
A modular framework for performance-based facial
animation

Carlos Eduardo Rossi Cubas da Silva
Sao Paulo State University (UNESP)

Bauru, Brazil
carlos.cubas@gmail.com

Antonio Carlos Sementille
Department of Computing

Sao Paulo State University (UNESP)
Bauru, Brazil

semente@fc.unesp.br

Abstract—In recent decades, interest in capturing human
face movements and identifying expressions for the purpose
of generating realistic facial animations has increased in both
the scientific community and the entertainment industry. We
present a modular framework for testing algorithms used in
performance-based facial animation. The framework includes the
modules used in pipelines found in the literature as a module
for creating datasets of blendshapes which are, facial models,
where the vectors represent individual facial expressions, an
algorithm processing module for identification of weights and,
finally, a redirection module that creates a virtual face based
on blendshapes. The framework uses a RGB-D camera, the
RealSense F200 camera from Intel.

Index Terms—Capture facial movements, Blendshapes, retar-
geting.

I. INTRODUCTION

A very active field of research in the area of Computer
Graphics is the generation of models of the human face
aiming at the creation of realistic facial animations. There
are several applications that can benefit from advances in this
field, such as: movies for film and television, videogames,
videoconferencing using avatars, facial surgery planning and
others. In the animation of virtual characters, the accurate
reproduction of facial movements is critically important, since
it is one of the main sources of emotional information.

According to Fratarcangeli [8], the complexity and sophis-
tication of human head structure increases the difficulty of
reproducing a convincing facial animation. High accuracy is
required because humans are trained to observe and decode
facial expressions from birth, making them experts in detecting
small errors in virtual face animation.

The techniques of facial animations can be directed to
speech [9] or directed to performance [25], [26].

Performance-based animation systems typically consist of
a facial performance capture module and a motion transfer
module. To capture facial performance, several systems use
multiple cameras and a large number of facial markers on the
actors. Although they achieve good results, the use of these
markers may not be practical, as well as intrusive to the actors.
In addition, such systems typically require a lot of manual
intervention [15].

A key trade-off in all systems is the relationship between
the quality of the data acquired and the complexity of the
configuration of the acquisition. At one end of the spectrum

are systems designed for maximum accuracy that lead to im-
pressive virtual avatars, suitable for film production. Because
of their robustness, marker-based techniques are widely used
for real-time facial animation and often provide enough motion
parameters for a compelling redirection to nonhuman creatures
or video game characters. At the other end is the realistic
scanning of human faces.

For realistic human-face scanning, approaches that do not
use markers like real-time 3D scanners are generally more
advantageous because of their ability to capture fine-scale
dynamics (for example, wrinkles and folds). All of these
methods involve highly specialized sensors and / or a con-
trolled studio environment. However, the recent availability
of equipment with low-cost but good depth-resolution RGB-
D cameras has changed this scenario, making it possible to
create environments for the average user.

Since capturing facial movements and performance-based
animation are areas of active research in recent years, there are
a large number of different processing systems and pipelines
that share many fundamental principles as well as specific
implementation detail.

We propose, in this work, to create and validate an en-
vironment with modular architecture for performance-based
facial animation that uses, as a way of capturing the facial
movements of an actor, an RGB-D camera, as well as allowing
the incorporation of different tracking algorithms. The envi-
ronment performs the transfer of facial expressions from one
user to a different human face model. The generic pipeline of
this environment is based on the use of blendshapes, to obtain
generic and user-specific expression models, and to animate
the output virtual face model (target redirection).

II. RELATED WORK

Performance-based facial animation, also known as retarget-
ing, introduces the idea of capturing the face of a real actor and
its redirection to a virtual actor. This transfer can be applied
to a 3D animation created manually by an artist [5].

For Li, Sun, Hu, Zang, Wang and Zhang [13] performance-
oriented facial animation refers to the problem of realistically
mapping an actor’s facial expressions to a digital avatar and
compatible with captured performance. It usually consists of
a facial tracking step followed by an expression synthesis
procedure.

