SBC Journal on Interactive Systems, volume 8, number 1, 2017

33

Experimental Approach of the Asymptotic Computational Complexity of Shaders
for Mobile Devices with OpenGL ES

Alex S. C. Lima, Edson A. C. Junior
Gama College
University of Brasilia
Brasilia, Brazil
campelo.all @ gmail.com, prof.edson.alves.costa@ gmail.com

Abstract—The usage of mobile devices and increasingly
realistic graphics is emerging, but the graphics performance
is still a critical factor in games. There’s more hardware
restriction on mobile devices than on a computer. Thus,
this paper proposes an experimental approximation of the
asymptotic computational complexity of miscellaneous vertex
and fragment shaders for Android and iOS platforms. The
asymptotic complexities of the shaders will be analyzed based
on number of instructions per second and rendering time
metrics, depending on the number of polygons rendered. By
means of the adjusted curves is also possible to compare the
performance of the devices used in this work, which are the
Nexus 4, HTC One, iPhone 5s and iPad Air. Besides, an
automatic tool — that plots the data and uses the method of
least squares to adjust the values obtained — will be presented,
being able to estimate which curve has better approximation
to the sampled data.

Keywords-Android; iOS; shaders; mobile devices; computer
graphics; asymptotic complexity.

I. INTRODUCTION

Graphics in games are so important that can determine
the game’s failure or success [1]. Thus, the creation of
three-dimensional scenes, using mobile devices, is becoming
more and more usual and realistic [2]. However, there are
hardware restrictions, especially in mobile devices. Render-
ing graphics for mobile devices is still a challenge due to
limitations, when compared to a computer, related to CPU
(Central Processing Unit), GPU (Graphics Processor Unit)
and power consumption [3].

In this context, graphics performance is a key factor for
the overall performance of the system, mainly in games,
which also has other factors that consume resources, such
as artificial intelligence, networking, audio, input events,
physics, among others.

But the recent growing of mobile devices made them able
to support applications even more complex. Devices like
smartphones and tablet computers have been widely adopted,
emerging as one of the most propagated technologies. Within
this context, the most commonly used mobile operating sys-
tems are iOS and Android platforms. Accordingly Apple’s
CEO, Tim Cook, more than 800 million iOS device were

ISSN: 2236-3297

already sold' and the daily activation devices using Android
platform is approximately 1.5 million [4].

This way, it’s possible to analyze the performance of the
rendering process done by the GPU - in which different
shaders (responsible for the creation of visual effects) are
applied. Then, the goal of this work is to analyze the
asymptotic computational complexity of shaders for mobile
devices, both for the whole rendering process and for only
part of it (vertex and fragment shaders).

II. RELATED WORK

As said before, the game industry have sought to create
games with a high level of realism. One of the factors that
contributes to the increase of this realism was the introduc-
tion to programmable hardware, that allowed to program
the rendering process. This way, the visual effects were
the focus in [5], where were presented diverse realistic and
non-realistic techniques used in games in the last years. To
achieve those effects, the programmable rendering pipeline
was used, specifically the vertex and fragment shaders.

In [6] is shown an approach to measure graphics perfor-
mance, which says to develop a program that makes graphics
calls and measure the performance of the system running this
program. The graphics hardware performance is measured in
terms of maximum rate the system can achieve in drawing,
like vectors/second, shaded triangles/second, by example.
However, there is not an unique standard to graphics bench-
mark in mobile devices, and several approaches has been
proposed to the present day (i.e., [7], [8], [9], [10]).

The shader performance analysis were already done in
[11], but related to the Tessellator shader. This shader is
available on OpenGL 4 and allows the creations of vertex
directly on the GPU, reducing the amount of transfer be-
tween CPU-GPU. The performance was analyzed increasing
the number of three-dimensional objects, what, in practical
terms, is equal to increase the number of polygons. The
chosen metric to analyze the performance was the frames
per second.

Uhttp://www.imore.com/more-800-million-ios-devices-sold

34

SBC Journal on Interactive Systems, volume 8, number 1, 2017

III. BACKGROUND INFORMATION

This section gives some brief background information that
is needed to understand certain parts of the work. It describes
the definition of shader, asymptotic complexity and the least
squares method.

A. Shader and OpenGL ES

Shading is the process of using an equation for computing
the surface behavior of an object [12]. Shader algorithms
are written by the programmer to override the predefined
functionality of the rendering process performed by the
GPU, by the usage of graphic libraries such as OpenGL
ES.

Before the shaders were created, the rendering pipeline
was completely fixed. But with the introduction of the
shaders, it’s possible to customize part of this process, like
the vertex and fragment processing (vertex and fragment
shaders).

The OpenGL ES (OpenGL for Embedded Systems) were
released in 2003, being the OpenGL version to embed-
ded systems. As said by [13], the OpenGL ES is one of
most popular API (Application Programming Interface) for
graphics programming in mobile devices. It uses the GLSL
(OpenGL Shading Language) as shading language, that is
based on the C language.

B. Fundamentals of Physics and Mathematics for Shaders
Implementation

The visual effects - created through shaders - are represen-
tations of physical events and may assign different materials
to objects and light effects, for instance. Thus, this subsec-
tion presents some concepts necessary for understanding the
implemented shaders.

1) Gouraud and Phong Shading: The computer calcula-
tions of the light at the vertices, followed by linear interpo-
lation of the results is known as Gouraud shading, created
by Henri Gouraud. Its vertex shader calculates the intensity
of light at each vertex and the results are interpolated. Then,
the fragment shader propagates this value for the next steps
in the rendering process.

In Phong shading, firstly, the normal values of the prim-
itives are interpolated. Then, the light values are calculated
for each fragment, using the interpolated normal values.
As said by [13], the light intensity on a surface point is
calculated as shown in Equation 1

Ip=Ix+>» Ip+Is,)

where I7 is the total illumination, I 4 is the ambient illumi-
nation, Ip is the diffuse illumination and [g is the specular
illumination.

The ambient reflection intensity comes from all directions
and when it reaches the surface, it also spreads out in all

directions, having the same intensity for all points. It can be
calculated according to Equation 2

In=KaLa, @)

where I, is the intensity of ambient light, K4 is the
surface’s coefficient of ambient reflection and L 4 is the
component of the intensity of ambient light.

The intensity of the diffuse reflection comes from one
direction and when it reaches a surface, spreads equally in
all directions. It can be calculated according to Equation 3

Ip = KpLp(l-), 3)

where Ip is the intensity of the diffuse reflection, Kp is
the diffuse reflection coefficient of the surface, Lp is the
component of intensity of the diffuse light, [is the light
source and 71 is the point of interest.

The specular light comes from one direction and reflects
like a mirror, which the incident angle is equal to the
reflection angle. It can be calculated as shown in Equation
4

Is = KsLg(F- 0)°, (4)

where Ig is the intensity of the specular reflection, Kg is
the specular reflectance of the surface, Lg is the intensity
of the specular component of light, 7 is the direction of
the reflection, ¥/ is the observer vector and s is the specular
exponent.

