
Improved MPS method and its variations for
simulating incompressible fluids on GPU
André Luiz Vieira-e-Silva, Caio Brito, Mozart William Almeida and Veronica Teichrieb

Voxar Labs, Informatics Center
Federal University of Pernambuco

Recife, Brazil
Emails: {albvs, cjsb, mwsa, vt}@cin.ufpe.br

Abstract—Meshless methods to simulate fluid flows have been
increasingly evolving through the years since they are a great
alternative to deal with large deformations, which is where mesh-
based methods fail to perform efficiently. A well known meshless
method is the Moving Particle Semi-implicit (MPS) method,
which was designed to simulate free-surface truly incompressible
fluid flows. Many variations and refinements of the method’s ac-
curacy and precision have been proposed through the years and,
in this paper, a reasonably wide literature review was performed
together with their theoretical and mathematical explanations.
Due to these works, it has proved to be very useful in a wide
range of naval and mechanical engineering problems. However,
one of its drawbacks is a high computational load and some quite
time-consuming functions, which prevents it to be more used in
Computer Graphics and Virtual Reality applications. Graphics
Processing Units (GPU) provide unprecedented capabilities for
scientific computations. To promote the GPU-acceleration, the
solution of the Poisson Pressure equation was brought into focus.
This work benefits from some of the techniques presented in the
related work and also from the CUDA language in order to get a
stable, accurate and GPU-accelerated MPS-based method, which
is this work’s main contribution. It is shown that the GPU version
of the method developed can perform from, approximately, 6 to
10 times faster with the same reliability as the CPU version, both
extended to three dimensions. Lastly, a simulation containing a
total of 62,600 particles is fully rendered in 3D.

I. INTRODUCTION

Some of the most common problems in naval hydrodynam-
ics involve the study of fluid flow. For this, it is necessary to
deal with large deformations such as those presented in a good
portion of computational mechanics problems [1].

Conventional methods, as the Finite Element Methods
(FEM), Finite Difference Methods (FDM) and other mesh-
based methods, are considered well consolidated and accurate.
However, they are relatively inefficient when dealing with
certain problems where it is required the simulation of large
deformations. The best approach considered to deal with large
deformations and the moving discontinuities caused by them
is to constantly regenerate the mesh in order to keep its
discontinuities coincident through the simulation [2].

Clearly, this constant remeshing makes the process quite
expensive in terms of computation, probably even causing
accuracy degradation [3]. As an attempt to reduce those
issues, methods that use meshes and discrete elements, called
particles, were proposed. One example is the Particle Finite
Elements Method (PFEM) [4]; another alternative, which

has presented great potential over the years, are the entirely
meshfree methods. They enable, mainly, that free-surface flow
can be discretized and solved the Navier-Stokes equations
without the need of a grid of any kind, such as in the work
of Frey and Alauzet [5], achieving flexibility in situations
where the classic methods are too complex. Each particle
carries a set of physics quantities and constitutive properties,
such as mass, velocity and position, and they are responsible
for characterizing the system state and its evolution through
time. An interesting advantage of the meshless methods with
Lagrangian characteristics, is that it allows an easy tracking
of each particle’s quantities in any step of the simulation.

Some of the techniques fully free of meshes are the Moving
Particle Semi-implicit method (MPS) and the well-known
Smoothed Particle Hydrodynamics (SPH). The SPH was de-
signed in the 1970s by Lucy [6] and Gingold and Monaghan
[7] and intended to astrophysics applications. The first method
mentioned, the MPS, was introduced in 1996 with the work
of Koshizuka and Oka [8] and it was idealized to simulate
the flows of incompressible fluids, which refers to a fluid that
its material density is constant within a fluid parcel. In many
scenarios the changes in temperature and pressure are so small
that the density fluctuation is negligible; in such cases the
flow may be modeled as incompressible. Its main difference
from the original SPH method, which is considered a notable
advantage for the MPS method, is that the calculations adopt a
semi-implicit predictor-corrector model (which later has been
similarly used in some incompressible SPH methods [9]).
However, the SPH has been preferred in Computer Graphics
(CG) and Virtual Reality (VR) applications [10] [11] due
the high computational load occasioned by the precise MPS
calculations, including solving the Poisson Pressure Equation
(PPE), in spite of starting efforts to change this [12]–[14].

The MPS method was chosen in this work to be studied and
implemented due to its appealing intrinsic incompressibility
since this type of fluid flow presents environmental importance
[15] and appears in many industrial applications [16]. Gotoh
and Khayyer [17] presents the current applications and future
perspectives of the MPS method and its variations in addition
to the incompressible SPH in ocean engineering common
problems. Regarding the MPS method, various scenarios are
considered, such as wave breaking [18] [19], wave overtopping
[20], wave impact [21] [22], green water on ships [23],

52 SBC Journal on Interactive Systems, volume 9, number 2, 2018

ISSN: 2236-3297

sediment transport [24], landslide-generated waves [25] and
fluid-structure interactions [26] [27]. This shows how the MPS
can be explored in order to help mitigate environmental and
natural disasters involving water and/or other liquids.

