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Abstract—Crowd simulation for evacuation situations often
assumes that all agents are trying to reach a single point within
an environment. Although such an assumption is not entirely
wrong, human agents often exhibit more complex behaviors, even
if deviations from the standard behavior are not particularly
frequent. Classical planning is far from the best way to achieve
the minimal path or correct behavior for agents, but adds a
deeper level of reasoning about complex goal-achievement and
about actions that are more complex than simply moving about.
In this paper, we describe a crowd simulation experiment that
uses classical Al planning to enrich the behavior of agents in the
scenario. Using this approach, we can express not only the target
destination of agents, but also (sub)goals and path preferences.

I. INTRODUCTION

Computer games and simulations are often concerned
with virtual crowds to populate their simulated environments,
with each specific application focusing on different concerns.
Whereas games are generally concerned with computational
efficiency aimed at achieving a responsive experience, even at
the cost of some of its realism, simulations are concerned with
realistic virtual crowds that respond in a way that is compatible
with real humans. Common to all of these applications, the
most basic problem to be solved is to make individual agents
navigate through a set of waypoints that are either dynamically
generated or previously established by a designer. However,
when an agent have more complex goals than simply arriving
at one or more destinations, the problem becomes one in which
an agent needs to achieve additional (sub)goals which need
to be exhibited in the simulation. To achieve these types of
goals without having to specify, at design-time, exactly the
actions to be taken by an agent, a planner is often required. In
fact, Al planners have been extensively used to compute the
behavior of individual agents in computer games [1]. However,
computing individual plans for large numbers of agents with
many possible actions is prohibitively time-consuming, which
leads to the issue of using planning algorithms efficiently to
generate behavior for several similar agents.

In this paper, we describe a crowd simulation approach
that uses classical Al planning to enrich the behavior of
agents through a path influenced by agent desires shared by
groups of agents. Using this approach, we can express not
only the target destination for the agents, but also (sub)goals
as desired states to be reached, including parts of the map as
path preferences. Our approach consists of converting agent
preferences to a classical planning problem and employing
a classical planner before the simulation to generate paths
with subgoals for agents within a crowd to follow once the
simulation starts. Although deterministic plans from classical
planners are often not suitable for generating behavior in

complex spatial environments, we use the higher level of
abstraction of such plans in a way that allows rich crowd
behavior without a substantial addition in complexity to the
simulator. We achieve this by letting the collision avoidance
mechanism already present in the simulation add uncertainty to
the resulting plan-driven behavior of the agents. This makes
the solutions more flexible, with agents always looking for
alternative ways to reach their desires while maintaining a
least-effort path.

Traditional approaches to crowd simulation have avoided
the issue of planning towards global behaviors more complex
than moving agents from one point in a map to another,
thus focusing reasoning only on the path itself [2]. This type
of reasoning prevents agents from pursuing desired states
other than map positions. Such a choice is motivated by
the fine-grained representation of the simulated maps, which
avoids discretizing the space into a coarse grid to achieve a
realistic representation of individual agent movement. Using
such a state representation, reasoning about agent desired-
states becomes infeasible, since scalability issues arise once
thousands of agents have a single location as their desired
destination. Treuille et al. [3] points out that global planning
with local collision avoidance may lead to unrealistic situations
such as large crowd concentrations with agents feeding into a
congested mass of agents, whereas real humans would try to
avoid the crowded region before getting stuck in it by blindly
following their path. In response, the authors of Continuum
Crowds have developed a method to plan globally so that no
agent ever gets stuck in the environment. Alternatively, Li et
al. [4] try to achieve complex behavior while minimizing the
global planning effort by employing the notion of a group
leader that performs complex reasoning, while a crowd of
agents conceptually follows this leader through a series of
checkpoints as they move through the scenario. In this setting,
the leader not only plans for itself, but also needs to make
sure that its behavior includes tolerances so that the crowd of
followers does not get stuck. By contrast, our approach uses
a classical planner to generate plans for a group of agents in
a single execution, generating a single plan that is executed
by each individual agent in a group and letting the existing
collision avoidance algorithms deal with the details of move-
ment at runtime. Although the use of planning capabilities to
expand behavior has been used previously as a cognitive layer
for animated characters [5], to the best of our knowledge, its
efficient use to drive behavior in crowd simulation is novel.

Thus, our main contribution is an approach that uses
classical planning to efficiently enrich a traditional crowd
simulation model with the notion of declarative goals [6] while
maintaining a substantial degree of scalability. We demonstrate
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the applicability of our approach through an implementation
based on the BioCrowds simulator [7] and a classical planner
that does STRIPS-style planning [8] using heuristic search [9].
The resulting system simplifies the effort of crowd design and
control while speeding up the computation of multiple group
paths by automatically generating the data required by the
planner whenever new paths are required. In this article, we
extend our original work [10] in two main ways. First we
include an automatic mechanism to determine which positions
are important to be reached, to allow the generated plans to be
relaxed without restrictions. Second, we add different views
of the same map for each group to create different levels of
access, restricting agents to use different parts of the map.
Such extensions allow more realistic scenarios to be simulated
without removing designer control.

II. BACKGROUND

Path planning' algorithms are commonly used within sim-
ulations to compute paths from a starting position to a goal
position for agents to use according to their behaviors. Thus, in
this section we review relevant prior work on path planning and
agent behavior. One of the key aspects of a crowd simulation
is the way in which agents move through the simulated space
and interact with each other when collisions may occur. One
of the first crowd simulation systems, Boids [11], uses a
behavior model with simple rules to generate actions based on
agent perception. These rules controlled attraction and angle
of movement of bird-like creatures and later evolved to more
human-like features [12]. By contrast, we focus on the model
used by the BioCrowds simulator [7], which is based on a
biological phenomenon, which compares the growth of veins
in leaves with the social interaction of agents competing for
space while using trajectory guides.

Although guiding an agent’s path using predetermined
tasks (sequences of actions to be executed) is not new in
BioCrowds [12], its agents’ behavior is limited to a single
destination during the simulation. The model proposed by [12]
selects a random action to be performed and a path planning
algorithm computes a path to the point where the action is
possible. Thus, BioCrowds agents lack the ability to reason
about higher-level goals (world-states to be achieved) and
multiple goals and subgoals. In order to address this limita-
tion, we aim to use a more advanced reasoning mechanism,
whereby agents have a desired world-state and use a domain-
independent planning algorithm to compute a sequence of
complex actions in order to transition from the current world-
state into the desired world-state. Here, a world-state may refer
not only to a position in the environment, but also other, more
abstract goals such as avoiding a certain position.