SBC Journal on Interactive Systems, volume 9, number 2, 2018 3

ISSN: 2236-3297



According to Dutreve, Ludovic and Meyer [5], performance-
driven facial animation is found in applications such as
3D gaming, man-machine interaction, and the film industry.
Movies such as King Kong and Avatar are examples of the
use of facial animation directed at performance [20].

The method presented by Li, Yu, Ye and Bregler [14],
shows the face captured through Kinect a device developed
by Microsoft which, in addition to capturing images in RGB,
also captures the depth images. RGB-D images and 2D video
are used in real-time. There is a pre-processing step in its
pipeline, done offline, which is the adjustment of the dataset
and the capture of the initial data as the neutral face of the
actor, and the online process, done in real-time, which adjusts
the capture of the actor to the virtual face. In both processes,
some algorithms and methods for knitting and redirection are
used.

The method is initiated by a face capture in the neutral po-
sition. The RGB-D information and 40 automatically captured
facial markers that correspond to the points around the mouth
and eyes are used.

In [13] a real-time redirection method using Kinect and the
3DS Max modeling software is presented.

The redirection takes place between the real-time capture
of a face and a virtual avatar implemented in the 3DS
Max software. The transfer of information between the input
capture and the avatar takes place through the MIDI (Musical
instrument device interface) protocol, which is a standard
protocol of the music industry [24].

In this method the AAM (Active Appearance Model) is used,
responsible for face tracking and the extraction of facial points
[27].

The method presented by Behrens, Al-Hamadi, Redweik
and Niese [1] proposes an automatic system for controlling
expressions in a digital avatar in real-time. Face capture is
done through Kinect and uses RGB-D images and 2D videos.
It has an offline pre-processing stage, which is the generation
of the dataset of blendshapes, and an online step, where the
processing and calculation of the weights for the generation
of the virtual face occurs.

The online process is responsible for the normalization of
the captured face, removal of the background and the frontal
alignment of the face, through the use of the ICP method, to
adjust the captured mesh and lighting.

Through the use of 3D modeling software, a virtual avatar
base is generated. This avatar uses blendshapes that are
changed to form new custom templates for each user.

Weise, Bouaziz, Li and Pauly [23] have created a real-time
face tracking method that uses Kinect. It combines 3D point
cloud mapping with 2D markers to generate, from a sequence
of animations, a new face through the use of blendshapes.

The goal of this method, according to the authors, is to be
flexible and use ease of capturing, with inexpensive cameras
and existing animations, created by more complex captures
while maintaining the final quality of the process. It has an
offline process where a dataset of blendshapes is created with

the face of the actor to be captured and an online phase for
processing the expressions.

III. BLENDSHAPES

The term Blendshape was introduced by the printing in-
dustry in the 1980s when it became popular in commercial
software. [12] defined blendshapes as being facial models
where vectors represent individual facial expressions. This
consists of creating face poses in various meshes. Each mesh
is assigned a shape. One of the meshes is the base shape
while the other meshes are called target shapes. The difference
between the base form and the target shape is represented
by configuration vectors [17]. Many applications used by the
animation industry use the technique of changing the forms
use of implemented blendshapes (Figure 1).

Fig. 1. Forms of blendshapes.

A. Algebra and Algorithms
As is shown in [12], blendshapes are a simple vector sum.

Consider a facial model composed of n = 100 blendshapes,
each having p = 10000 vertices, with each vertex with three
components x, y, z. The blendshape model is expressed by
the following equation:

f =

n∑

k=0

wkbk (1)

or, in matrix notation

f = BW (2)

where f is the resulting face, in the form of a 30000x1
vector, B is a m = 30000x100 matrix (m = 3p) where
each column of the vector bk, corresponds to an individual
blendshape (30000 x 1 vectors) and w is the applied weight
(a 100 x 1 vector) in each shape.

A face b0, typically in rest expression, is designated as the
neutral face, and the remaining faces, bk, K = 1...N are
replaced by the difference between bk − b0 between the nth
K target faces and the neutral face:

f = b0 +

n∑

k=1

Wk(bk − b0) (3)

where b0 is the neutral form. This is denoted as:

f = b0 + Bw (4)

In this formulation, the weights w are limited to between
[0, 1].

