
Combining genetic algorithm and swarm intelligence
for task allocation in a real time strategy game

Anderson R. Tavares, Gianlucca Lodron Zuin, Héctor Azpúrua, Luiz Chaimowicz
Departamento de Ciência da Computação

Universidade Federal de Minas Gerais
Belo Horizonte, Brazil

{anderson,gzuin,hector.azpurua,chaimo}@dcc.ufmg.br

Abstract—Real time strategy games are complex scenarios
where multiple agents must be coordinated in a dynamic,
partially observable environment. In this work, we model
coordination as a task allocation problem, in which specific
tasks must be properly assigned to agents. We employ a task
allocation algorithm based on swarm intelligence and adjust
its parameters using a genetic algorithm. A fitness estimation
method is employed to accelerate execution of the genetic
algorithm. To evaluate this approach, we implement this coordi-
nation mechanism in the AI of a popular video game: StarCraft:
BroodWar. Experiment results show that the genetic algorithm
successfully adjusts task allocation parameters. Besides, we
assess the trade-off between solution quality and execution time
of the genetic algorithm with fitness estimation.

Keywords-Task allocation; Evolutionary algorithms; Real-time
strategy

I. INTRODUCTION

Real Time Strategy (RTS) games have become one of the
most successful genres in the game industry. Normally, RTS
games are played at a extremely fast pace and players
have to deal simultaneously with several different objectives
such as resources collection, base construction, technology
improvements and battles against enemy armies [1]. Due to
their characteristics, RTS games became excellent testbeds
for artificial intelligence (AI) research [2]. Particularly, the
coordination of multiple units, or agents, in RTS games is
an interesting research topic and has several commonalities
with other complex scenarios such as rescue operations in
disaster situations [3] or cooperative robotics [4].

Agent coordination in complex scenarios is one of the
greatest challenges in multiagent intelligent systems and
normally involves the optimized use of resources by different
agents to accomplish a global goal. In general, complex sce-
narios comprise a set of agents that must perform multiple
tasks in a dynamic and partially observable environment,
where existing tasks can disappear and new tasks can arrive.
Therefore, task allocation becomes an important part of
the coordination problem. This work builds on [5], where
a task allocation approach is proposed for the complex
scenarios determined by the RTS game StarCraft: BroodWar
(StarCraft for short). A genetic algorithm is employed

to adjust the parameters of Swarm-GAP, a probabilistic,
scalable algorithm for task allocation based on swarm in-
telligence [6]. This paper presents an extended discussion
on fitness estimation, employed to accelerate the genetic
algorithm, and compared performance in matches between
the implemented approach and StarCraft tournament bots.

Experiments in matches against StarCraft’s native AI show
that the genetic algorithm is useful to adjust task alloca-
tion parameters for Swarm-GAP. The proposed approach
performs similarly to a configuration of Swarm-GAP param-
eters adjusted by hand, outperforming it in a specific case.
Moreover, manual parameter adjustment requires domain
knowledge, e.g., which game units would be more suitable
for which tasks, whereas the proposed approach is domain-
independent in this sense, and thus can be easily extended
to other coordination domains.

Genetic algorithm execution consumes considerable time
because evaluation of individuals depends on the execution
of StarCraft matches. Thus, we test a method to estimate
fitness of some individuals in order to accelerate genetic al-
gorithm execution [7]. When the individual is not evaluated,
its fitness is estimated based on its parents’. We vary the
probability of forced evaluations to compare execution time
and solution quality of the genetic algorithm. Experiments
in this subject show that the obtained speedup is inversely
proportional to the probability of forced evaluation. More-
over, our results indicate points where time savings occur
without loss of solution quality.

The remainder of this paper is organized as follows: Sec-
tion II introduces some basic concepts regarding task al-
location, specifically the Extended Generalized Assignment
Problem (E-GAP) and the Swarm-GAP algorithm. Sec-
tion III discusses some related work both in the fields
of task allocation in complex scenarios and AI for RTS
games. Section IV discusses the adoption of Swarm-GAP
for task allocation in StarCraft, while Section V presents the
genetic algorithm used to evolve Swarm-GAP parameters.
Experiments with the proposed approach are presented in
Section VI while Section VII brings the conclusion and
directions for future work.

4 SBC Journal on Interactive Systems, volume 8, number 1, 2017

ISSN: 2236-3297

II. TASK ALLOCATION

A. E-GAP

Task allocation is concerned with the assignment of tasks
to agents in order to maximize a global metric of per-
formance, usually related to the skills of the agents to
perform each task. In dynamic environments, task allocation
can be modeled with the E-GAP (Extended Generalized
Assignment Problem) formalism [8]. E-GAP generalizes
the GAP (Generalized Assignment Problem), which is NP-
complete [9].

The E-GAP can be formalized as follows: let I be the set
of agents and J the set of tasks. Each agent i ∈ I has ri
resources to perform tasks. Each task j ∈ J consumes cij
resources of agent i, when it performs the task. Each agent
i has a capability kij ∈ [0, 1] to perform task j. Capability
can be regarded as the skill of the agent to perform the task.

An allocation matrix A|I|×|J | has its elements aij set to 1
if agent i performs task j, and 0 otherwise. In this model,
only one agent can perform a given task instance.

In E-GAP, the total reward W is calculated as the sum of
agents’ rewards along t timesteps. In one timestep, reward
is calculated by considering the capability of the agents to
perform the tasks they were assigned. A delay cost dtj is
applied as a penalty for not allocating task j in timestep t,
as Eq. 1a illustrates. Reward calculation along the timesteps
captures the dynamics of the environment, i.e., reward in
a given timestep depends on the tasks and agents that
exist in that timestep. Equation 1b determines that agents
must allocate tasks within their resource limits and Eq. 1c
determines that a task can be performed by only one agent.
Thus, large tasks must be broken down into smaller tasks that
can be performed by a single agent. E-GAP also considers
task interdependence, but this aspect is not investigated in
this work.

W =
∑

t

∑

it∈It

∑

jt∈J t

kij×atij−
∑

t

∑

jt∈J t

(1−
∑

it∈It
atij)×dtj

(1a)

subject to: ∀t∀it ∈ It,
∑

jt∈J t

ctij × atij ≤ rti (1b)

and: ∀t∀jt ∈ J t,
∑

it∈It
atij ≤ 1 (1c)

B. Swarm-GAP

Swarm-GAP is an approximate algorithm for E-GAP, in-
spired by the division of labor in social insects. In swarms,
or colonies of social insects, in general there are hundreds

or thousands of members that work without explicit coordi-
nation. From the aggregation of individual actions of colony
members, complex behaviors emerge. One characteristic of
swarms is the ability to respond to changes in the environ-
ment by adjusting the numbers of members performing each
task.

Observations about swarm behaviors are the base of the
model presented in [10], where tasks have associated stimu-
lus1 and individuals have response thresholds for each task.
Let sj ∈ [0, 1] be the stimulus associated with task j ∈ J
and θij ∈ [0, 1] be the response threshold of individual
(agent) i to task j. The tendency, or probability, of individual
i to engage in task j is given by Tij ∈ [0, 1], calculated using
Eq. 2.

Tij =
s2j

s2j + θ2ij
(2)

In swarms, due to polymorphism, individuals may be more
able to perform certain kinds of tasks. This characteristic is
captured in Eq. 3, which determines the response threshold
of individual i to task j according to its capability (kij ∈
[0, 1]) to perform task j.

θij = 1− kij (3)

The goal of Swarm-GAP is to allow agents to individually
decide which task they will engage in a simple and efficient
way, minimizing computational effort and communication
between agents [6]. With Swarm-GAP, agents communicate
via a token based protocol. When a given agent perceives
new tasks, it creates a token with these tasks. The agent can
receive tokens from other agents too. Either way, the token
holder has the right to decide in which tasks of the token it
will engage. The token with the remaining tasks is passed
to a random agent that has not held the token before. This
is formalized in Alg. 1, which is executed by each agent
independently.