Planning algorithms search using a specification of the
environment dynamics using transition rules described in a
flexible formal language as well as a specification of the
problem to be solved [13]. This allows very different problems
and domains to be solved by the same, efficient, algorithm.
On the other hand, path finding problems are usually solved
by tailored search algorithms, which generate a plan with a
good response time but much less flexibility. For example,

Path planning is often referred to simply as planning in crowd simulation
literature as in [3], in this paper, to avoid confusion, we shall differentiate
path planning from Al planning (or simply planning).
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adding keys and closed doors to an environment requires
the reconstruction of the entire search algorithm instead of
a minimal reformulation of the domain to add actions to pick
keys and unlock doors. The key point of planning is reusability,
and planning research has yielded a number of formal lan-
guages, such as the well-known Stanford Research Institute
Problem Solver (STRIPS) language [8], and more recent the
formalizations of the Planning Domain Definition Language
(PDDL), which is the standard planning language [14] for
the ICAPS competition [15]. This is analogous to the notions
of procedural and declarative goals known in the autonomous
agents literature [6], [16], which we borrow in this work. The
usual approach is to use a procedural goal, where a predeter-
mined procedure once executed successfully will achieve the
goal. Our approach is based on declarative goals, where the
desired state is declared and the plan is not readily available
as a procedure, which requires a classical planner to find the
sequence that achieve the goal-state.

III. CROWDS

Several approaches have been used to model crowd behav-
ior. The most influential models are based on such different ap-
proaches as: flocking behavior [11], sociological factors [17],
psychological effects [18], geographically-based direction [19]
and social forces [20]. The models are usually concerned
with local problems while some global path planning is used
to compute plans to reach an agent’s goals. Underlying all
of these approaches, is a particle system called flocking
model [11], a set of small sprites with movement based on
rules, called steering behaviors, used to create a consistent and
fluid movement using local perception. All of these approaches
use the following three fundamental steering behavior rules:

e  Separation: avoid crowding near particles, particles
try to keep safe from collision in dense regions;

e Alignment: follow the average heading angle of near
particles to keep itself as part of the crowd going to
the same place; and

e  Cohesion: move towards the center of near particles,
keeping particles together.

This basic set of rules can be expanded to create realism
for specific situations and recreates the idea of an unlimited
population for the crowd, as flocks emerge naturally with each
agent sensing only agents nearby.

A. BioCrowds

The BioCrowds model is based on a biological phe-
nomenon that happens in leaves, where leaf veins are attracted
to the auxin hormone, resulting in a particular growth patterns.
Different parameters of this distribution and attraction make
different veins possible, giving each plant a unique pattern.
Since the veins compete for the auxins, the model resembles a
crowd where each agent competes for more individual space,
aiming to achieve a collision-avoidance system between agents
in a dense crowd. The behaviors of crowds being simulated
must be checked at runtime, to ensure the following patterns
are present:

e lane formation: as agents move, the free space behind
them becomes attractive for the other agents that are
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Fig. 1.

BioCrowds

going in the same direction, inducing several agents to
use such spaces as a collision-free path, limited only
by the speed of the agents ahead;

e arch formation: the flow of agents around an obstacle
creates an arch around the obstacle as agents avoid
colliding with it — arches can be seen as a special
case of a lane;

e speed based on density: as more agents occupy the
same region their speed is affected to avoid collision
with other agents;

e bottlenecks at small spaces: as narrow paths are
used by many agents, the competition for the passage
causes agents to actually wait for the ones ahead of
them to free the passage — bottlenecks may appear
without walls around them if a resource is the desti-
nation of several agents; and

e divergence: after passing through a bottleneck, agents
usually follow different paths, creating the inverse of
bottlenecks, as no obstacles or agents are there to slow
down their movement.

Those patterns did emerge in BioCrowds, showing that the
model actually resembles the human interaction that occur
in crowded spaces [21]. Agents compete for fixed markers
(such as the auxins) distributed randomly across the free space,
allocating and freeing these markers as they move across the
space, allowing other agents to occupy their previous space.
The amount of markers allocated around each agent is based
on their requirement for personal space. This way of reasoning
about space is called proxemics, which define different types of
relation agents have based on distance to other elements in the
environment. Proxemics dictate the distance agents try to keep
from each other, simplifying the obstacle reasoning required,
as positions without free markers are considered impossible to
occupy.

IV. CLASSICAL AI PLANNING

Classical planning is an area of Al concerned with creating
algorithms to solve problems defined with a generic formal
language that treat environment states as sets of discrete
variables [13]. A classical planner is usually based on a search

algorithm that tries to find a sequence of actions (formally
defined as a plan) that, when executed, modifies the initial
state of the world into the desired goal state. This plan is the
sequence of intermediary points obtained from the usual A* for
path planning, but instead of points, the effects of each action
yield the desired state when executed in order and successfully.
Below, we summarize the key concepts in Al planning required
for our work:

o free-variables are placeholders for any object in a
problem, and which are used in action schemas to
define a large number of ground actions;

e apredicate is a named property of the world with any
number of terms, each term can be a free-variable or
an object;

e objects are explicitly or implicitly defined by the
problem — once defined a problem’s actions can be
expanded into its possible instances;

e a proposition is a ground predicate, in which each
term is an object;

e a state is a structure containing world properties as
propositions at a particular point in time;

e an action or operator is part of a domain’s transition
function that can be applied to the current state,
it is specified in terms of preconditions and effects
(expressed as logical formulas over predicates);

e the preconditions of an action is set of predicates (or
a free-form logical formula) that must be true in the
current state for an action to be applicable (executable)
in that state;

e the effects of an action are a set of predicates that will
be added or deleted from the current state, creating a
new state;

e a domain describes the key elements of a planning
domain, comprising the set of valid predicates (proper-
ties of the world) and the actions (transition function)
available in the domain;

e a problem is a specific instance of the domain to be
solved, with a set of objects, an initial state and goal
state that must be reached; and

e a solution or plan is a finite sequence of operators
available to the domain that when applied to the initial
state satisfy the goal state [22].

