relate to the same blob.

Fig. 4. Sprites in which some small parts are detached. Source: Undertale©

game.

Another example can be seen in Fig. 5. Character sprites
may have visual effects that somehow detach from the main
part of the sprite.

Fig. 5. Sprites in which some small parts are detached. Source: Nuclear

Throne© game.

Having a minimum pixel threshold for equivalence is
important to deal with sprite images with small, isolated parts,
or sprites with elements that have no connectivity to the “main
body”. Another example (Fig. 6):

Fig. 6. Sprites where most pixels are detached from the others. Source:

Ragnarok Online© game.

In the sections below, we fully describe our algorithm.
Given that the algorithm is implemented in distinct parts, we
will present each separately for better understanding. In Section
A: Connected-component Labeling, we describe steps 1 and 2
of the algorithm, while on Section B: Table of Label
Equivalence, we describe steps 3 and 4.

A. Connected-component Labeling

The first step of our Blob detection consists on a pixel-
based image detection algorithm that uses sub-pixel precision
to extract potential blobs. This step has two main tasks:

I. Check if a pixel is foreground or background
(transparency).

II. Apply a connected-component labeling. It will define
the current pixel's label according to nearby labels
(neighborhood) or assign a new label.

The first step is responsible to find parts of the picture —
sprite sheet — that differ significantly from the background
(likely sprites). The second is used to find common connected
parts among these images, based on a labeling system.

Connected-component labeling is used in computer vision
to detect connected regions in binary digital images, although
color images and data with higher dimensionality can also be
processed [24]. A common set of labels is defined among an
image. Blob extraction is generally performed on the resulting
subtracted label set.

Connected-component labeling is a fundamental task
common to virtually all image processing applications in two
and three dimensions [24]. For a binary image, represented as
an array of d-dimensional pixels or image elements (Fig. 7),
connected-component labeling is the process of assigning
labels to the BLACK image elements in such a way that
adjacent BLACK image elements are assigned the same label
[25; 26].

Fig. 7. Labeling example.

In our proposed solution, instead of specific BLACK and
WHITE images, we use a verification algorithm to define if a
pixel is foreground (BLACK) or background (WHITE). A
pixel is classified as background if it is transparent or matches
the color key defined for the sprite sheet background.
Otherwise, the pixel is classified as foreground, e.g. it belongs
to one sprite.

20 SBC Journal on Interactive Systems, volume 7, number 1, 2016

ISSN: 2236-3297

The connected-component part of our algorithm works by
building a succession of small boundaries around a given point
using a specific threshold. Further, it is possible to label that
point using a very simple method based on the labels obtained
from the region around that position.

Threshold selection involves choosing a search area
adjacent to the given point, based on a fixed number of pixels
around it. Here, “adjacent” may mean 4-adjacent or 8-adjacent
[24]. In our algorithm, we use an 8-adjacent search path, likely:
8-neighborhood connectivity (Fig. 8), to ensure more precise
accuracy.

Fig. 8. 8-Neighborhood connectivity search path.

The overall goal of connected-component is to label each
pixel within a blob with the same identifier. These identifiers
are represented by label numbers.

The first stage is to circle through all the pixels inside the
selected area and verify the corresponding label numbers from
neighbor pixels. In the 8-neighborhood connectivity, we only
check the upper-left labels because those are the ones
guaranteed to be labeled in our search path. That happens
because we circle the image using a raster scan: from top to
bottom, left to right. Fig. 9 shows an example on how it is
applied:

Fig. 9. Labeling example using 8-neighborhood connectivity.

All the labels must be stored in a matrix of equal dimension
as the original image. This way, we can set one label entry per
pixel in the image. This matrix starts completely unlabeled and,
as the algorithm iterate through the image, we fill the matrix
using the 8-neighborhood connectivity method.

The algorithm is applied per given pixel in the image thus
identifying the labels of neighborhood pixels L1, L2, L3 and
L4, and applying to the position C.