Although the execution of Swarm-GAP is simple, good per-
formance requires a good adjustment of all parameters, i.e.,
we need to model the stimuli sj for each task, the resources
ri that each agent has, as well as the capability kij and task
cost cij for each agent and task. Finding a combination of
these parameters that yields a good performance of Swarm-
GAP can be very time-consuming specially in scenarios with
several different types of agents and tasks.

1Stimulus intensity may be associated with pheromone concentration, the
number of encounters with other individuals performing the task or another
characteristic that individuals can measure.

SBC Journal on Interactive Systems, volume 8, number 1, 2017 5

ISSN: 2236-3297

Algorithm 1 Swarm-GAP
When tasks are perceived: token← {perceived tasks}
When message is received: token← {received token}
for all task j ∈ token do

if random() < Tij and ri > cij then
Engage in task j
token← token \ {j}
ri ← ri − cij

end if
end for
Send token to random agent that didn’t see the token
before

III. RELATED WORK

A. Task allocation in complex scenarios

An approximate and decentralized algorithm for the task
allocation problem in complex scenarios is LA-DCOP [8],
where the modeling of the task allocation problem as E-
GAP is introduced. In LA-DCOP, agents communicate and
achieve coordination through a token-based protocol, which
inspired the one used in Swarm-GAP (see Section II-B).
Agents perceive tasks on the environment and create a
token containing the tasks. The token holder, based in a
global threshold, decide in which tasks it should engage.
The token with the remaining tasks is communicated to
other agents. In LA-DCOP, agents must allocate tasks in
order to maximize the sum of their capabilities, respecting
their resource limitations. This can be reduced to the binary
knapsack problem (BKP), which is NP-complete. Therefore,
the effectiveness of LA-DCOP depends on the method that
solves the BKP. Each agent solves several instances of the
BKP during the complete process of allocation.

LA-DCOP and Swarm-GAP are very similar regarding the
token-based protocol for coordination. The difference in both
algorithms lies in the way the agents allocate tasks. In LA-
DCOP, the process corresponds to solving an instance of
the BKP whereas in Swarm-GAP, agents allocate tasks in
a probabilistic fashion inspired by the division of labor in
social insects.

Swarm-GAP and LA-DCOP are compared in the RoboCup
Rescue domain [6], a simulated disaster response scenario
with heterogeneous agents. The execution of constrained
tasks, where several agents are needed to perform a task,
is also studied. This particular restriction is not approached
in our proposal.

The task allocation problem can also be modeled through
the formalism of coalition formation. In this formalism, a

coalition structure2 is determined and coalitions of agents are
assigned to tasks. An approach that uses this formalism is
presented in [11]. The authors model coalition formation as
a Markov Decision Process (MDP). Initially, the generated
MDP has an intractable state-action space. Authors present
a method for parallel partition of the generated MDP so
that efficient algorithms can be applied. In fact, authors
apply this methodology to problems with hundreds of agents
and tasks. However, their experiments are performed with
homogeneous agents and they must deal with a single task
type, i.e., simulated firefighting.

Branch-and-bound fast-max-sum (BnB FMS) is an anytime
algorithm that advances the state-of-the-art regarding task
allocation in large-scale scenarios [12]. BnB FMS searches
the coalition structure that maximizes a global utility, which
considers the contribution of each agent in its coalition
when it performs a set of tasks. The algorithm prunes its
search space by reducing the number of tasks and coalitions
that need to be evaluated. The pruning techniques keep
the correctness and robustness of the algorithm when the
environment is dynamic. Performed experiments showed that
BnB FMS reaches a global utility 23% higher than previous
state-of-the-art algorithms, with 31% less computing time
and 25% less messages than other algorithms.

In this paper we use Swarm-GAP to perform task allocation,
augmenting it with a genetic algorithm to tune its parame-
ters. This is a novel approach, specially in a RTS game
scenario, as discussed in the next section.

B. Artificial intelligence in RTS games

Developing intelligent systems for RTS games is a complex
problem because, in addition to intrinsic constraints of the
game, such as partial observation, there are two types of
decision making: micro-management, responsible for single
unit behavior (i.e. unit positioning, target selection and
retreat during battles) and macro-management, responsible
for sequencing the construction of structures, resource man-
agement and strategy. In this sense, task allocation is related
with macro-management.

Probably these aspects make real-time strategy games less
researched than their turn-based counterparts [13], despite
the great number of know open challenges such as: adver-
sarial real-time planning, decision making under uncertainty
of partially observable domains, learning from experience or
observation, opponent modeling, spatial and temporal rea-
soning, navigation, resource management and collaboration
[14], [15].

Common techniques used to tackle these challenges include:

2A coalition structure is a partition of the set of agents. Each subset of
the partition is a coalition.

6 SBC Journal on Interactive Systems, volume 8, number 1, 2017

ISSN: 2236-3297

• Dynamic scripting [16], [17]. In dynamic scripting,
each agent has a rule base, where each rule consists
of actions activated in certain conditions. Rules are
inserted in an active set or removed from it according
to their performance. A drawback is that this technique
requires domain knowledge to build the rule base;

• Game-tree search in abstract representations. To handle
the huge state spaces of RTS games, game-tree search
algorithms are extended and used in abstract game
representations, e.g. [18], [19]. However, commercial
RTS games, such as StarCraft, usually do not provide
a forward model of the world, so that actions cannot be
simulated in order to obtain successor states. This way,
search-based techniques cannot be directly applied;

• Use of Bayesian models. In [20], authors implement
Bayesian models for micro-management. Their ap-
proach outperform StarCraft’s native AI and several
other bots on unit micro-management;

• Potential fields, developed first as a navigation method
to avoid obstacles in robotics [21], can be seen used
in conjunction with a modified A* algorithm for nav-
igation in StarCraft game [22]. Their results have
shown improvements over the navigation using only the
A* algorithm. Other works implement potential fields
in conjunction with fuzzy measurements for micro-
management in the game Warcraft III [23]. Their results
have shown success on minimizing the score of the
opponent on most cases;

• Evolutionary algorithms. This method is generally used
to adjust the parameters of other techniques. Although
evolutionary algorithms have been implemented in RTS
games, the focus has been on unit micro-management
[24], [25]. In the present work, the focus is on
macro-management, which is related to task allocation
(i.e., which tasks should be done), whereas micro-
management is concerned with how the tasks should
be done.

An example of evolutionary algorithm applied to evolve
parameters of a RTS game player can be found in [13]. The
authors define a rule-based player with adjustable parameters
that are evolved with genetic algorithm. The approach is
tested in a game called Planet Wars. In this game, a match
takes place in a map containing several planets, each one
with a number of space ships in it. The action of a player
consists in sending space ships to other planets in order
to conquer them. The player who conquers all enemy’s
planets is the winner. This scenario is simpler than the one
studied here (see Section IV-A). In our scenario, the number
of distinct actions (or tasks) that need to be performed is
substantially higher.

IV. SWARM-GAP IN StarCraft

A. StarCraft game

StarCraft is a RTS game, whose domain has several real-
world characteristics, some of which are enumerated below.

• The environment is continuous in space and time (or at
least it is discretized in a reasonably thin granularity);

• Partial observability: a player can only access informa-
tion within the visual range of his units and buildings;

• Dynamicity: due to the actions of several agents, the
environment is always changing, thus demanding quick
decisions;

• The decision process is sequential, meaning that actions
taken now affect which actions can be done in the
future.

In RTS games, there is a need to perform hundreds of actions
per minute. Actions are divided in several tasks involving
resource gathering, creation of new units, construction of
buildings and attacks to the enemy [26].

StarCraft has an application programming interface, called
BWAPI [27], designed to foster the development of artificial
intelligence techniques. BWAPI is capable of retrieving the
same information and sending the same commands a human
player is allowed in StarCraft.