Some problems may have no solution (i.e. there is no plan
that can transform the initial state into the goal state), while
some problems may have multiple solutions. A plan is said to
be optimal if it is the shortest plan that achieves the goal. To
take advantage of the possibility of multiple plans for a given
problem, some planners relax optimality constraints to speed-
up search and find a suboptimal plan. Note that the sequence
of actions may be represented in a tree-like structure to better
describe dependency and order between actions, although the
linear idea of sequence is used to simplify the relationship of
preconditions and effects.
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A. Planning Languages

The formal elements we describe in this section are used
in the definition of planning languages, the first of which was
implemented for Stanford Research Institute Problem Solver
(STRIPS) system. STRIPS is a planning system created in
1971 [8] and became important due to its formalization of the
description of the world, providing much of the structure for
planning problem specifications we describe above. In order to
specify more complex domains, later planners defined a series
of extensions and planning languages. These languages were
consolidated into the Planning Domain Definition Language
(PDDL)[14], created in 1998 to be the standard language for
Al planning.

B. Classical Planning Algorithms

Different algorithms solve planning problems using differ-
ent approaches on how to deal with the combinations of action
sequences that yield a solution. The most straightforward
planning mechanism consists of a forward search in the state-
space, checking which actions can be applied to the current
state generating further states until the goal state is found. For
much of the evolution of planning algorithms, forward search
did not yield efficient results, due to the need for very good
heuristics to avoid the large branching factor inherent to this
type of planning. However, later research has shown that such
heuristics are possible for very efficient planning [9]. In this
paper, we use a heuristic search-based planning algorithm.

V. BIOPLAN: A CLASSICAL PLANNING
EXTENSION TO BIOCROWDS

BioCrowds is both a model (see Section III-A) and sim-
ulator for interacting agents based on fixed markers in space.
Agents move through the environment trying to reach a se-
quence of ‘waypoints’, which must be manually adjusted by
a human designer. In order to reach their destinations, agents
move by trying to occupy free markers around them, without
differentiating whether the lack of free adjacent markers is
due to walls or the transient occupation of a marker by
another agent. As each agent tries to occupy the markers in
the direction of the next goal position, a problem arises when
there are not enough intermediary destinations to guide them,
which, as a result, become stuck not knowing whether to try
alternative paths or to wait for a nearby marker to become
free. Planning becomes an attractive approach at this point, to
find a path between the current position and one of many goal
positions defined as declarative goals. The use of declarative
goals frees a designer to simply specify what the goals are
(be they positions in the map, or other, abstract states), and
let the planning algorithm generate the intermediary positions
in the map, as well as the positions that are to be avoided to
prevent agents getting stuck. Nevertheless, classical planning
not only costs too much processing power for a group of
agents, but also removes liberty as the plan gives a description
of each step. However, if we describe a goal state and how
to perform actions to reach such state it is possible to remove
some intermediary movement actions to add liberty. Moving
from a desired point to a desired state does not mean we
want to occupy a position, but achieve several properties of
the environment.
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In order to plan reasonably fast, agents are grouped based
on similar initial and desired states. The group share the
same map with the same action-points, specific places where
agents can achieve certain abstract features. Each group may
consist of one or more agents. Since multiple agents share
the same initial and goal configurations we can plan once for
each group. Agent groups have a set of shared attributes for
path planning that are inherited by all agents in a group, but
some attributes are randomized per agent, e.g. speed. Such
different path planning attributes naturally lead to the actual
paths taken by the agent being different even for agents in
the same group, as speed and collision may create a different
local scenario for each agent. Although there are many more
attributes, we summarize in Table I the attributes that are
relevant for our model. The number of agents each group have
as an integer. The source and target positions of the route
are required by the simulator, the source position is where
the agents are spawned and the target position where each
instance is destroyed. The positions are represented by nodes, a
discrete grid representation of the continuous environment. The
simulation stops when all agents reach their target. Path mode
tells how the route must be considered, as only two points,
a path planning problem or a classical planning problem.
Freedom represents how many intermediary positions we want
to remove from the route after planning is done, without those
points our agents can avoid other agents by going a little off the
track, instead of waiting the crowd to give some space to get
near the original route. The start and goal states of the group
must be represented, like all agents starting without resources
and the goal is to have them. Speed, proxemics and color are
simulator variables that are randomly generated values within
constraints before execution, therefore there is a minimum
and maximum speed, different levels of proxemics and colors
available for the agents.

TABLE 1. GROUP ATTRIBUTES
Attribute Possible values Description
agents 1 to oo Number of agents from group
route Array of nodes Source and target destination
path mode direct, A¥, classical | Path generation method
planning
freedom 1 to oo Number of edges between nodes of
path
start Array of require- | Initial state of a group
ments
goal Array of require- | Desire state of a group
ments
speed Float Agent maximum speed without ob-
stacles
proxemics Float How close a marker must be to be
used by the agent
color RGB The color used by agents, path and
marker’s connector

The next important element in a simulation after the groups
were described is the map. The map is important for both
planning and simulation, as obstacles define the environment
and action-points define the different ways agents may achieve
a certain feature. The map is considered static and described
in a discrete form to the planner, making the goal of planning
the change of the agents position, internal state and resources
instead of the world itself for most domains. Changing the map
is usually a good idea for coordinated groups, as agents plan
to act at specific places to reach the same goal, but becomes a
problem for our crowd model. Imagine the goal of a group to
be that of moving behind a fireproof door during an evacuation.
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Here, after the first agent to reach the door must open the door,
everyone enters the safe room and the door is then closed by
one them. This is a coordinated action. The problem can be
broken into smaller parts (such as open, enter, close) each of
which can be executed either by a single agent, or by subgroups
of agents.

If implemented by our planner all agents would have to
close the door behind them as no agent knows if they are the
last one to reach the door. This exemplifies very well the crowd
planning problem, the agents do not recognize being part of
a group and do what they need to satisfy their needs, even
if all agents have the same goals. The second problem is the
single entity approach, in order to make the last agent close
the door, each agent would need to plan individually and one
would need to be the designated as the agent responsible for
closing the door. Thus, we concentrate on a static map as the
simulator cannot display mutable features of the environment,
such as doors being open or closed.