4 SBC Journal on Interactive Systems, volume 9, number 2, 2018

ISSN: 2236-3297



IV. SYSTEM OVERVIEW

According to Weise, Bouaziz, Li and Pauly [22],
performance-oriented facial animation involves two technical
challenges: the first is to accurately track the rigid and non-
rigid movements of the user’s face; the second is to map the
tracking parameters to the appropriate controls that will direct
the face animation of the virtual character. One approach,
found in several methods, is to combine these two problems
into a single optimization that finds the most appropriate
values of the most likely parameters of a specific expression
model based on the observed 2D and 3D data. To define real-
istic facial space, it is common to derive an initial probability
for this optimization from prerecorded animation sequences.

For the creation of the system, the modular architecture
illustrated in Figure 2 was adopted. The diversity of the
techniques used for the creation of transfer coefficients can
be seen. In some cases, two techniques are employed.

Fig. 2. Architecture and pipeline of the developed system.

The system is divided into two subsystems: dataset gener-
ation of blendshapes and capture and processing and redirec-
tion. The first subsystem generates a dataset of blendshapes
with specific expressions for creating realistic animations.

The second subsystem is composed of an Actor Capture
Module where the 2D and 3D information will be extracted,
which will be processed by the Processing Module, and
finally by the Redirection Module, where the facial expression
weights are transferred to the blendshape, which represents the
facial model of the virtual character.

V. IMPLEMENTATION OF THE SYSTEM PROTOTYPE

A. Blendshapes dataset generation subsystem

This subsystem creates a blendshapes database with various
types of expressions based on FACS [6] that will be used in
redirection. Figure 3 shows the steps required to configure the
dataset. The adjustment of the facial markers captured in the
2D image, to the 3D model starts with the normalization of
the 3D model and the 2D image points. This normalization is
made by a scale adjustment. To adjust the scale, the points cor-
responding to both eyes are selected manually in the 3D model.
In the image captured by the RealSense camera [11], these
points are known because the camera automatically marks
those points. After highlighting these references between the
3D model and the 2D points, a scale adjustment is made
using the distance between the two points and the difference
in size between them. At the end of this process, all points
are translated using the point of the 3D model closest to the
camera, which is the tip of the nose, and the corresponding
point of the 2D model, which is reported by the camera.
As a database, the blendshapes generated by the application
FaceGen Modeller 3.3 [19] were used.

A set of blendshapes generated by FaceGen Modeller 3.3
software [19], is a commercial tool designed for the creation
of 3D faces in a realistic way, often used in virtual games. It
is based on a database with thousands of human faces scanned
in 3D. The created faces vary in gender, age and ethnicity and
can be altered through the software manipulation interface.

B. Capture, processing and redirection subsystem

This subsystem uses the RealSense camera for video cap-
ture, the position of the face on the image, and the facial
markers and their 3D information. This process is carried out
frame by frame. In Figure 4 the implemented pipeline in this
subsystem is shown.

Capture

The first step in the pipeline is capturing the face of an actor
using the RealSense camera. A helmet has been developed that
ensures the distance between the actor’s face and the camera
remain unchanged. The camera remains in a stationary position
with respect to the movements of the actor’s head. Figure 5.

When initiating the capture phase, through software, the ac-
tor must stand in front of the camera with a neutral expression
during the first few seconds. After this time, the actor can start
acting. For the processing step, which will be described below,
the first frame captured as the neutral expression is used. It is
through this table that the calibration is performed.

In the capture, the 2D and 3D information of the facial
markers will be exported and used in the next phases of the
pipeline.

Processing

In this step, the weights of the blendshapes are calculated
for each captured frame. This will involve a series of steps
to adjust the points before they are submitted to pattern
recognition algorithms. The first step of the processing is

SBC Journal on Interactive Systems, volume 9, number 2, 2018 5

ISSN: 2236-3297



Fig. 3. Steps in generating blendshapes with facial marker associations. (a)
2D image; (b) RealSense camera detects the face and captures the points; (c)
standardized model; (d) Adjusting the 2D points captured by the RealSense
camera in the 3D model so that the scales between the models remain the
same; (e) translocation of the scaled points using the reference point of the
z-axis closest to the camera; (f) search for 3D points matches through the
proximity of points.

the adjustment of the neutral face from the capture with the
adjustment of the neutral face of the dataset. This adjustment
is made by normalizing the 3D points of each capture together
with each expression of the dataset.

