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Abstract— Computational thinking (CT) tools, as a software 

system, express their designers' perspective on how a selected set 

of Computer Science concepts should be introduced, typically 

hiding details to avoid unnecessary complexity. This paper 

focuses on how concurrency is dealt with by five well-known tools 

in this domain: Scratch, Alice, AgentSheets, NetLogo and 

Greenfoot. We present the results of a systematic analysis 

contrasting their model of concurrent behavior with the 

corresponding metamessages, the messages about messages of 

concurrency, that trigger users' interpretation and learning of 

concurrency-related concepts. We present and discuss the 

conceptualizations that potentially emerge from using these five 

tools and compare them with established concurrency concepts. 

Our findings indicate opportunities for an explicit exploration of 

how some concurrency aspects are implemented in games and 

simulations built with CT tools. We believe that this might 

facilitate future learning and comprehension of complex 

concurrency concepts, considering that the knowledge embedded 

in these tools can also influence students’ understanding of 

concurrency. 

Keywords— computer science education, programming, 

concurrent programming, semiotic engineering 

I.  INTRODUCTION 

From the early days of the LOGO programming language, 
created by Papert [11] as an educational tool for introducing 
Computer Science (CS) concepts to young children, many 
other tools have been developed to support computational 
thinking acquisition (CTA) over the years and with many 
distinct goals on mind. These tools are of a special kind of 
programs: they implement the very same concepts that will be 
taught by using them. For designers of these tools, it then 
becomes a challenge to balance complexity of the implemented 
CS concepts with the ease of use while enabling users to have 
simple, yet powerful tools to express themselves through their 
creations. If designers present all the complexity to users, these 
tools may be too hard for novice programmers to understand; if 
too easy, students may find it boring [13].  

For engaging students in CTA, many tools focus on the 
creation of games and simulations by providing multiple 
resources (visual programming environments, domain-oriented 
languages, among others) for developing them. This strategy 
for teaching programming helps students to easily visualize the 

results of their implementations with fun and engagement [14]. 
When building these games and simulations, students must 
deal with multiple agents interacting with each other, 
manipulating variables, and other programming aspects. Some 
of these aspects relate closely to the concurrency domain, 
which studies how processes may run in parallel without 
negatively affecting each other [2]. Thus, these tools must 
implement concurrency concepts to properly run students’ 
games and simulations, which adds to the set of concepts 
designers must consider when building these environments. 

As literature reveals no tool is suited for every concurrent 
programming tasks [15]. MultiLogo, for instance, is well-suited 
for robotic tasks, given its matching of the programming 
language with a robot’s movements, but it could be difficult to 
program massively concurrent processes, which would demand 
primitives to manipulate and orchestrate them, either in a 
centralized or decentralized manner [20]. Thus, when 
presenting concurrency to users, it is important to consider 
which aspects of concurrency need to be modeled. Otherwise, 
whether these students become professional programmers or 
not, these tools may impact students learning of CS concepts 
due to inconsistencies between the concepts they learned and 
the problems they might need to tackle. This could generate, 
for instance, weak connections about synchronization as they 
learned previously when trying to use the same concepts in 
other problems [3]. 

To this extent, our research question relies on if and how 
these trade-offs impact on how conceptualizations are 
presented to users of these CT tools. We begin to investigate 
this matter in this paper, in which we present a systematic 
evaluation to investigate if and how concurrency is 
conceptualized in five CT tools widely used to support CTA: 
AgentSheets1, Scratch2, Greenfoot3, NetLogo4 and Alice5. 
These tools aim at simplifying the programming process by 

                                                           
1 http://www.agentsheets.org 

2 https://scratch.mit.edu 

3 http:// www.greenfoot.org 

4 https://ccl.northwestern.edu/netlogo/ 

5 http://www.alice.org 
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providing environments simpler than IDEs to develop 
programming activities, focusing on novice programmers. 

We implemented a modified version of the Dining 
Philosophers problem, well known in concurrency domain, as a 
case of concurrent behavior to be used as basis to discuss 
concurrency in these tools. By analyzing implementations, we 
programmed in each of the studied tools, we discovered three 
models of concurrent behavior. In the literature, Petri Nets is a 
well-known notation to represent concurrent behavior [12], and 
it allowed us to better understand how each tool models a 
concurrent behavior. Also, to investigate how concurrency 
depicted in these models are communicated by designers, we 
employed a semiotic analysis using the Semiotic Inspection 
Method (SIM), a method from Semiotic Engineering which 
focuses on the emission of designers’ intent [18]. In our 
research, we focus on communication of concurrency in these 
tools. We conclude our analysis by providing a contrast 
between the models of concurrent behavior and results of the 
SIM’s application. Finally, we discuss our findings and future 
research that could emerge from the results of this study. 

II. CONCURRENT PROGRAMMING AND CT TOOLS 

Concurrent programming is a Computer Science topic 
related to the study of processes in which resources must be 
shared, such as CPU time, variables, memory addresses, among 
others. It studies problems related to coordination, 
synchronization and communication of processes to share these 
resources maintaining consistency between each transition of 
the machine’s state. As Ben-Ari defines, “A concurrent 
program is a set of sequential programs that can execute in 
parallel.” [2]. Hoare also brings an interesting definition of 
concurrency [22]. It talks about interactions between processes 
that require participation from both at the same time, in the 
same event. The question is then how to precisely describe and 
manipulate these kinds of events.  

There are many approaches for describing concurrent 
programming. One of the first attempts of formalization of the 
concept comes from Hoare [21], who described their concept 
of Communicating Sequential Processes (CSP).  The Actor 
model is another kind of formalism, in which processes are 
seen as actors [22]. In both cases, they are communicating to 
each other to reach an understanding in the concurrent event. 
Petri Nets is another formalism for describing concurrent 
behavior. It focuses on analyzing concurrent events from the 
perspective of causality, which allows us to ignore, for the sake 
of clarity, physical restrictions [12]. 

For CS professionals, concurrency is becoming of a great 
importance, mainly due to the increase of multicore processors 
and environments, which demands that professionals consider a 
concurrent world when programming for it [5] However, 
authors agree that concurrency can be a challenging topic to 
teach [7]. The non-deterministic nature of concurrent 
programs, for instance, can confuse students unfamiliar with 
concurrent behavior, especially regarding the mastery of 
programming tools and understanding the underlying data 
structure that provides concurrent behavior [3]. Other authors 
explore the teaching of concurrency to students in the early 
years [5], which could bring interesting insights to the learning 
and a toolbox for more complex learning of concurrency later 
in the students’ life. However, bringing a single model of 
concurrency is still not ideal, since it could make the student 

think that there is only one way to solve concurrency [15]. 
Thus, although it is important to teach concurrency, we also 
should make students and instructors aware of these different 
possibilities of solving concurrency tasks. 