Our model is based on planning paths for all agent groups
before the simulation starts. Instead of planning for the N
groups at the same time, making the problem more complex for
a large N, our model breaks the problem down for each group,
making the simulation not only simpler but also more realistic.
The simulation is more realistic because in the real world,
agents follow a path and react to other individuals as obstacles
that alter their path locally. Thus, locally, the behavior of the
agent is more important than the plan. Our approach is also
simpler, because taking into account all groups at the same
time would yield a plan that represents the position of the
groups in a discretized and deterministic way, which is not true
at simulation time as collision avoidance and speed differences
make the agents diverge locally from the optimal path.

The desired state can involve several propositions beyond
the position, with several being dependent and possible to
achieve in different ways according to the initial state and
actions available. Unlike path-planning, an agent using our
planner may desire to explicitly avoid a certain property, such
as starting dirty and desiring to be clean (not dirty).

As the simulation is executed, the agents move at differ-
ent speeds (that are not represented by the planner) based
on random distribution of the markers and individual speed
settings. Consequently, blindly following the plan to avoid
other groups at the same time is not enough because of those
non-deterministic attributes. If we used a planner in which
those details were explicitly represented, the resulting plans
would eliminate the realism of the situations created by such
randomness, as agents would re-plan only if a large number of
agents completely blocked their passage to their destination.
Replanning would also create a processing bottleneck as only
individuals require replanning based on their current situation.
Therefore the simulator received few modifications to accept
input from our planner.

Adding the output of a classical planner as input for the
simulator seamlessly requires some constraints on the output of
the planner so that it is interpreted correctly by the simulator.
Since the simulator expects a path and not a plan as input, a
conversion is required. The planner requires the map of the
environment as well as the simulator and a conversion process
was required to automate the generation of group attributes,
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Fig. 2. Flow of the proposed model

adjacency information of the map, how actions interact with
the world-state and how agents execute the plan or deal with
a failure in planning. In other words, it requires a single input
to describe both planner and simulator inputs.

VI. IMPLEMENTATION

In our implementation, we use a forward-search classical
planner in such a way as to focus on a single group at a
time, instead of generating several domain and problem inputs
for each group, certain specific points of the planner were
modified. Instead of planning for every group at the same time,
the system focuses on each group leading to the more plans
being generated, though each individual plan has fewer steps
and a smaller state space. Otherwise each group would be an
object available to instance more actions, which would result in
a very large number of operators, leading to a large branching
factor.

Search-based planners have to deal with problems with
large branching factors due to the large number of possible
concrete operators that must be tested for each new state that
appear during the search process. Moreover, once concrete
operators are generated and the planner knows the exact size of
the state representation, we generate an internal binary-vector
based representation that allows for very efficient planning
both in terms of runtime and memory usage.

We integrate all of these systems in a processing pipeline,
illustrated in Fig. 2. Each subsystem (the classical planner and
the simulator) requires its data to be converted before they can
communicate with each other. To address that, we implemented
the BioPlan API, which handles all convertion processes. The
designer must specify map, groups and transition rules to
be used by the planner, as shown in Listing 3. Different
groups using different maps generate more map and disabled
auxins files, and since the BioCrowds simulator expects only
one of each the designer must choose the actual simulator
input to be used. Actions for moving throughout the space
are statically defined and reused in all simulation domains,
and additional rules for specific simulation requirements are
converted into additional planning operators. These rules are
then used to create valid PDDL actions. An example problem
used throughout this paper is shown Listing 1, with the corre-
sponding domain shown in Listing 2. The problem corresponds
to one specific scenario, in this case, the objects are agents,
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position nodes and the different requirements involved, the
initial state with the current configuration and the goal state we
desire to achieve. The transitions are defined in the domain as
follows: two actions to move the agents, one for orthogonal and
another for diagonal movement; and an action that executes
a certain task if all requirements have been fulfilled and the
agent is at one of the possible places where that task can be
performed. Here, the planner gives priority to the orthogonal
movement because these actions are defined first in the domain
description, therefore the orthogonal movements are expanded
first and yield a shorter path even for solutions with the same
number of actions.

(define (problem pbl)
(:domain crowd)
(:requirements :strips :negative—preconditions)

(:objects

a0 al a2 nl n964

null use_bathroom get_papers)
(:init

(requirement n43 use_bathroom null)
(requirement n963 use_bathroom null)
(requirement n632 get_papers null)
(agent a0) (agent al) (agent a2)

(at a0 n478)

(at al n&97)

(at a2 n455)

(have a0 null)

(have al null)

(have a2 null)

(adjacent_1 n43 n44)

(adjacent_1 n43 n85)

(adjacent_2 n43 n86)

(adjacent_1 n44 n43)

(adjacent_1 n44 n45)

(adjacent_2 n44 n85)

(adjacent_1 n44 n86)

(adjacent_1 n964 n922)
(adjacent_1 n964 n963))
(:goal (and
(at a0 n777)
(at al n901l)
(at a2 n498)
(have a0 use_bathroom)
(have al use_bathroom)
(have a2 use_bathroom)

(have a2 get_papers))))
L

Listing 1. PDDL problem example

Groups are declared with the number of agents, route
(start/goal positions), path mode and when planning is used, a
degree of freedom and a set of requirements to fulfill along the
path. We have defined three path following modes that can be
used depending on the simulation needs of the designer: direct
mode, A* mode, and planning mode. The direct path mode is
the one without any intermediary points to be reached, there is
only the initial and goal checkpoints, in Fig. 3 they appear as
the blue points with a square around, with the walls in black
and the avoidance nodes in gray. This mode gives too much
freedom of movement to an agent, as the goal may be too far or
even beyond several walls in a complex scenario. BioCrowds
agents do not bounce or walk back, they always move trying
to minimize the distance between themselves and the next goal
point, so a simple corridor is enough to make them hit a wall
and stay there until the end of the simulation. The direct mode
should only be used to check interactions between crowds in
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(define (domain crowd)
(:requirements :strips :negative—preconditions)
(:predicates
(agent ?agent)
(adjacent_1 ?source ?destination)
(adjacent_2 ?source ?destination)
(at ?agent ?source)
(have ?Tagent ?goal))
(:action move_1l
:parameters (?agent ?source ?destination)
:precondition (and
(agent ?agent)
(adjacent_1 ?source ?destination)
(at ?agent ?source))
:effect (and
(not (at ?agent ?source))
(at ?agent ?destination)))
(:action move_2
:parameters (?agent ?source ?destination)
:precondition (and
(agent ?agent)
(adjacent_2 ?source ?destination)
(at ?agent ?source))
ceffect (and
(not (at ?agent ?source))
(at ?agent ?destination)))
(:action do
:parameters (?agent ?source ?previous ?goal)
:precondition (and
(agent ?agent)
(requirement ?source ?goal ?previous)
(at ?agent ?source)
(have ?agent ?previous)
(not (have ?agent ?goal)))
:effect (and (have ?agent ?goal))))