The next step of the adjustment is the scale. It is calculated
through a set of points that have a correspondence between
them. In this case, eye points were selected from the set of
previously captured and adjusted facial markers in the dataset.

Fig. 4. Pipeline of the capture, processing, and redirection subsystem. (a)
frame-by-frame capture of the face of the actor; (b) exported file with 2D and
3D facial marker information; (c) initial adjustment of the neutral face of the
actor with the neutral face of the dataset; (d) scale adjustment between faces;
(e) translating between the points of the face of the actor and the points of
the virtual face; (f) calculation of weights between dataset blendshapes and
(g) redirection of weights to the virtual face.

The final positioning is the centering of the points through
the closest point of the camera. This translation occurs to

6 SBC Journal on Interactive Systems, volume 9, number 2, 2018

ISSN: 2236-3297



Fig. 5. Helmet used to capture the videos in the initial phase of the process.

minimize the distances between the points of the captured
face and the faces of the dataset. After the adjustment, a
displacement is applied to the neutral face of the dataset so
that it stays with the points in the same position as the points
captured by the face of the actor. This improves the calculation
of the weights.

Redirection

The redirection module uses the values found in the distance
calculations between actor face points and blendshapes. This
phase generates a new model that, from the neutral face of
the dataset, mixes several other models taking into account
the proximity of the captured face.

The weights correspond to the calculation of the distance
between the blendshapes and the captured face. For the ap-
plications of weights, the values of the process of calculating
distance between the points is normalized between the values
zero and one, with the value one being the closest to the
expression. A result of this calculation can be seen in Figure
6.

For the redirection, the algorithms found in the literature are
used. For this work ICP, an algorithm used to minimize the
difference between two point clouds. [2], PCA, which is an
algorithm that reduces the dimensionality of data set with the
least loss of information. [3], DHM, the maximum distance
from one set to the nearest 2D point of another set. [10] and
Euclidean Distance, as you calculate the distance between two
points in a vector space [18] were chosen, since they are the
most used for this type of system. The weights correspond to
the computation of the distance between the blendshapes and
the captured face. In this step, various combinations of datasets
with different numbers of expressions were tested. Depending
on the types of expressions present in the dataset, the result
can be changed.

For the applications of weights, the values of the distance
calculation process between the points is normalized between
the values zero and one, the value one being the closest to

Blendshapes farther from the actor's captured face

Blendshapes closer to the actor's captured face

Fig. 6. Example of calculating the distances between the points of the captured
face of the actor with the blendshapes

the expression of the dataset and zero being the farthest. The
following equation was used:

f =

n∑

k=0

WkBk (5)

where Wk is the value found in the calculation of the
distances and Bk the corresponding blendshape. These values
are summed and in the end result is added to the neutral face
of the dataset. The result can be seen in Figure 7.

Fig. 7. Example of applying weights in blendshapes.

VI. RESULTS AND EVALUATION

Our framework was developed using an Asus computer with
a 64-bit operating system, x64-based processor, Windows 10

SBC Journal on Interactive Systems, volume 9, number 2, 2018 7

ISSN: 2236-3297



Pro, Intel Core (Tm) i5-3317U CPU (1.7GHz), four gigabytes
of RAM and 500GB of hard disk. An Intel RealSense camera
was also used.

There was also use of the development language Java 1.8
and the Matlab software version R2016b with the following
installed plugins: MATLAB and Simulink Student Suite, Com-
puter Vision System Toolbox and Neural Network Toolbox.

To perform the tests, two datasets were used. The first was
generated by the FaceGen Modeller 3.3 software, comprising
82 FACS-based facial expressions (one of them being the
neutral expression) and the second, a personalized dataset with
80 facial expressions that, through the capture of an actor with
a neutral expression, were cloned from the FaceGen Modeller
3.3 dataset, using the method of [21], being a personalized
dataset and used in the initial pipeline module implemented for
the prototype. These expressions correspond to basic emotions,
such as joy, sadness, fear, disgust, amazement and crying,
among others.