The main issues of meshfree methods, in general, are in the
modeling of solid boundary interaction, fluid flow and, in the
specific case of the MPS method, spurious pressure oscillation
of the particles [21]. Therefore, several solutions have been
proposed in the literature, such as local particle refinement
and corrected formulations [28]–[31].

A lot of improvements and adaptations of the original
method of both SPH and MPS techniques have been proposed
in order to adequate them to the simulation of various kinds
of physical phenomena or, more commonly, to get better
stability and accurate calculations. In the methodology section,
the improvements used in this work are addressed. A set of
modifications to the MPS and the SPH method can be seen in
the works of Vieira-e-Silva et al. [32] and Almeida et al. [33].

A. Goals

A significant disadvantage of fluid simulation models that
value numerical precision is time spent in the application
execution, more specifically in the simulation generation [34].
The challenge of dealing with this problem has been dimin-
ished through the use of computational platforms that provide
Application Programming Interfaces (APIs) making it possible
to benefit from the various processing cores of a Graphics
Processing Unit (GPU). Some works provide various kinds
of performance speedups but always focusing on the standard
MPS method [13], [34], [35].

In our work, a significant literature review is made, MPS
applications are visited, and the method proposed by Gotoh
[36] (CMPS-HS-HL-ECS), is implemented. Initially the im-
plementation is done sequentially to run in CPU and later,
using CUDA [37], the same code is implemented to run in
GPU, exploiting its parallelism and aiming at near iterative
rates for at least relatively low particle number cases (order
of 103 particles). Lastly, the simulation is rendered using a
screen space approach for illustration purposes.

This points in a direction where not only truly incompress-
ible but also quite accurate fluid simulation methods can be
used in VR and CG applications, allowing even more realism,
now focusing on the physics instead of the rendering.

B. Contributions

A substantial survey in the literature is fulfilled related to
the MPS method where a set of papers were read and analysed
with the purpose of understand and expose the strong and weak
points of the MPS technique, what the community has been
proposing in relation to this technique and for which purposes
this method can be applied. Mathematical formulations and
theoretical explanations of MPS variations, which were not
necessarily implemented in this work, are also presented.

Based on the work of Gotoh [36], a stable free-surface
incompressible fluid simulation method, was implemented to
run in CPU and, subsequently, an unprecedented parallelized

version of this method was developed to run in GPU, through
the use of the CUDA with speedups ranging from 6.41
to 10.69 times. Then, the method was extended to three-
dimensions in both versions, so the whole scene can be fully
simulated in 3D.

At last, a simulation of a 3D dam break scenario was
generated from the developed method with 62, 600 particles
and then coupled with a rendered solution with the purpose
of displaying the method’s potential in CG and VR.

C. Outline

In the second section of this paper there is a background
context on the area presenting the state of the art and related
works. Next, there is a section explaining the technique and
presenting a set of variations, improvements and applications
of it, in which a subset of them has been implemented. A brief
explanation on the CPU and GPU versions implementations of
the code is presented. Afterwards, a case study is showcased,
showing the scenario utilized and its variations, the most
lasting parts (absolute and relative durations) of both versions,
memory usage, as well as the speedups provided by the GPU
version and the rate of generated frames. Lastly, there are the
conclusions, final remarks and future works suggestions.

II. STATE OF THE ART

Through the years, disasters involving natural phenomena
have triggered several researches in many different areas on
how to avoid them. Fluid simulation focusing on liquids is
one of these areas. To simulate liquids correctly, the fluid
flow should be incompressible or weakly compressible, which
guarantees that the fluid density fluctuations are kept to a
minimum. One of the reasons of simulating liquids in general
has been on how to solve these kind of problems. The MPS
method has also been providing great assistance in that field,
since it was intentionally created for simulating incompressible
flows. The work of Chen et al. is a great reference of this area
[38].

A. MPS and Its Variations

The MPS method and variations of it has already been used
for various purposes and in various fields, such as nuclear
engineering phenomena applied to molten core solidification
behavior in nuclear power plant accidents and others [39]–
[41]. Another example is chemical engineering phenomena
applied to eutectic reactions, as well as multiphase fluid
simulation [42], [43].

As already has been stated, the MPS method was introduced
focusing on the modeling of the behavior of incompressible
fluids [8]. Other subsequent works apply the method to certain
areas of research, such as coastal and mechanical engineering,
among others. In 1998, Koshizuka et al. [44] applied the
method to wave breaking in a beach. The authors, in this
same work presented an optimization in the neighborhood
calculation (from O(n2) to O(n1.5)). The previous way (naive)
provoked a higher computational load, since the algorithm
required that each particle position had to be checked with

SBC Journal on Interactive Systems, volume 9, number 2, 2018 53

ISSN: 2236-3297

all the others in the system in order to know which ones were
its neighbors. Unfortunately, similarly to the other meshfree
methods, the MPS technique suffers from instability problems.
Some of these issues are related to numerical errors at the
boundaries, i.e., at free-surfaces or when interacting with solid
boundaries. There are works that describe why those instability
problems arise from the MPS method [22], [45].