In StarCraft, there are three races with different character-
istics and unique strategies [28]:

• Protoss, characterized by powerful units that demand a
higher amount of resources to produce;

• Zerg, characterized by attacking with large amounts of
cheap units;

• Terran, which has units of intermediate power and cost.

In StarCraft there are two types of resources to produce units
and buildings: mineral and gas. To win a game, a player must
destroy all the buildings of his opponent. Figure 1 presents
a game screenshot.

B. Running Swarm-GAP in StarCraft

In order to execute Swarm-GAP algorithm in StarCraft,
we implemented a software-controlled player (bot), called
GASW (abbreviation of genetic algorithm Swarm-GAP)
through BWAPI. In this bot, task allocation among agents
is performed according to Alg. 1.

GASW bot plays with the Terran race, using 7 out of 17
available Terran buildings and 3 out of 13 Terran units.
Although via Swarm-GAP we obtain which tasks will be
performed, we need to hand-code how these tasks will
be performed in the game. This hand-coded behavior can
be complex depending on the unit type. Thus, due to the

SBC Journal on Interactive Systems, volume 8, number 1, 2017 7

ISSN: 2236-3297

Figure 1: StarCraft screenshot of a Terran base. Each unit
and structure has a specific function in the game.

complexity of implementing the task execution behavior
of every unit inside the game, we model only a subset
containing the basic buildings and units available to GASW
bot.

Terran race was chosen because it is the only race whose
basic combat unit can target ground and air enemies, which
would increase the chances of victory.

All units and buildings used by Swarm-GAP are shown in
Fig. 1. Their function is described in the list that follows.

• Buildings:
– Command center: receives gathered resources and

produces workers (SCV).
– Comsat: allows periodic scans in the map, useful

for scouting.
– Supply depot: are required to increase the number

of units that can be created.
– Barracks: produces marines and medics.
– Academy: is required for the production of medics

and allows the research of combat upgrades for
marines.

– Refinery: is required to collect gas, which is needed
to train medics and to perform upgrades at the
Academy.

– Bunker: defensive building that provides shelter for
up to 4 ground units. Allows marines to attack
enemies with increased range.

• Units:
– SCV: worker unit that gathers resources, constructs

and repairs buildings.
– Marine: ranged combat unit. Can target air and

ground enemies.
– Medic: auxiliary combat unit that heals other units.

In GASW bot, three types of agents allocate tasks according
to Alg. 1: SCV, marine and a commander agent. SCV and

marine have counterparts in the game. Commander is an
abstract agent, responsible for deciding when SCV, marine
and medic units should be produced. The behavior of the
medic unit is hand-coded as it is an auxiliary unit created
to keep other units alive for longer periods.

Table I presents the tasks that agents must allocate via
Swarm-GAP. Cells are marked where an agent can perform
the given task.

Table I: Agent-task compatibility for tasks allocated via
Swarm-GAP

Task SCV Marine Commander
Gather minerals

√
Build barracks

√
Build supply depot

√
Build academy

√
Build refinery

√
Build command center

√
Repair building

√
Explore map

√ √
Attack

√ √
Train SCV

√
Train medic

√
Train marine

√

For the execution of Swarm-GAP algorithm, stimulus must
be modeled for all tasks and agent capabilities must be
modeled for every compatible agent-task combination. Some
game-related tasks are not allocated via Swarm-GAP thus
they do not appear in Table I. These tasks include: build
Comsat, Bunker and gather gas. Allocation and performance
of these tasks are hand-coded in the following way: the
Comsat is built after 15 minutes of game, one Bunker is built
near each Command Center and three SCVs are allocated
for gas collection in the Refinery. This configuration was set
after preliminary experiments to allow basic scouting (with
Comsat), basic defenses (with Bunker) and a suitable gas
collection rate (with three SCVs at refinery).

In StarCraft, agents can perform only one task at a time.
This eliminates the need to model agent resources and task
costs, represented by r and c in Swarm-GAP (Alg. 1). These
are needed to address the situation where agents can perform
multiple tasks simultaneously.

Also, in StarCraft, units are not limited with local informa-
tion. Swarm-GAP is a decentralized algorithm that works
with agents limited by local information by using the token-
based protocol for communication. We exploit the common
knowledge of game units by making a global “pool” of
tasks perceived by all units instead of using communication
among them.

In the E-GAP model, in which Swarm-GAP is based, a
task can be performed by only one agent. However, in
StarCraft, several tasks, such as attacks, must be executed by
multiple agents. In E-GAP, such tasks are decomposed into

8 SBC Journal on Interactive Systems, volume 8, number 1, 2017

ISSN: 2236-3297

several smaller, inter-related tasks. However, this requires
prior knowledge on how to decompose a task. We address
this issue as follows: to allow an agent to engage in a
previously allocated task, we instantiate a new instance of
that task. This approach maintains conformity with the E-
GAP model and does not require prior knowledge on task
decomposition.

The behavior of GASW bot is controlled by 27 parameters:
one stimulus parameter for each task in Tab. I, in a total
of 12, one capability parameter for each compatible agent-
task combination, in a total of 14 (9 for the SCV, 2 for
the marine and 3 for the commander), and one parameter
that controls the size of an attacking group of marines. The
last parameter is not related to execution of Swarm-GAP
algorithm, but controls an important aspect of GASW bot.

In StarCraft, we can associate stimulus with the impor-
tance and/or urgency of a task. Moreover, we can associate
capability (k) with the suitability of an agent to perform
a task. For example, a worker unit is expected to prefer
resource gathering than combats, although it could engage
in combats if they’re very important (e.g. to defend a base
under attack). In this case, this combat task should have a
high stimulus so as to goad the worker unit to perform it.
A sensible adjustment of stimulus and capability parameters
has great impact on how task allocation reflects the actual
importance of tasks and skills of units. This motivated us
to adopt the genetic algorithm for parameter adjustment, as
further discussed in Section V.

V. OPTIMIZING SWARM-GAP PARAMETERS

A. Genetic algorithm

Finding a good combination of Swarm-GAP parameters may
be impractical for large scenarios if done manually. To
address this issue, we employ a genetic algorithm to auto-
matically find a combination of parameters that maximizes
a global metric of agent performance.

Briefly, a genetic algorithm (GA) is a metaheuristic that
mimics the process of natural selection. An initial population
is generated, the fitness of its individuals is evaluated,
individuals are selected to produce the population of the
next generation, genetic operators are then applied, and the
process is repeated until a stop criteria is satisfied. The
stop criteria is usually related to the solution convergence
or number of generations. Genetic algorithms are usually
applied to complex optimization problems [29].

In our approach, an individual is given by a chromosome
represented by an array of 27 parameters that control
the behavior of GASW bot (see Section IV-B). The do-
main of the 26 parameters related to Swarm-GAP algo-
rithm (stimulus and capabilities for agent-task combina-

tions) is the set of real values from 0 to 1 spaced by
0.05: {0, 0.05, 0.10, ..., 0.90, 0.95, 1.0}. The set [0, 1] was
discretized in this way in order to reduce the search space
of the genetic algorithm without significant loss in precision
for the control of Swarm-GAP algorithm. The domain of
the last parameter of GASW bot (size of attacking marine
group) is the set {6, 8, 10, ..., 20, 22, 24}, i.e., the set of even
integers between 6 and 24, inclusive. Odd integers are not
considered for search-space reduction as well.

B. Fitness function

Evaluation of an individual in our approach is based on the
performance of GASW bot in matches against StarCraft’s
native AI, or SC Bot for short. Our bot implements Swarm-
GAP, loading the parameters contained in the chromosome
of the individual to be evaluated in order to perform alloca-
tion of the game-related tasks presented in Table I.