For the tests, through the use of the prototype and the helmet
shown in Figure 5, a video of approximately three minutes was
made at a rate of 14 frames per second, resulting in a sample
of 2,691 frames

In order to determine the accuracy of the screening al-
gorithms selected for the test, the difference between the
positioning of the facial markers captured in the initial module
(considered to be the reference or ground truth) and the
positioning of the markers obtained after the application of
the algorithms, in the processing module, was calculated. The
calculation of this error was made by means of the Euclidean
distance.

For the experiment, 4 sets of blendshapes were randomly
selected. The first containing about 25 percent of the total
dataset (21 blendshapes), the second set with 50 percent of
the total (41 blendshapes), the third with 75 percent of the
total (62 blendshapes) and the last with 100 percent of the
blendshapes set (82 blendshapes).

We selected 52 facial markers shown in Figure 8 that
correspond to the internal points of the face that cover the
area of the mouth, eyes and eyebrows. These are the areas
used by [23] and [14] in their respective pipelines.

A. Results

The results obtained in the processing of the frames cap-
tured using the set of blendshapes generated by the FaceGen
Modeller 3.3 software, submitted to selected algorithms and
presented from the literature, are demonstrated. Through the
graphics shown in Figures 10 and 12, the accuracy of each
algorithm in relation to each frame analyzed can be observed.
An example of this analysis can be seen in Figure 9, where a
highlighted frame shows the great difference in results between
the algorithms.

The first experiment uses the framework to test the algo-
rithms selected from the literature. The results can be seen in
Figure 10.

Table 1 shows the evolution of the results as a function
of the amount of blendshapes selected. As more blendshapes

Fig. 8. Points selected for the tests, totaling 52 facial markers.

Fig. 9. Example of algorithm analysis for each captured frame. It is noted
that the highlighted frame present poor DHM algotithm recognition.

were included in the dataset, the error dropped. This can also
be viewed in Figure 11.

TABLE I
RESULTS IN MILLIMETERS OF THE PROCESSING OF RANDOMLY

GENERATED SETS OF BLENDSHAPES.

Blendshapes Euclidean ICP DHM PCA
25% 0.57576 0.56825 0.56898 0.57959
50% 0.5704 0.5833 0.058498 0.58094
75% 0.61059 0.53811 0.60951 0.61059
100% 0.61059 0.055849 0.60605 0.61059

The second experiment was carried out to measure the
time it took each algorithm to calculate the weights of the
blendshapes. The same methodology was applied, using the
four sets of randomly selected blendshapes, following the
same criteria of the previous experiment. The results can be
visualized in the graphs of Figure 12.

8 SBC Journal on Interactive Systems, volume 9, number 2, 2018

ISSN: 2236-3297



Fig. 10. Graphs showing the calculation of the error among the tested algorithms. (a) 25 percent (21 blendshapes); (b) 50 percent (41 blendshapes); (c) 75
percent (62 blendshapes) and (d) 100 percent (81 blendshapes).

Fig. 11. Visualization of the performance of the algorithms according to the
amount of blendshapes

Table 2 shows the result obtained by the algorithms as a

function of the processing time, in a summarized form.

TABLE II
RESULTS IN SECONDS OF THE PROCESSING OF THE BLENDED SETS

ACCORDING TO THE TIME OF EACH ALGORITHM.