Researchers explore concurrency in many ways, often 
focusing on students’ understanding of the concept [15], using 
the tools conceptualization of the concept and exploring it with 
students [5], and studying the understanding of specific 
concurrency concepts by students [1,3,7,16]. Although there 
are works employing CT tools to support the learning of 
concurrency, on Scratch for instance [10], little is mentioned 
about how the implemented concurrency influences on the 
learning activity. This happens mostly because the focus of 
these studies is on the concept being taught through the tool, 
and not by the tool. In this paper, we are interested in the 
second perspective, which we consider it can also influence the 
understanding of CS concepts, especially concurrency.  

Also, as pointed out by Resnick, no single concurrency 
model is well suited for every situation [15]. By model of 
concurrency, we consider how these tools deal with concurrent 
behavior implemented by users, for instance using semaphores, 
locks, and other strategies to solve concurrency issues, and the 
outputs which follow these strategies. Due to students’ 
creativity, implementation scenarios not well suited for the 
current CT tool often appears, which demands that instructors 
explain why its seemingly correct program is not running as 
expected when comparing his/her natural view of the world to 
a computational one [13,17], or why in the middle of the CT 
acquisition his/her hypothesis about this world starts to fail. 
These issues could demotivate them, when their recently 
acquired knowledge appears not to work anymore. Thus, it 
sounds reasonable to understand what the root of these 
problems could be: CT tools’ conceptualizations about 
concurrency. 

III. METHODOLOGY 

In a broader context, this research aims at studying whether 
there is a systematic and effective way of knowing if and how 
CT tools used in pre-college education promote computer 
science conceptualizations which are consistent with what CS 
majors learn in college education. In this paper, our goal is to 
investigate the conceptualization of concurrency in a small set 
of CT tools. To this extent, we employed qualitative and 
exploratory research to investigate concurrency emerging from 
these tools.  

Our research method encompasses 6 steps: two for defining 
the case to be studied, three related to the implementation and 
analysis of the execution of the generated programs, one for the 
Semiotic Inspection Method (SIM) [2], and one final step to 
contrast the perceived execution and the results of the semiotic 
analysis conducted using SIM. 

Step 1. We chose a case to be studied and implemented a 
set of tools to be analyzed. Regarding the case, we chose a 
modified version of the Dining Philosophers, a well-known 
problem in concurrency domain [3]. In the original problem, 
five philosophers are seated around a round table and can either 
think or eat. To eat, one philosopher must grab two forks, one 
of each adjacent to each philosopher on its left and right sides, 
respectively. If the fork is not available, he must wait until it is, 
to eat. After eating, he puts back both forks on the table and 
starts thinking again. In our modified version, philosophers can 
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only eat after the simulation starts running, and once two forks 
are available, he grabs both forks, without releasing them. This 
allows us to study how each of the CT tools we selected deal 
with concurrency, instead of focusing on the problem itself.  

Regarding the tools, we selected five widely used tools for 
games and simulation programming. These are AgentSheets, 
Scratch, Greenfoot, NetLogo and Alice. These tools were 
selected because they deal with agents’ interaction, which is a 
kind of concurrent behavior, since these agents can either be 
processes and resources. In these environments, they interact to 
each other via other agents, their visual image, or using 
variables. These elements can be seen as shared resources, 
given the context they are used, which raise the same issues 
from the concurrency domain. Thus, these tools must 
implement some concurrency-related solutions, to run games 
and simulations which, as mentioned before, are often implicit 
to the user and thus motivated our research. 

Step 2. In order to follow a consistent implementation 
process to compare each tool’s implementation of the case 
studied, we defined a pseudo-code for the implementation 
process, as follows:  

Define Philosophers from 1 to 5; 

Define Forks from 1 to 5; 

For each Philosopher 

Place it adjacent to philosopher i-1 and 

i+1;  

For each Fork 

 Place it between forks i-1 and i+1; 

For each philosopher 

If left-fork and right fork are available, 

then get both forks; 

For each Fork 

If fork is taken, lock it from being taken 

by any other Philosopher; 

Step 3. Next, we proceeded with the implementation of the 
pseudo code from Step 2 in the CT tools. This led us to depict 
multiple variations of the programs in each tool, since a tool 
allows us to program a same case in many ways. As an 
example, on AgentSheets we could define the five philosophers 
as one unique Philosopher agent with five depictions (graphical 
representation of an agent), or five Philosophers, each with its 
own depiction. Implementing these variations was needed to 
analyze if there were variations to the execution between 
different representations of the same case in a given CT tool. 
We describe these distinctions in the implementations in 
section V. 

Step 4. After implementing multiple versions of our 
simplified Dining Philosophers, we ran each implementation to 
uncover the model of concurrent behavior. For each CT tool, 
we analyzed each implemented version output to depict how 
agents were visited. From this, we elaborated models about the 
concurrent behavior. In order to being able to discuss them 
properly, we used Petri Net as a modeling notation [4]. In the 
literature, Petri Net is widely used to model and study 
concurrent behavior. It allows us to separate the problem from 
implementations, which is interesting if we would like to 
analyze the solutions implemented in different tools. A Petri 
Net is depicted as a directed graph consisting of places, 
transitions and tokens [4]. A place can be a state, a resource or 
a process, depending on the given semantic. A transition 
represents an action that can be performed by the system 
modeled. A token, put inside a place, is a marking that 
indicates the context of the net. Any transitions whose places 
entering in it contain tokens are called “enabled”. A Petri Net 

changes its state when every enabled transition is fired, which 
makes the token “walk” from the input place to its output 
places, each one receiving one token. A Petri Net model is 
suited for describing non sequential behavior [5]. In this way, 
given two events “a” and “b”, it is possible to distinguish an 
execution of “a” after “b” from an execution of “b” after “a”, 
not by the time they occur, but by their causality relation. By 
doing this, we can model what is called truly concurrent events. 

In our context, the Petri Net model can be employed as a 
bridge between the “natural world” and the computational 
world, in the sense that it allows to model the truly concurrent 
behavior that emerges from a problem, from a physical 
microworld, to these tools solutions, or the computational 
microworld [6] in order to reveal how concurrency issues are 
tackled by these tools. 

Step 5.  With these models of concurrency in hand, we 
proceeded to a careful semiotic inspection of these tools to 
understand how the models evidenced in step 4 are 
communicated via interface, along with how concurrency itself 
emerges from it. This semiotic analysis follows the Semiotic 
Inspection Method (SIM) [2], which allows us to investigate 
the emission of the designers’ metacommunication about 
concurrency through these tools.  

Semiotic Engineering characterizes Human-Computer 
Interaction as a shared communication between designers and 
users, in which designers, via metalinguistic, dynamic and 
static signs perform the communication of a message about the 
software, or metacommunication. These signs, which are 
anything representing something to someone [2], shape the 
metacommunication message. SIM is one of the methods of 
Semiotic Engineering and it helps us to explore the emission of 
the metacommunication message by designers at interaction 
time, via analysis of metalinguistic, static and dynamic signs. 
After thorough interpretation of these signs the researcher can 
reconstruct the designer’s message, using the 
metacommunication template. This template summarizes the 
designers’ perceptions and expectations about the users and 
their needs and expectation and provides the designer’s 
characterization of what users should or must do to fulfill their 
intentions. 

