
40 SBC Journal on Interactive Systems, volume 9, number 1, 2018

ISSN: 2236-3297

Computational Thinking Tools:
Analyzing concurrency and its representations

Cleyton Slaviero

Departamento de Informática (DI)

Pontifícia Universidade Católica do Rio de Janeiro (PUC-

Rio)

Rio de Janeiro, RJ - Brazil

cslaviero@inf.puc-rio.br

Edward Hermann Haeusler

Departamento de Informática (DI)

Pontifícia Universidade Católica do Rio de Janeiro (PUC-

Rio)

Rio de Janeiro, RJ - Brazil

hermann@inf.puc-rio.br

Abstract— Computational thinking (CT) tools, as a software

system, express their designers' perspective on how a selected set

of Computer Science concepts should be introduced, typically

hiding details to avoid unnecessary complexity. This paper

focuses on how concurrency is dealt with by five well-known tools

in this domain: Scratch, Alice, AgentSheets, NetLogo and

Greenfoot. We present the results of a systematic analysis

contrasting their model of concurrent behavior with the

corresponding metamessages, the messages about messages of

concurrency, that trigger users' interpretation and learning of

concurrency-related concepts. We present and discuss the

conceptualizations that potentially emerge from using these five

tools and compare them with established concurrency concepts.

Our findings indicate opportunities for an explicit exploration of

how some concurrency aspects are implemented in games and

simulations built with CT tools. We believe that this might

facilitate future learning and comprehension of complex

concurrency concepts, considering that the knowledge embedded

in these tools can also influence students’ understanding of

concurrency.

Keywords— computer science education, programming,

concurrent programming, semiotic engineering

I. INTRODUCTION

From the early days of the LOGO programming language,
created by Papert [11] as an educational tool for introducing
Computer Science (CS) concepts to young children, many
other tools have been developed to support computational
thinking acquisition (CTA) over the years and with many
distinct goals on mind. These tools are of a special kind of
programs: they implement the very same concepts that will be
taught by using them. For designers of these tools, it then
becomes a challenge to balance complexity of the implemented
CS concepts with the ease of use while enabling users to have
simple, yet powerful tools to express themselves through their
creations. If designers present all the complexity to users, these
tools may be too hard for novice programmers to understand; if
too easy, students may find it boring [13].

For engaging students in CTA, many tools focus on the
creation of games and simulations by providing multiple
resources (visual programming environments, domain-oriented
languages, among others) for developing them. This strategy
for teaching programming helps students to easily visualize the

results of their implementations with fun and engagement [14].
When building these games and simulations, students must
deal with multiple agents interacting with each other,
manipulating variables, and other programming aspects. Some
of these aspects relate closely to the concurrency domain,
which studies how processes may run in parallel without
negatively affecting each other [2]. Thus, these tools must
implement concurrency concepts to properly run students’
games and simulations, which adds to the set of concepts
designers must consider when building these environments.

As literature reveals no tool is suited for every concurrent
programming tasks [15]. MultiLogo, for instance, is well-suited
for robotic tasks, given its matching of the programming
language with a robot’s movements, but it could be difficult to
program massively concurrent processes, which would demand
primitives to manipulate and orchestrate them, either in a
centralized or decentralized manner [20]. Thus, when
presenting concurrency to users, it is important to consider
which aspects of concurrency need to be modeled. Otherwise,
whether these students become professional programmers or
not, these tools may impact students learning of CS concepts
due to inconsistencies between the concepts they learned and
the problems they might need to tackle. This could generate,
for instance, weak connections about synchronization as they
learned previously when trying to use the same concepts in
other problems [3].

To this extent, our research question relies on if and how
these trade-offs impact on how conceptualizations are
presented to users of these CT tools. We begin to investigate
this matter in this paper, in which we present a systematic
evaluation to investigate if and how concurrency is
conceptualized in five CT tools widely used to support CTA:
AgentSheets1, Scratch2, Greenfoot3, NetLogo4 and Alice5.
These tools aim at simplifying the programming process by

1 http://www.agentsheets.org

2 https://scratch.mit.edu

3 http:// www.greenfoot.org

4 https://ccl.northwestern.edu/netlogo/

5 http://www.alice.org

SBC Journal on Interactive Systems, volume 9, number 1, 2018 41

ISSN: 2236-3297

providing environments simpler than IDEs to develop
programming activities, focusing on novice programmers.

We implemented a modified version of the Dining
Philosophers problem, well known in concurrency domain, as a
case of concurrent behavior to be used as basis to discuss
concurrency in these tools. By analyzing implementations, we
programmed in each of the studied tools, we discovered three
models of concurrent behavior. In the literature, Petri Nets is a
well-known notation to represent concurrent behavior [12], and
it allowed us to better understand how each tool models a
concurrent behavior. Also, to investigate how concurrency
depicted in these models are communicated by designers, we
employed a semiotic analysis using the Semiotic Inspection
Method (SIM), a method from Semiotic Engineering which
focuses on the emission of designers’ intent [18]. In our
research, we focus on communication of concurrency in these
tools. We conclude our analysis by providing a contrast
between the models of concurrent behavior and results of the
SIM’s application. Finally, we discuss our findings and future
research that could emerge from the results of this study.

II. CONCURRENT PROGRAMMING AND CT TOOLS

Concurrent programming is a Computer Science topic
related to the study of processes in which resources must be
shared, such as CPU time, variables, memory addresses, among
others. It studies problems related to coordination,
synchronization and communication of processes to share these
resources maintaining consistency between each transition of
the machine’s state. As Ben-Ari defines, “A concurrent
program is a set of sequential programs that can execute in
parallel.” [2]. Hoare also brings an interesting definition of
concurrency [22]. It talks about interactions between processes
that require participation from both at the same time, in the
same event. The question is then how to precisely describe and
manipulate these kinds of events.

There are many approaches for describing concurrent
programming. One of the first attempts of formalization of the
concept comes from Hoare [21], who described their concept
of Communicating Sequential Processes (CSP). The Actor
model is another kind of formalism, in which processes are
seen as actors [22]. In both cases, they are communicating to
each other to reach an understanding in the concurrent event.
Petri Nets is another formalism for describing concurrent
behavior. It focuses on analyzing concurrent events from the
perspective of causality, which allows us to ignore, for the sake
of clarity, physical restrictions [12].

For CS professionals, concurrency is becoming of a great
importance, mainly due to the increase of multicore processors
and environments, which demands that professionals consider a
concurrent world when programming for it [5] However,
authors agree that concurrency can be a challenging topic to
teach [7]. The non-deterministic nature of concurrent
programs, for instance, can confuse students unfamiliar with
concurrent behavior, especially regarding the mastery of
programming tools and understanding the underlying data
structure that provides concurrent behavior [3]. Other authors
explore the teaching of concurrency to students in the early
years [5], which could bring interesting insights to the learning
and a toolbox for more complex learning of concurrency later
in the students’ life. However, bringing a single model of
concurrency is still not ideal, since it could make the student

think that there is only one way to solve concurrency [15].
Thus, although it is important to teach concurrency, we also
should make students and instructors aware of these different
possibilities of solving concurrency tasks.