The connected-component labeling algorithm is described
below:

for each pixel in selected area

 if current pixel is foreground

 check nearest neighbors for a valid

 label

 if there's no valid label on neigh-

 borhood

 get a new label

 else

 get neighbor's label

 end if

 save pixel label on the list

 end if

done

Fig. 10 shows an input monochrome image and the result of
the labeling process. We can see that the labeling process
sometimes gives multiple labels to the same blob. One critical
question is that the blob which is easily identifiable by human
eye as a single blob is often interpreted by the algorithm as
several distinct [14].

Fig. 10. Labeling example (with more than one label per blob).

To understand why this happens, take a look at the blob
comprising labels 2, 3, 4 and 5. When the algorithm reaches the
first pixel labeled 3, it has no way of knowing at this stage that
it is connected to those labeled 2. Same applies to pixels
labeled 4 and 5. However, this can be solved.

SBC Journal on Interactive Systems, volume 7, number 1, 2016 21

ISSN: 2236-3297

The solution is to create a table to keep note of which labels
refer to the same blob when the two labeled sections eventually
connect. During this step, the surrounding labels for each
labeled pixel will also be added to a list. The algorithm fills a
table of equivalence between associated labels, checking all
neighbors to mark equivalence. If we have multiple neighbors
with different labels, we assign for that pixel the first label
found and indicate that all the other ones are equivalent. In
short, the filled table contains every label in the image and the
labels from their surrounding neighbors too. That makes an
equivalence.

B. Table of Label Equivalence

The second step of our Blob detection consists on
reconstructing the boundary around a given point based on the
connected-component labeling algorithm. This step also has
two main tasks:

I. Reduce labels based on a table of label's equivalence.

II. Define minimum boundaries around target image
based on identified blob.

Our label connectivity is made based on a two-pass
algorithm. The first pass uses the table of equivalence
generated by our connected-component algorithm presented in
Section A. In this step, the algorithm first reduces the labels to
their corresponding representatives. A representative is given
by the minimum value in the table of equivalence, i.e.
minimum label id compared to surrounding neighbors. That
process is described below:

for each pixel in selected area

 if pixel is labeled

 relabel pixel with the lowest equivalence

 label

 end if

done

In the second pass, the algorithm creates a list for every
blob in the selected area and matches it accordingly to the
reduced labels. This step of the connected-component labeling
algorithm is described below:

for every label in list

 if this is first time checking this

 label id

 create a new blob for that label

 else

 add label to existing blob (repre-

 sentative) based on their table of

 equivalence

 end if

done

That will guaranty that all equivalent labels are assigned the
same region value. We can apply this to the examples shown in
Section A. The example in Fig. 10 has the following table of
label equivalence:

TABLE I. TABLE OF LABEL EQUIVALENCE FOR EXAMPLE FIG. 10.

Label id Equivalent Labels

1 1,6

2 2,3,4,5

3 2,3,4,5

4 2,3,4,5

5 2,3,4,5

6 1,6

As a result, the algorithm will reduce labels 1 and 6 to label
1, and labels 2, 3, 4 and 5, to label 2. Notice that labels 7 and 8
were excluded to simplify this illustration. See Fig. 11 for an
example:

Fig. 11. Labeling example (with correct label equivalence).

Unfortunately, that won't work for all images. According to
our algorithm, the images referenced by labels 7 and 8 (Fig.
12) would both be reduced to label 7, however, the threshold
value must be adjusted first.

Fig. 12. Labeling example (with wrong threshold).

Selecting a small threshold will split the image into two
different blobs: one for the whole image corresponding to label
7 and one for the small image corresponding to label 8. This
will result in the following table of label equivalence:

22 SBC Journal on Interactive Systems, volume 7, number 1, 2016

ISSN: 2236-3297

TABLE II. TABLE OF LABEL EQUIVALENCE FOR EXAMPLE FIG. 12.

Label id Equivalent Labels

7 7

8 8

This happens mainly because we will be looking only at a
small area around each pixel. Thus, we need to increase the
threshold to look further away from each pixel, identifying
separated parts: elements that are detached from the “main
body” of the image. Applying the process to the example in
Fig. 12 will result in the corresponding table of label
equivalence:

TABLE III. TABLE OF LABEL EQUIVALENCE FOR EXAMPLE FIG. 12.