For this paper, we focused on the designers’ message about 
concurrency in each CT tool we analyzed. To this extent, we 
considered a user, who already had knowledge about the tool 
and could create games and simulations but had never faced a 
concurrency issue. Then, his/her instructor asks him/her to 
build the modified version of the Dining Philosophers, which 
as depicted before, raises these issues for him/her to 
investigate. In this paper, we focus on the final 
metacommunication message of each tool and explore details 
of each type of signs in their relationship with the concurrent 
behavior models emerging from the analysis of the 
implementations of the Dining Philosophers on each CT tool as 
defined on Step 4. 

Designer’s metacommunication about CS concepts in CT 
tools has a interesting feature, since their message uses the set 
of (Computer Science) concepts being learned by the users to 
communicate them their message. Each of such tools have 
distinct characterizations of the implemented CS concepts, 
which are partially communicated in order to keep the activity 
fun and engaging [7]. Novice programmers are being presented 
to CS concepts in this context and thus must deal with partial 
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conceptualizations from which users may face issues when in 
need to implement problems outside the scope of the 
conceptualizations of the tool, and their solutions, although 
correct, may not be suited for the conceptualizations on the tool 
they are using, which may lead to users’ frustration, thus 
impacting his/her learning.  

In this context, we consider that designers should be aware 
of the effects of the signs they choose to communicate CS 
concepts which have been implemented in these tools. Thus, 
semiotic engineering helps us in two aspects. First, by 
identifying and discussing how these tools communicate their 
own implemented models of concurrent behavior. Second, 
considering that there is a great chance that students with 
different background may enroll in the same CS course during 
graduation, semiotic engineering helps us to provide 
instructors, directly, and students, indirectly, awareness on how 
distinct tools describe similar CS concepts, thus supporting 
both learners and instructors in capturing the essence of the 
concepts.  

Step 6.  After having a clear picture of the model of 
concurrent behavior from Step 4 and the designers’ 
metacommunication message we proceeded to a contrast 
between the perceived model of concurrency and the 
metacommunication message of concurrency. This allows us to 
identify details about conceptualizations of concurrency, 
inconsistencies about the perceived concurrency and how users 
are communicated about it, among other details we describe in 
Section VI. 

IV. ANALYZED TOOLS 

For this research, we analyzed five CT tools: AgentSheets 
4.0, Scratch 2.0, Greenfoot 2.4, NetLogo 5.1.0 and Alice 3.0. 
The tools themselves are built from distinct perspectives in 
mind and with distinct set of primitives to create programs. In 
general, all tools analyzed are centered on the programming of 
an element, a scenario or environment on which this element is 
placed, and a set of programming constructs which allow the 
user to manipulate it. As a reference, Table I shows the 
relationship between these elements, which are described later. 

 We applied the same framework to categorize CT learning 
environments as defined by Kelleher and Pausch [19] and 
analyzed these tools to evidence their similarities and 
differences. This characterization is presented in summary in 
Table II. We note that although very extensive, this framework 
could leave behind some characteristics that newer 
environments present for users to support programming. For 
instance, all tools we analyzed have some type of markup for 
programming constructs, being it colored syntax or even blocks 
that differentiate programming constructs. Despite of that, this 
framework provides to us an interesting analysis of each tool, 
which we discuss next.  

AgentSheets is a CT tool whose programming is based on 
events, which the user defines for each “agent” in the 
“worksheet”. An agent is a programmable object in which we 
can act upon. To this extent, the programming language 
constructs are designed to manipulate these agents by 
providing primitives such as “move” and “see”, which create a 
connection with the physical world. This language is 
manipulated using images with a color affordance to represent 
conditions (what the agent perceives in the environment) and 
actions (how the agent acts on the environment) agents can 

perform. The tool only allows to place conditions and actions 
in their respective places in a rule, which is one command one 
agent evaluates for execution. Once programmed, we can 
manipulate an agent during the execution of the program, 
which is related to the liveness property of concurrent systems 
[19]. Lastly, it provides a tool for debugging, called 
Conversational Programming, which allows users to analyze 
the running code and make changes according to user’s needs. 

TABLE I.  RELATIONSHIP BETWEEN ELEMENTS OF CT TOOLS ANALYZED 

 Programmable 

element 

Scenario Programming 

Constructs 

AgentSheets 

4.0 

Agent Worksheet Conditions/ 
 Actions/ 

 Triggers 

Scratch 2 Sprite Scene Blocks 

Greenfoot 

2.4 

Actor World Methods 

NetLogo 

5.1.0 

Agent Interface/ 

View 

Functions/  

Procedures 

Alice 3 Class Scene Methods 

Scratch is similar regarding the style of programming and it 
is based on the manipulation of objects (here called sprites). 
There are also commands which match physical behaviors of 
sprites, such as “move” and “turn”. However, its programming 
language shares some resemblance with common programming 
languages, providing for and while loops, and conditionals 
which can be employed to manipulate sprites on the screen. 
These commands are grouped in categories for the type of 
behavior they allow to manipulate. These commands, which 
are called blocks, have a special shape which prevents the user 
from placing them in an incorrect position. This prevents 
syntax errors during programming. Scratch does not explicitly 
provide a debugging tool, although users can run scripts (which 
are pieces of code) individually, allowing them to look for 
errors locally. 

Although projected to be an educational environment, 
Greenfoot goes in a different direction in the sense of the style 
of programming. Since it uses Java as the programming 
language, it provides an object-oriented approach, with all the 
power of this programing language, thus having all kinds of 
loops, conditional, parameters, procedures and user-defined 
data types. To build a program, users can type text for most of 
the coding process, although it is possible to place actors 
(which are graphical representations of classes) in a “world”. 
This tool provides few ways to avoid syntax errors, by coloring 
parts of the code. However, most of the written code does not 
have this support. Apart from that, there is an API with 
methods that allow users to manipulate actors, such as “move” 
and “turn”, like in Scratch.  
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TABLE II.  COMPARISON BETWEEN ANALYZED PROGRAMMING LANGUAGES BASED ON FRAMEWORK FROM [19]. 