2) Toon Shading: The Toon shading aims to simulate
the effect of a cartoon, whose main characteristic is the
uniform appearance of colors on the surface of the objects.
This can be done by mapping the light intensity ranges for
specific colors, in order to give a less realistic lighting and
nearest to the one used in cartoons. The light intensity can
be calculated according to Equation 5

lg-7

= ——,
[[allll7]

&)

Iy,

where I, is the light intensity, l; is direction of the light’s
vector and 77 is the normal vector.

Because l; and 7 are normalized vectors, the calculation
can be simplified according Equation 6.

I =1y (6)

3) Reflection Shading: The reflection effect is obtained
by using the technique called cube mapping (a type of
environment mapping), which uses the six faces of a cube
as the map shape. So this shader reflects this texture, and
one example of a texture to be used for cube mapping is
shown in Fig. 1.

So the idea is to get the reflected vector of the camera
position to the object, based on the surface normal. This

ISSN: 2236-3297

SBC Journal on Interactive Systems, volume 8, number 1, 2017

Figure 1.

Cube Map

vector is used to determine the color of the fragment, based
on the texture.

C. Asymptotic Complexity

Asymptotic complexity is a way to compare the efficiency
of an algorithm, in terms of time, memory or processing, by
example. To not depend on the platform nor programming
language, the asymptotic complexity is based on a function
(logic measure) [14]. It expresses a relationship between the
amount of data and time required to process them.

The calculation of the asymptotic complexity aims to
model the behaviour of the algorithm performance, as the
number of data increases. This way, the terms that doesn’t
affect the order of magnitude are eliminated, generating the
approximation called asymptotic complexity. For instance,
the Equation 7

y = n? 4 10n + 1000 (7

could be approximated by Equation 8.

y~n® @®)
D. Least Squares Method

The least squares method is used to adjust a set of points
(z,y) to a determined curve. In linear adjustment case, by
example, represented by y = a+ bx,in most cases the points
in the set aren’t collinear. In this situation, as said in [15], it’s
impossible to find coefficients a and b that satisfy the system.
Thus, the distances between those values to the line can be
considered as error measures and the points are adjusted
by the same vector. This way, there’s a linear least squares
adjustment to the data and its solution is given in Equation
9

v=(M"M)"'MTy, 9)

ISSN: 2236-3297

35
where
1 Y1
1 a Y2
M= N R I e (10)
1 =z, Yn

The adjustment to a second and third degree functions is
similar, but the M matrix is redefined to Equation 11

1z 22
1 @y 23

M= . . . an
1z, 22

and to Equation 12, respectively.

1z 22 a3
1 xo 23 a3

M=, . . . 12)
1 oz, 22 23

The exponential adjustment is a little bit different. [16]
says that the exponential function can be represented as
Equation 13,

y=ce " (13)

where e, c, k are constants. Applying the logarithmic func-
tion on both sides, the Equation 14 is obtained

Iny = Inc+Ine (14)

and it can be simplified as Equation 15 (where b is a new
constant). ~
§=a+bt (15)

This equation is equivalent to a linear equation and the linear
least squares method can be applied. The final values of the a
and b coefficients determine the ¢ and k parameters through
the relationships shown in Equation 16

c=¢ee b= —k (16)

IV. MATERIALS AND METHODS

This section describes the steps taken in this work,
showing since the equipment used until the implementation,
collection and analysis of data.

A. Equipment Used

The computer used for development on Android platform
was an Alienware M14x manufactured by Dell with Intel
Core i7 processor, 2GB of GeForce GTX as GPU and 8 GB
of RAM. For the development on iOS platform, a Macbook
Pro 11.1 was used, with Intel Core i5 processor and 8GB of
RAM.

The Table I shows the used devices, which are equipment
with different resolutions and hardware configurations. The
benchmark app called 3D Mark was used to compared

36

SBC Journal on Interactive Systems, volume 8, number 1, 2017

Table 1
MOBILE DEVICES

Device Platform Resolution GPU
Nexus 4 Android 768 x 1280 Adreno 320
HTC One Android 1080 x 1920 Adreno 320
iPad Air ioS 2048 x 1536 PowerVR G6430
iPhone 5s ioS 1136 x 640 PowerVR G6430
Table II
BENCHMARK
Device Score
Nexus 4 7.106
HTC One 10.184
iPad Air 14.952
iPhone 5s 14.750
—
[Texture .1 " [3DoObject |
I] l]
*1
Shader 1 Renderer
[\
| Gouraud | Red | m
I [| —
Toon | | CubeMap |
] |]

RandColor
—
SimpleTexture
g e

—

Figure 2. Android implementation: class diagram

the different performances of these devices. It runs several
graphical tests, in order to stress the GPU and to give a
final punctuation related to the performance. The higher the
score, the better the performance. This score is shown in the
Table II.

B. Android Implementation

To make the asymptotic computational complexity analy-
sis possible, firstly was necessary to implement the shaders
on Android platform. This was done using the graphics
library called OpenGL ES. The object-oriented paradigm
was used and the Fig. 2 shows the class diagram and how the
code was structured. This diagram presents a set of classes
and their relationships, being the central diagram of object-
oriented modeling.

1) Front-end Screen: The front-end screen is responsible
for the interaction with the user, passing the input informa-
tion to the back-end. The Android platform uses the term
Activity to describe the application’s front-end screen. It has
design elements like text, buttons, graphics, among others.
In this work, there are two Activity classes: Shader Activity
and Splash Activity (Fig. 3).

The Splash Activity is responsible for the visualization
of the loading screen while the necessary resources — like

Figure 3. Shader Activity and Splash Activity

the three-dimensional objects and textures — are loaded by a
thread. This resources are managed by the Resources class,
that uses the project pattern called Singleton. This pattern
ensures that there’s only one instance class, which will be
accessed later.

The Shader Activity is responsible for creating an instance
of the Renderer class, which renders the three-dimensional
objects. Besides, it controls the touch events, that allows
scaling and rotating these objects. It also shows the buttons
that increase and decrease the number of polygons.

2) Three-dimensional Object: The three-dimensional ob-
ject is represented by the composition of the 3DObject
and Texture classes. The 3DObject class is responsible for
reading and interpreting the obj files, that contains the
information about the object. After this, the position, normal
and texture vertices are stored into a buffer. The Texture
class generates the textures, used by some shaders, from
images. Those images are created for each three-dimensional
model, using the UV Mapping technique. It maps the texture
coordinates to an image.

3) Renderer: The Renderer class works like a con-
troller, being responsible for the rendering. It is the main
class for the calls from the view (Shader Activity) and
model (3DObject, Shader and Timer) classes. This class
implements the functions from the OpenGL ES library
called onSurfaceCreated (), onDrawFrame () and
onSurfaceChanged().

4) Shader: The Shader class reads, attaches and
links the vertex and fragment shaders. Furthermore, it
has the abstract methods getParamsLocation () and
initShaderParams (Hashtable params). The first
method stores the location of each variable specified in the
shader. The second method initializes these variables based
on a hash, which contains the values for each variable. This
way, every shader inherits from the Shader class and must
implement these abstract methods. The implemented shaders
can be seen on Fig. 4.