Researchers explore concurrency in many ways, often
focusing on students’ understanding of the concept [15], using
the tools conceptualization of the concept and exploring it with
students [5], and studying the understanding of specific
concurrency concepts by students [1,3,7,16]. Although there
are works employing CT tools to support the learning of
concurrency, on Scratch for instance [10], little is mentioned
about how the implemented concurrency influences on the
learning activity. This happens mostly because the focus of
these studies is on the concept being taught through the tool,
and not by the tool. In this paper, we are interested in the
second perspective, which we consider it can also influence the
understanding of CS concepts, especially concurrency.

Also, as pointed out by Resnick, no single concurrency
model is well suited for every situation [15]. By model of
concurrency, we consider how these tools deal with concurrent
behavior implemented by users, for instance using semaphores,
locks, and other strategies to solve concurrency issues, and the
outputs which follow these strategies. Due to students’
creativity, implementation scenarios not well suited for the
current CT tool often appears, which demands that instructors
explain why its seemingly correct program is not running as
expected when comparing his/her natural view of the world to
a computational one [13,17], or why in the middle of the CT
acquisition his/her hypothesis about this world starts to fail.
These issues could demotivate them, when their recently
acquired knowledge appears not to work anymore. Thus, it
sounds reasonable to understand what the root of these
problems could be: CT tools’ conceptualizations about
concurrency.

III. METHODOLOGY

In a broader context, this research aims at studying whether
there is a systematic and effective way of knowing if and how
CT tools used in pre-college education promote computer
science conceptualizations which are consistent with what CS
majors learn in college education. In this paper, our goal is to
investigate the conceptualization of concurrency in a small set
of CT tools. To this extent, we employed qualitative and
exploratory research to investigate concurrency emerging from
these tools.

Our research method encompasses 6 steps: two for defining
the case to be studied, three related to the implementation and
analysis of the execution of the generated programs, one for the
Semiotic Inspection Method (SIM) [2], and one final step to
contrast the perceived execution and the results of the semiotic
analysis conducted using SIM.

Step 1. We chose a case to be studied and implemented a
set of tools to be analyzed. Regarding the case, we chose a
modified version of the Dining Philosophers, a well-known
problem in concurrency domain [3]. In the original problem,
five philosophers are seated around a round table and can either
think or eat. To eat, one philosopher must grab two forks, one
of each adjacent to each philosopher on its left and right sides,
respectively. If the fork is not available, he must wait until it is,
to eat. After eating, he puts back both forks on the table and
starts thinking again. In our modified version, philosophers can

42 SBC Journal on Interactive Systems, volume 9, number 1, 2018

ISSN: 2236-3297

only eat after the simulation starts running, and once two forks
are available, he grabs both forks, without releasing them. This
allows us to study how each of the CT tools we selected deal
with concurrency, instead of focusing on the problem itself.

Regarding the tools, we selected five widely used tools for
games and simulation programming. These are AgentSheets,
Scratch, Greenfoot, NetLogo and Alice. These tools were
selected because they deal with agents’ interaction, which is a
kind of concurrent behavior, since these agents can either be
processes and resources. In these environments, they interact to
each other via other agents, their visual image, or using
variables. These elements can be seen as shared resources,
given the context they are used, which raise the same issues
from the concurrency domain. Thus, these tools must
implement some concurrency-related solutions, to run games
and simulations which, as mentioned before, are often implicit
to the user and thus motivated our research.

Step 2. In order to follow a consistent implementation
process to compare each tool’s implementation of the case
studied, we defined a pseudo-code for the implementation
process, as follows:

Define Philosophers from 1 to 5;

Define Forks from 1 to 5;

For each Philosopher

Place it adjacent to philosopher i-1 and

i+1;

For each Fork

 Place it between forks i-1 and i+1;

For each philosopher

If left-fork and right fork are available,

then get both forks;

For each Fork

If fork is taken, lock it from being taken

by any other Philosopher;

Step 3. Next, we proceeded with the implementation of the
pseudo code from Step 2 in the CT tools. This led us to depict
multiple variations of the programs in each tool, since a tool
allows us to program a same case in many ways. As an
example, on AgentSheets we could define the five philosophers
as one unique Philosopher agent with five depictions (graphical
representation of an agent), or five Philosophers, each with its
own depiction. Implementing these variations was needed to
analyze if there were variations to the execution between
different representations of the same case in a given CT tool.
We describe these distinctions in the implementations in
section V.

Step 4. After implementing multiple versions of our
simplified Dining Philosophers, we ran each implementation to
uncover the model of concurrent behavior. For each CT tool,
we analyzed each implemented version output to depict how
agents were visited. From this, we elaborated models about the
concurrent behavior. In order to being able to discuss them
properly, we used Petri Net as a modeling notation [4]. In the
literature, Petri Net is widely used to model and study
concurrent behavior. It allows us to separate the problem from
implementations, which is interesting if we would like to
analyze the solutions implemented in different tools. A Petri
Net is depicted as a directed graph consisting of places,
transitions and tokens [4]. A place can be a state, a resource or
a process, depending on the given semantic. A transition
represents an action that can be performed by the system
modeled. A token, put inside a place, is a marking that
indicates the context of the net. Any transitions whose places
entering in it contain tokens are called “enabled”. A Petri Net

changes its state when every enabled transition is fired, which
makes the token “walk” from the input place to its output
places, each one receiving one token. A Petri Net model is
suited for describing non sequential behavior [5]. In this way,
given two events “a” and “b”, it is possible to distinguish an
execution of “a” after “b” from an execution of “b” after “a”,
not by the time they occur, but by their causality relation. By
doing this, we can model what is called truly concurrent events.

In our context, the Petri Net model can be employed as a
bridge between the “natural world” and the computational
world, in the sense that it allows to model the truly concurrent
behavior that emerges from a problem, from a physical
microworld, to these tools solutions, or the computational
microworld [6] in order to reveal how concurrency issues are
tackled by these tools.

Step 5. With these models of concurrency in hand, we
proceeded to a careful semiotic inspection of these tools to
understand how the models evidenced in step 4 are
communicated via interface, along with how concurrency itself
emerges from it. This semiotic analysis follows the Semiotic
Inspection Method (SIM) [2], which allows us to investigate
the emission of the designers’ metacommunication about
concurrency through these tools.

Semiotic Engineering characterizes Human-Computer
Interaction as a shared communication between designers and
users, in which designers, via metalinguistic, dynamic and
static signs perform the communication of a message about the
software, or metacommunication. These signs, which are
anything representing something to someone [2], shape the
metacommunication message. SIM is one of the methods of
Semiotic Engineering and it helps us to explore the emission of
the metacommunication message by designers at interaction
time, via analysis of metalinguistic, static and dynamic signs.
After thorough interpretation of these signs the researcher can
reconstruct the designer’s message, using the
metacommunication template. This template summarizes the
designers’ perceptions and expectations about the users and
their needs and expectation and provides the designer’s
characterization of what users should or must do to fulfill their
intentions.

For this paper, we focused on the designers’ message about
concurrency in each CT tool we analyzed. To this extent, we
considered a user, who already had knowledge about the tool
and could create games and simulations but had never faced a
concurrency issue. Then, his/her instructor asks him/her to
build the modified version of the Dining Philosophers, which
as depicted before, raises these issues for him/her to
investigate. In this paper, we focus on the final
metacommunication message of each tool and explore details
of each type of signs in their relationship with the concurrent
behavior models emerging from the analysis of the
implementations of the Dining Philosophers on each CT tool as
defined on Step 4.