Label id Equivalent Labels

7 7, 8

8 8, 8

As a consequence, the algorithm will correctly identify
labels 7 and 8 as belonging to the same sprite. This generates
the blob displayed in Fig. 13. A more practical example on
threshold values will be shown in Section IV-A.

Fig. 13. Labeling example (with correct threshold).

IV. MUSSE

MuSSE is a tool developed to extract meta-data from sprite
sheets with non-uniform sprites. MuSSE (Multi-sized Sprite
Sheet meta-data Exporter) is an open-source Groovy program
with a simple Swing interface, available online [27] and
distributed under the terms and conditions of the zlib/png
license [28]. It can load sprite sheets from multiple image
formats, including: jpg/jpeg, png, bmp, gif and wbmp.

The software implements the Blob detection algorithm
described in Section III and a document generator that exports
the meta-data obtained from the sprite sheet into an XML file.
The data extracted through MuSSE contains: position, name
and size from the individual sprites contained in the sprite
sheet.

XML (Extensible Markup Language) is a widely used
international text processing standard [29] and is used to create
human-legible, clear and straightforward data documentation.
According to [30], an XML document doesn’t do anything by

itself: it must be combined with an application program that
does something useful with it.

In our case, MuSSE will save the extracted meta-data into
an XML file which can be read through a parser and used by
the developer preferred engine. A parser is the interface
between an XML document and the application program that
uses it. The parser reads XML documents and provides
application programs with access to the documents’ internal
structure and content [30].

A. MuSSE Interface

The user has two options to apply the Blob detection

algorithm on the sprite sheets:

(1) manual selection of a target area from the sheet; or

(2) “Cut entire sheet” option from the “Actions” menu.

Option 1 can be activated by clicking and dragging the
mouse over the image. This way, the Blob detection algorithm
is only applied to that selection of the sprite sheet (Fig. 14).

Fig. 14. Select target area using MuSSE. Source: MuSSE with sprite sheet

image from the game Braid©.

If the user chooses Option 2, the algorithm is applied to the
whole sprite sheet image. Fig. 15 illustrate the process.

Fig. 15. Select entire sprite sheet using MuSSE. Source: MuSSE with sprite

sheet image from the game Braid©.

SBC Journal on Interactive Systems, volume 7, number 1, 2016 23

ISSN: 2236-3297

Every time the user cuts a selection, MuSSE saves it as a
new animation inside the XML file. Every image inside the
selection is saved as a new sprite for that animation, with their
corresponding name, position and size. An animation is the
quick succession of game images (sprites) to give the illusion
of movement. Thus, those various animations are used inside a
game to give entities the idea of movement: running characters,
attacks, special effects, moving scenarios, and others. Fig. 16
shows an example XML with two animations.

Fig. 16. Example XML created using MuSSE with multiple animations.

Example applications of MuSSE are shown in Fig. 17 and
18, where the Blob detection algorithm is applied to entire
sprite sheet and to a subset of sprites:

Fig. 17. Sprite sheet with high connectivity. Source: MuSSE with sprite sheet

image from the game Angry Birds©.

Fig. 18. Sprite sheet with low connectivity. Source: MuSSE with sprite sheet

image from the game Ragnarok Online©.

Fig. 19 shows a close-up from Fig. 18. The sprite sheet
used for this example has sprites with low connectivity. In
other words, sprites with detached parts from the “main body”.
As described in Section III, that particularity causes the smaller
– disconnected parts – to be mapped as new blobs:

Fig. 19. Sprite sheet with low connectivity (close-up). Source: MuSSE with

sprite sheet image from the game Ragnarok Online©.

As pointed out before, smaller thresholds for our
connected-component method will result in a higher number of
blobs in the selected image, as seen in Fig. 19. That problem
can be solved by selecting a more suitable threshold for the
sheet.

The user can choose a specific threshold for the Blob
detection algorithm in MuSSE by selecting the option
“Sensibility (threshold)” from the “Actions” menu (Fig. 20).

Fig. 20. MuSSE's menu.