In attempts to overcome these issues, some authors changed
the method in order to improve it; one of the biggest issues
with the MPS method is the spurious pressure oscillation.
Various works already tried successfully to diminish this. In
the work of Kondo et al. [45] an artificial pressure is adopted
to stop gradual density change (one of the conditions to
express incompressibility). The stabilization process consists
in eliminate negative pressure after solving the PPE, setting the
negative pressures to zero. This problem is due to the particle
number densities near the surface being small, which causes
the particles’ pressure to be negative, thus causing instability
in the system. With the scheme proposed, the authors claimed
to obtain smoother pressure variations using a dam break test
case for the analysis.

Ataie-Ashtiani and Farhadi [46] used a meshless numerical
approach to solve Eulers equation, which is the governing
equation of the irrotational flow of ideal fluids. Since the time
integration of the equations of inviscid flow (mass and mo-
mentum conservation) presents difficulties when dealing with
incompressible, or nearly incompressible fluids, a fractional
step method, which consists of splitting each time step in two,
was proposed in order to facilitate solving the inviscid flow
equations. Regarding the MPS method stability, various kernel
functions were considered and applied to the method, and, as
a result of this study, the most suitable kernel function was
employed so that the method could increase its stability. The
authors concluded that the developed method is quite useful
for solving problems with irregular free-surface in hydraulic
and coastal engineering when an accurate prediction of free
water surface is required.

Lee et al. [22] stated that the MPS method, when it was
initially proposed, had several defects including non-optimal
source term of the Poisson Pressure equation (PPE), gradient
and collision models, and search of free-surface particles,
which led to less-accurate fluid motions. In that sense, the
authors proposed step-by-step improvements in the processes
referred above, originating what they called the PNU-MPS
method. After analyzing the improvements using the dam
break problem (shown in Figure 1) and the problem of liquid
sloshing inside a rectangular tank, the authors concluded that
the numerical results for violent free-surface motions and
impact pressures are in good agreement with their respective
experimental data.

Duan and Chen [47] discussed the effects of setting up
time step and space step on the stability and accuracy of the
viscosity term in the MPS method, which is noted to be a very
important property of fluids but not quite easy to simulate. In
that work, using the MPS method, two conditions for the setup
of time step and initial particle distance in a viscous shear

Fig. 1: Identification of free-surface particles [22]

flow simulation method are prescribed to be used specially
for simulation flows where viscous forces are dominant. The
authors concluded that the stability condition of the viscous
term can provide a stable simulation. As for the accuracy
condition of the viscous term, it is capable of producing the
most accurate simulation for steady laminar flow, and can also
provide a realistic and accurate simulation of the molecular
viscosity term for unsteady turbulent flow at the expense of a
high computational cost though.

A set of papers by Khayyer and Gotoh presents valuable
insights and improvements to this problem. Most of them
proposed corrected differential operator models (laplacian and
gradient). In one of their first attempts they proposed a Cor-
rected MPS (CMPS) method [28] for the accurate tracking of
water surface in breaking waves. Modifications and corrections
in gradient operator model used in the standard MPS method
are made with the goal to achieve momentum conservation in
the calculations of viscous incompressible free-surface flow.

Then, in 2009, Khayyer and Gotoh [21] proposed new
modifications to the MPS method in order to diminish spurious
pressure fluctuation. The authors introduced a new formulation
of the source term of the PPE, which was referred as a Higher
order Source term (HS), thus creating the CMPS-HS method
after combining this modification with their previous work.
Another modification was allowing slight compressibility to
the method, that being, adding part of an equation of state
(EOS) to the right hand side of the PPE. The compressible
term in the equation would have a stabilizing effect on the
particle’s pressure calculation. It was shown that the proposed
methods are applicable for an approximate estimation of wave
impact pressure on a coastal structure.

In 2010, Khayyer and Gotoh [29] focused on the Laplacian
model used in the MPS method. They noticed that to further
refine and stabilize the pressure calculation, a Higher order
Laplacian model (HL) for discretization of the Laplacian
operator should be derived. This model was applied in both
Laplacian of pressure and the one corresponding to the
viscous forces. By merging this new model with previous
modifications proposed by the same authors, the CMPS-HS-
HL was originated. The authors remarked that, although the
improvements enhanced pressure calculations, the numerical
results still presented some unphysical numerical oscillation

54 SBC Journal on Interactive Systems, volume 9, number 2, 2018

ISSN: 2236-3297

during tests.
After that, in 2011, following the conclusion in their pre-

vious work, Khayyer and Gotoh [30] presented two new
modifications in order to resolve the shortcomings that were
present in the method proposed in their previous work. The
first improvement deals with unphysical numerical oscillation
caused by the source term in the PPE, so, extra terms were
added to it, which are referred by the authors as Error
Compensating parts in the Source term of the PPE (ECS)
and, by combining with previous works, the CMPS-HS-HL-
ECS was conceived. The second change is meant to deal
with situations with tensile instability [48]. It consists of a
corrective matrix inserted in the pressure gradient calculations
to achieve a more accurate approximation of the differential
operator in question.

It is noteworthy that a big portion of these variations are
going to be detailed, exposing its calculations and nomencla-
tures, more specifically the ones by Khayyer and Gotoh since
they were used in this work, further in the section about the
MPS technique (subsection III-B).