Designer’s metacommunication about CS concepts in CT
tools has a interesting feature, since their message uses the set
of (Computer Science) concepts being learned by the users to
communicate them their message. Each of such tools have
distinct characterizations of the implemented CS concepts,
which are partially communicated in order to keep the activity
fun and engaging [7]. Novice programmers are being presented
to CS concepts in this context and thus must deal with partial

SBC Journal on Interactive Systems, volume 9, number 1, 2018 43

ISSN: 2236-3297

conceptualizations from which users may face issues when in
need to implement problems outside the scope of the
conceptualizations of the tool, and their solutions, although
correct, may not be suited for the conceptualizations on the tool
they are using, which may lead to users’ frustration, thus
impacting his/her learning.

In this context, we consider that designers should be aware
of the effects of the signs they choose to communicate CS
concepts which have been implemented in these tools. Thus,
semiotic engineering helps us in two aspects. First, by
identifying and discussing how these tools communicate their
own implemented models of concurrent behavior. Second,
considering that there is a great chance that students with
different background may enroll in the same CS course during
graduation, semiotic engineering helps us to provide
instructors, directly, and students, indirectly, awareness on how
distinct tools describe similar CS concepts, thus supporting
both learners and instructors in capturing the essence of the
concepts.

Step 6. After having a clear picture of the model of
concurrent behavior from Step 4 and the designers’
metacommunication message we proceeded to a contrast
between the perceived model of concurrency and the
metacommunication message of concurrency. This allows us to
identify details about conceptualizations of concurrency,
inconsistencies about the perceived concurrency and how users
are communicated about it, among other details we describe in
Section VI.

IV. ANALYZED TOOLS

For this research, we analyzed five CT tools: AgentSheets
4.0, Scratch 2.0, Greenfoot 2.4, NetLogo 5.1.0 and Alice 3.0.
The tools themselves are built from distinct perspectives in
mind and with distinct set of primitives to create programs. In
general, all tools analyzed are centered on the programming of
an element, a scenario or environment on which this element is
placed, and a set of programming constructs which allow the
user to manipulate it. As a reference, Table I shows the
relationship between these elements, which are described later.

 We applied the same framework to categorize CT learning
environments as defined by Kelleher and Pausch [19] and
analyzed these tools to evidence their similarities and
differences. This characterization is presented in summary in
Table II. We note that although very extensive, this framework
could leave behind some characteristics that newer
environments present for users to support programming. For
instance, all tools we analyzed have some type of markup for
programming constructs, being it colored syntax or even blocks
that differentiate programming constructs. Despite of that, this
framework provides to us an interesting analysis of each tool,
which we discuss next.

AgentSheets is a CT tool whose programming is based on
events, which the user defines for each “agent” in the
“worksheet”. An agent is a programmable object in which we
can act upon. To this extent, the programming language
constructs are designed to manipulate these agents by
providing primitives such as “move” and “see”, which create a
connection with the physical world. This language is
manipulated using images with a color affordance to represent
conditions (what the agent perceives in the environment) and
actions (how the agent acts on the environment) agents can

perform. The tool only allows to place conditions and actions
in their respective places in a rule, which is one command one
agent evaluates for execution. Once programmed, we can
manipulate an agent during the execution of the program,
which is related to the liveness property of concurrent systems
[19]. Lastly, it provides a tool for debugging, called
Conversational Programming, which allows users to analyze
the running code and make changes according to user’s needs.

TABLE I. RELATIONSHIP BETWEEN ELEMENTS OF CT TOOLS ANALYZED

 Programmable

element

Scenario Programming

Constructs

AgentSheets

4.0

Agent Worksheet Conditions/
 Actions/

 Triggers

Scratch 2 Sprite Scene Blocks

Greenfoot

2.4

Actor World Methods

NetLogo

5.1.0

Agent Interface/

View

Functions/

Procedures

Alice 3 Class Scene Methods

Scratch is similar regarding the style of programming and it
is based on the manipulation of objects (here called sprites).
There are also commands which match physical behaviors of
sprites, such as “move” and “turn”. However, its programming
language shares some resemblance with common programming
languages, providing for and while loops, and conditionals
which can be employed to manipulate sprites on the screen.
These commands are grouped in categories for the type of
behavior they allow to manipulate. These commands, which
are called blocks, have a special shape which prevents the user
from placing them in an incorrect position. This prevents
syntax errors during programming. Scratch does not explicitly
provide a debugging tool, although users can run scripts (which
are pieces of code) individually, allowing them to look for
errors locally.

Although projected to be an educational environment,
Greenfoot goes in a different direction in the sense of the style
of programming. Since it uses Java as the programming
language, it provides an object-oriented approach, with all the
power of this programing language, thus having all kinds of
loops, conditional, parameters, procedures and user-defined
data types. To build a program, users can type text for most of
the coding process, although it is possible to place actors
(which are graphical representations of classes) in a “world”.
This tool provides few ways to avoid syntax errors, by coloring
parts of the code. However, most of the written code does not
have this support. Apart from that, there is an API with
methods that allow users to manipulate actors, such as “move”
and “turn”, like in Scratch.

44 SBC Journal on Interactive Systems, volume 9, number 1, 2018

ISSN: 2236-3297

TABLE II. COMPARISON BETWEEN ANALYZED PROGRAMMING LANGUAGES BASED ON FRAMEWORK FROM [19].

AgentSheets 4.0 Scratch 2 Greenfoot 2.4 NetLogo 5.0.1 Alice 3

Style of

Programming

event-based; object-

based

Event-based; object-

based
object-oriented event-based; procedural object-based

Programming

constructs

procedures or

methods; variables;
parameters

for; while; count loop;
variables; parameters;

procedures or methods;

conditional

for; while; count loop;

variables; parameters;

procedures or
methods; conditional;

user-defined data types

conditional; for; while;

count loop; variables;

parameters; procedures/
methods; user defined

data types

conditional; for; while;
count loop; variables;

parameters; procedures/

methods

Representation

of Code
pictures pictures text text pictures

Construction of

Programs

assembling graphical

objects;

assembling graphical

objects;

typing code;

assembling graphical
objects

typing code
assembling graphical

objects;

Support to

Understand

Programs

debugging; physical

interpretation;

liveness

physical interpretation;

liveness

debugging support;

physical interpretation

debugging support;

physical interpretation;

liveness

physical interpretation;

liveness;

Preventing

Syntax Errors

physical shape

affordance; selection
from valid options;

dropping only in

valid location

physical shape
affordance; syntax

directed editing;

selection from valid
options; dropping only

in valid location

none none

physical shape

affordance; selection

from valid options;
dropping in valid location

Designing

Accessible

Languages

limiting the domain;

user-centered

keywords

Limiting the domain;

remove unnecessary
punctuation; user-

centered keywords

limiting the domain;

user-centered

keywords

limiting the domain; user

centered keywords;
remove unnecessary

punctuation

limiting the domain;

removing unnecessary
punctuation; user

centered keywords;

Support

Communication
network-shared network-shared none none none

Choice of task
fun and motivating;

educational

fun and motivating;

educational

fun and motivating;

educational

fun and motivating;

educational

fun and motivating;

educational

NetLogo is a tool which employs a style of programming
more distant from the other tools we analyzed. It is also event-
based, but it employs a procedural approach to programming.
Users must define functions and define on it each aspect of the
game. Although the programming language has functions that
provide connection to the graphical aspect of the program such
as forward or fd, which move the agents forward, these are

only visible once the user plays the game, which means there is
no way to manipulate graphical objects other than by textually
coding them. However, NetLogo allows us to change the
execution at runtime, by employing variables that can be set
during the run of the program.