-

Listing 2. PDDL domain example

open scenarios, which is one of the goals of the simulator and
explains the reason for this mode to be available. On the other
hand, the A* mode restricts the agents to strictly follow a path
instead of directly trying to reach a target position as in the
direct mode, the path is shown as a sequence of blue points
without a square in Fig. 4. The only leeway an agent following
A* mode has regards the proximity allowed for an agent to
be considered in range of the current checkpoint, which only
amounts to a perception mechanism to avoid cluttering agents
into a single point at the same time. Classical planning mode
is not much different from the A* mode, as both search for a
sequence that fulfills an agent’s goals. The difference is what
the sequence contains, whereas A* is only concerned with a
sequence of points, classical planning mode is concerned with
a sequence of actions that move an agent from point A to
point B in this case. Classical planning can also deal with
actions beyond movement, but the other actions are important
only to the planner as no animation related to those actions is
supported in the current version of the BioCrowds simulator.
A* is already implemented in the simulator and we prefer to
let it return a full path as expected while the path our classical
planner generates could be relaxed within a certain degree
of freedom. This degree of freedom can be used to avoid
an unnatural movement by the agents, removing intermediary
movement-only actions among the plan and letting the agent to
choose a path during execution. Examples of different degrees
of freedom can be seen at Figures 5 and 6.

The degrees of freedom defined by the user can also be
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Fig. 3. Goal and target of direct mode are the only points given to the
simulator using direct mode

Fig. 4. Path of A* mode gives a sequence of points to act as intermediary
targets to help the agent reach the final target

explored by an automatic mechanism that identifies straight
lines within the movement actions of the plan and removes the
intermediary movement-actions without removing the points
that define curves, an example of such removal for an original
path in Fig. 4 is the path of Fig. 7. Since the points are always
distributed in the grid and Moore neighborhood is used to
define adjacent cells there are 8 cases of straight lines, as
shown in Fig. 8, which makes it simple to recognize one of
the possible straight lines and define our waypoints. Fig. 9
shows the algorithm that eliminates intermediary waypoints
along straight lines using Moore neighborhood.

Before we start the search for a path we need to describe
the groups and map for the planner, as shown in the first
steps of Fig. 10. We start with the map to extract information
about which nodes can be accessed. There are three types of
nodes so far: clear nodes that can be accessed, wall nodes
that are always closed and avoidance nodes that are always
considered closed for planning but clear for the simulator.
This information is used to avoid creating markers at specific
regions in the simulator. Adjacency between nodes in the maps
are converted to predicates describing edges to be used by the

e
: . =
=
E
Fig. 5. Planning mode with freedom 2 gives a path with less intermediary
targets

Fig. 6. Planning mode with freedom 5 gives a path without sufficient points,
which may lead the agents to a wall which they behavior is not enough to
avoid.

Fig. 7. Planning mode with automatic waypoint is a solution to find a small
set of points enough for the agents to reach their goal.

NW [ N | NE
W [C| E
SW | S | SE

Fig. 8. Moore neighborhood as the 8 cells around a central cell.

planner. The requirements and a subset of the group attributes
are part of the problem as initial or goal state while the domain
is a static file with the movement and a generic action that can
be performed based on the requirements previously defined.
Finally, we executed planner for each group defining planning
as operating mode, and, if successful we modify the plan
according to the freedom of the group in question.

A. Domain Knowledge

Domain knowledge is a series of optimizations about a
specific domain that can yield a better or faster solution
when used. Several problems have to deal with the fact that

1: procedure FIND_WAYPOINTS(path)
2: waypts < [first element of path]
3 remove first element of path

4: len < length of path

5: i< 0

6: while i < len do

7 if path[i] = action position

8 waypts push path[i - 1]

9

: i+—i+1
10: continue
11: for dir in [N,S,E,W.NW,NE,SW,SE] do
12: last < last element of waypts
13: if last at dir of path[i]
14: last < path[i]
15: i+—i+1
16: while last at dir of path[i] and i < len do
17: last < pathl[i]
18: i—i+1
19: waypts push path[i - 1]
20: break
21: return waypts

Fig. 9. Find lines among the points and remove the intermediary points,
keeping only the points where the agent must turn or execute a non-movement
action
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require ’BioPlan’
group_1 = {
ragents => 15, :route => [839, 666],
:mode => BioPlan :: PLANNING,
:freedom => 3,
start => [’null’],
:goal => [’receive_food’]

group_2 = {
ragents => 7, :route => [839, 540],
:mode => Bioplan :: PLANNING,
:start => [’null’,’use_bathroom’],
:goal => [’receive_food’]

group_3 = {
ragents => 5, :route => [839, 540],
:mode => BioPlan :: ASTAR

}
groups_1 = [group_1, group_2]
groups_2 = [group_3]
requirements = [
{
rat => 968, :require => ‘null’,
:able => ’use_bathroom’
A
rat => 440, :require => ’use_bathroom’,
rable => ’pay_food’
A
rat => 165, :require => ’pay_food’,
:able => ’receive_food’
}
]
map_1 = Image.load_bmp(’mapl.bmp’)
BioPlan.setup (groups_1, map_l, requirements)

map_2 = Image.load_bmp(’map2.bmp’)
BioPlan.setup (groups_2, map_2, requirements)

Listing 3. API example

the domain knowledge is incomplete or non-existent. The
map information containing only walls and obstacles as well
as starting and goal points is not enough to generate an
acceptable plan for the simulation. Most problems faced by the
BioCrowds model come from collision avoidance from narrow
paths and agents being thrown away from their route by other
agents. Adding more input to the map can yield a better path.
Some of those problems are explained in this section with more
detail.