We “train” GASW bot by executing the genetic algorithm
against SC Bot controlling one of the three races and test
the best individual found against SC Bot controlling the
same race. We evaluate four fitness functions for the genetic
algorithm:

1) Victory Rate: Performance improvement of a bot can
be related to the number of wins it achieves against
an opponent (or a set of opponents). Thus, a fitness
function related to the rate of victories in a number
of matches is a reasonable choice. In fact, Fernandez-
Ares et. al. [30] use this function to evaluate its bot in
Planet Wars game. The main drawback of this function
is the time required to run the genetic algorithm: each
individual has to play a number of matches to have its
victory rate calculated.

2) Score ratio: At the end of a StarCraft match, each
player receives a score related to its overall game
performance. The overall score aggregates components
regarding resource collection, structure construction
and unit management (army deployment and attacks
to enemy forces). Score ratio is then calculated by
GASW’s score divided by its opponent’s score, as in
[5].
The rationale behind this fitness function is that the
winner achieves greater overall score than the loser of
a match, because it outperforms the loser in combat
and/or in economic aspects.

3) Unit-based fitness: This fitness function is given by
dividing our bot’s unit management score by its op-
ponent’s. It is similar to the overall score ratio fitness
but it uses only the score component regarding unit
management. This score component is based on the
number and power of units a player has created for
itself and destructed from the enemy. A player who

SBC Journal on Interactive Systems, volume 8, number 1, 2017 9

ISSN: 2236-3297

creates a powerful unit adds greatly to his score. The
same happens when it destroys a powerful unit owned
by the opponent.
The rationale behind this fitness function is that the
goal in an RTS game is to eliminate enemy forces
and this combat-oriented fitness function reflects di-
rectly a player’s combat performance. The other score
components (resources and buildings) also affect game
performance but one cannot win a match without good
combat performance.

4) Time-based fitness: The time-based fitness is given by
Eq. 4, where d is the match duration, dmax is the
maximum duration of a match and F (d) : IR→ [0, 1]
is the fitness function.

F (d) =

{
1− d

2∗dmax
, in case of victory

d
2∗dmax

, in case of defeat
(4)

This function is used in [31]. If the bot wins the match,
its fitness will range from 0.5 to 1, and it receives
higher fitness for faster victories. On the other hand, if
the bot loses the match, its fitness will range from 0 to
0.5, and it receives higher fitness for longer matches.
That is, the bot is rewarded for rapid victories and for
lasting longer in defeats.

After training, we assess performance as the rate of victories
in a number of matches, since the goal in RTS games is
to win as many matches as possible. We remark that the
fitness function that reflects this goal more closely is victory
rate. It is used as the baseline for comparison with the other
functions (see Section VI-A).

C. Accelerating the genetic algorithm

As fitness evaluation is a time-consuming task, we accelerate
the genetic algorithm by estimating fitness of some individu-
als instead of actually evaluating them [7]. Fitness estimation
of an individual considers similarity with its parents and
their reliability. Similarity between two individuals i and j
is denoted by ρij ∈ [0, 1] and reliability of individual i is
denoted by wi ∈ [0, 1].

Let individual a be the parent of c. Similarity between them,
is calculated via Eq. 5, where A is the chromosome of a, C is
the chromosome of c and maxi and mini are the maximum
and minimum value in the domain of the variable in locus
i of a chromosome, respectively.

ρac = 1− 1

|A|

|A|∑

i=1

abs(A[i]− C[i])
maxi −mini

(5)

In Eq. 5, each summand represents the normalized difference
(i.e. between 0 and 1) of values in locus i of the chromo-
somes. The average of these normalized differences gives
us a degree of divergence between the two chromosomes.
Similarity is the complement of the degree of divergence.

Reliability of an individual is calculated according to the
reliability of its parents and the similarity between parents
and child. Equation 6 formalizes this, where a and b are
the parents of c. This equation ensures that the reliability
of child c is closer to that of the most similar and reliable
parent.

wc =
(waρac)

2 + (wbρbc)
2

waρac + wbρbc
(6)

Finally, fitness of an individual c (fc) is estimated as the
average of its parents’ fitness weighted by their reliability
times similarity with the child. This calculation is shown in
Eq. 7, where a and b are the parents of c.

fc =
fawaρac + fbwbρbc
waρac + wbρbc

(7)

If the estimated fitness of individual c falls below a given
threshold (τ ∈ [0, 1]), the actual fitness is evaluated and
assigned to fc. In this case, its reliability wc is set to
1. Note that fitness of a child estimated via Eq. 7 lies
between its parents’ fitness. Moreover, reliability of a child
calculated via Eq. 6 is lower than the highest reliability
of its parents. This is desirable, because with successive
estimations, reliability should drop below the threshold and
an actual evaluation must take place.

A value of reliability threshold (τ) close to 1 results in
many actual fitness evaluations, slowing down the genetic
algorithm. On the other hand, a value of τ close to 0 results
in many successive fitness estimations which may yield
fitness values that differ too much from the actual fitness
of the individuals. Thus, τ is an important parameter of this
fitness estimation method and should be carefully adjusted.

In order to ensure that some individuals are evaluated instead
of estimated in every generation, a probability of evaluation
(pe ∈ [0, 1]) is employed. Individuals with reliability above
the threshold are evaluated with probability pe. This parame-
ter can be adjusted to force evaluation of a desired portion of
individuals. The closer pe is to 1, the slower is the execution
of the genetic algorithm. On the other hand, we have more
actual fitness evaluations, increasing overall reliability of the
population.

For a complete description of the fitness estimation method
adopted in this paper, the reader may refer to Salami and
Hendtlass [7].

10 SBC Journal on Interactive Systems, volume 8, number 1, 2017

ISSN: 2236-3297

Algorithm 2 formalizes our approach. In this algorithm, P (n)

is the population in generation n, the maximum number
of generations is η and the population size is κ. Method
select parents selects two individuals from the population.
Method crossover and mutation receives two individu-
als, performs crossover according to a crossover probability,
mutates the individuals according to the mutation proba-
bility and returns the two individuals. Note that selection,
crossover and mutation methods are not specified and can
be chosen according to the situation. For example, in this
paper we use tournament selection and one-point crossover
(see Section VI).

Algorithm 2 Genetic algorithm for Swarm-GAP

1: P (0) ← {initial random population}
2: for all p ∈ P (0) do
3: fp ← Evaluate(p)
4: wp ← 1
5: end for
6: for n ∈ [0..η] do
7: P (n+1) ← ∅
8: while |P (n+1)| < κ do
9: (a, b)← select parents(P (n))

10: (c, d) = crossover and mutation(a, b)
11: fc ← fitness estimated via Eq. 7
12: wc ← reliability calculated via Eq. 6
13: if wc < τ or (wc ≥ τ and random() < pe) then
14: fc ← Evaluate(c)
15: wc ← 1
16: end if
17: /* repeat lines 11-16 for individual d */
18: P (n+1) ← P (n+1) ∪ {c, d}
19: end while
20: end for

D. Evolving Swarm-GAP in StarCraft

This section describes our architecture used to implement
the genetic algorithm that adjusts the parameters of task
allocation used by GASW bot via Swarm-GAP algorithm.

GASW bot communicates with StarCraft via BWAPI calls.
However, during the execution of the genetic algorithm,
GASW bot is responsible only for the evaluation of an
individual, i.e., subroutine Evaluate in Alg. 2. The remainder
of Alg. 2 is implemented in the genetic algorithm controller
module (GA controller). This module places files with data
of the individuals to be evaluated in a specific directory that
GASW bot reads. After evaluation of an individual, which
corresponds to a StarCraft match, GASW bot writes the
match outcomes in the same directory, where the external
module extracts score information and calculates fitness of
the evaluated individual.

Figure 2 illustrates the implemented architecture. At experi-
ment beginning, the GA controller loads a configuration file
with genetic algorithm parameters (crossover and mutation
probabilities, reliability threshold, etc.).

Figure 2: Architecture of the proposed approach. Solid lines
represent data exchanged via files. Dashed lines represent
data exchanged via BWAPI calls.