Alice is an object-based tool. Despite the programming
language being a simplification of Java, it allows the user to
manipulate only methods from actors it brings. However, new
methods can be created, and many Alice-exclusive primitives.
These provide conditionals, loops, variables, parameters and
procedures which allow the user to manipulate actors in the
environment (here called scene). The construction of programs
is based on the graphical manipulation of both methods and
primitives of the programming language and actors from a set
of actors provided by Alice. These are mostly characters and
abstract elements such as rectangles and spheres, which limit
the domain of the programming activity to storytelling
purposes.

V. ANALYSIS OF IMPLEMENTATIONS IN CT TOOLS

 As defined in Step 3 in Section III, we implemented in each
CT tool multiple versions of the Dining Philosophers obtained
from Step 2. This allowed us to analyze if different
configurations of the code in each CT tool would result in
different concurrent behaviors. Each configuration used a new
subset of programming constructs from these CT tools to
describe each step of the Dining Philosophers. Table III shows
a summary of the respective number of configurations and the
programming constructs explored to create them. It is also
interesting to note how each programming construct was
employed in each CT tool for each version.

On AgentSheets we created 8 versions of the game. The
versions differ mostly regarding the representation of agents
and the representation of the fork-taking process. Regarding the
representation of agents, AgentSheets provides us with two
ways of defining them: by one agent with multiple depictions
or by creating multiple agents, one for each fork and
philosopher (Fig. 1). This is possible because there are
programming primitives which allow us to operate on instances
of agents or depictions. As we could note, exchanging these
primitives did not change the result of the program. Also, we
varied how the fork was taken. It is possible to either define
one rule on each philosopher for the “taking” process, in case
we use one agent to represent each philosopher, or a set of rules

SBC Journal on Interactive Systems, volume 9, number 1, 2018 45

ISSN: 2236-3297

on one agent, if we use depictions. Also, we could apply rules
to the fork to guarantee that it will be eventually taken, and to
assure it is not taken multiple times. This also did not change
the result of the game when compared with other versions
created previously in the CT tool during our analysis. Thus, we
concluded that in AgentSheets the primitives have no distinct

TABLE III. VERSIONS AND VARIATIONS APPLIED TO PROGRAMS CREATED

IN EACH CT TOOL.

of

versions
Variations

AgentSheets

4.0
8

single/multiple agents to represent
forks/philosophers; single/multiple rules for

fork-taking process; reordering of agents on

environment

Scratch 2.0 5

using broadcast or variables to change the

state of forks; changing position of conditional

parameters and instructions; using clones

Greenfoot 2.4 5

single/ multiple actors to represent forks/
philosophers; changing method for

philosopher to interact with fork; reordering

placement of actors

NetLogo 5.1.0 5

using functions for each step of Dining

Philosophers; not using functions for fork-

taking process; creating each philosopher
individually; using ‘ask-concurrent’ primitive

Alice 3 5

using do in order/do together;

changing order of agents; changing order of

fork-taking conditionals; using variables for

fork state;

influence in the result of the game. This difference is implicit
in the way agents are positioned in the game environment. We
then created a version in which agents are positioned in
different places from the other versions, and this changed the
game outcome, since the philosophers who ‘took’ the fork were
different from the other versions of the same game.

 On Scratch, sprites are the main element to program, which
resemble the concept of agent on AgentSheets. Additionally, it
is possible to program in the stage (the worksheet, on
AgentSheets. However, commands acting on sprites, which
were needed to implement the problem we defined, must be
placed on the sprite’s script area. Thus, it was not possible to
describe any of the needed behaviors only using the stage area.
Additionally, to make a sprite to respond to an action from
other sprite, Scratch provides the “broadcast” command. We
applied this command in our versions to allow forks and
philosophers to respond and change states. Given the
procedural paradigm in this programming language, we
changed positions of instructions and conditionals to check if
there was any difference regarding the result of the game. Also,
we employed the use of variables to define the state of the fork,
to analyze the game behavior (Fig. 2). Only in this case the
result differed from the other cases. In a further investigation,
we discovered that the broadcast command is treated in a
different manner than other primitives and since we did not
need to use it to explicitly change the state of the fork, we got a
different result. Additionally, we used the concept of clones
Scratch provides to create sprites at runtime, with no difference
in the outcome of the program when compared to the use of
“broadcast” command. We created a total of 5 versions in this
CT tool.

Fig. 1. Example of distinct representations of a Philosopher on AgentSheets;
in the left, there is one agent with depictions for instances of philosophers and

their state; in the right, each philosopher has its own agent on AgentSheets.

Fig. 2 Two representations of the fork taking: Above, using broadcast only

and the second; below, using variables to represent the states of the fork.

 On Greenfoot, we created 5 versions of the game. These
versions varied according to how we defined the actors, if
using one philosopher class (actor) with different images or
multiple classes (actors); adding a restriction to fork’s behavior
to guarantee that the fork is taken and it is taken by only one
actor; using a different method available to check if the fork
was taken than it was used in the initial version; and changing
the order of definition of actors and their placement in the
environment (world). The first 4 versions we mentioned did not
affect the result. It was only by changing the actors positioning
order that we could see a change in the result of the game (Fig.
3). This allowed us to infer, later, the concurrent behavior of
the Dining Philosophers on Greenfoot.

46 SBC Journal on Interactive Systems, volume 9, number 1, 2018

ISSN: 2236-3297

Fig. 3 Different sequence of actors positioning on Greenfoot

 On NetLogo, we created 5 versions of the game: one using
functions at all steps of the definition of the Dining
Philosophers; one not using functions on the fork taking
process; one using a one-by-one definition and placement of
agents; one using a button and an implicit call for agents to
pick forks (Fig. 4); and one using the “ask-concurrent”
primitive. From these variations, the only change was
perceived when using ‘ask-concurrent’ on one of the methods.

Finally, on Alice, we created 5 versions, varying the use of “do

in order” and “do together” for programming the

behavior of philosophers (Fig. 5); varying the use of do in

order inside or outside if’s which describe the fork-taking

process; and using variables to discriminate the state of the
forks during the fork-taking process. In our analysis, we could
see that do together and do in order change the output of

the program, specially when changing it to control the
execution of each “if” which controls each philosopher process
of taking the forks.

Creating these versions allowed us to have a clearer picture of
the influence of primitives used to create instances of the
Dining Philosophers in these tools and hints about the
influence of the CT tools interface and interaction signs, in the
sense of a semiotic inspection we performed on our proposed
methodology.

VI. FINDINGS

In this section, we present the results of the application of
the method described in the previous section. In this section,
we present the rationale about the model of concurrent
behavior.

Fig. 4 Use of functions to represent the fork taking above; and less functions

below, on NetLogo.

Fig. 5 Alice and the use of do in order and do together.

Following we present the metacommunication message of
each tool as revealed by SIM, and finally, the contrasts
regarding the concurrent behavior modeled and the result of
SIM.