B. Related Works

Since the MPS is fully meshless, the particles are not
connected explicitly by any edge, therefore, it is possible to
optimize some computational aspects of the simulation, such
as by parallelization, by cluster technology or General Purpose
GPU (GPGPU) techniques.

Tsukamoto [49] used shared memory parallelization as a
way to accelerate the MPS method. His goal was to simulate
floating bodies in highly nonlinear waves and he achieved
significant performance gains compared with the sequential
version of the simulation.

Ikari and Gotoh [50] compared two problem decomposi-
tion methods, one based on particles decomposition and the
other on a domain decomposition. They verified that domain
decomposition, in most cases, presents a smaller runtime to
finish the calculations.

Gotoh [51] developed a MPS version to be executed in
parallel, combining domain decomposition techniques with
dynamic boundaries, periodically recalculating based on the
center of mass of each subdomain to enhance load balanc-
ing in the processors and also a process of preconditioner
matrix restructuring for accomplishing the forward/backward
process of the Conjugate Gradient in parallel. The authors
concluded that the proposed method successfully simulated
the studied models, but the parallelized model still needed
further refinement, that being in precision and computational
efficiency. This could be achieved through the development of
more accurate and consistent numerical models of differential
operators, such as time integration.

Iribe et al. [52] presented simulation results of the par-
allelized MPS for a PC cluster. The authors identified that
the bottleneck of the iterative solver parallelization in shared
memory is the computational cost of the communication
between subdomains. To minimize this communication, a
sophisticated particle renumbering process based in packages

Fig. 2: Tsunami simulation [52]

and in a communication list was used. With these techniques,
they were able to accelerate the communication process. A
237-hour simulation of a tsunami, pictured in Figure 2, with
six million particles was generated. The authors concluded that
the reordering process proposed can be used to elaborate an
efficient scheme of unidimensional decomposition process.

Hori et al. [13] developed a GPU-accelerated version of a
MPS code using NVIDIA’s CUDA. The authors focused on the
search of neighboring particles and the iterative solution of the
linear system generated by the PPE, which generates a large
computational. The optimization of the search for neighboring
particles is achieved through a cell grid, in which each particle
is stored in a specific cell according to the particle’s position.
In order to compare accuracy and performance between the
CPU and GPU-based codes, 2-dimensional calculations of an
elliptical drop evolution and a dam break flow have been
carried out. Finally, the reported speedup achieved in that work
is about 3 to 7 times.

Zhu et al. [34] developed a GPU-based MPS model using
CUDA. To find the neighbors for a specific particle i a similar
approach to Hori et al. [13] was used, where background
grids are employed in order to reduce significantly memory
access, taking only O(kNP) times. The authors built four
different test cases to evaluate the GPU program optimization,
all based in the dam break scenario. To solve the PPE, the Bi-
Conjugate Gradient method (BiCG) is used and it is shown
that the percentage of time used for solving the pressure
equation decreases from 66% to 40% as the total number of
particles raises. The authors concluded through a numerical
analysis that the models based on CPU and GPU have the
same precision and, through a performance comparison, a 26
times speedup can be obtained with the MPS-GPU in contrast
to the MPS-CPU.

In Fernandes’s PhD thesis [53], he developed a computa-
tional framework of hybrid parallelization of the MPS method.
An altered version of the pressure formulation was used, where
the stability is higher at the cost of introducing a limited com-
pressibility to the method, something unacceptable in systems

SBC Journal on Interactive Systems, volume 9, number 2, 2018 55

ISSN: 2236-3297

with rigorous incompressibility requirements. He concluded
that his work contributed to the MPS method consolidation as
a practical tool to investigate complex engineering problems,
since the method has its applicability extended to scenarios
with millions of particles, and could be used, for instance,
in the influence of ship movements in waves, phenomena
involving fragmentation and dealing with large deformations.

Differently from the works here presented, our work’s con-
tribution lies in the parallelization to achieve relevant speedups
with a GPU execution of an enhanced MPS method with
significant changes from the basic technique ensuring a stabler
and more accurate method. Equally important, the character-
istics of the PPE are not changed, therefore, maintaining its
full incompressible property.

III. THE MOVING PARTICLE SEMI-IMPLICIT METHOD

Here, an explanation of the MPS method is done, showing
its governing equations, discretized differential operations, as
the set of the used improvements to the basic MPS and a few
illustrations of the MPS algorithm and calculations.

A. Standard Method & Governing Equations

This method models the fluid as an assembly of interacting
particles, in which their motion is determined through the
interaction with neighboring particles and according to the
governing equations of fluid motion. To describe the motion
of a viscous fluid flow, there is the continuity equation and
Navier-Stokes equation as follows in Equation 1 and Equa-
tion 2, respectively.