VI. EXPERIMENTS AND DISCUSSION

In this work we perform three sets of experiments. First, in
Section VI-A, we test the four fitness functions defined in
Section V-B. Second, in Section VI-B, we test the fitness
estimation method of Section V-C in terms of solution qual-
ity and execution time. Finally, in Section VI-C, we assess
genetic algorithm convergence and performance, comparing
our approach with random task allocation, Swarm-GAP with
parameters adjusted by hand and StarCraft AI tournament
bots.

Matches of all experiments, except the reenacted AI tourna-
ment of Section VI-C, were played against StarCraft’s native
AI, or SC Bot for short. SC Bot is able to play with the three
races, using different strategies and army compositions. SC
Bot is competitive against beginner human players.

Unless otherwise stated, all matches are played in the same
map, which is a two-player map with no islands3. Since
GASW bot has no flying units, it would be unable to defeat
an opponent who uses isolated regions to build structures.
Also, a match is interrupted when it reaches one hour of
in-game time. In this case, GASW bot is considered a loser
for the victory rate fitness. The other fitness functions are
calculated normally.

Our genetic algorithm was executed with selection by tour-
nament with 2 participants and one-point crossover, where a
crossover point on both parents’ chromosomes is randomly

3The used map is Astral Balance, edited to make all regions reachable
by land.

SBC Journal on Interactive Systems, volume 8, number 1, 2017 11

ISSN: 2236-3297

selected. All data beyond that point is swapped between
parents to produce the children. Also, we employ elitism,
adding the best individual from a generation to the next one.
Mutation occurs by randomly setting the value in a locus.
Prior experiments were performed in order to determine the
genetic algorithm parameters, which are:

• Crossover probability: 0.9;
• Mutation probability: 0.01 per locus;
• Number of generations: 50;
• Population size: 30 individuals.

Unless otherwise stated, all results are averaged over 30
repetitions.

A. Fitness functions

In this section we test the four fitness functions defined
in Section V-B. After genetic algorithm execution, the best
individual plays 150 matches against SC Bot. The goal of
this test is to assess the actual effectiveness of the different
fitness functions regarding the ultimate goal in RTS games,
i.e., to win matches.

Victory rate fitness is calculated as the rate of victories in 5
matches. In this case, we reduce population to 15 individuals
to prevent the genetic algorithm from taking too long to
execute due to the multiple matches required to evaluate
each individual.

Results are shown in Fig. 3, averaged over 15 repetitions.
Each repetition consists of genetic algorithm execution and
test of the best individual in 150 matches against SC bot.
Error bars show the 95% confidence intervals. The best
individuals are tested against the same race they “trained”
during genetic algorithm execution. The different fitness
functions are grouped by adversary race because in this
way we can assess the distinct functions under the same
conditions. The baseline for comparison is victory rate,
because it directly mirrors the metric used in the test (rate
of victories in a number of matches).

There is no statistical difference among the distinct fitness
functions from a same group as Fig. 3 visually suggests and
one-way ANOVA and Tukey’s HSD confirm. That is, under
the same conditions, all fitness functions are statistically
similar. The only statistical difference was found between
score ratio and victory rate against Protoss. This result
suggests that it is advantageous, in terms of execution
time, to employ fitness functions other than victory rate,
as it performs much more evaluations than other functions
without gains in solution quality.

However, a major factor limit a stronger claim about the per-
formance similarity of the distinct fitness functions. GASW
bot is limited in the units and buildings it uses, thus, its

Figure 3: Rate of victories (%) in 150 matches against
Protoss, Terran and Zerg adversaries controlled by SC Bot.
Error bars are the 95% confidence intervals in 15 repetitions.

“near-optimal” parameter configuration might not be difficult
to find regardless of the fitness function that directs the
evolution. Here, near-optimal means the best that GASW bot
can perform, given its limitations and not the best possible
performance of a software-controlled player.

For the remaining experiments in this paper, we adopt the
score ratio fitness, because it is statistically similar to the
baseline (victory rate) besides running faster. Moreover,
compared to the remaining functions, score ratio measures
player performance compared to its opponent, combining
the major aspects of gameplay (resources, units and building
management), instead of considering them separately.

B. Fitness estimation

In this section we analyse the fitness estimation method
described in Section V-C. Tests are made to assess the
quality of the estimation method in the presence of noise. In
this work, noise in the fitness function comes in two ways.
First, it depends on the probabilistic way that agents allocate
tasks in Swarm-GAP. Second, StarCraft is an adversarial
game. Thus, match results and the calculated fitness also
depend on the adversary actions, which may be randomized
in order to become more difficult to predict.

Noise can be harmful for the performance of genetic algo-
rithm with fitness estimation. For instance, in [5], fitness
achieved during evolution was superior with fitness estima-
tion but performance in terms of victory rate was inferior.
This happened because an individual who represents a bad
configuration of parameters can eventually win a match
and receive high fitness (which is measured as the score
ratio defined in Section V-B). With fitness estimation, this

12 SBC Journal on Interactive Systems, volume 8, number 1, 2017

ISSN: 2236-3297

individual may not be evaluated again, thus propagating
across generations. This may direct the search of the genetic
algorithm to the neighborhood of that individual, which
would be less promising than other regions of the parameter
space. In [5], when an individual has reliability above
the threshold τ , it is forcedly evaluated with probability
pe = 0.1. In this section we analyze the performance
obtained with different values of pe. A greater pe results in
more individuals evaluated instead of estimated. This may
increase the genetic algorithm solution quality at the expense
of time to evaluate more individuals.

Experiments were performed with score ratio fitness (see
Section V-B) and reliability threshold τ = 0.5 (in Alg. 2).
Performance is the rate of victories of the best individual
found by the genetic algorithm in 150 matches against
SC Bot controlling the same race used during evolution.
Execution time is measured in hours as the sum of the time
spent to evaluate individuals across all generations. Results
are averaged over 30 repetitions. Error bars in plots are
the 95% confidence intervals. The baselines are the values
obtained with pe = 1.0 (where all individuals are always
evaluated). To evaluate statistical differences we use one-
way ANOVA and Tukey’s HSD.

Figure 4 shows performance and execution time of the
genetic algorithm against the Protoss adversary controlled by
SC Bot. In this case, performance with pe ∈ {0.1, 0.2, 0.3}
is significantly inferior to the baseline, with p-values of
{0.0000004, 0.0001239, 0.0032373} respectively. For pe ≥
0.4, difference in performance compared to baseline is
not statistically significant (p-values are all above 0.15).
Execution time, as expected, grows in proportion to pe. All
times were significantly different from the baseline (p-value
near 0.00003).

Figure 5 shows performance and execution time against the
Terran adversary controlled by SC Bot. Performance with
pe ∈ {0.1, 0.2} is significantly inferior to the baseline, with
p-values of {0.0000821, 0.0003312} respectively. For pe ≥
0.3, the difference in performance compared to the baseline
is not statistically significant (all p-values are above 0.10).
As with Protoss, execution time grows in proportion to pe.

Against a Zerg adversary (Fig. 6), performance of individ-
uals found with all values of pe, except 0.2, is statistically
similar to the baseline, as p-values of Tukey’s HSD are above
0.05. The victory rate is close to 100% in all experiments.
This may happen because the emerging strategy of GASW
bot is effective against the Zerg adversary controlled by
SC Bot (see Section VI-D). Against this adversary, even
poor parameter configurations might be able to win matches.
Execution time also grows in proportion to pe.

These results are aligned with those in [5], where fitness
estimation was executed with pe = 0.1. Here we show that,

(a) Victory rate.

(b) Time spent.

Figure 4: Performance and time spent of GA with fitness
estimation against the Protoss adversary.

for Protoss and Terran adversaries, performance obtained
with this value is significantly inferior to that of the genetic
algorithm without fitness estimation.