SBC Journal on Interactive Systems, volume 9, number 1, 2018 47

ISSN: 2236-3297

A. Models of Concurrent Behavior

The models of concurrent behavior we describe here result
from the analysis of outputs generated by the implemented
versions of the Dining Philosophers. As previously mentioned,
each CT tool allows us to create multiple versions of the same
game, due to the possible ways of representing each part of the
pseudo-code in each tool. However, overall these variations did
not influence the final model of concurrent behaviors we
inferred from the outputs, although they allowed us to perceive
the existence of distinct models in the same CT tool.

For all tools, influences on the program outcome were
noticed when placing agents on the simulation environment
and when programming behaviors for an agent. The placement
of agents is different in each tool we analyzed. The
spreadsheet-based environment of AgentSheets, for instance,
does not allow agents to be placed in a perfect circle. However,
it is possible to place agents in the same relative positions as in
other environments, which allows us to define the similar
behavior of each philosopher and forks equally, in the sense of
the pseudo-code. Figure 6 shows this situation between
AgentSheets and Scratch.

Regarding the definition of agents’ behavior, the paradigms
each CT tool employs allow the user to define the behavior of
agents in many ways. On AgentSheets, Scratch and GreenFoot,
behaviors are programmed inside agents, with code being
defined in and for an agent/sprite/actor. On NetLogo and Alice,
behavior is defined outside of agents, inside the Code tab, for
NetLogo, and inside the Scene, for Alice. This last
characteristic allows users to have more control over how
agents are visited, thus influencing the concurrent behavior of
the game or simulation. Figure 7 presents a comparison
between Greenfoot and Alice coding strategy, in which on the
former, we have the “Philosopher” class containing the
behavior of the Philosopher, through the “act” method, while
on the latter, behaviors are described on the “Scene”.

Fig. 6. Simulation environment for AgentSheets on the left, and Scratch, on

the right.

In order to discuss these distinct models in a consistent
manner, we use Petri Nets. Figure 8 shows the Petri Net for our
version of the Dining Philosophers. A Petri Net consists of
places and transitions. Places can be states or parts of the
system, depending on which aspect of the system we want to
model. Transitions are triggers to the occurrence of these
events. This is described in a “run” of the Petri Net, in which
we describe how each of these transitions occur. These
transitions can occur simultaneously, given they have the
correct premises to run.

In our model of the Dining Philosophers, forks are
represented as places labeled “Fx”, were “x” ranges from one to
five, and containing one token each, to represent its
availability. Philosophers are also places named “Px”, also with

“x” ranging from one to five. Transitions are rectangles
unlabeled and represent the act of getting the fork for each
philosopher. In this version, we modeled only the process of
getting the fork which is the concurrent behavior we wanted to
analyze in each CT tool. Thus, there is no repetition in the fork-
taking attempt which the original Dining Philosophers problem
states. We employ this model as a basis for discussing the
models of concurrent behavior we unveiled from our analysis.

After the analysis of the running of the implementations on
the CT tools three models of concurrent behavior emerged.
These models are mainly based on a deterministic running of
the processes, although there are variations among them. The
first, presented on Figure 9, is a sequential solution, which
resembles a mutual exclusion solution, and AgentSheets and
Scratch implement it. In this case, each process “acquires” a
lock and must wait until the “lock” is released.

Fig. 7. Greenfoot code on Philosopher on the left, and Alice's code about the

Philosopher, on Scene, on the right.

On AgentSheets and Scratch, the interpreter controls this
locking mechanism, which allows one agent/sprite to run at a
single time (a solution for a critical section problem, common
in concurrent programming [2]). However, there are
differences on which agent is locked first. On AgentSheets, the
locked agent is the last agent inserted on the worksheet and
using one agent with distinct depictions (the “costume”-
equivalent of Scratch on AgentSheets) or using distinct agents
did not change this order. On Scratch, it is the last manipulated
agent that runs first. In both environments, this characteristic is
external to the implementation, thus the “Fixed” behavior we
describe in this model. The model is represented on Figure 9.
On it, we see that transitions are run sequentially, given the
model predicts a sequenciality in the fork acquisition for each
agent/sprite in these tools.

Fig. 8. Dining Philosopher modeled using Petri Net modeling notation.

48 SBC Journal on Interactive Systems, volume 9, number 1, 2018

ISSN: 2236-3297

Another interesting thing to notice in this case is the use of
the broadcast command. One of the implementations uses

broadcast to make the “Fork” sprite to hide, in order to
represent the fork being taken. However, on Scratch, using this
command does not “lock” other sprites. This generates a
contrast between the expected output and the occurred one,
since all the other sprites will assume there are forks available
for them, when in fact this is not the case since other sprites
have already initiated the “fork taking” process.

A second model can be perceived on NetLogo and
Greenfoot, and it is presented on Figure 10. On these tools,
there is also a sequential behavior, but there is a previous step
regarding the choice of which agent always runs first. On
Greenfoot, the order of execution is defined by the order the
agents are created and positioned which is defined by how they
are written on the World code. However, this step is not

explicit in the programming activity, but it is possible to see it
since the programmer is able to access the World’s code and

change this order. On NetLogo, when using ask, this is not

possible, since the agents execute on random order, even
though they are created in a particular order as one of our
implementations showed. This is in line with Ben Ari [3], who
claims that this is a behavior of concurrent programs, thus
NetLogo is correctly representing the expected concurrent
behavior. Other tools did not present the same outcome.
However, these are part of the external factors that change how
the concurrency issue is solved but are not part of the problem.

Alice implements the third model, whose interesting
characteristic is the possibility of exploring the sequential, or
parallel behavior of the execution. In order to allow this, this
tool provides two commands, do in order and do it

together, which changes the way the commands inside

these instructions are interpreted6. The first one allows us to
execute each command inside it sequentially, like in the model
on Figure 11. The second one allows us to run the commands
at the same time, which allows us to make sequence of
commands run parallel, represented on Figure 11. This kind of
control is not present in the other tools.

Nevertheless, two comments about these commands can be
made regarding the results they allow us to express. First,
depending on where we place these commands, we can get
distinct behaviors. If we place all the behaviors (represented by
if’s) inside a do in order, it behaves as AgentSheets and

Scratch in Figure 9, although each fork is taken individually,
instead of them being taken at the same time on the simulation.
If we use do together instead, we get a strange behavior,

since all forks are taken simultaneously, as if they are all
available.

6 http://academy.oracle.com/self-study/alice/alice_7_3.html

Fig. 9. Sequential model that emerges from AgentSheets and Scratch

implementation analysis. Yellow elements represent the additions for tools to

run the model

Additionally, the forks are taken by philosophers randomly,
an effect similar to the NetLogo model. As we can see in
Figure 10, this behavior changes the expected model, since we
consider that each fork is available even when it was taken
before. This is not correct for the model and it is not a correct
solution of the problem. This happens because in this situation,
each condition is checked at the same time, which does not
give time for the simulation state to change for each
philosopher. This does not happen if we place only the
command moveAndOrientTo(), which represents the taking

of the fork, inside the do together on each if rule. In this

case, both forks are taken at the same time, which is the same
way AgentSheets and Scratch perform.

B. Metacommunication Message of CT Tools

The models of concurrent behavior depicted earlier provide
us a clearer picture of the underlying concurrency concepts,
which are presented to the user via designers’ messages. In this
subsection, we contrast these models with findings from the
application of SIM on CT tools. We categorize our findings
regarding the strategies for communicating concurrency that
tools are implicitly employing, thus visualizing the
conceptualizations of concurrency that occurs in these CT
tools.