1

ρ

Dρ

Dt
+∇.u = 0 (1)

Du
Dt

= −1

ρ
∇p+ g + ν∇2u (2)

where u is the fluid velocity vector, t is the time, ρ is the fluid
density, p is the pressure, g is the gravitational acceleration
vector and ν is the laminar kinematic viscosity. To adapt
these equations so that a fluid can be represented by discrete
elements, some of these physical quantities become particles
attributes; so u becomes the velocity vector of a particle, ρ
now stands for the density of the particle and p, the pressure
of a particle. The left hand side of the continuity equation
(Equation 1) is represented, in the case of incompressible
flow, by a simple volume continuity equation, as presented
in Equation 3 [36]:

∇.u = 0 (3)

A particle interacts with its neighbors through a kernel func-
tion w(r), r being the distance between two particles. The
most common form of kernel function employed in MPS, and
used for the implementation in this work, is in Equation 4:

w (|rj − ri|) =

{ re
|rj−ri| − 1 , 0 ≤ r < re
0, re ≤ r

(4)

Fig. 3: Influence radius of a particle in a two-dimensional
problem

where re is the radius of the interaction area and ri and rj
are the positions of particles i and j, respectively. Clearly, a
larger kernel size implies in an interaction with more particles,
as seen in Figure 3.

There are also other types of kernel functions and a detailed
analysis on the subject can be seen in the work of Ataie-
Ashtiani [46].

To find all the neighboring particles j of each particle i
the all-pair search algorithm is used. In this algorithm, the
distance between each particle of the simulation is checked
to see whether they are in the target’s radius of influence and
thus determine its neighbors.

The particle number density n at the particle’s position ri,
which is proportional to the neighbors number of i, is defined
in Equation 5.

ni =
∑

j 6=i
(|rj − ri|) (5)

The continuity equation is satisfied if the particle number
density remains constant, and this constant value is denoted by
n0. As stated before, in the original MPS method the derivative
of a kernel is not calculated, instead, the gradient or Laplacian
are obtained by local weighted averaging of these operators
calculated between a pair of particle i and a neighbor, particle
j.

The gradient model formulation used in MPS of a physical
quantity ϕ is shown in Equation 6.

∇ϕi =
DS

n0

∑

j 6=i

(
ϕj − ϕi

)

|rj − ri| 2
(rj − ri)w (|rj − ri|) (6)

In Equation 6 and Equation 7, DS is the number of space
dimensions present in the simulation. This model is ultimately
applied to the pressure gradient term. The Laplacian of ϕ,
applied to the pressure and in the viscous stress calculation in
this method, is discretized as shown in Equation 7.

56 SBC Journal on Interactive Systems, volume 9, number 2, 2018

ISSN: 2236-3297

∇2ϕi =
2DS

n0λ

∑

j 6=i

(
ϕj − ϕi

)
w (|rj − ri|) (7)

where λ is the weighted average of the squared distance
between particles i and j (or r2

ij), as can be seen in [8].
The satisfaction of the continuity equation is indispensable

to model incompressibility, so, the fluid density must remain
constant. When the particle number density n∗ calculated in
an intermediate step is not equal to n0, it is implicitly adjusted
to n0.

Differently from many SPH-based calculations where the
equations are solved explicitly, the pressure in MPS is im-
plicitly calculated by solving a PPE. The other terms are ap-
proximated explicitly, thus giving the name of the method. To
solve the PPE it is necessary a two step prediction-correction
process. In the first step there is the explicit integration in
time, while, in the second step, the implicit computation of a
divergence-free velocity field occurs. The calculation of the
intermediate velocity field u∗ is derived from the implicit
pressure gradient term as:

u∗i = uki +
∆t

ρ∗i
∇pk+1 (8)

where k indicates the current time step in the simulation,
ρ∗i is the density calculated at time step k of the particle i
and p indicates the particle pressure. The velocity and particle
densities in Equation 8 satisfy the mass conservation law as
in Equation 9.

1

ρ

Dρ

Dt
+∇.

(
uk+1
i − u∗i

)
= 0 (9)

By representing the derivative of the ρ as ρ0−ρ∗k
∆t and substi-

tuting ρ for n, it is possible to deduce the PPE [8]:

∇2pk+1
i = − ρ

∆t2
n∗i − n0

n0
(10)

The Incomplete Cholesky Conjugate Gradient (ICCG) method
is usually employed to solve the linear system [8], [21]. By
solving the PPE, the velocity in time step k + 1 (uk+1) can
be calculated, and, at last, the particle positions, denoted by r
in Equation 11, are updated through a simple first-order Euler
integration.

rk+1
i = rki + uk+1

i ∆t (11)

The solid boundaries in standard MPS, as walls and fixed
obstacles, are represented by fixed particles with no velocity.
Some of these particles, however, are considered to solve the
PPE. To tell which will be used for the pressure calculations,
it is important to explain that there are two layers of wall
particles. One of these layers will be referred as inner wall
particles (those that, initially, come into direct contact with
the fluid particles) and the other as dummy particles (which
complement the solid boundary). Usually, just some lines
(often two) of dummy particles are used [44]. A model can

Fig. 4: Dummy boundary scheme

be seen in Figure 4. The PPE is solved by taking into account
the inner wall particles only to repel the fluid from the solid
boundaries, while the dummy particles were introduced so that
the particle number density at the inner wall particles is not
small and that they are not recognized as free-surface.

To identify a free-surface particle, the particle number
density of the ith particle just needs to satisfy the condition
presented in Equation 12 since on the free-surface the particle
number density drops abruptly.

ni < βn0 (12)

The bigger β is, the bigger will be the number of particles
recognized as free-surface. Koshizuka and Oka [8] recom-
mends that it should be set to 0.97. An overview of the MPS
algorithm can be seen in Figure 5.