5) Phong Shader: The vertex and fragment shaders of
Phong shading implement the theory described on Section
III-B1, where the normal values of the primitives are in-
terpolated on the vertex shader, and then the lightining

ISSN: 2236-3297

10

11

12

13

14

15

SBC Journal on Interactive Systems, volume 8, number 1, 2017

37

= 2

T T

MUMBER POLYGONS: 1250 MUMBER POLYGONS: 1250 WWMBER POLYGONS: 1750

6
\M \w .
9
10

=] & =1 = = =1 = & =1
:

SIMPLE TEXTURE CUBE MAP REFLECTION 25

Figure 4. Implemented Shaders

calculations are done in the fragment shader. The Listing =:
1 and the Listing 2 show the definitions of the vertex and **
fragment shaders, respectively.

Listing 1. Phong Shader: vertex shader 36
uniform mat4 uMVPMatrix;
uniform mat4 normalMatrix;
uniform vec3 eyePos;
attribute vec4 aPosition;
attribute vec3 aNormal;
uniform vec4 lightPos;
uniform vecd4 lightColor;
uniform vecd4d matAmbient;
uniform vecd matDiffuse;
uniform vec4 matSpecular;

uniform float matShininess; 1
varying vec3 vNormal; 2
varying vec3 EyespaceNormal; 3
varying vec3 lightDir, eyeVec; 4
void main () 6
{ 7
8

EyespaceNormal = vec3 (normalMatrix 9

* vecd (aNormal, 1.0)); 10

vec4 position = uMVPMatrix % aPosition; 11

ISSN: 2236-3297

lightDir = lightPos.xyz - position.xyz;
eyeVec = -position.xyz;

gl_Position = uMVPMatrix = aPosition;

Listing 2. Phong Shader: fragment shader
precision mediump float;
varying vec3 vNormal;
varying vec3 EyespaceNormal;
uniform vecd4 lightPos;
uniform vecd4 lightColor;
uniform vecd4d matAmbient;
uniform vecd matDiffuse;
uniform vec4 matSpecular;
uniform float matShininess;
uniform vec3 eyePos;
varying vec3 lightDir, eyeVec;

void main ()
{
vec3 N = normalize (EyespaceNormal) ;
vec3 E = normalize (eyeVec);
vec3 L = normalize(lightDir);
vecl3 reflectV = reflect (-L, N);

vecd ambientTerm;
ambientTerm = matAmbient % lightColor;

vecd diffuseTerm = matDiffuse =
max (dot (N, L), 0.0);

vec4 specularTerm = matSpecular x*
pow (max (dot (reflectv, E), 0.0),
matShininess) ;

gl_FragColor = ambientTerm +
diffuseTerm + specularTerm;

6) Gouraud Shader: The Gouraud Shader, as the Phong
Shader, also implements the theory described on Section
III-B1, except for the lightning calculations. They are done
on the vertex shader and the final values are interpolated
and used by the fragment shader, as shown on Listing 3 and
Listing 4.

Listing 3. Gouraud Shader: vertex shader
uniform mat4 uMVPMatrix;
uniform mat4 normalMatrix;

uniform vec3 eyePos;

attribute vec4 aPosition;
attribute vec3 aNormal;

uniform vec4 lightPos;
uniform vecd4 lightColor;

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50

38

SBC Journal on Interactive Systems, volume 8, number 1, 2017

uniform
uniform

vecd4 matAmbient;
vecd matDiffuse;
uniform vec4 matSpecular;
uniform float matShininess;

olor to pass on
varying vecd4 color;

void main () {
vec3 eP = eyePos;
vecd nm = normalMatrix =

vecd (aNormal, 1.0);
vec3 EyespaceNormal = vec3 (uMVPMatrix =
vecd (aNormal, 1.0));
vertex position
uMVPMatrix x aPosition;

the
vec4d posit =
ight O
vec3 lightDir = lightPos.xyz - posit.xyz;
vec3 eyeVec = -posit.xyz;

rect

vec3 N = normalize (EyespaceNormal) ;
vec3 E = normalize (eyeVec);
vec3 L = normalize(lightDir);

e ector
vec3 reflectV = reflect (-L, N);
7 Lightning
vecd ambientTerm;
ambientTerm = matAmbient % lightColor;
Diffuse Lightning
vecd diffuseTerm = matDiffuse =
max (dot (N, L), 0.0);
Specular Lightning
vec4 specularTerm =
pow (max (dot (reflectV, E),
matShininess) ;
color = ambientTerm + diffuseTerm
+ specularTerm;

Reflect t

matSpecular =
0.0),

gl_Position = uMVPMatrix * aPosition;

Listing 4. Gouraud Shader: fragment shader
precision mediump float;
the color
varying vecd color;
void main () {
gl_FragColor = color;

}

7) Red Shader: This is a simple shader that sets the vertex j

position and the fragment color to red, as shown on Listing
5 and Listing 6.

Listing 5. Red Shader: vertex shader
uniform mat4 uMVPMatrix;
attribute vecd4 aPosition;

void main () {
gl_Position =

}

uMVPMatrix * aPosition;

Listing 6.
void main () {
gl_FragColor =
}

Red Shader: fragment shader

vec4 (1.0, 0.0, 0.0, 1.0);

8) Toon Shader: The Toon shader calculates the lightning
intensity per vertex (as presented on Section III-B2), to
choose a pre-defined color. The Listing 7 and Listing 8 show
this calculation.

Listing 7. Toon Shader: vertex shader
uniform vec3 lightDir;
uniform mat4 uMVPMatrix;
attribute vec3 aNormal;
attribute vec4 aPosition;
varying float intensity;

void main ()

{
intensity = dot (lightDir, aNormal) ;
gl_Position = uMVPMatrix % aPosition;

Listing 8. Toon Shader: fragment shader
varying float intensity;

void main ()

{
vecd4 color;
if (intensity > 0.95)
color = vecd4(0.5,1.0,0.5,1.0);
else if (intensity > 0.5)

color vec4(0.3,0.6,0.3,1.0);
else
color = vec4(0.1,0.2,0.1,1.0);

gl_FragColor = color;

9) Flat Shader: The idea of the Flat Shader is to trans-
form a three-dimensional object into a two-dimensional one.
To do this, the z coordinate is defined as zero, as shown on
Listing 9. Its fragment shader (Listing 10) just defines a
color to the the fragment.

Listing 9. Flat Shader: vertex shader
uniform mat4 uMVPMatrix;
attribute vecd4 aPosition;

void main ()

{

vecd v = aPosition;
v.z = 0.0;

gl_Position = uMVPMatrix x v;

Listing 10.
void main ()
{
gl_FragColor =
}

Flat Shader: fragment shader

vec4(0.82, 0.50, 0.20, 1.0);

ISSN: 2236-3297

W @ U e o e W N e

10
11
12
13
14
15
16
17
18
19
20
21
22

23

LT R TR

© @ 9 e o e W N e

SBC Journal on Interactive Systems, volume 8, number 1, 2017

39

10) Random Color Shader: The Random Color shader
determines the color of the fragment randomly, based on
a mathematical calculation. This calculation is done on the
vertex shader (Listing 11) and the final value is given to the
fragment shader. Each color component is calculated using
as parameter a coordinate (z, y ou z) given to the function
random (vec2 v), which returns a random value based
on the given coordinate. In the Listing 12 the color of the
fragment is set.