SBC Journal on Interactive Systems, volume 9, number 1, 2018 49

ISSN: 2236-3297

Fig. 10. Model of concurrent behavior for Greenfoot and NetLogo

Fig. 11. Alice`s model when using "Do Together" outside if`s.

1) Acting/Triggering of processes

In a concurrent environment, a trigger is expected to start
the execution of the model. From a “natural world”
perspective, these triggers can happen due to causal events, as
can be seen on the Petri Net on Figure 3, for the Dining
Philosophers problem. On the “computational world” which
these tools implement triggers are mostly bound to causal
events, as would be natural. Despite that, three variations on
how they communicate this to the user can be found on these
tools, which are:

• Implicit: there is a unique trigger that cannot be changed
other than building upon it. Greenfoot has an example of this
kind. Each object on the simulation has a “act” method, which
according to its documentation “... is called by the Greenfoot
framework to give actors a chance to perform some action. At
each action step in the environment, each object's act method is
invoked, in unspecified order.”7 This is reinforced by the
interface, when we right-click an agent and see the act() as

7 https://www.greenfoot.org/files/javadoc/#act

one of the options. Clicking on it starts the running of the
single agent clicked before. However, there are no explicit
references to this behavior in static and dynamic signs; it is
only on metalinguistic signs that we are able to understand
what act() means clearly. The downside of this option is that

it would drive the user to create unnecessary abstraction to deal
with specific types of triggers, which could lead to errors when
these created triggers overlap with the model provided by the
tool.

• Default: AgentSheets, Scratch and Alice shows one
default trigger for starting the running sequence, in distinct
ways. AgentSheets and Scratch own a set of triggers (or events,
on Scratch) that can be used to start some execution. Scratch
has no default trigger depicted on the coding area. However,
the “flag” on top of the Stage area blinks when the program
starts to run indicating that the flag can be used as trigger.
Alice’s interface has a default method for running the Scene,
which is the “Scene Activation Listener”. Despite of this any
type of code can be added, including a specific trigger for any
moment in time, for instance. The same issue about creating
unnecessary abstractions that could overlap with the default
trigger that happens on implicit models could happen to default
models, if they are not communicated explicitly as options of
triggering.

• Open: Open triggers are the most interesting since they
allow the user to explore different possibilities of starting the
execution of agents, which can minimize non-desired
concurrent behaviors. However, they do not allow showing
trigger options that could happen in a real environment. On
NetLogo, there is no evident trigger that could be used, and
interface signs provide no clue about what could be used to
start the simulation. However, according to the documentation,
“ask” is the way we can run commands on processes, which
means this is NetLogo “default” way of running an agent
behavior, but not an entire simulation.

2) Ordering of processes

The models analyzed reveal that the common concurrency
solution is based on a turn-taking mechanism, similar to a
locking mechanism, common in concurrency solutions [3].
Each model provides a specific way of dealing with this
mechanism. Our semiotic analysis shows that the
communication of this mechanism does not reflect the
proposed ordering by these tools nor provides a way to
reviewing this ordering. Additionally, the order presented by
the user, that of the scenes/stages and the gallery of agents
deviates the user from a semiosis that leads to the correct
interpretation of the ordering that the tool implements. Only the
multiple execution of the program allows the user to correctly
describe how each agent is visited. Additionally, some of the
tools allow the user to run only parts of the code or one agent’s
behavior, which allows the user to see for him how one agent
would behave if only him runs.

For the tools with the “Sequential Fixed” model of
concurrent behavior, there is a distinction on how to
communicate ordering for each tool. On AgentSheets, interface
and worksheet provide us with two distinct orders of agents.
None of them are used on the model, since the actual order
comes from the stack created from the last to the first agent
inserted on the worksheet, and not the order of philosophers
inserted on the worksheet as described by the user.
Metalinguistic signs on the documentation of AS describe the
running of simulation when the Run button is pressed: “The

50 SBC Journal on Interactive Systems, volume 9, number 1, 2018

ISSN: 2236-3297

Run button starts the simulation […]. When the simulation is
running, all agents with a While Running method execute the
behavior defined in that method.” It does not describe how
agents are visited. Scratch also does not communicate a
specific sequence of execution. However, it is possible to run a
single agent’s code to see how it behaves. However, on one of
the implemented versions, in which we used “broadcast” as a
mechanism for the action of getting the forks, using this would
make the user mistakenly think that the implementation works
correctly, when in fact, it does not, since when running the
simulation, all agents mistakenly get forks, due to a specific
behavior of the broadcast script that leads to this error.

On tools with the “Sequential Flexible” model, NetLogo
and Greenfoot, there is also a difference on how these tools
deal with ordering. Greenfoot has similar signs of execution
when looking at static signs as AgentSheets. Both have a Run,
Step, Stop and a slider for controlling the execution NetLogo
also has. However, neither of them provides signs to the order
of processes executed. On Greenfoot, the World class contains

the code which reveals the ordering of agents’ execution during
the simulation. When adding an agent via interface, the user
does not see this code and therefore cannot reach a correct
conclusion about the model implemented. On NetLogo the
visiting of agents is random and no signs, metalinguistic or
static, allow the user to capture this behavior. Only by running
the simulation multiple times is that the user can see such
behavior.

The last model, implemented by Alice, is an open model
since it allows the user to choose which model to run.
However, as noted before, this choice must be made carefully
in order not to create live lock situations as seen in one of the
game’s implementations on Alice, when in each “step” of the
game, the same fork “x” is taken by distinct philosophers.
Regarding the communication of these issues, metalinguistic
signs present on Alice`s tutorial on Oracle, accessible by the
link on help menu provide few clues about the range of
behaviors regarding the ordering of processes visiting.
However, this is minimized given the way code is written, in
the Scene methods that control execution. The user explicitly
states the order of execution. When using the do together,

user will perceive misplacing when running the project.
However, as in some of the other tools, user cannot run one
process at a time to analyze the behavior of agents, which
makes it difficult for users to visualize how a specific process
behaves in comparison to the sum of the activities. However,
this issue is diminished in the sequential model, when using do

in order, since users can see each step being performed as

an animation.

3) Atomicity of a cycle

Another characteristic of concurrency is the concept of a
process atomicity. In each model presented, we describe the
philosophers and forks as places on the tool. Although the
model runs concurrently, the processes are independent and
equipotent units of the entire program. On the tools analyzed,
although there the concept of process is present, under the
name of “agents”, “sprites” or “actors”, there is no consistency
among static, dynamic and metalinguistic signs regarding the
atomicity of a process.

On AgentSheets, Greenfoot and Scratch the concept of
cycle or turn is bound to a complete run over all agents.
However, the slider in these tools (which allows us to see this

characteristic) is misleading in the sense that it allows the user
to consider that it would slow down or speed up the running of
a single agent at a given time. On Alice this happens
differently, since the slider allows the user to change the frame
speed, or how fast agents perform their behaviors. In the “do

in order” version of Alice implementations of the problem,

it is possible to visualize each agent performing one step at a
time whilst using “do together” inside the if’s it is not possible.

On NetLogo, metalinguistic and static signs on the interface
show the tick function, which represents a step of the

execution on NetLogo and when called, it adds 1 to a counter.
However, a tick can only be called on observer procedures.