C. Genetic algorithm convergence and performance

1) Convergence: In this section, we analyze the conver-
gence of the genetic algorithm by assessing the mean fit-
ness of the population along generations. Experiments were
performed with score ratio fitness (see Section V-B) and all
individuals evaluated (pe = 1.0 in Alg. 2).

Figure 7 shows fitness along the generations for GASW
bot evolved by the genetic algorithm. The distance between
lines shows that GASW bot performs better against Zerg
race controlled by SC bot. Conversely, GASW bot performs

SBC Journal on Interactive Systems, volume 8, number 1, 2017 13

ISSN: 2236-3297

(a) Victory rate.

(b) Time spent.

Figure 5: Performance and time spent of GA with fitness
estimation against the Terran adversary.

worse against Protoss. A Terran adversary controlled by SC
bot lies between them. In all cases, fitness stabilizes above
1.0 which indicates that individuals are winning the matches
on average.

The results obtained in this experiment indicate that the
genetic algorithm behaves as expected, that is, mean fitness
increases along generations and stabilizes in a desirable per-
formance. However, these results do not show how GASW
bot performs compared to other approaches. This is done in
Section VI-C2.

2) Compared performance: In this section we assess the
performance of GASW bot compared to other approaches.
We begin by testing GASW and other approaches against
SC Bot and proceed by testing GASW in direct matches

(a) Victory rate.

(b) Time spent.

Figure 6: Performance and time spent of GA with fitness
estimation against the Zerg adversary.

against StarCraft AI tournament bots.

In matches against SC Bot, the performance of the best
individual found by GASW is compared to that of the bots
described next.

• Random: in this bot, task allocation is made randomly.
For each agent, given a list of tasks, one is chosen with
uniform probability. This way, tasks are given equal
importance during the allocation process.

• ManSW: this bot allocates tasks via Swarm-GAP, simi-
larly to GASW. The difference is that the parameters of
ManSW were configured by hand whereas GASW runs
with parameters configured via genetic algorithm. We
configured the parameters of ManSW bot according to
empirical StarCraft knowledge and a few tests against

14 SBC Journal on Interactive Systems, volume 8, number 1, 2017

ISSN: 2236-3297

10 20 30 40 500.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
vs Terran vs Protoss vs Zerg

Figure 7: Genetic algorithm performance. When a match is
won, fitness goes above 1.0 (baseline).

SC bot. The number of matches performed to adjust
ManSW parameters is very small compared to that of
the genetic algorithm for GASW.

• AIUR: this is a competitive bot that placed 3rd among
8 bots in AIIDE 2013 competition, 4th among 13 bots
in IEEE CIG 2014 and 5th among 22 bots in AIIDE
20154. Among all competitors, AIUR was the bot
with best performance that we were able to obtain the
source code, compile and successfully execute against
SC Bot5. Briefly, in AIUR, several game-related tasks
are divided among many different modules. At the
beginning of a game, the bot initializes a “mood”
that influences the adopted strategy (focus on resource
collection, early attacks or defense). This bot does
not perform reactive controls (micro-management) [15].
AIUR plays with Protoss race.

Random and ManSW bots have the same limitations of
GASW: they play with Terran race using the same units
and buildings. Moreover, task execution is the same in
these bots. Difference in performance between Random and
Swarm-GAP-based bots (ManSW and GASW) are due to the
task allocation method. Difference in performance between
ManSW and GASW are due to the quality of parameter
adjustment.

Figure 8 shows the victory rate in 150 matches of all bots
versus Protoss, Terran and Zerg adversaries controlled by
SC Bot. Results are averaged over 30 repetitions. Error bars
show the 95% confidence intervals. Statistical significance

4See the StarCraft AI Competition archive: https://www.cs.mun.ca/
∼dchurchill/starcraftaicomp/archive.shtml

5Some adjustments in source code were needed to record match results
in a suitable format for analysis.

is evaluated with one-way ANOVA and Tukey’s HSD.
Results are grouped by race, so that we discuss approaches’
performances under the same conditions.

Figure 8: Victory rates (%) of approaches in 150 matches
against Protoss, Terran and Zerg races controlled by SC bot.

Terran-based bots (Random, ManSW and GASW) had their
best performance against a Zerg adversary controlled by
SC Bot. Worst performance is observed against Protoss.
Performance against a Terran adversary is between them.

Random had the worst performance among all bots. This is
due to the poor task allocation that emerges from the uni-
formly random selection of tasks. The Swarm-GAP-based
bots (ManSW and GASW) achieved significantly superior
performance than Random. This shows that it pays off to
employ Swarm-GAP to solve the task allocation problem
posed by an RTS game.

Against the Terran adversary, the superiority of GASW’s
performance compared to ManSW is statistically significant
(Tukey’s p-value of 0.049). By looking at Protoss and Zerg
adversaries, ManSW and GASW had statistically similar
performance by Tukey’s HSD test. P-values in these cases
are 0.88 against the Protoss adversary and 0.10 against the
Zerg adversary.

Compared to AIUR, the performance of GASW is statisti-
cally similar against the Zerg adversary but it is significantly
inferior against Terran and Protoss adversaries (p-values
< 0.00005).

In [5], performance of AIUR and GASW were similar. Here
we use the 2014 version of AIUR, which was improved6.
The limitation in terms of the units and buildings used by
Swarm-GAP-based bots may explain both their inferiority

6Improvements are listed on http://aiur-group.github.io/AIUR/
#whats-new-since-aiidecig-2013-aiur-21

SBC Journal on Interactive Systems, volume 8, number 1, 2017 15

ISSN: 2236-3297

compared to AIUR and the similarity between themselves
against Protoss and Zerg adversaries controlled by SC Bot.

The adoption of new units and buildings can improve
performance by allowing the adoption of new strategies
(see Section VI-D). This may help closing the gap between
AIUR and the Swarm-GAP-based bots, especially against
the Protoss adversary. Furthermore, regarding the similarity
between Swarm-GAP-based bots, the search space would
increase with the addition of parameters to control task
allocation for other game units. This would increase the
difficulty to find good parameter values by hand.

To evaluate GASW performance in direct matches against
tournament bots, we reenact the AIIDE 2015 StarCraft AI
tournament, which include the 2014 version of AIUR, in a
one-vs-all mode. Since GASW bot was “trained” using only
a single small map (an edited version of Astral Balance),
this evaluation is made in a tournament map with similar
characteristics: Benzene, a two-player map with no islands.
Table II shows the reenacted tournament results. GASW
dominates, winning more than 50% matches, about a fifth
of AIIDE 2015 bots. Those bots were also the weakest
overall in that tournament, as their rank shows. GASW is
not competitive against stronger bots. Against AIUR, for
example, it has won only 3.33% matches.

Table II: Performance (Win %) of GASW in 30
matches against AIIDE 2015 tournament bots. Their
rank in that tournament is included.

Bot Race Win % AIIDE 2015 Ranka

SusanooTricks Protoss 96.67 22
Stone Terran 93.33 19
Yarmouk Terran 73.33 21
LetaBot Terran 60.00 10
Oritaka Terran 43.33 18
CruzBot Protoss 23.33 16
TerranUAB Terran 20.00 14
Cimex Zerg 13.33 15
OpprimoBot Terran 6.67 17
Bonjwa Terran 3.33 20
Tyr Terran 3.33 11
Aiur Protoss 3.33 5
NUSBot Protoss 0.00 13
GarmBot Zerg 0.00 12
Xelnaga Protoss 0.00 9
Skynet Protoss 0.00 8
IceBot Terran 0.00 7
Ximp Protoss 0.00 6
UAlbertaBot Randomb 0.00 4
Overkill Zerg 0.00 3
ZZZKBot Zerg 0.00 2
a The tournament’s 1st place, Tscmoo, is not shown because it

could not be executed.
b In this case a race is randomly selected for the bot before

each match.