Listing 11. Random Color Shader: vertex shader
uniform mat4 uMVPMatrix;
attribute vec4 aPosition;
varying vecd color;

float random(vec2 v) {

const vec2 r = vec2(23.1406926327792690,
2.6651441426902251) ;
123456789., le-7 +
*x dot (v, r));

return mod (
256.
}

void main ()

{

vec2 r = vec?2 (aPosition.x, aPosition.z);
vec2 g = vec2(aPosition.y, aPosition.x);
vec2 b = vec2(aPosition.z, aPosition.y);
color = vecd (random(r), random(qg),

random(b),1.0);
gl_Position = uMVPMatrix % aPosition;

Listing 12. Random Color Shader: fragment shader
varying mediump vec4 color;

void main ()

{
gl_FragColor =
}

color;

11) Simple Texture Shader: The vertex shader of the
Simple Texture Shader stores the texture coordinates into a
variable (Listing 13), and gives it to the fragment shader.
On Listing 14, the fragment shader uses these coordi-
nates and applies it into a texture by using the function
texture2D ().

Listing 13. Simple Texture Shader: vertex shader
uniform mat4 uMVPMatrix;
attribute vecd4 aPosition;
attribute vec2 textCoord;
varying vec2 tCoord;

void main () {
tCoord = textCoord;
gl_Position = uMVPMatrix x aPosition;

}

ISSN: 2236-3297

T T B S

W @ U e o e W N e

® 9 e o e W N e

W o® U e o e W N e

Listing 14. Simple Texture Shader: fragment shader
varying vec2 tCoord;
uniform sampler2D texture;

void main ()

{
gl_FragColor =
}

12) CubeMap Shader: The vertex shader of the CubeMap
Shader just defines the vertex position (Listing 15). The
fragment shader (Listing 16), uses the textureCube (
samplercube s, vec3 coord) function, which re-
ceives as parameters the normal vector and the texture to
be mapped.

texture2D (texture, tCoord) ;

Listing 15. CubeMap Shader: vertex shader
attribute vec4 aPosition;
attribute vec3 aNormal;
varying vec3 v_normal;
uniform mat4 uMVPMatrix;

void main ()

{
gl_Position = uMVPMatrix * aPosition;
v_normal = aNormal;

Listing 16. CubeMap Shader: fragment shader

precision mediump float;

varying vec3 v_normal;

uniform samplerCube s_texture;

void main ()

{

gl_FragColor =

v_normal

textureCube (s_texture,
)

13) Reflection Shader: The Reflection Shader imple-
ments the theory described on Section III-B3. Its vertex
shader is responsible for defining the vertex position, as
shown on Listing 17. Besides, it also declares two vectors
of the type varying (which gives the variables’ values
to the fragment shader), that are related to the vector
of the camera’s direction and normal. In the fragment
shader these vectors are used to find the reflection vec-
tor by the reflect function. The reflection vector is
used on the textureCube (samplercube s, vec3
coord), which determines the fragment’s color based on
this vector and on an image.

Listing 17. Reflection Shader: vertex shader
attribute vecd4 aPosition;
attribute vec3 aNormal;

vec3
vec3

varying
varying

EyeDir;
Normal;

mat4
mat4
mat4

uniform
uniform
uniform

MVMatrix;
uMVPMatrix;
NMatrix;

10
11
12
13
14
15

16

© @ a9 e e e W N e

11

12

13

14

40

SBC Journal on Interactive Systems, volume 8, number 1, 2017

void main ()

{
gl_Position = uMVPMatrix = aPosition;
EyeDir=vec3 (MVMatrix+aPosition);
Normal = mat3 (NMatrix) = aNormal;

Listing 18. Reflection Shader: fragment shader
varying vec3 EyeDir;
varying vec3 Normal;
uniform samplerCube s_texture;

void main ()
{
mediump vec3 reflectedDirection =
normalize (reflect (EyeDir,
normalize (Normal)));

reflectedDirection.y =
gl_FragColor = textureCube(s_texture,
reflectedDirection);

14) Calculation of Rendering Time: The Timer class
measures the rendering time in nanoseconds. Each measure-
ment is done using the C language and the OpenGL ES ex-
tension called GL_EXT_disjoint_timer_qguery. The
integration between the code in C language and the code in
Java is done by the class called NativeLib. If the extension
is not available for the device, an alert is issued.

C. i0OS Implementation

The structure of the code on iOS platform is similar to
the Android, as is shown in Fig. 5. It follows the Model-
View-Controller pattern, which the controller is responsible
for the integration between the Shader, 3DObject classes and
the view RendererView.

The 3DObject class interprets the obj file to the format
accepted by OpenGL ES. The Shader class, as in Android
platform, reads, attaches and links the vertex and fragment
shaders.

The Gouraud Shader was chosen to be implemented and
posteriorly to do the comparisons between the different
devices on distinct platforms. The result is seen on Fig. 6.

D. Experimental Estimation of Asymptotic Complexity

The experimental estimation of asymptotic complexity of
each shader was done by diverse measurements for each
polygon counting (represented by each three-dimensional
model). The asymptotic complexity was analyzed by two
points of view: related to the entire rendering process and
only related to the vertex and fragment shaders.

1) Rendering Process: In Android platform, as men-
tioned in Section IV-B14, an OpenGL ES extension was
used to get the rendering process time, done by the
glDrawArrays () function. In iOS platform, the module

-reflectedDirection.y;

3DObject
- vertexBuffer : GLfloat[]
+ loadObj(name : NSString®) : GLfloat*

I

RendererViewController

- vertices : GLfloat[]

- object : 3DObject

- gouradShader : Shader

- modelViewProjMatrix : GLKMatrix4

+ draw(view : GLKView", rect : CGRect) : void
+ setupGL() : void

+ update() : void

+ tearDownGL() : void

- viewDidLoad() : void

RendererView

- addButton : NSButton™
- decButton : NSButton*
- nPolygons : UlLabel*
- view : GLKView*

1

=Y

1

1

Shader
- vertexShader : GLuint
- fragShader : GLuint
- program : GLuint
+ loadShader(name : NSString) : BOOL

- compileShader(shader : GLuint, type : GLenum) : BOOL
- linkProgram(program : GLuint) : BOOL

Figure 5. iOS implementation: class diagram

. Number of Polygons: 10008

N 4

Figure 6. Gouraud Shader on iOS platform

— from Xcode development tool — called Instruments was
used, which informs the elapsed time of each OpenGL ES
function in microseconds.

This way, the measures were gathered for the devices
Nexus 4, iPhone 5s and iPad Air. It wasn’t possible to collect
for the HTC One device, because the extension wasn’t
available for this Android device.