B. MPS Enhancements
In this section, improvements of the standard MPS that

were implemented in this work are described. It is noteworthy
that the universe of variations is much larger and the ones
that were selected stand between the improvement impact
size and implementation cost until, finally, a version that
was considered sufficiently stable and physically accurate was
achieved. It is also shown other modifications to the standard
method which expand the range of applications of the MPS
method.

1) Kernel Functions: As discussed before, the motion of
each particle depends on the interaction with its neighbors,
and this relation is ruled by the kernel function. So, along the
years, various kernel functions were suggested for the purpose
of achieving better performance and numerical accuracy in the
simulation. In [46] six kernel functions previously proposed
are considered and applied to study the simulation behavior
and computational performance in order to reveal which one
enhances numerical stability best. The kernels considered in
this work are presented in Table I.

This study shows that the kernel function proposed by [15]
was found to improve the most the stability of the MPS
method, in way that the collapse of a water column simulation
was successful, including the loss of the water momentum to
the point where it stands still inside the container, a significant
feature amongst other particle methods.

SBC Journal on Interactive Systems, volume 9, number 2, 2018 57

ISSN: 2236-3297

Fig. 5: Algorithm of MPS method

2) Momentum Conservation: In the work of Suzuki et
al. [56] have developed the Hamiltonian MPS (HMPS) in
which the momentum and mechanical energy of the system
are preserved. However, HMPS carries heavy theory to its
calculations making it extremely complicated to implement
in comparison to the standard MPS method. A simple way to
achieve a consistent conservation of linear momentum is to
ensure a better discretization of the gradient model, which is
directly connected to the linear momentum conservation.

Equation 13 shows the suggested alteration on the pressure
gradient formulation by Khayyer and Gotoh [28].

TABLE I: Different kernel functions

Kernel function formulation Work

w (r) =

{
e
−
(

r
re

)2

, 0 ≤ r ≤ re
0, re < r

[54]

w (r) =





2
3
− 4
(
r
re

)2
+ 4
(
r
re

)3
, 0 ≤ r ≤ re

2

4
3
− 4

(
r
re

)
+ 4
(
r
re

)2
+

4
3

(
r
re

)3
, re

2
< r ≤ re

0, re < r

[54]

w (r) =

{
1− 6

(
r
re

)2
+ 8
(
r
re

)3
− 4

3

(
r
re

)4
, 0 ≤ r ≤ re

0, re < r
[54]

w (r) =





−2
(
r
re

)2
+ 2, 0 ≤ r

re
< 1

2(
2 r
re

− 2
)2

, 1
2

≤ r
re

< 1

0, re ≤ r

[8]

w (r) =

{ re
r

− 1 , 0 ≤ r < re
0, re ≤ r

[44]

w (r) =





40
7πr2e

(
1− 6

(
r
re

)2
+ 6
(
r
re

)3)
, 0 ≤ r < re

2

10
7πr2e

(
2− 2 r

r

)3
, re

2
< r < re

0, r > re

[55]

∇pi =
DS

n0

(∑

j 6=i

(
pi + pj)− (p̂i + p̂j

)

|rj − ri| 2

(rj − ri)w (|rj − ri|)
)

(13)

p̂i = minj∈J(pi, pj), J = {j : w(|rj − ri|) 6= 0} (14)

When the anti-symmetric Equation 13 is applied, linear
momentum is exactly conserved. This method is referred by
the authors as Corrected MPS (CMPS).

3) Pressure Calculation: One of the major issues of the
MPS method, and consequently widely explored, is the spu-
rious pressure oscillation. Recent works that presented sub-
stantial improvements in this area, making few and simple
modifications to the method, have been proposed [21], [29].
The first one is called by the authors as the MPS method
with a Higher order Source term (MPS-HS), since it basically
presents a new formulation for the calculation of the derivative
of the particle number density (DnDt). Using this method, the
Equation 10 is replaced by the Equation 15 [31].

∇2pk+1
i = − ρ

n0∆t


∑

i 6=j

re
r3
ij

(xijuij

+ yijvij + zijwij)

)∗
(15)

where rij is the distance between particles i and j. xij , yij
and zij represent the distance between particles i and j in
each dimension and uij , vij and wij the velocity difference

58 SBC Journal on Interactive Systems, volume 9, number 2, 2018

ISSN: 2236-3297

of particles i and j in each dimension. It is important to note
that all the enhancements shown so far can be, and most of
them normally are (specially when they are suggested by the
same authors), combined in one single method to produce a
more robust outcome.

The other improvement to the method’s pressure calculation
implemented was the proposition of a higher order Laplacian
model for both two and three (Equation 16) dimensional
simulations [29], [31].

∇2ϕi =
1

n0

∑

i6=j

(
2ϕijre

rij

)
(16)

where ϕ is a generic physical quantity. This new derivation
was named by the authors as MPS with a Higher order
Laplacian of pressure (MPS-HL).

4) Numerical Stability: Khayyer and Gotoh [30] came up
with a PPE’s source term with error-compensating parts to
enhance even further pressure and velocity field calculations.
The error-compensating terms should be measures for instanta-
neous and accumulative violations of fluid incompressibility.
Equation 17 shows the suggested terms to be added to the
source term of the PPE and Equation 18 shows the complete
modified PPE.