Blendshapes Euclidean ICP DHM PCA
25% 0.0066629 0.11487 0.0080718 0.0070316
50% 0.01636 0.25739 0.018847 0.01604
75% 0.020346 0.32098 0.024317 0.020492
100% 0.026757 0.43506 0.032258 0.028331

For the second dataset, the results obtained in the frame
processing can be seen in Figure 13. In this figure, the accuracy
of each algorithm in relation to each frame analyzed is shown.
This dataset is formed by a set of cloned blendshapes using the
neutral face of the actor as a base, being a set of blendshapes
closer to the geometry of the face analyzed (at variance to
the previous dataset that was a more generic set). Through the
graphs shown in Figure 15, the time each algorithm took to

SBC Journal on Interactive Systems, volume 9, number 2, 2018 9

ISSN: 2236-3297



Fig. 12. Graphs showing the time spent per algorithm, frame by frame, for the amount of selected blendshapes. (a) 25 percent (21 blendshapes); (b) 50
percent (41 blendshapes); (c) 75 percent (62 blendshapes) and (d) 100 percent (81 blendshapes).

process the blendshapes for this dataset can be seen.
Table 3 shows the evolution of the results in relation to the

quantity of blendshapes selected. It is clear that the error rate
has dropped in comparison to the results of the first dataset.
The result can also been seen graphically in Figure 14.

TABLE III
RESULTS IN MILLIMETERS OF THE PROCESSING OF RANDOMLY

GENERATED SETS OF BLENDSHAPES.

Blendshapes Euclidean ICP DHM PCA
25% 0.49399 0.50768 0.49026 0.51372
50% 0.49355 0.48413 0.53793 0.51383
75% 0.4913 0.47216 0.53823 0.50697

100% 0.4907 0.4929 0.55334 0.4907

When comparing the two results, the generic dataset and
the dataset customized for the author’s face, it can be seen,
according to the results obtained, that, in most cases, the
dataset which has faces similar to those captured performs

TABLE IV
RESULTS IN SECONDS OF THE PROCESSING OF THE BLENDED SETS

ACCORDING TO THE TIME OF EACH ALGORITHM.

Blendshapes Euclidean ICP DHM PCA
25% 0.0067576 0.1087 0.0077405 0.0070019
50% 0.014907 0.23638 0.01702 0.014889
75% 0.022562 0.34619 0.02558 0.02257
100% 0.025639 0.40697 0.029538 0.025699

better in terms of distance error between the frame capture and
the final blendshape generated through the chosen algorithms.
This can be seen in Figures 16, 17, 18 and 19, which compare
the two results.

It is also worth noting that according to [16], in general,
30 frames per second is the minimum needed to achieve real
time. In these circumstances, based on the values obtained, it
can be affirmed that the algorithms that give frame processing
performance of less than 0.3 seconds fit into the time needed to

10 SBC Journal on Interactive Systems, volume 9, number 2, 2018

ISSN: 2236-3297



Fig. 13. Graphs showing the calculation of the error among the tested algorithms. (a) 25 percent (21 blendshapes); (b) 50 percent (41 blendshapes); (c) 75
percent (62 blendshapes) and (d) 100 percent (80 blendshapes).

Fig. 14. Visualization of the performance of the algorithms according to the
amount of blendshapes

obtain real time. This can be seen in the majority of the cases

presented in the two types of dataset analyzed. For gaming, the
number of frames per second, in some cases, reaches a rate of
60. In this case, the algorithms which have a processing speed
of up to 0.016 seconds could be used, as is the case of the
Euclidean Distance using 25% and 50% of the blendshapes
and ICP using 25% and 50% of the blendshapes, for example.

VII. CONCLUSION AND FUTURE WORK

An important step in the performance-based facial anima-
tion process is the quality with which the redirection of the
captured face of the actor is transferred to a virtual face. For
this type of task, specific pipelines were created, but most are
in the industry, not allowing for their reproduction because
they have proprietary algorithms.

These pipelines seek as ground truth the creation of virtual
faces very close to the real face because the main idea is to
deceive the human eye, which is an expert in detecting details
and a simple error can compromise the entire work.

SBC Journal on Interactive Systems, volume 9, number 2, 2018 11

ISSN: 2236-3297



Fig. 15. Graphs showing the time spent per algorithm, frame by frame, for the amount of selected blendshapes. (a) 25 percent (21 blendshapes); (b) 50
percent (41 blendshapes); (c) 75 percent (62 blendshapes) and (d) 100 percent (80 blendshapes).

Fig. 16. Graph showing the error difference between the generic dataset and
customized dataset processing for the Euclidean Distance algorithm.