2) Vertex and Fragment Shaders: The vertex and frag-
ment shaders measurements were only possible to do in
Android devices. The reason is because the Instruments
module of Xcode — in i0OS implementation — doesn’t exhibit
any information about them. Then, the tool used to collect
the measures for Android devices was the Adreno Profile,
because the GPUs of these devices are Adreno.

The chosen metrics were instructions per second per

ISSN: 2236-3297

e W N e

SBC Journal on Interactive Systems, volume 8, number 1, 2017

41

vertex and instructions per second per fragment. These
metrics were gathered for each polygon counting, being
exported in CSV (Comma-Separated Values) format.

3) Plot: After the measurements were done, the charts
were plotted both for the rendering process, as for the vertex
and fragment shaders. The first set of charts is related to the
time, in nanoseconds, versus the polygon count. The second
is related to the number of instructions per second per vertex
(or fragment) versus the polygon count.

4) Automation of Curves Adjustments: To do the curve
adjustment, it was used the least squares method to linear,
quadratic, cubic and exponential functions. The squared
errors associated to each adjustment were also calculated,
in order to determine which function had a better approxi-
mation to the original measures. Smaller the error, the better
the approximation.

A program in Python was created to automate this cal-
culation process. It reads CSV or TXT files, calculates
the average of the measures, plots the charts and does the
curve adjustment (also plotting the data). The program is
command-line based, having as parameters the shader name
and the measurement used (if it’s related to the whole
rendering process or just to the vertex and fragment shaders).

The Listing 19 shows two command-lines examples: the
first is related to the rendering process of the Gouraud shader
and the second is related only to the vertex and fragment
shaders.

Listing 19. Command-lines
$ python shaderComplexity.py gouraud
render_time
$ python shaderComplexity.py gouraud
vertex_fragment

The Fig. 7 shows how this program is structured. The
ReadCSV and ReadTxt classes are responsible for reading
the CSV and TXT files. The PlotChart class plots the original
and adjusted data and the LeastSquares calculates these
adjustments and their errors.

In Fig. 8 the result of the tool for the rendering process is
presented, which is composed by four screens. The first one
(top-down) is the plot of the linear adjustment, the second
is the quadratic adjustment, the third is the cubic adjustment
and the last one is the exponential adjustment.

In Fig. 9 and Fig. 10 the results of the tool for the vertex
and fragment shaders are presented, which are four screens
with the adjustments as well. At the end, the program shows
the equations related to each adjustment and their errors.

V. RESULTS

For each shader were plotted the charts related to the
entire rendering process and to the vertex and fragment
shaders for different devices. After these plots, it was noticed
that the charts for all shaders and devices had similar
curves for each measure type (rendering process, vertex and
fragment shader).

ISSN: 2236-3297

ReadCsV

- averageVertMetric : float
- averageFragMetric : float

+ readCsv(fileName : String, delimiter : String) : void
- getColumns() : void

- sumMetrics() : void

- getAverageMetric() : void

+ getVertMetric() : float

+ getFragmentMetric() : float

/V 1 LeastSquares
- mMatrix : float []

e ix : float []

- mtminvMatrix : float

- yMatrix : float []

- mtyMatrix : float []

- solution : float []

ShaderComplexity

- : String
- csv : ReadCSV

- vertMetrics : float []
- Is : LeastSquares

- plot : PlotChart

- fragMetrics : float []

ReadTxt

- numberPolygons : int [] y
-renderTime : int []

- createMMatrix() : void
- ix() : void

- createThirdDegMMatrix() : void

+ linearLeastSquares() : void

+ secDegPolyLeastSquares() : void

+ thirdDegPolyLeastSquares() : void

- : + createLinearEquation() : float []

- chartTitle : String + createSecDegreeEquation() : float []
- xAxisTitle : String + createThirdDegreeEquation() : float []
- yAxisTitle : String & - float

+ plotChart() : void + getSmallestError() : float

+ plotLeastSquareChart() : void

+ readTxt(name : String) : void
+ getNumPolygons() : int []
+ getRenderTime() : int [] 1 l

1

PlotChart

+ setXAxisTitle() : void
+ setYAxisTitle() : void

Figure 7. Tool implementation: class diagram

A. Android Devices

With the Nexus 4 device was possible to plot the charts
related to the rendering process and to the vertex and
fragment shaders. The charts about the vertex shader visually
resulted in a linear function (with different slopes). The
Fig. 11 shows the charts related to the vertex shader of all
implemented shaders.

The curves related to the rendering process and to the
fragment shader had similar shapes, but it wasn’t possible
to determine the exact curve only by visual inspection. These
curves are shown in the Fig. 12 and Fig. 13.

Then, the adjustments to the predefined curves were done
by the automated tool and plotted for each shader. The
smallest errors were also determined, in order to discover
which curve had the best approximation. By this analysis,
all the shaders had better approximation to a third degree
curve, both for the fragment shader as for the rendering
process.

For the HTC One device was only possible to measure the
performance related to the vertex and fragment shader. The
results were the same as in the Nexus 4, which the vertex
shader had a linear behavior and the fragment shader, a cubic
behavior (Fig. 14).

B. iOS Devices

With the iOS devices, it was only possible to plot the
charts related to the rendering process. The shapes of the
obtained curves are similar to the obtained curves in Nexus
4, and the best approximations were also to a third degree
curve. The Fig. 15 shows these curves for the iPhone 5s and
for the iPad Air.