 
 

AgentSheets 4.0 Scratch 2 Greenfoot 2.4 NetLogo 5.0.1 Alice 3 

Style of 

Programming 

event-based; object-

based 

Event-based; object-

based 
object-oriented event-based; procedural object-based 

Programming 

constructs 

procedures or 

methods; variables; 
parameters 

for; while; count loop; 
variables; parameters; 

procedures or methods; 

conditional 

for; while; count loop; 

variables; parameters; 

procedures or 
methods; conditional; 

user-defined data types 

conditional; for; while; 

count loop; variables; 

parameters; procedures/ 
methods; user defined 

data types 

conditional; for; while; 
count loop; variables; 

parameters; procedures/ 

methods 

Representation 

of Code 
pictures pictures text text pictures 

Construction of 

Programs 

assembling graphical 

objects; 

assembling graphical 

objects; 

typing code; 

assembling graphical 
objects 

typing code 
assembling graphical 

objects; 

Support to 

Understand 

Programs 

debugging; physical 

interpretation; 

liveness 

physical interpretation; 

liveness 

debugging support; 

physical interpretation 

debugging support; 

physical interpretation; 

liveness 

physical interpretation; 

liveness; 

Preventing 

Syntax Errors 

physical shape 

affordance; selection 
from valid options; 

dropping only in 

valid location 

physical shape 
affordance; syntax 

directed editing; 

selection from valid 
options; dropping only 

in valid location 

none none 

physical shape 

affordance; selection 

from valid options; 
dropping in valid location 

Designing 

Accessible 

Languages 

limiting the domain; 

user-centered 

keywords 

Limiting the domain; 

remove unnecessary 
punctuation; user-

centered keywords 

limiting the domain; 

user-centered 

keywords 

limiting the domain; user 

centered keywords; 
remove unnecessary 

punctuation 

limiting the domain; 

removing unnecessary 
punctuation; user 

centered keywords;  

Support 

Communication 
network-shared network-shared  none none none 

Choice of task 
fun and motivating; 

educational 

fun and motivating; 

educational 

fun and motivating; 

educational 

fun and motivating; 

educational 

fun and motivating; 

educational 

 

NetLogo is a tool which employs a style of programming 
more distant from the other tools we analyzed. It is also event-
based, but it employs a procedural approach to programming. 
Users must define functions and define on it each aspect of the 
game. Although the programming language has functions that 
provide connection to the graphical aspect of the program such 
as forward or fd, which move the agents forward, these are 

only visible once the user plays the game, which means there is 
no way to manipulate graphical objects other than by textually 
coding them. However, NetLogo allows us to change the 
execution at runtime, by employing variables that can be set 
during the run of the program. 

Alice is an object-based tool. Despite the programming 
language being a simplification of Java, it allows the user to 
manipulate only methods from actors it brings. However, new 
methods can be created, and many Alice-exclusive primitives. 
These provide conditionals, loops, variables, parameters and 
procedures which allow the user to manipulate actors in the 
environment (here called scene). The construction of programs 
is based on the graphical manipulation of both methods and 
primitives of the programming language and actors from a set 
of actors provided by Alice. These are mostly characters and 
abstract elements such as rectangles and spheres, which limit 
the domain of the programming activity to storytelling 
purposes. 

V. ANALYSIS OF IMPLEMENTATIONS IN CT TOOLS 

 As defined in Step 3 in Section III, we implemented in each 
CT tool multiple versions of the Dining Philosophers obtained 
from Step 2. This allowed us to analyze if different 
configurations of the code in each CT tool would result in 
different concurrent behaviors. Each configuration used a new 
subset of programming constructs from these CT tools to 
describe each step of the Dining Philosophers. Table III shows 
a summary of the respective number of configurations and the 
programming constructs explored to create them. It is also 
interesting to note how each programming construct was 
employed in each CT tool for each version.   

On AgentSheets we created 8 versions of the game. The 
versions differ mostly regarding the representation of agents 
and the representation of the fork-taking process. Regarding the 
representation of agents, AgentSheets provides us with two 
ways of defining them: by one agent with multiple depictions 
or by creating multiple agents, one for each fork and 
philosopher (Fig. 1). This is possible because there are 
programming primitives which allow us to operate on instances 
of agents or depictions. As we could note, exchanging these 
primitives did not change the result of the program. Also, we 
varied how the fork was taken. It is possible to either define 
one rule on each philosopher for the “taking” process, in case 
we use one agent to represent each philosopher, or a set of rules 
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on one agent, if we use depictions. Also, we could apply rules 
to the fork to guarantee that it will be eventually taken, and to 
assure it is not taken multiple times. This also did not change 
the result of the game when compared with other versions 
created previously in the CT tool during our analysis. Thus, we 
concluded that in AgentSheets the primitives have no distinct  

TABLE III.  VERSIONS AND VARIATIONS APPLIED TO PROGRAMS CREATED 

IN EACH CT TOOL. 

 
# of 

versions 
Variations 

AgentSheets 

4.0 
8 

single/multiple agents to represent 
forks/philosophers; single/multiple rules for 

fork-taking process; reordering of agents on 

environment 

Scratch 2.0 5 

using broadcast or variables to change the 

state of forks; changing position of conditional 

parameters and instructions; using clones 

Greenfoot 2.4 5 

single/ multiple actors to represent forks/ 
philosophers; changing method for 

philosopher to interact with fork; reordering 

placement of actors 

NetLogo 5.1.0 5 

using functions for each step of Dining 

Philosophers; not using functions for fork-

taking process; creating each philosopher 
individually; using ‘ask-concurrent’ primitive 

Alice 3 5 

using do in order/do together; 

changing order of agents; changing order of 

fork-taking conditionals; using variables for 

fork state; 

influence in the result of the game. This difference is implicit 
in the way agents are positioned in the game environment. We 
then created a version in which agents are positioned in 
different places from the other versions, and this changed the 
game outcome, since the philosophers who ‘took’ the fork were 
different from the other versions of the same game. 

 On Scratch, sprites are the main element to program, which 
resemble the concept of agent on AgentSheets. Additionally, it 
is possible to program in the stage (the worksheet, on 
AgentSheets. However, commands acting on sprites, which 
were needed to implement the problem we defined, must be 
placed on the sprite’s script area. Thus, it was not possible to 
describe any of the needed behaviors only using the stage area. 
Additionally, to make a sprite to respond to an action from 
other sprite, Scratch provides the “broadcast” command. We 
applied this command in our versions to allow forks and 
philosophers to respond and change states. Given the 
procedural paradigm in this programming language, we 
changed positions of instructions and conditionals to check if 
there was any difference regarding the result of the game. Also, 
we employed the use of variables to define the state of the fork, 
to analyze the game behavior (Fig. 2). Only in this case the 
result differed from the other cases. In a further investigation, 
we discovered that the broadcast command is treated in a 
different manner than other primitives and since we did not 
need to use it to explicitly change the state of the fork, we got a 
different result.  Additionally, we used the concept of clones 
Scratch provides to create sprites at runtime, with no difference 
in the outcome of the program when compared to the use of 
“broadcast” command. We created a total of 5 versions in this 
CT tool. 

 

Fig. 1. Example of distinct representations of a Philosopher on AgentSheets; 
in the left, there is one agent with depictions for instances of philosophers and 

their state; in the right, each philosopher has its own agent on AgentSheets. 

 

Fig. 2 Two representations of the fork taking: Above, using broadcast only 

and the second; below, using variables to represent the states of the fork. 