An observer is an agent external to the simulation. This
characteristic would guide a novice programmer to infer that
this is the only possible granularity for a process execution,
which is not true outside of NetLogo.

4) Concurrent programming ontology

The categories previously described provide us with a
picture of how concurrency emerge from these tools.
Additionally, the programming languages on these tools allow
us to create and manipulate concurrent concepts. From our
analysis, two subcategories regarding programming constructs
emerged. The first one talks about the representations of
process and concurrent tasks on these tools, while the second
calls the attention for the visual component that influences how
concurrent programming is implemented.

Programming constructs: Expressing concurrent behavior
in these tools vary, at the programming language perspective,
since each tool employs a specific programming paradigm, but
tools also share specific characteristics regarding the
characterization of a process. The first noticeable element is the
naming of a process. AgentSheets and NetLogo name it an
agent. Scratch name it Sprite; Greenfoot, actor; and Alice,
Class, which is closer to the object oriented paradigm, or the
Actor model of concurrent programming [8]. The way a
programmer manipulates these elements also varies. On
AgentSheets and Greenfoot, it is possible to create instances of
the process, which contains all the behaviors programmed
earlier. On Scratch, like in the other tools, it is possible to
create a copy of a process, although this copy has no
connection to its sibling. It is indeed possible to clone a process
on runtime, but this agent has no identification inside the tool,
which demands the user to create an additional abstraction to
name each clone of an agent and to manipulate its behavior
separately, if needed. In the case of the Dining Philosophers, to
use clones, we would still need to differentiate each agent to
identify which forks are next to each agent.

Concerning behaviors, there are also distinctions among the
tools. On AgentSheets, Scratch and Greenfoot behaviors are
programmed in the processes. Scratch and Greenfoot can have
behaviors programmed on the scenario. On NetLogo and Alice,
the simulation behavior is not part of the agent. Considering
concurrency, allowing us to control the process from outside
allows the programmer to have control how processes run,
since we can program its behavior. On NetLogo, this is
possible if the user calls ask for each agent created; on Alice,

the tool provides the “do in order” and “do together”

constructs. On Scratch, Greenfoot and AgentSheets, the
programmer would need to explicitly order the execution on
top of the present order, which is creating an unnecessary
abstraction in this case.

SBC Journal on Interactive Systems, volume 9, number 1, 2018 51

ISSN: 2236-3297

Visual component: The visual component in these tools
allows the user to see its programming coming to life and it is
an important aspect of these tools for the promotion of
programming. Concerning concurrent programming our
analysis shows an intersection between the visual component
and the programming activity, which by one hand makes the
concurrent behavior easily visible, but on the other hand
creates an extra layer of abstraction for the user to program
concurrency, since the programmer needs to consider that the
result will be visually perceptible, considering that the visual
element is part of these tools.

On the tools analyzed, programming languages are bound
to the visual component at some part of the programming
activity. On AgentSheets, for instance, to “see” a fork, we need
to place it next to two philosophers, since the See construct

demands that agents need to be in one of the adjacent cells to
be visible. On Scratch, Greenfoot and Alice, this demands that
the users need to be touching for us to use the programming
constructs provided by the tools. If philosophers and forks are
not touching each other, he/she needs to create additional
abstractions to achieve the behavior of getting the fork, which
can be challenging for a novice programmer. On NetLogo, this
is the first solution available for the programmer and in this
case, there is no changing of the paradigm for programming
this behavior.

VII. DISCUSSIONS

This paper investigated conceptualizations of concurrency
on five CT tools. The systematic evaluation we present allows
us to discuss, in the perspective of computational thinking
acquisition, the role of tools, which along with the curricula
and teachers, also communicate CS concepts to novice
programmers. As our research shows, there are many aspects
of concurrency concepts that emerge from interface signs
designers expose to users, whether intentionally or not. These
concepts, however, are usually bound to one kind of concurrent
behavior. As mentioned in Section VI, only Alice would make
explicit different concurrent behaviors using different
programming constructs. Furthermore, as we also discussed,
these concurrent behaviors are in general inconsistent with
concurrency as explored in CS, since few consider, for
instance, the nondeterminism during the execution of the
program. In this sense NetLogo brings the closest approach, in
line with these concepts of nondeterminism which are
important to talk about concurrency [2].

 Our analysis of the contrast between models of concurrent
behavior and SIM allowed us to evidence the
conceptualizations of concurrency each tool provides to users.
The categories of concurrent communication strategies points
that these conceptualizations vary among tools, and
concurrency itself is underexplored by them in a higher level of
representation. This can be explained since exploring
concurrency is not an explicit goal of these tools. However,
they bring concurrent conceptualizations demanded to run
programs. Our argument is that these needs to be better
explored to avoid all sort of difficulties which could be brought
through the manipulation of these concepts by learners.

A. Mappings findings with literature

From the literature, we can map our findings regarding
concurrency learning. First, regarding triggers, the
understanding of the triggering mechanisms can be related to

the existence of a clock in the execution, which controls when
processes will start running. This is closely related to the
understanding about how computers deal with concurrent
processes. Difficulties in understanding this particular point are
reported in the literature, for instance when students assume
there is a global clock where none exists [9]. For these types of
students, default or implicit triggers could reinforce this wrong
assumption. Also, this relates with the concept of simultaneous
execution, when, taking AgentSheets and Scratch for instance,
these triggers are spread over different processes. This could
also cause problems for students, like the issues of Type II
concurrency, when talking about concurrency on the agent
itself.

Many papers discuss students’ difficulties regarding
ordering of processes, calling the attention for difficulties on
dealing with coordination [10], or the program execution itself
[11]. As research shows, students may not understand correctly
the computational model (or world), which may create
difficulties in assessing the correctness of the program. On a
study about high school students’ knowledge structure and
dynamic of the construction process of concurrent programs
[12], findings show that dynamics of the execution of programs
is a place for inadequate assumptions, especially when these
behaviors are not similar to previous knowledge gained by the
novice programmers, and students engaged in these activities
not using pieces of knowledge related to concurrency. Despite
using a specific tool to study concurrency, this work reveals
that students may find trouble when dealing with the execution
of concurrent programs. As we found in our research, signs do
not expose details about the models of concurrent behavior,
which could increase the type of misconceptions found in this
and other research mentioned earlier in this section. For
students, the mental simulation of the computational model can
be difficult due to many possible scenarios in each run [13].
The misconceptions of the computational models are also allied
with other discussions regarding the understanding of the
concept of model itself [10]. Also the same issues are present
when analyzing the use of a tool specifically designed for
dealing with concurrent behavior when Resnick analyzes the
use of MultiLogo by students [14].

The atomicity of the cycle is also an issue among students
when learning about concurrency. This could cause problem
decomposition issues [14], since students do not understand
what are the limits of an execution, as the tools analyzed do not
communicate it clearly, by communicating a step, or atomic
operation, as the sequence of all processes runs, which could be
related to the causal behavior of the Petri Net, but does not help
in contrasting it with the computational world, whose contrast
is the most valuable lesson. Specially for students that deal
with sequential processes, these intermediary outputs would
help them in understanding the concurrent execution [10].