42 SBC Journal on Interactive Systems, volume 8, number 1, 2017

100000 Gouraud_ipad Shader - Least Squares: Linear o 5les Gouraud Shader - Least Squares Linear
. : —
= 90000 = c4 e
g e =1
s e 53 . Legend
@ 80000 S b e least square method
b > 0 2 1
o P f=4 P
e _ o // — original
£ 70000 / 27—
Q . 0.
E 7 2% 10000 20000 30000 40000 50000 60000
.~ 60000 /,/ Legend
g |aast thod Number of Polygons
S @ east square metho v 5le8 Gouraud Shader - Least Squares Second Degree
« 50000 . — original 5
- £a L
b=
20000 20000 40000 60000 80000 100000 120000 140000 160000 g3 Legend
Number of Polvaons /
Gouraud_ipad Shader - Least Squares: Second Degree E 2 / le_as_t square method
100000 = - — original
31 /,/’
& 90000 . 5ol
bl e > 10000 20000 30000 40000 50000 60000
S e — Number of Polygons
2 80000 e)
8 e © 5le8 Gouraud Shader - Least Squares: Third Degree
2 70000 2 2 4 e |
@ . 2 e
E 60000 . g 3 Legend
5 i Legend ok 7 least square method
B least square method = /" iginal
2 50000 — original 51 o — origina
o a —
40000L > 10000 20000 30000 40000 50000 60000
20000 40000 60000 80000 100000 120000 140000 160000
Gouraud_ipad shaadf T 4ESEF VG 3% es: Thira pegree Number of Polygons
90000 * —— 2 71e8 Gouraud Shader - Least Squares Exponential
_— 26
—_ —_— (=} hd
_ =2
g 80000 //' *g a Legend 1
8 /,/ 23 . least square method
% 70000 / g :C(2 I//—ﬁ*’/ﬁ/ *| — original
2 z 01 e *
3 Vi Sol
ésoooo // >0 10000 20000 30000 40000 50000
5 Legend Number of Polygons
= @ least square method
& 50000 original . . :
Figure 9. Automatic Adjustments: vertex shader
0000 o
20000 40000 60000 80000 100000 120000 140000 160000
Number of Polvaons & o i
110000 Gouraud_ipad Shader - Least Squares: Exponential w7 rrtosscommoouraudishaderilPeastsauaresitinear
5 6000000/ P
B e . —
100000 © 5000000
i £ 4000000] Legend
0000 i £ 3000000 — least square method
e : 2 — original
80000 e £ 1000000
e o oL
| = uﬁi 10000 20000 30000 40000 50000 60000
70000 / i Number of Polygons
" o n -
ot - Legend < 6000000+1.943e9 Gouraud Shader - Least Squares Second Degree
// least square method 2 R
50000 ¥ — original 2 I e
(/ e S 4000000} e Legend
a0000. | & 3000000 ——a — least square method
20000 40000 60000 80000 100000 120000 140000 160000 = 2000000 — q
Number of Polygons = original
g 1000000} ,
o 0.
Figure 8. Automatic Adjustments: rendering process £ 10000 20000 BOpon goooo 50000 60000

Number of Polygons

B 6000000+1.943€9 Gouraud Shader - Least Squares: Third Degree
a

5 5000000 . e]

C. Analysis of the Equations §:ﬂﬂﬂ§ﬂg, Ieast'-::z":re method

With the automated tool, it was also possible to calculate éigzzgzﬂ —— original
the equations of the adjusted curves, for each shader of the g 05 D
Nexus 4. They are shown in Table III, Table IV and Table V. " Gouraud Shaden oo os Ex tial
Although the curves are of the same family, their coefficients glggggg‘;“m” . N
are not identical. The shaders relatively more complexes had Eigggggg legend |
steeper slopes compared to the simple shaders and they had £ 3000000) ~ least square method
greater 2 and 2 coefficients. oo —_ original

Analyzing the equations, it’s possible to see that the vertex 4 %’ 1000020000 ;Olggglygonswwo 50000 60000
shader that had better performance was the Flat Shader,
which only determines the x and y coordinates (since the z Figure 10. Automatic Adjustments: fragment shader

is zero). The vertex shader that had worst performance was
the Gouraud Shader, which calculates the light components
in the vertex shader.

ISSN: 2236-3297

SBC Journal on Interactive Systems, volume 8, number 1, 2017

43

60000

sle8 Asymptotic Computational Complexity
Legend
Gouraud Shader
4t| — Phong Shader
2 — Red Shader
5 Flat Shader —
‘g’ 3 Toon Shader - — B
= Random Shader _—
= Texture Shader B =
é — Cubemap Shader _
< Reflection Shader |-
1
0
0 10000 20000 30000 40000 50000
Number of Polygons
Figure 11. Vertex shader: curves comparison
2.021e9 Asymptotic Computational Complexity .
2.01 7,,,///**)//7///
— Legend
% 2.00 //// Gouraud Shader
< " — Phong Shader
S 1.99]
g e —— Red Shader
g 1.98| Flat Shader
.E 67 Toon Shader
S — Random Shader
5’1.96 Texture Shader
£ — Cubemap Shader
Reflection Shader
L3 10000 20000 30000 40000 50000 60000
Number of polygons
Figure 12. Fragment shader: curves comparison
e e Asymptotic Computational Complexity
5000000 Legend
Gouraud Shader
— Phong Shader
4000000 Red Shader
e Flat Shader
"o 3000000 — Toon Shader
E — Random Shader
2000000 —— Texture Shader
—— Cubemap Shader
Reflection Shader
0

0

20000 40000 60000 80000 100000

Number of Polygons

120000 140000

Figure 13. Rendering process: curves comparison

Table IIT
EQUATIONS RELATED TO THE VERTEX SHADER

Shader Name Vertex Instructions per Second

Gouraud y = 40.16 x 10°% + 7486.43n
Phong y = 14.95 x 106 + 5211.02n
Red y = 8.02 x 10° + 4545.69n
Toon y = 10.17 x 10% + 4673.96n
Flat y = 7.65 x 10° + 3738.61n

y = 20.58 x 108 4 5640.13n,
y = 8.80 x 10 + 4540.32n
y = 8.67 x 10% + 4540.40n
y = 18.03 x 106 + 5470.95n

Random Color
Simple Texture
CubeMap
Reflection

160000

The shader with better performance — related to the
fragment shader — was the Red Shader, in which only
determines the fragment color to red. The fragment shader
with worst performance was the Phong Shader, which does

ISSN: 2236-3297

Gouraud_htcone Shader

60000

5le8
Zs5
w
Sa
|
g3
£
w 2
a8
g3
0 L L
0 10000 20000 30000 40000 50000
Number of Polvaons
3.51e7 : .
"
a 34 4
S 33 e
]
2 32f
&
£31 i
=
@ 30+
E
g29
* 28 . .
0 10000 20000 30000 40000 50000
Number of Polygons
Figure 14. HTC One device
100000 Gouraud_iphone5s Shader
//
95000 S
g
S 90000
3
3 85000
2
2
5 80000
£
= 75000
(7
e}
S 70000
o
65000
60000
20000 40000 60000 80000 100000 120000 140000 160000
Number of Polygons
90000 Gouraud ipad Shader

Render Time (hanoseconds)

80000

70000

60000

50000

40000

P

=

20000 40000 60000 80000 100000 120000 140000 160000
Number of Polygons

Figure 15. iOS devices

60000

the same calculation as the Gouraud shading but in the
fragment shader instead of the vertex shader.

The shaders with better performance — related to the
rendering process — were the Flat, Toon and Red Shaders.
The shaders with worst performance were the Reflection and
Gouraud Shaders.