 On Greenfoot, we created 5 versions of the game. These 
versions varied according to how we defined the actors, if 
using one philosopher class (actor) with different images or 
multiple classes (actors); adding a restriction to fork’s behavior 
to guarantee that the fork is taken and it is taken by only one 
actor; using a different method available to check if the fork 
was taken than it was used in the initial version; and changing 
the order of definition of actors and their placement in the 
environment (world). The first 4 versions we mentioned did not 
affect the result. It was only by changing the actors positioning 
order that we could see a change in the result of the game (Fig. 
3). This allowed us to infer, later, the concurrent behavior of 
the Dining Philosophers on Greenfoot. 



46                                                                                                          SBC Journal on Interactive Systems, volume 9, number 1, 2018 

ISSN: 2236-3297 

 

Fig. 3 Different sequence of actors positioning on Greenfoot 

 On NetLogo, we created 5 versions of the game: one using 
functions at all steps of the definition of the Dining 
Philosophers; one not using functions on the fork taking 
process; one using a one-by-one definition and placement of 
agents; one using a button and an implicit call for agents to 
pick forks (Fig. 4); and one using the “ask-concurrent” 
primitive. From these variations, the only change was 
perceived when using ‘ask-concurrent’ on one of the methods. 

Finally, on Alice, we created 5 versions, varying the use of “do 

in order” and “do together” for programming the 

behavior of philosophers (Fig. 5); varying the use of do in 

order inside or outside if’s which describe the fork-taking 

process; and using variables to discriminate the state of the 
forks during the fork-taking process. In our analysis, we could 
see that do together and do in order change the output of 

the program, specially when changing it to control the 
execution of each “if” which controls each philosopher process 
of taking the forks. 

Creating these versions allowed us to have a clearer picture of 
the influence of primitives used to create instances of the 
Dining Philosophers in these tools and hints about the 
influence of the CT tools interface and interaction signs, in the 
sense of a semiotic inspection we performed on our proposed 
methodology. 

VI. FINDINGS 

In this section, we present the results of the application of 
the method described in the previous section. In this section, 
we present the rationale about the model of concurrent 
behavior.  

 

 

Fig. 4 Use of functions to represent the fork taking above; and less functions 

below, on NetLogo. 

 

Fig. 5 Alice and the use of do in order and do together. 

Following we present the metacommunication message of 
each tool as revealed by SIM, and finally, the contrasts 
regarding the concurrent behavior modeled and the result of 
SIM. 
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A. Models of Concurrent Behavior 

The models of concurrent behavior we describe here result 
from the analysis of outputs generated by the implemented 
versions of the Dining Philosophers. As previously mentioned, 
each CT tool allows us to create multiple versions of the same 
game, due to the possible ways of representing each part of the 
pseudo-code in each tool. However, overall these variations did 
not influence the final model of concurrent behaviors we 
inferred from the outputs, although they allowed us to perceive 
the existence of distinct models in the same CT tool. 

For all tools, influences on the program outcome were 
noticed when placing agents on the simulation environment 
and when programming behaviors for an agent. The placement 
of agents is different in each tool we analyzed. The 
spreadsheet-based environment of AgentSheets, for instance, 
does not allow agents to be placed in a perfect circle. However, 
it is possible to place agents in the same relative positions as in 
other environments, which allows us to define the similar 
behavior of each philosopher and forks equally, in the sense of 
the pseudo-code. Figure 6 shows this situation between 
AgentSheets and Scratch.  

Regarding the definition of agents’ behavior, the paradigms 
each CT tool employs allow the user to define the behavior of 
agents in many ways. On AgentSheets, Scratch and GreenFoot, 
behaviors are programmed inside agents, with code being 
defined in and for an agent/sprite/actor. On NetLogo and Alice, 
behavior is defined outside of agents, inside the Code tab, for 
NetLogo, and inside the Scene, for Alice. This last 
characteristic allows users to have more control over how 
agents are visited, thus influencing the concurrent behavior of 
the game or simulation. Figure 7 presents a comparison 
between Greenfoot and Alice coding strategy, in which on the 
former, we have the “Philosopher” class containing the 
behavior of the Philosopher, through the “act” method, while 
on the latter, behaviors are described on the “Scene”. 

 

Fig. 6. Simulation environment for AgentSheets on the left, and Scratch, on 

the right. 

In order to discuss these distinct models in a consistent 
manner, we use Petri Nets. Figure 8 shows the Petri Net for our 
version of the Dining Philosophers. A Petri Net consists of 
places and transitions. Places can be states or parts of the 
system, depending on which aspect of the system we want to 
model. Transitions are triggers to the occurrence of these 
events. This is described in a “run” of the Petri Net, in which 
we describe how each of these transitions occur. These 
transitions can occur simultaneously, given they have the 
correct premises to run. 

In our model of the Dining Philosophers, forks are 
represented as places labeled “Fx”, were “x” ranges from one to 
five, and containing one token each, to represent its 
availability. Philosophers are also places named “Px”, also with 

“x” ranging from one to five. Transitions are rectangles 
unlabeled and represent the act of getting the fork for each 
philosopher. In this version, we modeled only the process of 
getting the fork which is the concurrent behavior we wanted to 
analyze in each CT tool. Thus, there is no repetition in the fork-
taking attempt which the original Dining Philosophers problem 
states. We employ this model as a basis for discussing the 
models of concurrent behavior we unveiled from our analysis.  

After the analysis of the running of the implementations on 
the CT tools three models of concurrent behavior emerged. 
These models are mainly based on a deterministic running of 
the processes, although there are variations among them. The 
first, presented on Figure 9, is a sequential solution, which 
resembles a mutual exclusion solution, and AgentSheets and 
Scratch implement it. In this case, each process “acquires” a 
lock and must wait until the “lock” is released. 

 

Fig. 7.  Greenfoot code on Philosopher on the left, and Alice's code about the 

Philosopher, on Scene, on the right. 

On AgentSheets and Scratch, the interpreter controls this 
locking mechanism, which allows one agent/sprite to run at a 
single time (a solution for a critical section problem, common 
in concurrent programming [2]). However, there are 
differences on which agent is locked first. On AgentSheets, the 
locked agent is the last agent inserted on the worksheet and 
using one agent with distinct depictions (the “costume”-
equivalent of Scratch on AgentSheets) or using distinct agents 
did not change this order. On Scratch, it is the last manipulated 
agent that runs first. In both environments, this characteristic is 
external to the implementation, thus the “Fixed” behavior we 
describe in this model.  The model is represented on Figure 9. 
On it, we see that transitions are run sequentially, given the 
model predicts a sequenciality in the fork acquisition for each 
agent/sprite in these tools.  

 

Fig. 8. Dining Philosopher modeled using Petri Net modeling notation. 
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Another interesting thing to notice in this case is the use of 
the broadcast command. One of the implementations uses 

broadcast to make the “Fork” sprite to hide, in order to 
represent the fork being taken. However, on Scratch, using this 
command does not “lock” other sprites. This generates a 
contrast between the expected output and the occurred one, 
since all the other sprites will assume there are forks available 
for them, when in fact this is not the case since other sprites 
have already initiated the “fork taking” process.  