24 SBC Journal on Interactive Systems, volume 7, number 1, 2016

ISSN: 2236-3297

Threshold value starts at 1 (one) pixel and must be
manually set according to the distance between the small parts
and the sprite body. MuSSE will correct the bounding boxes
for sprites with isolated parts if the threshold is adjusted to a
higher value. For this example, a threshold of 8 (eight) pixels
where necessary. As a result, the following sheet (Fig. 21) can
be attained:

Fig. 21. Example from Figure 19 using correct threshold. Source: MuSSE

with sprite sheet image from the game Ragnarok Online©.

MuSSE's XML is ready to be used into developers’ engine
but – as practical as it is – some compatibility adjustments are
necessary in the suggested XML structure. These adjustments
relate mostly to missing meta-data that might be required by
some engines.

Most engines graphic component will need the color-key
value of the sprite sheet background to adjust correct
transparency for the image files. Those values can be extracted
in the first part of our algorithm (described in Section III-A)
and saved to the generated XML file.

Some other meta-data such as the sprite sheet image path
might also be added into the XML file in order to concentrate
information in the document. Facilitating the developer’s work
of having to pass it inside the code.

Regarding the Animation, two improvements might be
made:

(1) Add the duration of each individual sprite in the
animation to the sprite meta-data in the XML.

Every frame in the animation may have different
duration timers. This will make some sprites stay
longer on the screen or display them faster in the
animation.

(2) Add an anchor point to the sprite images.

Given that sprites may have different sizes,
inappropriate overlapping of the images during the
animation may occur. Particularly, sprites with
different sizes may be rendered by the engine without
being centered to one other. Adding an anchor point
to these images will identify in which position they
need to be drawn during the animation.

B. Using a Parser for MuSSE's XML

MuSSEXMLParser is an open source XML parser
available online [31] in C++ and Java to read XML meta-data
generated through MuSSE. A Parser is a program that receives

input in the form of structured files or scripts and breaks them
up into parts that can be treated in a particular context. In other
words, a parser is a program to help programmers extract data
from XML and other document files [32] and may also check
the validity of those files.

In our case, MuSSEXMLParser was developed to break
MuSSE XML into data files that could be used by an engine.

MuSSEXMLParser works like this:

open sprite sheet from xml file

for every animation in list

 register animation name

 for every sprite in the animation

 register sprite name

 register sprite size and position

 done

done

The parser organizes data in a way that developers can
easily set up the corresponding game objects and later use these
objects as game sprites and animations.

While registering animation data, MuSSEXMLParser
extracts an object structure that can be organized by the
developer in their preferred programming language. In C++,
developers would need to do something like the structure
shown in Fig. 22. In which SPRITE_QUANTITY is the
number of sprite entities inside the animation and is
automatically provided by the parser.

Fig. 22. Example object structure for animations.

MuSSEXMLParser also extract object structures for the
individual sprites inside the animation. In C++, that object
definition is shown in Fig. 23.

Fig. 23. Example object structure for sprites.

Thus, developers could organize animation into objects and
arrange lists of sprites for each respective animation.
Implementation of these objects would be adaptable to the
users’ engine.

Association with an engine could be made by creating a
sprite sheet interface connecting animations to the parsed files.
Developer could make a dependency from the animation to the

SBC Journal on Interactive Systems, volume 7, number 1, 2016 25

ISSN: 2236-3297

parser trough this interface. An example is shown in the Class
Diagram in Fig. 24.

Fig. 24. Class Diagram for a possible implementation.

In this example, the MuSSEXMLParser is the component
that realizes the SpriteSheet interface. The Animation class is
connected to the SpriteSheet interface with a dependency
relationship line and uses this interface to access the parser
services.

V. CONCLUSION

MuSSE is a development tool intended to create XML files
containing meta-data for a set of sprites on a sprite sheet. The
software applies a Blob detection algorithm to the image – be it
a subset or an entire sprite sheet – and extracts the information
for the contained sprites. Both tool and algorithm are open
source and available online [27].