Besides, with the equations, it’s possible to estimate
the number of vertex or fragment instructions per second.
Taking the Toon Shader as example, which its vertex shader
equation is y(n) = 10.17 x 10° + 4673.96n, the estimated

44

SBC Journal on Interactive Systems, volume 8, number 1, 2017

Table IV

EQUATIONS RELATED TO THE FRAGMENT SHADER

Shader Name

Fragment Instructions per Second

Gouraud
Phong

Red

Toon

Flat

Random Color
Simple Texture
CubeMap

Reflection

y = 19.43 x 10% + 297.00n
—0.0065n2 + 0.50 x 10~ "n3
y = 19.84 x 108 4 1752.43n
—0.0389n2 4+ 3.32 x 10~ "n3
y = 19.39 x 108 4 64.34n
—0.00090n2 4+ 0.05 x 10~ "n3
y = 19.44 x 108 + 268.89n
—0.0044n2 +0.30 x 10~ "n3
y =19.39 x 108 4 74.94n
—0.0013n2 + 0.08 x 10~ "n3
y = 19.43 x 108 + 250.33n
—0.0050n2 + 0.37 x 10~ "n3
y = 19.41 x 10% + 160.00n
—0.0030n2 4+ 0.22 x 10~ "n3
y = 19.43 x 108 + 245.89n
—0.0047n2 +0.37 x 10~ "n3
y =19.59 x 108 4+ 698.57n
—0.0094n2 + 0.47 x 10~ "n3

Table V

EQUATIONS RELATED TO THE RENDERING PROCESS

Shader Name

Rendering Process Time (ns)

Gouraud
Phong

Red

Toon

Flat

Random Color
Simple Texture
CubeMap

Reflection

y = 24.31 x 107 4 48.89n + 7,60
x107%n2 — 1.19 x 10~ 9n3

y = 31.25 x 10% + 49.28n + 0.12
x107%n2 —1.43 x 10~ 9n3

y = 30.37 x 10* + 32.92n + 0.26
x107%n2 — 0.00019 x 10~ 9n3

y = 27.28 x 10* + 37.30n + 0.23
x107%n2 —1.93 x 10~ 9n3

y = 32.82 x 10* + 33.84n + 0.28
x107%n2 — 2,15 x 10~ 9n3

y = 26.25 x 10* + 38.42n + 0,20
x107%n2 — 1.76 x 10~ 9n3

y = 24.51 x 10* + 38.88n + 0, 18
x107%n2 —1.65 x 10~ 9n3

y = 29.87 x 10% 4 44.70n + 0.11
x107%n2 — 1.28 x 10~ 9n3

y = 33.63 x 104 + 57.31n — 9.18
x107%n2 — 0.35 x 10~ 9n3

number of instructions per second for 60,000 polygons is
29.06 x 107. With the tool Adreno Profiler it was possible
to see that this value is close to the measured (28.49 x 107).

Another relevant result is about the Gouraud and Phong
Shaders. The first had the worst vertex shader performance
and the second had the worst fragment shader performance.
But the shader that had the worst rendering process per-
formance was the Phong Shader. This result is consis-
tent because the fragment shader, by this experiment, has
asymptotic complexity O(n?) and the vertex shader, O(n),
influencing this worst outcome.

1) Devices Comparison: With the obtained curves and
equations, it was also possible to compare the devices. The

le8 Asymptotic Computational Complexity

Legend
Gouraud Shader - Nexus 4
— Gouraud Shader - HTC One

o

e

/

IS

Vertex Instructions/s
N w

-

0 10000 20000 30000 40000 50000 60000
Number of Polygons

Figure 16. Nexus 4 and HTC One comparison: vertex shader

2.01e9 Asymptotic Computational Complexity

=
o

Legend
Gouraud Shader - Nexus 4
— Gouraud Shader - HTC One

Fragment Instructions/s
=
=)

=3
o

0'00 10000 20000 30000 40000 50000 60000

Number of Polygons

Figure 17. Nexus 4 and HTC One comparison: fragment shader

ST Asymptotic Computational Complexity
5000000
4000000
g Legend
@ 3000000 Gouraud Shader - Nexus 4
E — Gouraud Shader - iPhone5s
2000000 — Gouraud Shader - iPad Air
1000000
% 20000 40000 60000 80000 100000 120000 140000 160000

Number of Polygons

Figure 18. Nexus 4, iPhone 5s and iPad comparison: rendering process

Fig. 16 and Fig. 17 shows the curves related to the vertex
and fragment shaders for the Nexus 4 and HTC One devices.
The Fig. 18 compares the shaders related to the rendering
process for the Nexus 4 and the iOS devices.

By the measurements and obtained equations, the device
that had better performance, related to the rendering process,
was the iPad Air, which is the device with better hardware
configuration. And as it was shown in Section I'V-A, the iPad
Air was the device with better position in the benchmark
app. The device with worst performance was the Nexus
4 and this is consistent because it has the worst hardware
configuration.

For the vertex shader, the Nexus 4 had better performance
than the HTC One. On the other hand, for the fragment

ISSN: 2236-3297

SBC Journal on Interactive Systems, volume 8, number 1, 2017

45

shader, the HTC one had better performance than the Nexus
4.

2) Final Thoughts About the Equations: Through the
results, it was revealed that both rendering process and
fragment shader tended to present as asymptotic complexity
a third degree function for any shader. However, even that
the squared errors were smallest to a third degree function,
the coefficients related to the n® term are very small, being
of the order 10~7, 10~8 and 10~9. In case of 1077, by
example, it will be added or subtracted one unit for each
100 million units of n (for a y(n) function), which can be
considered irrelevant.

This way, the curve related to the second degree function,
even with bigger squared error, represents the reality of
the shader better than the third degree function. Then, the
asymptotic complexity of the fragment shader and of the
rendering process can be considered O(n?). The analysis
done to the third degree equations is still valid to the second
degree equations.

D. Estimates in Production Environments

In the gaming industry, the metric commonly used to
determine the performance of a game is the FPS (Frames
Per Second). This metric represents the number of images
rendered per second. This way, it’s also possible to convert
the obtained results in this work to this metric, like is shown
in Equation 17, where ¢ is the time in seconds (the metric
used for the rendering process).

FPS:% (17)

It’s also possible to obtain this time metric based on the
number of instructions per second (the metric used for the
vertex and fragment shaders). The Equation 18 shows how
to do this conversion, in which is necessary to use the tool
Adreno Profiler to get the number of instructions for one
frame.

_Ir
-7

where [is the number of instructions for one frame and
I is the number of instructions per second.

Before converting the time metric to frames per second,
for the rendering process, it was added to the ¢ variable, the
time spent by the other functions in the OpenGL ES. These
are the functions used for one frame in the draw call, that
doesn’t vary with the number of polygons, like the function
that sets the background color, by example.

In Android devices, these times were obtained with the
same OpenGL ES extension used before. In iOS devices,
they were obtained with the Instruments tool, that informs
the time spent by each function.

The Table VI presents the converted results in frames
per second, taking the Gouraud Shader as example, for

t (18)

ISSN: 2236-3297

Table VI
ESTIMATED FPS

Number Time Spent (s): Time Spent (s): FPS
of Polygons glDrawArrays Other Functions

10,000 0.000698 0.0000140 1,405
20,100 0.00127 0.0000140 779
30,000 0.00181 0.0000140 548
40,678 0.00231 0.0000140 430
50,679 0.00271 0.0000140 367
60,662 0.00315 0.0000140 316
80,256 0.00410 0.0000140 243
152,840 0.00525 0.0000140 190

[Implement Shaders]

[Measure Performance]

Legenda:
[Plot Charts] Automated

‘ Non-Automated

[Adjust Curves]

[Obtain Equations]

Figure 19. Experimental Process

the Nexus 4 device. An important observation is that these
measures don’t include the other factors present in a real
production environment, like input events and physics, by
example.