A second model can be perceived on NetLogo and 
Greenfoot, and it is presented on Figure 10. On these tools, 
there is also a sequential behavior, but there is a previous step 
regarding the choice of which agent always runs first. On 
Greenfoot, the order of execution is defined by the order the 
agents are created and positioned which is defined by how they 
are written on the World code. However, this step is not 

explicit in the programming activity, but it is possible to see it 
since the programmer is able to access the World’s code and 

change this order. On NetLogo, when using ask, this is not 

possible, since the agents execute on random order, even 
though they are created in a particular order as one of our 
implementations showed. This is in line with Ben Ari [3], who 
claims that this is a behavior of concurrent programs, thus 
NetLogo is correctly representing the expected concurrent 
behavior. Other tools did not present the same outcome. 
However, these are part of the external factors that change how 
the concurrency issue is solved but are not part of the problem. 

Alice implements the third model, whose interesting 
characteristic is the possibility of exploring the sequential, or 
parallel behavior of the execution. In order to allow this, this 
tool provides two commands, do in order and do it 

together, which changes the way the commands inside 

these instructions are interpreted6. The first one allows us to 
execute each command inside it sequentially, like in the model 
on Figure 11. The second one allows us to run the commands 
at the same time, which allows us to make sequence of 
commands run parallel, represented on Figure 11. This kind of 
control is not present in the other tools. 

Nevertheless, two comments about these commands can be 
made regarding the results they allow us to express. First, 
depending on where we place these commands, we can get 
distinct behaviors. If we place all the behaviors (represented by 
if’s) inside a do in order, it behaves as AgentSheets and 

Scratch in Figure 9, although each fork is taken individually, 
instead of them being taken at the same time on the simulation. 
If we use do together instead, we get a strange behavior, 

since all forks are taken simultaneously, as if they are all 
available. 

 

                                                           
6 http://academy.oracle.com/self-study/alice/alice_7_3.html 

 

 

Fig. 9. Sequential model that emerges from AgentSheets and Scratch 

implementation analysis. Yellow elements represent the additions for tools to 

run the model 

Additionally, the forks are taken by philosophers randomly, 
an effect similar to the NetLogo model. As we can see in 
Figure 10, this behavior changes the expected model, since we 
consider that each fork is available even when it was taken 
before. This is not correct for the model and it is not a correct 
solution of the problem. This happens because in this situation, 
each condition is checked at the same time, which does not 
give time for the simulation state to change for each 
philosopher. This does not happen if we place only the 
command moveAndOrientTo(), which represents the taking 

of the fork, inside the do together on each if rule. In this 

case, both forks are taken at the same time, which is the same 
way AgentSheets and Scratch perform. 

B. Metacommunication Message of CT Tools 

The models of concurrent behavior depicted earlier provide 
us a clearer picture of the underlying concurrency concepts, 
which are presented to the user via designers’ messages. In this 
subsection, we contrast these models with findings from the 
application of SIM on CT tools. We categorize our findings 
regarding the strategies for communicating concurrency that 
tools are implicitly employing, thus visualizing the 
conceptualizations of concurrency that occurs in these CT 
tools. 
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Fig. 10. Model of concurrent behavior for Greenfoot and NetLogo 

 

Fig. 11. Alice`s model when using "Do Together" outside if`s. 

1) Acting/Triggering of processes 

In a concurrent environment, a trigger is expected to start 
the execution of the model. From a “natural world” 
perspective, these triggers can happen due to causal events, as 
can be seen on the Petri Net on Figure 3, for the Dining 
Philosophers problem.  On the “computational world” which 
these tools implement triggers are mostly bound to causal 
events, as would be natural. Despite that, three variations on 
how they communicate this to the user can be found on these 
tools, which are: 

• Implicit: there is a unique trigger that cannot be changed 
other than building upon it. Greenfoot has an example of this 
kind. Each object on the simulation has a “act” method, which 
according to its documentation “... is called by the Greenfoot 
framework to give actors a chance to perform some action. At 
each action step in the environment, each object's act method is 
invoked, in unspecified order.”7 This is reinforced by the 
interface, when we right-click an agent and see the act() as 

                                                           
7 https://www.greenfoot.org/files/javadoc/#act  

one of the options. Clicking on it starts the running of the 
single agent clicked before. However, there are no explicit 
references to this behavior in static and dynamic signs; it is 
only on metalinguistic signs that we are able to understand 
what act() means clearly. The downside of this option is that 

it would drive the user to create unnecessary abstraction to deal 
with specific types of triggers, which could lead to errors when 
these created triggers overlap with the model provided by the 
tool.  

• Default: AgentSheets, Scratch and Alice shows one 
default trigger for starting the running sequence, in distinct 
ways. AgentSheets and Scratch own a set of triggers (or events, 
on Scratch) that can be used to start some execution. Scratch 
has no default trigger depicted on the coding area. However, 
the “flag” on top of the Stage area blinks when the program 
starts to run indicating that the flag can be used as trigger. 
Alice’s interface has a default method for running the Scene, 
which is the “Scene Activation Listener”. Despite of this any 
type of code can be added, including a specific trigger for any 
moment in time, for instance. The same issue about creating 
unnecessary abstractions that could overlap with the default 
trigger that happens on implicit models could happen to default 
models, if they are not communicated explicitly as options of 
triggering. 

• Open: Open triggers are the most interesting since they 
allow the user to explore different possibilities of starting the 
execution of agents, which can minimize non-desired 
concurrent behaviors. However, they do not allow showing 
trigger options that could happen in a real environment. On 
NetLogo, there is no evident trigger that could be used, and 
interface signs provide no clue about what could be used to 
start the simulation. However, according to the documentation, 
“ask” is the way we can run commands on processes, which 
means this is NetLogo “default” way of running an agent 
behavior, but not an entire simulation.  

2) Ordering of processes 

The models analyzed reveal that the common concurrency 
solution is based on a turn-taking mechanism, similar to a 
locking mechanism, common in concurrency solutions [3]. 
Each model provides a specific way of dealing with this 
mechanism. Our semiotic analysis shows that the 
communication of this mechanism does not reflect the 
proposed ordering by these tools nor provides a way to 
reviewing this ordering. Additionally, the order presented by 
the user, that of the scenes/stages and the gallery of agents 
deviates the user from a semiosis that leads to the correct 
interpretation of the ordering that the tool implements. Only the 
multiple execution of the program allows the user to correctly 
describe how each agent is visited. Additionally, some of the 
tools allow the user to run only parts of the code or one agent’s 
behavior, which allows the user to see for him how one agent 
would behave if only him runs. 