1) Map Contour: Without a predefined path, agents tend
to use a movement pattern similar to a best-first search, thus
approaching the goal position without taking into consideration
the contour of the map. This usually results in failure (agents
getting stuck) if the distance is too long, as more walls may
appear in the way. The failure persists even with a predefined
path, with agents becoming trapped by an irregular wall. We
add further knowledge of avoidance nodes to be avoided in
the map to avoid passing near those walls and have agents
becoming stuck in a local minimum. This knowledge is used
by the planner to both speed-up (eliminate nodes from the
search) and add designer control, leaving such nodes as clear
nodes during simulation and letting agents use them as a last
resource when more individual space is needed. Several tricks
can be used, such as: aiming to pass through a door targeting
exactly its midpoint; avoiding walking too close to walls in
passages to avoid being surprised by other agents; and avoiding
traversing queues of waiting agents, but rather pass behind the
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1: procedure BIOPLAN::SETUP(groups, map, required)
2: clean map

3 mark disabled map nodes
4: save marked nodes to file
5: add required to initial state
6 for g in groups do

7 add current state of g to initial state
8 add goals of g to goal state

9

extract graph from map

10: add adjacencies to initial state

11: save map to file

12: save problem to file

13: for g in groups do

14: if mode g is PLANNING

15: plan < planner(domain, problem, g)
16: if plan found

17: path < []

18: for action in plan with index i do
19: if action=move and i%g.freedom=0
20: path push position

21: else if action=do

22: path push position

23: if only waypoints

24: path < Find_waypoints(path)
25: save path to file

26: else

27: print warning for g

28: Downgrade g to path planning

29: save groups to file

Fig. 10. With the map loaded we generate the required paths for each group
and save to files to be used as input in the simulator.

—

[

|
Fig. 11. Regions to avoid during planning are marked in gray and walls in
black.

queues. Some of those examples can be seen in Fig. 11 in
which gray squares represent the regions to avoid and black
squares represent the walls.

The map is defined by nodes, nodes can represent three
types of terrain: clear, walls and avoidance. Clear nodes are
always considered open, while walls are always considered
closed. Avoidance nodes are considered closed during plan-
ning, but are open during execution. Avoidance nodes are
useful not only to remove certain paths from consideration,
but also to provide more control over the resulting paths,
something any designer wants. Constraining where desired
and letting the group free otherwise. The map walls represent
places where no auxin exists, creating a lack of possible
paths for agents. The terrain can be seen at Fig. 18, with a
zoom in the upper left corner, where green squares are the
nodes and the black dots the auxins. Connected nodes are
possible paths and auxins represent free space that agents use
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Fig. 12. Bathroom bottleneck.

while moving to conquer more individual space in their goal
direction. The avoidance system was inspired by the preference
system of [23], but instead of being part of the behavior it
became part of the planning process.

2) Perception and choice: One of the main problems is
how much liberty the agents can have. The idea of group
here would be broken if some agents took a different path.
In some situations this makes sense, like in a bathroom choice
according to the size of the waiting line, but the problem
persists not on how the agents would perceive this, but in
how effective it is to leave them free to explore based solely
on perceptions or decision points within a plan. This can be
seen in the bathroom situation, Fig. 12, as the agents reach
the bathroom they start coming back and compete for their
previous space, breaking the lane formation created by the
BioCrowds model. Some agents try to go to the free side
while others make a poorer choice and end up stuck until
most agents find their way to the bathroom. One of the main
problems of removing intermediary points is that they are not
enough to eliminate the bottleneck regions that happen when
agents achieve one of their goals and suddenly start coming
back.

Instead of using a reasoning system during run time, the
idea is to let each agent have more liberty without abandoning
the path altogether, removing some intermediary points. The
simple removal of intermediary points can lead to failure in
some cases and, consequently, identification of such cases
is important to understand how free the agent can be while
staying close to the path in narrow passages.

3) Heuristic: Most problems can be solved faster using a
relaxation strategy to focus on the relevant attributes. Working
with this subset of the actual problem may lead to a sub-
optimal solution with less resources used. Finding the heuristic
to a specific domain is a problem by itself and since a classical
planner have no idea which domains may be presented as
input a domain dependent heuristic is not part of the planner.
Methods to relax the problem definition are used. One of the
most basic general heuristics is the Hamming distance [24],
since the problem is completely observable it is possible to
compare the current state with the desired state and count
how many propositions (state variables) are different. Most
propositions are modified by a single action, but several
properties of the world may be affected by the same action,
making this heuristic inadmissible for several problems and
yielding suboptimal plans. Problems without much information

about the desired state also suffer with the heuristic, as for
most states the heuristic function returns the same value while
slowing the search down to compute the difference between
states, effectively searching using a breadth-first strategy. In
order to this comparison fast we enumerate all propositions
that may appear during the planning process and give an index
to each. Using a vector of bits we consider each bit as a
proposition based on their index and the value as being true
or false in the current state.

VII. RESULTS

We created three scenarios to test our approach: one with
several randomly placed walls and two more realistic ones,
with scenarios based on actual locations. The path modes
already supported by the BioCrowds (direct and A*) simulator
were exposed to the APIL. In every scenario the direct mode
shows the problem of not having an entire path to follow,
with some agents becoming stuck in the first perpendicular
wall they encounter, while others wait the agents in front of
them to move. Using the internal A* generated path is still a
good choice when the group only wants to reach some point,
but kills the entire liberty. The avoidance system, removing
node connections without removing auxins, fits the A*, as both
planners only use nodes. When there is a set of requirements to
fulfill, the classical planner is the preferred tool, making all the
choices before the simulation starts and creating a robust path
for the group that fulfill the requirements along the way. Since
both A* and planning can fail, and failure at simulation time
is undesirable, we need to find a path before the simulation
starts. If A* fails there is no path from the source point to
the goal point and reaching or not the goal is irrelevant to the
simulation. However, since the agents must occupy space on
the map during simulation, we modify the group path to direct
mode, so that the agents will keep trying to achieve their goal
without success while their presence in the map can still affect
other groups.