The weak overall performance of GASW against stronger
bots might be explained, in part, because GASW is trained
against SC Bot, thus optimizing the task allocation param-
eters against this simpler adversary. Moreover, in general,

strong tournament bots employ terrain analysis, opening
libraries, scripted strategies and learning mechanisms [15].
Thus they have the flexibility to construct units and adopt
behaviors that defeat the simple strategy of GASW, which is
determined by the limited number of units and buildings it
uses. In other words, the reenacted tournament also indicates
that the performance of GASW could be better if it used
more units and buildings, allowing the adoption of new
strategies. This is further discussed in Section VI-D.

D. General discussion

Experiments in this paper suggest that employing Swarm-
GAP for task allocation is a promising approach to tackle
the challenge posed by a complex RTS game. Moreover,
employing genetic algorithm for parameter adjustment pays
off: it dismisses domain knowledge and the achieved perfor-
mance can be superior to manually adjusted parameters.

Regarding genetic algorithm acceleration, fitness estimation
is helpful, but, on the presence of noise, it may reduce
solution quality. The parameter that controls the probability
of forced evaluation must be adjusted to achieve time savings
without loss of performance. Results found in this paper can
be used as a guideline for future experiments.

Our results are influenced by the emergent strategy of
the Swarm-GAP-based bots as they use only marines as
combat units and medics as supporting units. This allows the
emergence of a single strategy known in competitive play as
“M&M”7, which consists of attacking with a large amount
of marines supported by medics. Both are cheap and less
powerful Terran units, and the idea is to compensate their
lack of power with their quantity.

M&M strategy is a good match against SC Bot playing as
Zerg, because it also attacks with many units of reduced
power. The supporting medics are able to properly heal
marines in combat against such units. On the other hand,
M&M is not a good strategy against SC Bot playing with
Protoss, as it attacks with less units of greater power. These
deal more damage against the marines, in a rate that the
supporting medics are not able to keep up. Against SC Bot
playing as Terran, M&M strategy performs well. Although
Terran and Zerg have effective units against the Marine, SC
Bot does not use them in most matches in the tested map.
Against AIIDE 2015 StarCraft AI Tournament bots, M&M
strategy proved useful only against weaker competitors,
which are not able to properly come up with counter-
strategies.

The adoption of more combat units would allow the emer-
gence of strategies other than M&M, which can be more

7M&M stands for marines and medics: http://starcraft.wikia.com/wiki/
Marines and medics

16 SBC Journal on Interactive Systems, volume 8, number 1, 2017

ISSN: 2236-3297

competitive, especially against the Protoss adversary con-
trolled by SC Bot and the tournament bots. Moreover, fewer
units and buildings to control result in fewer parameters to
control task allocation. This implies a reduced parameter
space so that a suitable combination of parameters may not
be difficult to find. This explains the similar performance
of the Swarm-GAP-based bots (with manual and genetic
algorithm adjustment of parameters) against the Protoss
and Zerg adversaries in Section VI-C2. The adoption of
more units and buildings for the Swarm-GAP-based bots
will result in more parameters to control task allocation.
In this scenario of increased complexity, the advantages of
employing the genetic algorithm may become more evident.

VII. CONCLUSION

A. Overview

In this work we tackle the problem posed by an RTS game
with a task allocation approach. We employ a genetic algo-
rithm to adjust the parameters of Swarm-GAP, a scalable
task allocation algorithm. Our approach is tested in the
popular RTS game StarCraft: Brood War. As the execution
of the genetic algorithm takes considerable time, we employ
the fitness estimation method of [7] to accelerate it. How-
ever, estimation may be harmful because the fitness function
depends on match results, which are non-deterministic.
Thus, we test several values for the parameter that forces
evaluation of individuals instead of using estimated fitness.
Our results can be used as guidelines to find the biggest time
savings without loss of performance.

In experiments against StarCraft’s native AI (SC Bot),
performance of our approach varies according to the race SC
Bot uses. The emerging strategy of our approach is stronger
against Zerg, has intermediate strength against Terran and
has worst performance against Protoss. Configuring Swarm-
GAP parameters via genetic algorithm achieves significantly
superior performance against the Terran adversary than
manually-configured Swarm-GAP. Both manual and genetic
algorithm parameter configuration outperform Random task
allocation, but both are inferior compared to the 2014 ver-
sion of AIUR, one of the top-performing bots for StarCraft
known to date.

Both the genetic algorithm and the StarCraft bots codebase
is available8.

B. Future work

There is room for improvement of the Swarm-GAP-based
bots against the Protoss adversary controlled by SC Bot.
In future studies of the proposed approach, more units

8https://github.com/verlab/terranswarm

and buildings could be incorporated into the Swarm-GAP-
based bots. The adoption of more combat units will allow
the emergence of new strategies and army compositions,
which can be more competitive. Also, this will increase
task allocation parameter space, which may reinforce the
advantages of adopting the genetic algorithm for parameter
adjustment. Future work could also adopt a stronger Zerg
opponent than SC Bot.

Future studies can investigate other fitness estimation meth-
ods and techniques to deal with fitness noise, such as the
ones surveyed in [32], for example.

To achieve tournament-winning performance, new aspects
should be introduced into our architecture. This could in-
clude a library of game openings, hierarchical decision mak-
ing, unit micro-management (reactive control) and terrain
analysis [15]. Moreover, using different sets of parameters
according to the game situation might be helpful. Usually, a
match is divided in stages (e.g. early, mid and late game) and
each stage might require a different parameter combination.
Currently, we adopt a single set of parameters for task
allocation during the entire match.

Other interesting topic for future work include the use
of different task allocation algorithms. E-GAP-based algo-
rithms, such as Swarm-GAP, assume that the value of a
team never decreases if more agents become members [8].
In StarCraft, this does not hold in some situations. For
example, a worker unit may disturb a team of attacking units
by standing on their way. Algorithms based on coalition
structure generation, such as BnB FMS [12], can handle this
issue naturally, as they model the help or disturb caused by
agents in each group they may enter.

Although we instantiated the approach in StarCraft, the
general idea presented in this paper could be used in any
task allocation domain. Modeling parameters for any other
domain will require basic knowledge of the tasks associated
with that domain. With the tasks at hand, the applica-
tion of our methodology for task allocation and parameter
adjustment is straightforward. At this level, our approach
is domain-independent. However, the domain-specific part,
regarding how tasks are performed, is challenging: as each
domain has specific mechanics, there is no single approach
that will be efficient for all domains. In this sense, task
execution must be developed and tailored for every specific
domain.

Examples of domains beyond RTS games which could
benefit from our approach include robot soccer and au-
tonomous coordination in hostile environments such as res-
cue operations in disaster situations. On those scenarios, task
allocation is a vital part of multiagent coordination. The use
of scalable task allocation algorithms such as Swarm-GAP
and automatic parameter adjustment via genetic algorithms

SBC Journal on Interactive Systems, volume 8, number 1, 2017 17

ISSN: 2236-3297

might be useful to align parameter values to actual agents
skills and importance of tasks.

ACKNOWLEDGMENT

Authors would like to acknowledge the support of CAPES,
CNPq and FAPEMIG in this research. We would like to
thank Bernardo Biesseck and Daniel Balbino for helping
with the experiment infrastructure. We also thank the anony-
mous reviewers for insightful remarks that helped improving
the manuscript.

REFERENCES

[1] R. L. de Freitas Cunha and L. Chaimowicz, “An Artificial
Intelligence System to Help the Player of Real-Time Strategy
Games,” in Proceedings of the 2010 Brazilian Symposium on
Games and Digital Entertainment (SBGAMES),, 2010, pp. 71
–81.

[2] M. Buro, “Real-Time Strategy Games: A New AI Research
Challenge,” in Proceedings of the 18th International Joint
Conference on Artificial Intelligence. International Joint
Conferences on Artificial Intelligence, 2003, pp. 1534–1535.

[3] H. Kitano, “Robocup rescue: A grand challenge for multi-
agent systems,” in Proc. of the 4th International Conference
on MultiAgent Systems. Boston, USA: Los Alamitos, IEEE
Computer Society, 2000, pp. 5–12.