For the tools with the “Sequential Fixed” model of 
concurrent behavior, there is a distinction on how to 
communicate ordering for each tool. On AgentSheets, interface 
and worksheet provide us with two distinct orders of agents. 
None of them are used on the model, since the actual order 
comes from the stack created from the last to the first agent 
inserted on the worksheet, and not the order of philosophers 
inserted on the worksheet as described by the user. 
Metalinguistic signs on the documentation of AS describe the 
running of simulation when the Run button is pressed: “The 
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Run button starts the simulation […]. When the simulation is 
running, all agents with a While Running method execute the 
behavior defined in that method.”  It does not describe how 
agents are visited. Scratch also does not communicate a 
specific sequence of execution. However, it is possible to run a 
single agent’s code to see how it behaves. However, on one of 
the implemented versions, in which we used “broadcast” as a 
mechanism for the action of getting the forks, using this would 
make the user mistakenly think that the implementation works 
correctly, when in fact, it does not, since when running the 
simulation, all agents mistakenly get forks, due to a specific 
behavior of the broadcast script that leads to this error.  

On tools with the “Sequential Flexible” model, NetLogo 
and Greenfoot, there is also a difference on how these tools 
deal with ordering. Greenfoot has similar signs of execution 
when looking at static signs as AgentSheets. Both have a Run, 
Step, Stop and a slider for controlling the execution NetLogo 
also has. However, neither of them provides signs to the order 
of processes executed. On Greenfoot, the World class contains 

the code which reveals the ordering of agents’ execution during 
the simulation. When adding an agent via interface, the user 
does not see this code and therefore cannot reach a correct 
conclusion about the model implemented. On NetLogo the 
visiting of agents is random and no signs, metalinguistic or 
static, allow the user to capture this behavior. Only by running 
the simulation multiple times is that the user can see such 
behavior. 

The last model, implemented by Alice, is an open model 
since it allows the user to choose which model to run. 
However, as noted before, this choice must be made carefully 
in order not to create live lock situations as seen in one of the 
game’s implementations on Alice, when in each “step” of the 
game, the same fork “x” is taken by distinct philosophers. 
Regarding the communication of these issues, metalinguistic 
signs present on Alice`s tutorial on Oracle, accessible by the 
link on help menu provide few clues about the range of 
behaviors regarding the ordering of processes visiting. 
However, this is minimized given the way code is written, in 
the Scene methods that control execution. The user explicitly 
states the order of execution. When using the do together, 

user will perceive misplacing when running the project. 
However, as in some of the other tools, user cannot run one 
process at a time to analyze the behavior of agents, which 
makes it difficult for users to visualize how a specific process 
behaves in comparison to the sum of the activities. However, 
this issue is diminished in the sequential model, when using do 

in order, since users can see each step being performed as 

an animation. 

3) Atomicity of a cycle 

Another characteristic of concurrency is the concept of a 
process atomicity. In each model presented, we describe the 
philosophers and forks as places on the tool. Although the 
model runs concurrently, the processes are independent and 
equipotent units of the entire program. On the tools analyzed, 
although there the concept of process is present, under the 
name of “agents”, “sprites” or “actors”, there is no consistency 
among static, dynamic and metalinguistic signs regarding the 
atomicity of a process. 

On AgentSheets, Greenfoot and Scratch the concept of 
cycle or turn is bound to a complete run over all agents. 
However, the slider in these tools (which allows us to see this 

characteristic) is misleading in the sense that it allows the user 
to consider that it would slow down or speed up the running of 
a single agent at a given time. On Alice this happens 
differently, since the slider allows the user to change the frame 
speed, or how fast agents perform their behaviors. In the “do 

in order” version of Alice implementations of the problem, 

it is possible to visualize each agent performing one step at a 
time whilst using “do together” inside the if’s it is not possible.  

On NetLogo, metalinguistic and static signs on the interface 
show the tick function, which represents a step of the 

execution on NetLogo and when called, it adds 1 to a counter. 
However, a tick can only be called on observer procedures. 

An observer is an agent external to the simulation. This 
characteristic would guide a novice programmer to infer that 
this is the only possible granularity for a process execution, 
which is not true outside of NetLogo. 

4) Concurrent programming ontology 

The categories previously described provide us with a 
picture of how concurrency emerge from these tools. 
Additionally, the programming languages on these tools allow 
us to create and manipulate concurrent concepts. From our 
analysis, two subcategories regarding programming constructs 
emerged. The first one talks about the representations of 
process and concurrent tasks on these tools, while the second 
calls the attention for the visual component that influences how 
concurrent programming is implemented. 

Programming constructs: Expressing concurrent behavior 
in these tools vary, at the programming language perspective, 
since each tool employs a specific programming paradigm, but 
tools also share specific characteristics regarding the 
characterization of a process. The first noticeable element is the 
naming of a process. AgentSheets and NetLogo name it an 
agent. Scratch name it Sprite; Greenfoot, actor; and Alice, 
Class, which is closer to the object oriented paradigm, or the 
Actor model of concurrent programming [8]. The way a 
programmer manipulates these elements also varies. On 
AgentSheets and Greenfoot, it is possible to create instances of 
the process, which contains all the behaviors programmed 
earlier. On Scratch, like in the other tools, it is possible to 
create a copy of a process, although this copy has no 
connection to its sibling. It is indeed possible to clone a process 
on runtime, but this agent has no identification inside the tool, 
which demands the user to create an additional abstraction to 
name each clone of an agent and to manipulate its behavior 
separately, if needed. In the case of the Dining Philosophers, to 
use clones, we would still need to differentiate each agent to 
identify which forks are next to each agent.  

Concerning behaviors, there are also distinctions among the 
tools. On AgentSheets, Scratch and Greenfoot behaviors are 
programmed in the processes. Scratch and Greenfoot can have 
behaviors programmed on the scenario. On NetLogo and Alice, 
the simulation behavior is not part of the agent. Considering 
concurrency, allowing us to control the process from outside 
allows the programmer to have control how processes run, 
since we can program its behavior. On NetLogo, this is 
possible if the user calls ask for each agent created; on Alice, 

the tool provides the “do in order” and “do together” 

constructs. On Scratch, Greenfoot and AgentSheets, the 
programmer would need to explicitly order the execution on 
top of the present order, which is creating an unnecessary 
abstraction in this case. 
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Visual component: The visual component in these tools 
allows the user to see its programming coming to life and it is 
an important aspect of these tools for the promotion of 
programming. Concerning concurrent programming our 
analysis shows an intersection between the visual component 
and the programming activity, which by one hand makes the 
concurrent behavior easily visible, but on the other hand 
creates an extra layer of abstraction for the user to program 
concurrency, since the programmer needs to consider that the 
result will be visually perceptible, considering that the visual 
element is part of these tools. 

On the tools analyzed, programming languages are bound 
to the visual component at some part of the programming 
activity. On AgentSheets, for instance, to “see” a fork, we need 
to place it next to two philosophers, since the See construct 

demands that agents need to be in one of the adjacent cells to 
be visible. On Scratch, Greenfoot and Alice, this demands that 
the users need to be touching for us to use the programming 
constructs provided by the tools. If philosophers and forks are 
not touching each other, he/she needs to create additional 
abstractions to achieve the behavior of getting the fork, which 
can be challenging for a novice programmer. On NetLogo, this 
is the first solution available for the programmer and in this 
case, there is no changing of the paradigm for programming 
this behavior.  