E. Experimental Process of Estimating the Asymptotic Com-
plexity

The process used in this work to estimate, empirically,
the computational asymptotic complexity of shaders is rep-
resented in Fig. 19.

The step Implement Shaders can be done, for iOS and
Android devices, taking as base the implemented code in
this work. It’s just necessary to inherit from the Shader class
and to implement its abstract methods. The step Measure
Performance is done manually, depending on the GPU
profiler needed. The steps Plot Charts, Adjust Curves and
Obtain Equations can be done by the implemented tool.
These codes can be found on the remote repository?.

VI. DiSCcUSSION AND FUTURE WORK

Through the experiments, it was revealed that the asymp-
totic complexity behaved linearly for the vertex shader.

2 https://github.com/campeloal

10

11

12

13

14

46

SBC Journal on Interactive Systems, volume 8, number 1, 2017

This happened independently of the shader used. This way,
all implemented vertex shaders have the same asymptotic
complexity. But the equations for each one have different
coefficients, that can determine which shader has better or
worse performance.

Analyzing the theory about the OpenGL rendering process
for the vertex shader, it can be seen that this result is
consistent. The vertex shader program is used for each

vertex, then its asymptotic complexity is linear, taking the s

number of vertices as input. So, the flow of the shader’s
execution can be represented by the Listing 20.

Listing 20. Representation of the vertex shader execution
for(int i = 0;
i < vertexBuffer.length; i++)

executeVertexShader (vertexBuffer[i]);

The rendering process and the fragment shader tended
to have as asymptotic complexity a polynomial of second
degree. The Listing 21 shows a generic flow representation
of the fragment shader execution.

Listing 21. Representation of the fragment shader execution
triangleStream = Mesh.triangles;
for(int i = 0;

i < triangleStream.length; i++)

{

fragStream=triangleStream([i].fragments;

for(int j = 0;
j < fragmentStream.length; j++)

executeFragShader (fragmentStream[i]);

As explained in OpenGL’s documentation * for each prim-
itive of the mesh, it’s generated the fragments (candidates
for pixels). For each fragment, the horizontal and vertical
orientations of the screen are traversed (being a matrix).

This way, the function
executeFragShader (fragment) assigns to the
fragment a color and a depth value (this values will be used
in the last steps of the rendering process to discard some
fragments). The quadratic asymptotic complexity probably
is associated with the color attribution (which traverses a
matrix, that is quadratic).

Besides, the obtained results are not obvious, because
when a shader source code is analyzed it induces the pro-
grammer to think that its asymptotic complexity is constant,

3 http:/twww.opengl.org/wiki/Fragment_Shader

which this work showed that it isn’t. An example of a simple
vertex shader is shown in Listing 22.

Listing 22.
uniform mat4 uMVPMatrix;
attribute vec4 aPosition;

Example of vertex shader

void main () {

gl_Position = uMVPMatrix % aPosition;

Since all the shaders (of the same type) present the same
asymptotic complexity, a way to compare their performance
is by their equations and coefficients. This analysis can be
done related to the entire rendering process and only specif-
ically to the vertex and fragment shaders. The comparison
can be done to different shaders and to the same shader, to
see if it was optimized or not. Another possible comparison
is between devices, as it was done in this work. The iPhone
Ss, that is from a more recent smartphone generation, had
better performance than the Nexus 4.

As seen on this work, when rendering objects in a scene
with a shader, different performances were obtained for
each device. This way, these performance differences could
influence the user experience while playing a game. The
rendering in some devices are expected to be smoother than
in others. This is because the update frame rates are affected
differently, depending on the hardware configuration used.

Another important contribution was the automation of
most of the asymptotic complexity analysis, like the shader
implementation basis and curve adjustments. Like this, such
a procedure can be reproduced quickly and reliably. As fu-
ture work, would be interesting to implement more shaders,
specially for iOS platform and also compare more devices.

REFERENCES

[1] A. Sherrod, Game Graphics Programming, 1st ed. Boston,
Massachusetts: Course Technology, 2011.

[2] C. Sinthanayothin, N. Wongwean, and W. Bholsithi, “Inter-
active virtual 3d gallery using motion detection of mobile
device,” International Journal of Advancements in Computing

Technology, vol. 4, no. 7, pp. 239-250, 2012.

[3] J. Arnau, J. Parcerisa, and P. Xekalakis, “Teapot: A toolset for
evaluating performance, power and image quality on mobile

graphics systems,” International Conference on Supercomput-
ing, pp. 3746, Jun. 2013.

[4] R. Sandberg and M. Rollins, The Business of Android Apps
Development, 2nd ed. New York, New York: Apress, 2013.

[5] B. Evangelista and A. Silva, “Criando efeitos fotorealistas e
no- fotorealistas para jogos,” SBGames, 2007.

[6] Graphics Performance: Measures, Metrics and Meaning,

Compaq Computer Corporation, 1999.

ISSN: 2236-3297

SBC Journal on Interactive Systems, volume 8, number 1, 2017

[7] J.-H. Nah, Y. Suh, and Y. Lim, “L-bench: An android bench-
mark set for low-power mobile gpus,” Computers & Graphics,
vol. 61, pp. 40-49, 2016.

[8] X. Ma, Z. Deng, M. Dong, and L. Zhong, “Characterizing
the performance and power consumption of 3d mobile
games,” Computer, vol. 46, no. 4, pp. 76-82, Apr. 2013.
[Online]. Available: http://dx.doi.org/10.1109/MC.2012.190

[9] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “Teapot:
A toolset for evaluating performance, power and image
quality on mobile graphics systems,” in Proceedings of
the 27th International ACM Conference on International
Conference on Supercomputing, ser. ICS *13. New York,
NY, USA: ACM, 2013, pp. 37-46. [Online]. Available:
http://doi.acm.org/10.1145/2464996.2464999

[10] B. Johnsson and T. Akenine-Moller, “Measuring per-frame
energy consumption of real-time graphics applications,”
Journal of Computer Graphics Techniques (JCGT), vol. 3,
no. 1, pp. 60-73, March 2014. [Online]. Available:
http://jcgt.org/published/0003/01/03/

[11] G. Nunes, R. Braga, A. Valdetaro, A. Raposo, and B. Feijo,
“Ganho de performance e economia de largura de banda com

o uso do tessellator,” SBGames, 2011.

[12] T. A. Moller, E. Haines, and N. Hoffman, Real-Time Render-
ing, 2nd ed. Boca Raton, Florida: CRC Press, 2008.

[13] S. Guha, Computer Graphics Through OpenGL, 1st ed. Boca
Raton, Florida: CRC Press, 2011.

[14] A. Drozdek, Estrutura de Dados e Algoritmos em C++,
2nd ed. Sao Paulo, Sao Paulo: Cengage Learning, 2002.

[15] A. Rorres, Algebra Linear com Aplicacoes, 8th ed. Porto
Alegre, Rio Grande do Sul: Bookman, 2001.

[16] L. Leithold, O Calculo com Geometria Analitica, 3rd ed. Sao
Paulo, Sao Paulo: Harbra, 1994.

ISSN: 2236-3297