If planning fails, the requirements may be unobtainable
and the designer may give-up and opt to switch for only path
planning with A*. Other reasons for failure include avoidance
nodes, which can block some paths if not used carefully by
the designer. In such cases, a designer may need to manually
remove avoidance nodes to achieve the intended simulation.
Note that failures to reach a destination due to avoidance nodes
may affect even paths generation via the A* mode, there is no
guarantee that giving up requirements will be enough to find
a path if the avoidance nodes still block the target position
of the group. This way, no group has to be destroyed because
of path/requirements failure and the simulation will show what
was predicted, total failure (agent cannot reach destination with
requirements) or partial failure (agent reach destination without
fulfilling requirements) by dropping additional requirements
through the removal of some desired propositions. The main
problem with the automatic relaxation of a map by removing
avoidance nodes when the planner fails, is how a single group
affects the map used as input by the simulator, and how to
enforce avoidance of some parts of the map to simulate a
real event. Here, the planner is not aware of the cause of
failure, it simply infers that there is no sequence of actions
that can be executed to reach the desired state. The cause
may be the map, therefore relaxation of map preferences may
help, otherwise the requirements need access to completely
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disconnected regions of the map and are impossible for the
agents to reach. In such cases only a modification of the
requirements would be enough to successfully find a plan,
therefore we modify the goals of the agents, simulating agents
giving up on tasks they do not know how to solve. Real events
being recreated may use more than avoidance nodes to improve
path quality, they may remove a path that people consider too
dangerous or that is not perceived at the time as a viable path.
There are two ways in which a classical planner can deal with
this problem without adding too much complexity: recreating
the problem with fewer nodes and having several levels of
avoidance nodes to remove as planning failed; or letting the
designer know that the planner is failing and decide what to
do with the current map. We chose the designer as the first
option to deal with this problem, since creating different levels
of avoidance is more expressive but can be time-consuming,
as only the designer can say which tasks or nodes should be
refined first.

The maps we use for experimentation have 42x24 nodes
and can yield 5000 propositions of node adjacency using a
Moore neighborhood (8 connected cells around), this step
is generated from a char-based map (an image can also be
used, conversion is supported by the API). Although the
maps used are grid-based, the idea of connectivity based on
Cartesian coordinates is a constraint for different connectivity
systems (like hexagonal tiles) and nodes are referenced by
an identifier instead. A new map input method would be
required to generate the connections for the planner and few
modifications in the simulator to actually display the new map
system correctly.

A. Random Scenario

We created the random scenario as the first environment
to illustrate the output of the tool. Fig. 13 shows the scenario
map, while Fig. 14 shows the two groups and the connectivity
between the nodes in the map. Here, the dark blue markers
represent the control group (without a planned path, i.e. in
direct mode) and the clear blue markers represent the group
that uses path planning mode (the path planned group). The
path planned group must travel from left to right, while the
control group must go from right to left. The path planned
group must avoid a long line to reach its goal, achieve part
of its goals with an action in a specific point of the map and
reach the other side. The control group just tries to reach the
other side, but walls with varying angles make the goal much
harder than simply crossing the map. The control group was
used to understand how much competition exists between the
agents and was the motivator for the use of avoidance nodes,
as many agents get stuck in this scenario and how to enforce
planning to avoid such dangerous regions.

B. Lab Scenario

In the Lab scenario, Figures 15 and 16, the narrow paths
become a problem that requires more than what the avoidance
nodes may help, as other agents push others inside near rooms
and the chance of groups collision being extremely high in
the narrow corridors. Perhaps the problem is the perception
of agents or the design of the space, a more accurate map
is required to see if the environment is working against the
agents. This environment have two bathrooms available and
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Random map input as image file

Fig. 13.
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Fig. 14. Random scenario

one printer room, two groups want to use the bathroom and
go back to their respective rooms while one group wants to get
the papers they printed and also use the bathroom. It is possible
to see that each group tries to reach the nearest bathroom and
the paper group goes around the lab in order to achieve both
goals.

C. Snack Bar Scenario

In the snack bar scenario, Figures 17 and 18, the agents
can go to a bathroom, pay for the food at the first counter and
receive the food at the second counter. Some requirements
were created to this scenario: each agent can buy only if they

Fig. 15. Lab map input as image file
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Fig. 16. Lab scenario

—

Fig. 17.

Snack bar map input as image file

do not need to go to the bathroom first, once they bought
they can receive the food. Some groups already start with
no bathroom need while others only want to buy the food
to later eat. The liberty here is that the bathroom can be
easily reallocated and more bathrooms can exist, but the goal
was to simplify the entire process. Therefore there is no need
to define the map and where the actions are possible at the
same time, the map only holds the walls and the requirements
can be obtained at specific nodes once their preconditions are
satisfied.

Some scenarios may limit the possible paths an agent could

-----------------

o ,,, i o St
: 53* %ﬁ*fﬁé@*%* !

FaS b

Fig. 18.  Snack bar scenario
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Snack bar scenario without avoidance nodes for the employees

take, due to knowledge about the environment (agent does
not know about a path during path planning) or restrictions
imposed by the class of the agent, like a kid being able to pass
where an adult cannot and an employee being able to enter any
room in a store, while the customers are restricted to the main
room. In order to better define such map restrictions we need
to describe and relate each map to a group of agents. Here,
we use the avoidance system (Section VI-Al) to eliminate
map positions from the planning process and create different
restrictions to each group. Since each group can already plan
independently (using the avoidance system) there is no need
to add any control in the planning, just use the respective map
for the current group. To evaluate the different restrictions on
different groups, we extend the snack bar scenario by adding
employees that can take advantage of the backdoor and can
access the other side of the counter. In order for this to work
we use the map of Fig. 19 to be the new default map and use
the map of Fig. 18 as the custom one used by the customers.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have described a novel approach based
on classical planning for the generation of group behavior
in crowd simulation. Classical planning and some domain
knowledge can be applied to yield custom paths to BioCrowds,
adding not just complexity to the paths but lowering the
chance of failure (in the form of agents being unrealistically
stuck in the map) as well as providing a more meaningful
way to represent subgoals for the agents being simulated.
Although our current implementation shows a relatively small
set of subgoals being expressed by each agent group, our
approach can be easily employed to help develop more realistic
scenarios without the need to explicitly define alternative
paths to subgoals, ultimately allowing a simulation designer
to focus on higher-level agent behavior. Although one may
argue that the centralized and deterministic solution of the
planner undermines the approach of crowd simulation with
distributed behavior, two considerations can be used in favor
of our implementation. The first is that knowledge of the
markers is exactly the same for all BioCrowds agents. Every
agent perceives the world in the same way during simulation,
and no space is invaded because of different point of views,
consequently centralized marker knowledge is already assumed
by the BioCrowds model. The second is that the generated
plans are not followed blindly by the agents, as each agent
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tries to solve local problems based on their specific situation
during simulation. Thus, our plans are merely guidelines for
intermediary points that agents follow as they try to reach their
goal. Agents are grouped just for time-saving purposes as all
agents would plan for the same goal from the same starting
point. The only limits of planning being time and memory for
the process, a thousand agents would plan the same way as a
single agent, the difference would happen just in the simulation
as fewer markers would be available per agent.