VII. DISCUSSIONS 

This paper investigated conceptualizations of concurrency 
on five CT tools. The systematic evaluation we present allows 
us to discuss, in the perspective of computational thinking 
acquisition, the role of tools, which along with the curricula 
and teachers, also communicate CS concepts to novice 
programmers. As our research shows, there are many aspects 
of concurrency concepts that emerge from interface signs 
designers expose to users, whether intentionally or not. These 
concepts, however, are usually bound to one kind of concurrent 
behavior. As mentioned in Section VI, only Alice would make 
explicit different concurrent behaviors using different 
programming constructs. Furthermore, as we also discussed, 
these concurrent behaviors are in general inconsistent with 
concurrency as explored in CS, since few consider, for 
instance, the nondeterminism during the execution of the 
program. In this sense NetLogo brings the closest approach, in 
line with these concepts of nondeterminism which are 
important to talk about concurrency [2].   

 Our analysis of the contrast between models of concurrent 
behavior and SIM allowed us to evidence the 
conceptualizations of concurrency each tool provides to users. 
The categories of concurrent communication strategies points 
that these conceptualizations vary among tools, and 
concurrency itself is underexplored by them in a higher level of 
representation. This can be explained since exploring 
concurrency is not an explicit goal of these tools. However, 
they bring concurrent conceptualizations demanded to run 
programs. Our argument is that these needs to be better 
explored to avoid all sort of difficulties which could be brought 
through the manipulation of these concepts by learners.  

A. Mappings findings with literature 

From the literature, we can map our findings regarding 
concurrency learning. First, regarding triggers, the 
understanding of the triggering mechanisms can be related to 

the existence of a clock in the execution, which controls when 
processes will start running. This is closely related to the 
understanding about how computers deal with concurrent 
processes. Difficulties in understanding this particular point are 
reported in the literature, for instance when students assume 
there is a global clock where none exists [9]. For these types of 
students, default or implicit triggers could reinforce this wrong 
assumption. Also, this relates with the concept of simultaneous 
execution, when, taking AgentSheets and Scratch for instance, 
these triggers are spread over different processes. This could 
also cause problems for students, like the issues of Type II 
concurrency, when talking about concurrency on the agent 
itself. 

Many papers discuss students’ difficulties regarding 
ordering of processes, calling the attention for difficulties on 
dealing with coordination [10], or the program execution itself 
[11]. As research shows, students may not understand correctly 
the computational model (or world), which may create 
difficulties in assessing the correctness of the program. On a 
study about high school students’ knowledge structure and 
dynamic of the construction process of concurrent programs 
[12], findings show that dynamics of the execution of programs 
is a place for inadequate assumptions, especially when these 
behaviors are not similar to previous knowledge gained by the 
novice programmers, and students engaged in these activities 
not using pieces of knowledge related to concurrency. Despite 
using a specific tool to study concurrency, this work reveals 
that students may find trouble when dealing with the execution 
of concurrent programs. As we found in our research, signs do 
not expose details about the models of concurrent behavior, 
which could increase the type of misconceptions found in this 
and other research mentioned earlier in this section. For 
students, the mental simulation of the computational model can 
be difficult due to many possible scenarios in each run [13]. 
The misconceptions of the computational models are also allied 
with other discussions regarding the understanding of the 
concept of model itself [10]. Also the same issues are present 
when analyzing the use of a tool specifically designed for 
dealing with concurrent behavior when Resnick analyzes the 
use of MultiLogo by students [14]. 

The atomicity of the cycle is also an issue among students 
when learning about concurrency. This could cause problem 
decomposition issues [14], since students do not understand 
what are the limits of an execution, as the tools analyzed do not 
communicate it clearly, by communicating a step, or atomic 
operation, as the sequence of all processes runs, which could be 
related to the causal behavior of the Petri Net, but does not help 
in contrasting it with the computational world, whose contrast 
is the most valuable lesson. Specially for students that deal 
with sequential processes, these intermediary outputs would 
help them in understanding the concurrent execution [10]. 

Lastly, the programming ontology also shows that 
constructs and the visual component present in these tools can 
influence both the perception of concurrent execution and how 
users program concurrent behavior. Regarding the 
programming constructs, the role of the representation of 
concurrency has already been discussed. Different models, in 
this sense, may guide the user to specific characteristics of the 
concurrency domain [8]. However, the agent based 
programming has been considered an interesting way to deal 
with microworlds and their concurrent behavior [13]. 
Regarding the visual component that influences the CT tools 
analyzed, they can be also related to the representation chosen 
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for representing processes, to maintain its closeness to the real 
world. However, as noted in our implementations, their 
restrictions over the real world may impact users’ expression 
about concurrent behavior. This could be seen when using 
“touching” features of these tools, which in some of the tools is 
only possible if images are overlapping on the screen. The 
programming ontology chosen is not without reason. Designers 
of these tools have specific goals in mind when these were 
developed, to fulfill their purposes. 

B. Limitations of the study and future directions for research 

Although this research allows us to reveal 
conceptualizations of concurrency emerging from these CT 
tools, limitations regarding its reach must be considered. First, 
the case chosen allowed us to explore a concurrency situation 
where resources are being shared (in this case, forks). Other 
aspects of concurrency could be explored with other cases, 
such as mechanisms or algorithms for dealing with concurrent 
issues. However, the quality of a qualitative research is in the 
in-depth exploration of the data and its meaning. The same can 
be said for the tools chosen. Additionally, other tools can 
reveal additional conceptualizations of concurrency, and 
complement the results shown here. Another aspect is regarded 
to the execution of SIM after implementations were created. 
This previous implementation in the CT tools served as 
preparation for establishing the focus of analysis of the method, 
as it is recommended [2].  

However, it is important to note that our semiotic 
perspective reveals one side of the picture on how students may 
be influenced by how CS concepts are presented to them. Other 
perspectives can be taken for analysis. Cognitive aspects of 
these tools, for instance, could also be investigated. 
Considering that these tools provide a notation for expressing 
software, Cognitive Dimensions of Notations (CDN) 
framework could provide us interesting insights both about the 
tools and their notations. SIM were already combined with 
CDN framework before [15]. We could extend this method and 
focus on notations about CS concepts, to complement the 
results with our semiotic inspection. As a characteristic of the 
method employed for semiotic inspection, it only reveals the 
emission of the designers’ metacommunication message. 
Further research can be conducted to investigate the reception 
of this message by users of these tools, by using CEM [2]. 

This paper adds to the discussions of the role of CT tools in 
the context of computational thinking acquisition and presents 
opportunities for exploration of concurrency concepts during 
the computational thinking acquisition process. The mapping 
with literature about students understanding of concurrency 
concepts, evidences that already explored misconceptions 
which pre-university students may have can be impacted by the 
tools they may use, either previously to their encounter with 
these tools or not. Considering the widespread use of CT tools 
in the Computational Thinking acquisition activity, especially 
on pre-college education, it is crucial to understand the role of 
tools and what biases they might be creating on to-be 
professionals.  
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