ECS =

∣∣∣∣
(
nk − n0

n0

)∣∣∣∣

[
1

n0

(
Dn

Dt

)k

i

]

+

∣∣∣∣∣

(
∆t

n0

(
Dn

Dt

)k

i

)∣∣∣∣∣

[
1

∆t

nk − n0

n0

] (17)

∇2pk+1
i =

ρ

n0∆t

(
Dn

Dt

)

i

∗
+ ECS (18)

The combination of the refinements shown so far gives as
outcome the Corrected MPS with a Higher order Source term -
Higher order Laplacian of pressure - Error Compensating parts
in the Source term (CMPS-HS-HL-ECS) method. According
to Gotoh [36], the said method ensures satisfactory accuracy
and stable computation, more specifically, under the absence
of tensile stress. A comparison between CMPS-HS-HL-ECS
and the standard MPS can be seen in [36] which presents a
standard test case found in the literature, the breaking waves.
This comparison is abridged in Figure 6, where different
shades of gray represent different pressure levels.

5) Weak Compressibility: Although a weakly compressible
model was not implemented in this work, it is noteworthy,
since it can be coded relatively quick and integrated to the
MPS method in order to severely diminish computational load
in exchange of some numerical precision. In the work of [57],
the incompressible model is replaced by a weakly compress-
ible one on the grounds that assembling and solving the PPE
in each step takes a considerable amount of computation time:
About two thirds of the computational time in each step for
a case where the number of particles in the simulation is in
the order of 103. In the mentioned work, the PPE is replaced

Fig. 6: Comparison between standard MPS and CMPS-HS-
HL-ECS through breaking waves test case [36]

by an explicit relation, more specifically an equation of state
described by [58] and modified by [59] that is shown below.

pk+1
i =

ρc20
γ

((
n∗i
n0

)γ
− 1

)
(19)

The typical value used for γ = 7. c0 is the speed of sound
in the reference density. By keeping a small compressibility
value, the fluid is treated as a weakly incompressible fluid.
This study in fact shows a decrease in process time per
time step while the simulation remains similar to the fully
incompressible method. Authors refer to this modified MPS
as WC-MPS. The work of [21] proposes another compressible
form for the PPE, which is presented in Equation 20:

∇2pk+1
i = − 1

∆t2c20

(
pk+1
i − pki

)
+

ρ

∆t
(∇.u∗i) (20)

where c0 is another representation of the speed of sound.
In this work, the compressible term, which is the first term on
the right hand side of Equation 20, works as a stabilizer for
the pressure calculation, softening part of the noise caused by
the second term on the right hand side in Equation 20, thus
resulting in a somewhat lower fluctuation in the pressure field.
This modified MPS is usually referred as WC-MPS.

6) Multiphase Flow: A model that significantly increases
the number of possible applications for the MPS method is
the one that supports multiphase flow. Here, an enhanced sta-
bilized MPS method for simulation of multiphase flows char-
acterized by high density ratios is discussed. This method ben-
efits from previous enhancements also suggested by Khayyer
& Gotoh and a new one for accurate, consistent modeling
of density at the phase interface. One of the challenging

SBC Journal on Interactive Systems, volume 9, number 2, 2018 59

ISSN: 2236-3297

issues in simulation of multiphase flows characterized by high
density ratios, corresponds to the mathematical discontinuity
of density at the phase interface. The simplest way, according
to [60], to deal with discontinuity is to evaluate the calculated
density at a target particle i based on a simple spatial averag-
ing. So, two schemes referred as the Zeroth-order and First-
order accurate Density Smoothening schemes, abbreviated as
ZDS and FDS, are shown in Equation 21 and Equation 22,
respectively.

ρi =
1∑

j∈IWij

∑

j∈I
ρjWij (21)

ρi =
1∑

j∈IWij

∑

j∈I

(
ρj −

∂ρi
∂xij

xij −
∂ρi
∂yij

yij

)
Wij (22)

where I corresponds to target particle i and all its neighbor-
ing particles j and Wij represents a different kernel function
from the standard MPS kernel called Wendland kernel adopted
for all test cases in that study, as can be seen in [61].

IV. IMPLEMENTATION METHODOLOGY

In this section the hardware and programming language
used are stated, and also there is an overview of the CPU
and GPU versions development of the enhanced MPS method,
showcasing code listings to exemplify some of their implemen-
tation differences.

A. Software and Hardware Infrastructure

The development of the whole system was divided in two
parts. In the first part, the MPS technique was implemented in
C++ and, subsequently, each one of the improvements shown
in the previous section were implemented to run in the CPU.
In the second part another version of the code was developed
using CUDA to exploit the parallelism provided by the GPU.

The CPU used was a Intel® Core™ i7-4790 CPU @ 3.60
GHz [62] with 7.86 GB of RAM and a 64-bit operating system
(x64). The GPU was a NVIDIA GeForce GTX 760 [63] with
2048 MB of RAM.