Lastly, the programming ontology also shows that
constructs and the visual component present in these tools can
influence both the perception of concurrent execution and how
users program concurrent behavior. Regarding the
programming constructs, the role of the representation of
concurrency has already been discussed. Different models, in
this sense, may guide the user to specific characteristics of the
concurrency domain [8]. However, the agent based
programming has been considered an interesting way to deal
with microworlds and their concurrent behavior [13].
Regarding the visual component that influences the CT tools
analyzed, they can be also related to the representation chosen

52 SBC Journal on Interactive Systems, volume 9, number 1, 2018

ISSN: 2236-3297

for representing processes, to maintain its closeness to the real
world. However, as noted in our implementations, their
restrictions over the real world may impact users’ expression
about concurrent behavior. This could be seen when using
“touching” features of these tools, which in some of the tools is
only possible if images are overlapping on the screen. The
programming ontology chosen is not without reason. Designers
of these tools have specific goals in mind when these were
developed, to fulfill their purposes.

B. Limitations of the study and future directions for research

Although this research allows us to reveal
conceptualizations of concurrency emerging from these CT
tools, limitations regarding its reach must be considered. First,
the case chosen allowed us to explore a concurrency situation
where resources are being shared (in this case, forks). Other
aspects of concurrency could be explored with other cases,
such as mechanisms or algorithms for dealing with concurrent
issues. However, the quality of a qualitative research is in the
in-depth exploration of the data and its meaning. The same can
be said for the tools chosen. Additionally, other tools can
reveal additional conceptualizations of concurrency, and
complement the results shown here. Another aspect is regarded
to the execution of SIM after implementations were created.
This previous implementation in the CT tools served as
preparation for establishing the focus of analysis of the method,
as it is recommended [2].

However, it is important to note that our semiotic
perspective reveals one side of the picture on how students may
be influenced by how CS concepts are presented to them. Other
perspectives can be taken for analysis. Cognitive aspects of
these tools, for instance, could also be investigated.
Considering that these tools provide a notation for expressing
software, Cognitive Dimensions of Notations (CDN)
framework could provide us interesting insights both about the
tools and their notations. SIM were already combined with
CDN framework before [15]. We could extend this method and
focus on notations about CS concepts, to complement the
results with our semiotic inspection. As a characteristic of the
method employed for semiotic inspection, it only reveals the
emission of the designers’ metacommunication message.
Further research can be conducted to investigate the reception
of this message by users of these tools, by using CEM [2].

This paper adds to the discussions of the role of CT tools in
the context of computational thinking acquisition and presents
opportunities for exploration of concurrency concepts during
the computational thinking acquisition process. The mapping
with literature about students understanding of concurrency
concepts, evidences that already explored misconceptions
which pre-university students may have can be impacted by the
tools they may use, either previously to their encounter with
these tools or not. Considering the widespread use of CT tools
in the Computational Thinking acquisition activity, especially
on pre-college education, it is crucial to understand the role of
tools and what biases they might be creating on to-be
professionals.

VIII. ACKNOWLEDGEMENTS

Authors would like to thank CAPES for its financial
support, and Clarisse Sieckenius de Souza for providing
valuable feedback to this research.

REFERENCES

[1]. M. Ben-Ari e Y. B. Kolikant. 1999. Thinking Parallel: The Process of
Learning Concurrency. Proceedings of the 4th Annual SIGCSE/SIGCUE
ITiCSE Conference on Innovation and Technology in Computer Science
Education, ACM, 13–16. http://doi.org/10.1145/305786.305831

[2]. M. Ben-Ari. 2006. Principles of Concurrent and Distributed Computing.
Pearson.

[3]. Y. B. Kolikant. 2004. Learning concurrency: evolution of students’
understanding of synchronization. International Journal of Human-
Computer Studies 60, 2, 243–268.
http://doi.org/10.1016/j.ijhcs.2003.10.005

[4]. J. Esparza. 2010. A false history of true concurrency: From Petri to tools.
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 180–186.
http://doi.org/10.1007/978-3-642-16164-3_13

[5]. R. Feldhausen, S. Bell, e D. Andresen. 2014. Minimum Time , Maximum
Effect : Introducing Parallel Computing in CS0 and STEM Outreach
Activities Using Scratch. XSEDE 2014, 7.

[6]. J.J. Ferreira, C.S. de Souza, e L.C. de Castro Salgado. 2012. Combining
cognitive, semiotic and discourse analysis to explore the power of
notations in visual programming. Proceedings of VL/HCC’2012, 8.

[7]. E. Kraemer. 2010. Characterizing Comprehension of Concurrency
Concepts. PPIG 2010 - 22nd Annual Workshop.

[8]. Z. Li e E. Kraemer. 2013. Programming with Concurrency: Threads,
Actors, and Coroutines. 2013 IEEE International Symposium on Parallel
& Distributed Processing, Workshops and Phd Forum, 1304–1311.
http://doi.org/10.1109/IPDPSW.2013.193

[9]. J. Lönnberg, L. Malmi, e A. Berglund. 2008. Helping Students Debug
Concurrent Programs. Proceedings of the 8th International Conference on
Computing Education Research, ACM, 76–79.
http://doi.org/10.1145/1595356.1595369

[10]. O. Meerbaum-Salant, M. Armoni, e M. Ben-Ari. 2010. Learning
computer science concepts with scratch. Proceedings of the Sixth
international workshop on Computing education research - ICER ’10, 69.
http://doi.org/10.1145/1839594.1839607

[11]. S. Papert. 1980. Mindstorms: Children, Computers and Powerful Ideas.
Basic Books.

[12]. W. Reisig. 2013. Understanding Petri Nets. Springer.

[13]. A. Repenning e A. Ioannidou. 2008. Broadening participation through
scalable game design. ACM SIGCSE 2008, 305.
http://doi.org/10.1145/1352322.1352242

[14]. A. Repenning, D. Webb, e A. Ioannidou. 2010. Scalable game design and
the development of a checklist for getting computational thinking into
public schools. Proceedings of the 41st ACM Technical Symposium on
Computer Science Education, ACM Press, 265.
http://doi.org/10.1145/1734263.1734357

[15]. M. Resnick. 1991. MultiLogo: A Study of Children and COncurrent
Programming. Interactive Learning Environments 1, 3, 153–170.

[16]. S. Schwarz e M. Ben-Ari. 2006. Why Don ’ t They Do What We Want
Them to Do ? September, 266–274.

[17]. C. S. de Souza, A. C. B. Garcia, C. Slaviero et al. 2011. Semiotic traces
of computational thinking acquisition. IS-EUD 2011, Springer, 1–16.
http://doi.org/10.1007/978-3-642-21530-8_13

[18]. C. S. de Souza e C. F. Leitão. 2009. Semiotic Engineering Methods for
Scientific Research in HCI. Morgan & Claypool.
http://doi.org/10.2200/S00173ED1V01Y200901HCI002

[19]. C. Kelleher and R. Pausch. 2005. Lowering the barriers to programming:
A taxonomy of progarmming environments and languages for novice
programmers. ACM Comput. Surv.. 37, 2. , 83-137.

[20]. M. Resnick 1994. Turtles, Termites and Traffic James: Explorations in
Massively Parallel Microworlds. MIT Press, Cambridge MA, USA.

[21]. C.A.R. Hoare. 2004. Communicating Sequential Processes. Prentice Hall
International.

[22]. C. Hewitt; P. Bishop; R. Steiger 1973. A Universal Modular Actor
Formalism for Artificial Intelligence. Proceedings of 3rd international
joint conference on Artificial intelligence, pp 235-245.