The Blob detection algorithm is used to extract important
sprite characteristics: position in the sprite sheet, name
reference for the image and matching sizes (width and height).
That meta-data is used to build the corresponding bounding
box rectangles for the sprite images. Those shapes are really
important in-game as they are meant to be used for collision
detection between entities and to manipulate objects in a scene.

MuSSE's Blob detection algorithm is based on a connected-
component labeling method and a table of label equivalence.
The connected-component labeling identifies every pixel inside
an image with a label, where matching labels corresponds to a
unique blob. The proposed algorithm also uses a table of label
equivalence to identify different labels that belongs to same
blob, reducing errors and optimizing the results. Blob detection
implements a connectivity technique which provides a good
threshold selection that can solve some machine vision
problems, presenting important advantages over other
implementations.

This paper presents an academic view on using feature
detection techniques to develop a tool to generate sprite sheet
information. Studied tools with similar functionality presents
poor documentation regarding the techniques applied. Also,
most tools are used for the opposite purpose: to convert
individual sprites into sprite sheets. New researches should
further investigate MuSSE algorithm efficiency against
Construct 2 and Unity Sprite Packer algorithms.

A parser to read and manage sprite sheet meta-data is also
presented. MuSSEXMLParser open up XML files created
using MuSSE and break up the information into readable –
easy to manipulate – data, ready to convert into sprite and
animation objects.

As future work, we aim at improving MuSSE's interface by
adding a color pallet for the user to dynamically select the
background color from the sprite sheet. And also improve the
tool by complementing functionality in two paths:

First one, implementing a threshold detection method to
automatically search for a minimum (optimal) pixel range
threshold. That is intended to avoid overlaying blobs in auto-
detect mode and may be achieved by applying a function that
takes on account the number of blobs intersections vs the
threshold level. We can solve that by finding a minimum
threshold level that has no blobs inside one another.

As a second option, MuSSE can also be improved by
constructing a packing algorithm. Sprites can be packed –
arranged into smaller sprite sheets – by applying a series of
rotation and translation operations. This way, MuSSE can
produce more compact and optimized sprite sheets.

The parser can also be improved. Some new meta-data
might also be added to the MuSSE's XML files to improve
integration with game engines, such as the color-key values for
the background, the sprite sheet image file path and the sprites
duration and anchor point in the animation.

Finally, we can also make the generated XML editable
before being saved. Adding an interface to easily change the
animation and the sprite names before saving the file may ease
the programmer’s work while loading the data.

REFERENCES

[1] E. B. Damiani, Programação de Jogos Android: Crie seu próprio game
engine!. Novatec Editora, 2014.

[2] D. Shneier, M. Woo, J. Neider and T. Davis, OpenGL (R) programming
guide: The official guide to learning OpenGL (R), version 2.1. Addison-
Wesley Professional, 2007.

[3] H. M. Chandler, Manual de produção de jogos digitais. Bookman, 2012.

[4] M. B. Barbosa, C. B. Barbosa and A. F. Barbosa, “MuSSE: a tool to
extract meta-data from game sprite sheets using Blob detection
algorithm,” in Proc. XIV Simpósio Brasileiro de Jogos e Entretenimento
Digital. Porto Alegre: SBC, 2015.

[5] C. Brown, Advances in computer vision. Psychology Press, 2014.

[6] D.Cristinacce, and T. F. Cootes, “Feature Detection and Tracking with
Constrained Local Models,” in BMVC, 2006, vol. 1, no. 2, p. 3.

[7] P. R. Possa, S. A. Mahmoudi, N. Harb, C. Valderrama and P.
Manneback, “A multi-resolution fpga-based architecture for real-time
edge and corner detection,” in Computers, IEEE Transactions, 2014, pp.
2376-2388.

[8] S. W. Teng, R. M. N. Sadat and G. Lu, “Effective and efficient contour-
based corner detectors,” in Pattern Recognition, 2015, vol. 48, no. 7, pp.
2185-2197.

[9] K. K. Jena, S. Mishra and S. N. Mishra, “Edge Detection of Satellite
Images: A Comparative Study,” in IJISET, 2015, vol. 2, no. 3, pp. 2015.

[10] J. J. Koenderink, “The structure of images,” in Biological cybernetics,
1984, vol. 50, no. 5, pp. 363-370.