Our implementation was validated through a number of
scenarios, however, our current approach has a number of lim-
itations. In maps with narrow choke points, our approach tends
to require designer intervention through explicit specification
of avoidance points. Although our focus so far has been on the
integration of a planner into the crowd simulation pipeline, we
aim to expand our work in a number of ways. First, we aim
to investigate other mechanisms for node avoidance besides
designer-expressed avoidance nodes, and instead generate them
automatically based on generic sets of rules (e.g. using cellular
automata). Second, we aim to merge different preferences to
be used for different subgroups within the same map, e.g. to
avoid certain map regions as only authorized personnel may
enter, in the form of nodes instead of using different maps for
each group.

ACKNOWLEDGMENT

We thank Soraia Miisse, Vinicius Cassol and Cliceres Mack
Dal Bianco for the discussions that led to the writing of this
paper, and for access to the source code of the BioCrowds
simulator for our experiments.

REFERENCES

[1] J. Orkin, “Three states and a plan: the AI of FEAR,” in Game
Developers Conference, vol. 2006, 2006, p. 4.

[2] A. Sud, R. Gayle, E. Andersen, S. Guy, M. Lin, and D. Manocha, ‘“Real-
time navigation of independent agents using adaptive roadmaps,” in
Proc. 2007 ACM symposium on Virtual reality software and technology.
ACM, 2007, pp. 99-106.

[3] A. Treuille, S. Cooper, and Z. Popovi¢, “Continuum crowds,” in ACM
Transactions on Graphics, vol. 25, no. 3.  ACM, 2006, pp. 1160-1168.

[4] T.-Y.Li, Y.-J. Jeng, and S.-I. Chang, “Simulating virtual human crowds
with a leader-follower model,” in Computer Animation, 2001. The 14th
Conf. on Computer Animation. Proceedings. 1EEE, 2001, pp. 93—102.

[5] J. Funge, X. Tu, and D. Terzopoulos, “Cognitive modeling: knowledge,
reasoning and planning for intelligent characters,” in Proc. 26th annual
conference on Computer graphics and interactive techniques. ACM
Press/Addison-Wesley Publishing Co., 1999, pp. 29-38.

[6] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah, “Declarative
& Procedural Goals in Intelligent Agent Systems,” in Procs. 8th Int.
Conf. on Principles and Knowledge Representation and Reasoning,
D. Fensel, F. Giunchiglia, D. L. McGuinness, and M.-A. Williams, Eds.
Morgan Kaufmann, 2002, pp. 470-481.

[71 A. de Lima Bicho, “Da modelagem de plantas a dindmica de mul-
tiddes: um modelo de animacdo comportamental bio-inspirado,” Ph.D.
dissertation, Universidade Estadual de Campinas, 2009.

[8] R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the appli-
cation of theorem proving to problem solving,” Artificial intelligence,
vol. 2, no. 3, pp. 189-208, 1971.

[9] B. Bonet and H. Geffner, “Planning as heuristic search,” Artificial
Intelligence, vol. 129, no. 1, pp. 5-33, 2001.

[10] M. C. Magnaguagno and F. Meneguzzi, “BioPlan: An API for classical

planning on biocrowds,” in Computer Games and Digital Entertainment
(SBGAMES), 2014 Brazilian Symposium on. 1EEE, 2014, pp. 11-20.

ISSN: 2236-3297

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

(23]

[24]

C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” ACM SIGGRAPH, vol. 21, no. 4, pp. 25-34, 1987.

L. M. Flach, V. J. Cassol, F. P. Marson, and S. R. Musse, “A procedural
approach to simulate virtual agents behaviors in indoor environments,”
in Intelligent Virtual Agents. Springer, 2013, p. 448.

M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and
Practice. Elsevier, 2004.

D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, and D. Wilkins, “PDDL-the planning domain definition
language,” 1998.

A. Coles, A. Coles, A. G. Olaya, S. Jiménez, C. L. Lopez, S. Sanner, and
S. Yoon, “A survey of the seventh international planning competition,”
Al Magazine, vol. 33, no. 1, pp. 83-88, 2012.

F. Meneguzzi and L. De Silva, “Planning in BDI agents: a survey of the
integration of planning algorithms and agent reasoning,” The Knowledge
Engineering Review, vol. FirstView, pp. 1-44, 9 2013.

S. R. Musse and D. Thalmann, A model of human crowd behavior:
Group inter-relationship and collision detection analysis.  Springer,
1997.

N. Pelechano, K. O’Brien, B. Silverman, and N. Badler, “Crowd
simulation incorporating agent psychological models, roles and com-
munication,” DTIC Document, Tech. Rep., 2005.

M. Sung, M. Gleicher, and S. Chenney, “Scalable behaviors for crowd
simulation,” in Computer Graphics Forum, vol. 23, no. 3. Wiley Online
Library, 2004, pp. 519-528.

D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.

B. Solmaz, B. E. Moore, and M. Shah, “Identifying behaviors in crowd
scenes using stability analysis for dynamical systems,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 34, no. 10, pp.
2064-2070, 2012.

B. Nebel, “On the compilability and expressive power of proposi-
tional planning formalisms,” Journal of Artificial Intelligence Research,
vol. 12, pp. 271-315, 2000.

V. J. Cassol, F. P. Marson, M. Vendramini, M. Paravisi, A. Bicho,
C. Jung, and S. Musse, “Simulation of autonomous agents using terrain
reasoning,” in Proc. 12th IASTED Int. Conf. on Computer Graphics and
Imaging, Innsbruck, Austria. IASTED/ACTA Press, 2011.

R. W. Hamming, “Error detecting and error correcting codes,” Bell
System technical journal, vol. 29, no. 2, pp. 147-160, 1950.