To this end, pipelines, in addition to using algorithms such
as those presented in this work, combine several algorithms, in
several different stages, between offline and online processes
to improve the final quality, including in real-time (which is
a necessity of the film and games industry).

Thus, this work presents a framework to test the algorithms
used in performance-based facial animation and has a blend-

Fig. 17. Graph showing the error difference between the generic dataset and
customized dataset processing for the ICP algorithm.

shapes processing module, a weights calculation module and
a module for the creation of Virtual faces incorporating the
modules normally found in the literature for this type of task.
In addition, it introduces the use of an RGB-D camera, the
RealSense from Intel that has several algorithms implemented
for image processing, such as face detection and detection of
facial markers.

12 SBC Journal on Interactive Systems, volume 9, number 2, 2018

ISSN: 2236-3297



Fig. 18. Graph showing the error difference between the generic dataset and
customized dataset processing for the Hausdorff Distance algorithm.

Fig. 19. Graph showing the error difference between the generic dataset and
customized dataset processing for the PCA algorithm.

Possible developments resulting from this work may be:
1) Improvement of the dataset creation module, incorporat-

ing the algorithms found in the literature for the transfer
of shapes between the meshes, allowing the creation of
customized datasets for each actor;

2) Improvement of the calculation of the weights applied
to the blendshapes, by means of other algorithms of
tracking and the use of neural networks;

3) Incorporation of available blend data bases for research
that are labeled according to the FACs, such as the
database Bosphorus [7] and FaceWarehouse [4];

4) Inclusion of a module for face rendering, using, for
example, a game engine such as Unity 3D;

5) Using other cameras to capture data such as Microsoft’s
Kinect; and

6) Treatment of the characteristics of the human face that
were not considered in this work, such as: eyes, teeth,
tongue and hair.

REFERENCES

[1] S. Behrens, A. Al-Hamadi, E. Redweik, and R. Niese. Automatic
realtime user performance-driven avatar animation. In Systems, Man,
and Cybernetics (SMC), 2013 IEEE International Conference on, pp.
2694–2699. IEEE, 2013.

[2] B. Bellekens, V. Spruyt, R. Berkvens, and M. Weyn. A survey of rigid 3d
pointcloud registration algorithms. In Fourth International Conference
on Ambient Computing, Applications, Services and Technologies, pp.
8–13, 2014.

[3] A. Braun. Aprendizado e utilização do estilo de movimento facial na
animação de avatares. PhD thesis, Pontifícia Universidade Católica do
Rio Grande do Sul, Porto Alegre, 2014.

[4] C. Cao, Y. Weng, S. Zhou, Y. Tong, and K. Zhou. Facewarehouse:
A 3d facial expression database for visual computing. Visualization
and Computer Graphics, IEEE Transactions on, 20(3):413–425, March
2014. doi: 10.1109/TVCG.2013.249

[5] L. Dutreve, A. Meyer, and S. Bouakaz. Feature points based facial
animation retargeting. In Proceedings of the 2008 ACM symposium on
Virtual reality software and technology, pp. 197–200. ACM, 2008.

[6] P. Ekman and E. L. Rosenberg. What the face reveals: Basic and applied
studies of spontaneous expression using the Facial Action Coding System
(FACS). Oxford University Press, 1997.

[7] T. Fang, X. Zhao, O. Ocegueda, S. Shah, and I. Kakadiaris. 3d facial
expression recognition: A perspective on promises and challenges. In
Automatic Face Gesture Recognition and Workshops (FG 2011), 2011
IEEE International Conference on, pp. 603–610, March 2011. doi: 10.
1109/FG.2011.5771466

[8] M. Fratarcangeli. Computational models for animating 3 d virtual faces.
2013.

[9] P. Hong, Z. Wen, and T. S. Huang. Real-time speech-driven face
animation with expressions using neural networks. Neural Networks,
IEEE Transactions on, 13(4):916–927, 2002.