[11] K. Ikeuchi, Computer Vision: A Reference Guide. Springer Publishing
Company, Incorporated, 2014, pp. 701-713.

[12] R. Collins, “Mean-shift blob tracking through scale space,” in Proc.
2003 IEEE Computer Society Conference. Computer Vision and Pattern
Recognition, 2003, vol. 2, pp. II-234.

[13] T. Lindeberg, “Feature detection with automatic scale selection,” in
International journal of computer vision, 1998, vol. 30, no. 2, pp. 79-
116.

[14] F. Wang, X. Ren and Z. Liu, “A robust blob recognition and tracking
method in vision-based multi-touch technique,” in Parallel and
Distributed Processing with Applications, 2008. ISPA'08. IEEE,
International Symposium, pp. 971-974.

[15] S. Sookman, “INSPECTION-Image Analysis Software-Blob Analysis
and Edge Detection in the Real World,” in Evaluation Engineering,
2006, vol. 45, no. 8, pp. 46-49.

26 SBC Journal on Interactive Systems, volume 7, number 1, 2016

ISSN: 2236-3297

[16] S. Hinz, “Fast and subpixel precise blob detection and attribution,” in
Image Processing, ICIP 2005. IEEE International Conference, vol. 3, pp.
III-457, September 2005.

[17] TexturePacker. (2015, June 20). Texture Packer [Online]. Available:
www.codeandweb.com/texturepacker.

[18] Unity. (2015, June 20). Unity3D Game Engine [Online]. Available:
docs.unity3d.com/Manual/SpritePacker.html.

[19] LibGDX. (2015, June 18). LibGDX Game Engine [Online]. Available:
github.com/libgdx/wiki/Texture-packer.

[20] SpriteCutter. (2015, June 21). Sprite Cutter [Online]. Available:
spritecutter.sourceforge.net/manual.html.

[21] Construct. (2015, June 21). Construct 2 Game Engine [Online].
Available: www.scirra.com/manual/48/image-and-animations-editor.

[22] M. Shneier, “Using pyramids to define local thresholds for blob
detection,” in Pattern Analysis and Machine Intelligence, IEEE
Transactions, 1983, no. 3, pp. 345-349.

[23] A. Kaspers, Blob Detection. Biomedical Image Sciences. Image
Sciences Institute, UMC Utrecht, 2011.

[24] M. Dillencourt, H. Samet and M. Tamminen, “A general approach to
connected-component labeling for arbitrary image representations,”
Journal of the ACM (JACM), 1992, vol. 39(2), 253-280.

[25] M. Pordel and T. Hellström, “Semi-Automatic Image Labelling Using
Depth Information,” Computers, 2015, vol. 4, no. 2, pp. 142-154.

[26] T. Shreekanth and V. Udayashankara,. “An Application of Eight
Connectivity based Two-pass Connected-Component Labelling
Algorithm For Double Sided Braille Dot Recognition,” International
Journal of Image Processing (IJIP), 2014, vol. 8, no. 5, pp. 294.

[27] MuSSE. (2016, February 22). MuSSE [Online]. Available:
https://github.com/marcelomesmo/MuSSE.

[28] Zlib. (2016, February 22). Zlib/png License [Online]. Available:
zlib.net/zlib_license.html.

[29] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler and F. Yergeau,.
(1998). Extensible markup language (XML). World Wide Web
Consortium Recommendation REC-xml-19980210 [Online]. Available:
www.w3.org/TR/1998/REC-xml-19980210.

[30] J. Roy and A. Ramanujan, XML schema language: taking XML to the
next level. IT professional, 2001, vol. 3, no. 2, pp. 37-40.

[31] MuSSEParser. (2016, February 22). MuSSE XML Parser [Online].
Available: https://github.com/marcelomesmo/MusseXmlParser.

[32] A. V. Aho, S. Ravi and D. U. Jeffrey. Compilers, Principles,
Techniques. Addison wesley, 1986.

SBC Journal on Interactive Systems, volume 7, number 1, 2016 27

ISSN: 2236-3297