[4] R. Fierro, A. Das, J. Spletzer, J. Esposito, V. Kumar, J. P.
Ostrowski, G. Pappas, C. J. Taylor, Y. Hur, R. Alur, I. Lee,
G. Grudic, and B. Southall, “A framework and architecture
for multi-robot coordination,” The International Journal of
Robotics Research, vol. 21, no. 10-11, pp. 977–995, 2002.

[5] A. R. Tavares, H. Azpurua, and L. Chaimowicz, “Evolving
Swarm Intelligence for Task Allocation in a Real Time Strat-
egy Game,” in Computer Games and Digital Entertainment
(SBGAMES), 2014 Brazilian Symposium on, November 2014,
pp. 99–108.

[6] P. R. Ferreira, F. Dos Santos, A. L. C. Bazzan, D. Epstein, and
S. J. Waskow, “RoboCup Rescue as multiagent task alloca-
tion among teams: experiments with task interdependencies,”
Autonomous Agents and Multi-Agent Systems, vol. 20, no. 3,
pp. 421–443, 2010.

[7] M. Salami and T. Hendtlass, “A fast evaluation strategy for
evolutionary algorithms,” Applied Soft Computing, vol. 2,
no. 3, pp. 156–173, 2003.

[8] P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe, “Al-
locating tasks in extreme teams,” in Proc. of the Fourth
International Joint Conference on Autonomous Agents and
Multiagent Systems, F. Dignum, V. Dignum, S. Koenig,
S. Kraus, M. P. Singh, and M. Wooldridge, Eds. New York,
USA: ACM Press, 2005, pp. 727–734.

[9] D. B. Shmoys and V. Tardos, “An approximation algorithm
for the generalized assignment problem,” Mathematical Pro-
gramming, vol. 62, no. 3, pp. 461–474, 1993.

[10] G. Theraulaz, E. Bonabeau, and J. Deneubourg, “Response
Threshold Reinforcement and Division of Labour in Insect
Societies,” in Royal Society of London Series B - Biological
Sciences, vol. 265, 2 1998, pp. 327–332. [Online]. Available:
http://citeseer.nj.nec.com/theraulaz98response.html

[11] M. A. Khan, D. Turgut, and L. Bölöni, “Optimizing coali-
tion formation for tasks with dynamically evolving rewards
and nondeterministic action effects,” Autonomous Agents and
Multi-Agent Systems, vol. 22, no. 3, pp. 415–438, May 2010.

[12] K. S. Macarthur, R. Stranders, S. D. Ramchurn, and N. R.
Jennings, “A Distributed Anytime Algorithm for Dynamic
Task Allocation in Multi-Agent Systems,” in Proc. of the 25th
AAAI Conference on Artificial Intelligence, 2011, pp. 701–
706.

[13] A. Fernandez-Ares, A. M. Mora, J. Merelo, P. Garcı́a-
Sánchez, and C. Fernandes, “Optimizing player behavior in
a real-time strategy game using evolutionary algorithms,” in
Evolutionary Computation (CEC), 2011 IEEE Congress on.
IEEE, 2011, pp. 2017–2024.

[14] R. Lara-Cabrera, C. Cotta, and A. J. Fernández-Leiva, “A
review of computational intelligence in RTS games,” in Foun-
dations of Computational Intelligence (FOCI), 2013 IEEE
Symposium on. IEEE, 2013, pp. 114–121.

[15] S. Ontanon, G. Synnaeve, A. Uriarte, F. Richoux,
D. Churchill, and M. Preuss, “A Survey of Real-Time Strategy
Game AI Research and Competition in StarCraft,” Computa-
tional Intelligence and AI in Games, IEEE Transactions on,
vol. 5, no. 4, pp. 293–311, Dec 2013.

[16] P. Spronck, I. Sprinkhuizen-Kuyper, and E. Postma, “On-line
adaptation of game opponent AI with dynamic scripting,”
International Journal of Intelligent Games & Simulation,
vol. 3, no. 1, 2004.

[17] J. Ludwig and A. Farley, “Examining Extended Dynamic
Scripting in a Tactical Game Framework,” in Artificial In-
telligence and Interactive Digital Entertainment, 2009.

[18] M. Stanescu, N. A. Barriga, and M. Buro, “Hierarchical
Adversarial Search Applied to Real-Time Strategy Games.”
in 10th Artificial Intelligence and Interactive Digital Enter-
tainment Conference (AIIDE), 2014, pp. 66–72.

[19] A. Uriarte and S. Ontañón, “Improving Monte Carlo Tree
Search Policies in StarCraft via Probabilistic Models Learned
from Replay Data,” in 12th Artificial Intelligence and Inter-
active Digital Entertainment Conference (AIIDE), 2016, pp.
100–106.

18 SBC Journal on Interactive Systems, volume 8, number 1, 2017

ISSN: 2236-3297

[20] G. Synnaeve and P. Bessière, “A Bayesian model for RTS
units control applied to StarCraft,” in Computational Intelli-
gence and Games (CIG), 2011 IEEE Conference on. IEEE,
2011, pp. 190–196.

[21] O. Khatib, “Real-time obstacle avoidance for manipulators
and mobile robots,” The international journal of robotics
research, vol. 5, no. 1, pp. 90–98, 1986.

[22] T. W. Sandberg and J. Togelius, “Evolutionary Multi-Agent
potential field based AI approach for SSC scenarios in RTS
games,” Ph.D. dissertation, Master’s thesis, IT University
Copenhagen, 2011.

[23] P. H. Ng, Y. Li, and S. C. Shiu, “Unit formation planning
in RTS game by using potential field and fuzzy integral,” in
Fuzzy Systems (FUZZ), 2011 IEEE International Conference
on. IEEE, 2011, pp. 178–184.

[24] C. Lin and C. Ting, “Emergent tactical formation using
genetic algorithm in real-time strategy games,” in Technolo-
gies and Applications of Artificial Intelligence (TAAI), 2011
International Conference on, Nov 2011, pp. 325–330.

[25] E. A. Rathe and J. B. Svendsen, “Micromanagement in
Starcraft using potential fields tuned with a multi-objective
genetic algorithm,” Ph.D. dissertation, Norwegian University
of Science and Technology, 2012.

[26] B. G. Weber, M. Mateas, and A. Jhala, “Building human-level
AI for real-time strategy games,” in Proceedings of the AAAI
Fall Symposium on Advances in Cognitive Systems, 2011, pp.
329–336.

[27] BWAPI, “An API for interacting with StarCraft: Broodwar,”
2011. [Online]. Available: http://bwapi.github.io/

[28] Liquipedia, “Portal:Beginners - Liquipedia StarCraft Brood
War Wiki,” 04 2012. [Online]. Available: http://wiki.
teamliquid.net/starcraft/Portal:Beginners

[29] R. L. Haupt and S. E. Haupt, Practical genetic algorithms.
John Wiley & Sons, 2004.

[30] A. Fernández-Ares, P. Garcıa-Sánchez, A. Mora, P. Castillo,
and J. Merelo, “Designing Competitive Bots for a Real Time
Strategy Game using Genetic Programming,” in El Congreso
de la Sociedad Española para las Ciencias del Videojuego,
CoSECiVi, 2014.

[31] R. de Freitas Pereira, C. F. M. Toledo, M. K. Crocomo, and
E. do Valle Simões, “An Evolutionary Algorithm Approach
for a Real Time Strategy Game,” in Computer Games and
Digital Entertainment (SBGAMES), 2008 Brazilian Sympo-
sium on, 2008.

[32] Y. Jin and J. Branke, “Evolutionary optimization in uncertain
environments - A survey,” Evolutionary Computation, IEEE
Transactions on, vol. 9, no. 3, pp. 303–317, 2005.

SBC Journal on Interactive Systems, volume 8, number 1, 2017 19

ISSN: 2236-3297