[10] M. J. Hossain, M. A. A. Dewan, K. Ahn, and O. Chae. A linear
time algorithm of computing hausdorff distance for content-based image
analysis. Circuits, Systems, and Signal Processing, 31(1):389–399, 2012.
doi: 10.1007/s00034-011-9284-y

[11] Intel. Realsense. https://communities.intel.com/docs/DOC-24012. Ac-
cessed: 22/07/2017.

[12] J. P. Lewis, K. Anjyo, T. Rhee, M. Zhang, F. H. Pighin, and Z. Deng.
Practice and theory of blendshape facial models. In Eurographics (State
of the Art Reports), pp. 199–218, 2014.

[13] D. Li, C. Sun, F. Hu, D. Zang, L. Wang, and M. Zhang. Real-
time performance-driven facial animation with 3ds max and kinect.
In Consumer Electronics, Communications and Networks (CECNet),
2013 3rd International Conference on, pp. 473–476, Nov 2013. doi:
10.1109/CECNet.2013.6703372

[14] H. Li, J. Yu, Y. Ye, and C. Bregler. Realtime facial animation with on-
the-fly correctives. ACM Trans. Graph., 32(4):42:1–42:10, July 2013.
doi: 10.1145/2461912.2462019

[15] C. Luo, J. Yu, C. Jiang, R. Li, and Z. Wang. Real-time control of
3d facial animation. In Multimedia and Expo (ICME), 2014 IEEE
International Conference on, pp. 1–6, July 2014. doi: 10.1109/ICME
.2014.6890231

[16] Microsoft. Understanding frames per second (fps).
https://support.microsoft.com/en-us/kb/269068, 2003. Accessed:
2017-01-15.

[17] M. B. Nendya, E. M. Yuniarno, and S. Gandang. Facial rigging for 3d
character. Int. J. Comput. Graph. Animat, 4(3):21–29, 2014.

[18] S. Robison. Geometria plana. https://goo.gl/NOUxIl, 2014. Accessed:
2016-12-05.

[19] E. B. Roesch, L. Tamarit, L. Reveret, D. Grandjean, D. Sander, and K. R.
Scherer. Facsgen: A tool to synthesize emotional facial expressions
through systematic manipulation of facial action units. Journal of
Nonverbal Behavior, 35(1):1–16, 2011.

[20] Y. Seol, J. P. Lewis, J. Seo, B. Choi, K. ichi Anjyo, and J. yong Noh.
Spacetime expression cloning for blendshapes. ACM Trans. Graph.,
31:14:1–14:12, 2012.

[21] R. W. Sumner and J. Popović. Deformation transfer for triangle meshes.
ACM Transactions on Graphics (TOG), 23(3):399–405, 2004.

[22] T. Weise, S. Bouaziz, H. Li, and M. Pauly. Kinect-based facial
animation. In SIGGRAPH Asia 2011 Emerging Technologies, SA ’11,
pp. 1:1–1:1. ACM, New York, NY, USA, 2011. doi: 10.1145/2073370.
2073371

[23] T. Weise, S. Bouaziz, H. Li, and M. Pauly. Realtime performance-based
facial animation. In ACM Transactions on Graphics (TOG), vol. 30,
p. 77. ACM, 2011.

[24] S. Yuan, Y. Lu, and H. He. Midi-based software for real-time network
performances. In Cryptography and Network Security, Data Mining and
Knowledge Discovery, E-Commerce & Its Applications and Embedded
Systems (CDEE), 2010 First ACIS International Symposium on, pp. 226–
230. IEEE, 2010.

[25] M. Zeng, L. Liang, X. Liu, and H. Bao. Video-driven state-aware facial
animation. Computer animation and virtual worlds, 23(3-4):167–178,
2012.

[26] Q. Zhang, Z. Liu, G. Quo, D. Terzopoulos, and H.-Y. Shum. Geometry-
driven photorealistic facial expression synthesis. Visualization and
Computer Graphics, IEEE Transactions on, 12(1):48–60, 2006.

[27] M. Zhou, L. Liang, J. Sun, and Y. Wang. Aam based face tracking
with temporal matching and face segmentation. In Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on, pp. 701–708.
IEEE, 2010.

SBC Journal on Interactive Systems, volume 9, number 2, 2018 13

ISSN: 2236-3297