B. Code Development

It is important to state the reason of using CUDA over
OpenCL [64], for example, since it is an open standard and
is able to run in most GPUs. CUDA often offers, in average,
a higher performance since updates for CUDA happen fre-
quently supporting new features offered by the new NVIDIA
GPUs. Also, CUDA allows a higher level of abstraction mak-
ing the kernel calls and coding in general quite straightforward,
providing a smoother learning curve. Besides, there is a great
deal of educational material available regarding NVIDIA GPU
programming. Finally, the goal of this study is to show how
fast the developed method can perform by using a parallel
approach without initially concerning with other platforms.

The code is written in a way that the GPU could be much
explored, using information like number of CUDA kernels,
maximum number of threads within a block and number of

blocks within a grid, which varies according to the compute
capability of the GPU used.

Regarding the implementations, while the process to par-
allelize a portion of the functions are quite straightforward,
some of them had to be adapted in order to be possible to
develop a parallelized version of each of them.

An example of a straightforward function parallelization is
the external forces calculation, which in the test case used
in this work is only the gravitational acceleration. Listing 1
and Listing 2 illustrate the CPU and GPU implementation
differences of this calculation in bold font.

Listing 1: CPU code of the external forces calculation

void ParticlesActions::external_force(
Particle2D* particles, double dt, double g
, int nump)

{
Point2D velocity;
for (int a = 0; a < nump; a++)
{

if((particles)[a].is_fluid())
{

velocity = (particles)
[a].get_v();

(particles)[a].set_v(
velocity.x,
velocity.y - g*dt)
;

}
}

}

Listing 2: GPU code of the external forces calculation

__global__ void external_force_kernel(int
offset, Particle2D* particles, double dt,
double g)

{
unsigned int a = offset + (blockDim.x

* blockIdx.x + threadIdx.x);

Point2D velocity;
if (particles[a].is_fluid()){

velocity = (particles)[a].
get_v();

(particles)[a].set_v(velocity.
x, velocity.y - g*dt);

}
}

Regarding the PPE, the Cusp library [65], an open-source
project by NVIDIA Research based on Thrust [37], was used
to solve the linear system directly in the GPU.

After converting the matrix from the regular dense format to
the Compressed Sparse Row (CSR) type in order to fully ben-
efit from this solver’s capabilities, the information is assigned
to the data structure of matrices and arrays provided by the
Cusp library so the linear system equations can be solved.
The Biconjugate gradient stabilized method (BiCGStab) also

60 SBC Journal on Interactive Systems, volume 9, number 2, 2018

ISSN: 2236-3297

provided by Cusp is used to solve the system as can be seen
in Listing 3.

Listing 3: Solving A ∗ x = B with GPU-optimized code

(...)

// Assigning coefficient matrix info to csrA
cusp::csr_matrix<int, double, cusp::

device_memory> csrA;

// Allocating resulting array
cusp::array1d<double, cusp::device_memory> x(

csrA.num_rows, 0);

// Assigning source term information to array
cusp::array1d<double, cusp::device_memory>

array1dB(dev_ptr_srcB_d, dev_ptr_srcB_d +
size_B);

// Setting stop criteria: iteration limit =
100, relative tolerance = 1e-6, absolute
tolerance = 0, verbose = false

cusp::monitor<double> monitor(array1dB, 100, 1
e-16, 0, false);

// Configuring preconditioner (identity)
cusp::identity_operator<double, cusp::

device_memory> M(csrA.num_rows, csrA.
num_rows);

// Solving linear system A*x = b
cusp::krylov::bicgstab(csrA, x, array1dB,

monitor, M);

(...)

All the functions developed in the CPU version were
successfully ported to CUDA C/C++ to run in the GPU.

V. CASE STUDY

The collapse of a water column has been widely used in
the literature to validate and study various fluid simulation
methods. Originally, the dam break problem for the MPS
method was modeled by Koshizuka and Oka [8].

Although the dam break model used in this work is not
equal to Koshizuka and Oka’s, it follows a similar approach.
Figure 7 shows the dam break model used.

Height H and length L are equal in the tests performed.
The size of the recipient’s floor in the model employed is
four times the length L of the water column. The size of
the water column varies depending on how many particles
the simulation has. The average particle distance is 1× 10−2

meters and the time step of the simulation is 1×10−3 seconds.
The parameter β, shown in Equation 14, is 0.97. The influence
radius re of a particle should be < 3.0l0, where l0 is the
average particle distance, otherwise the particles will gather
near the free-surface [8]. On the other hand, the discretization
of the Laplacian model is more accurate when the influence
radius has a higher value. To satisfy this, two different kernel
sizes are commonly employed, re = 2.1l0 and re Lap = 3.1l0.

Fig. 7: Dam break model employed

A. Results

Firstly, the visual results of one of the simulations used
as parameter for all the analyses will be shown. After that,
a numerical analysis of both codes developed (in the CPU
and the GPU) will be made in order to show the absence of
accuracy and stability loss in these implementations. Then,
a performance analysis will be done. It includes the time
spent on each function, memory usage and charts comparing
the execution time of the programs as the total particle
number increases. Lastly, the speedup of the GPU version over
the CPU version will be calculated, analysed and presented
graphically, as well as the frame rate of the GPU simulation.

1) Simulation: Here, one of the simulations based on the
dam break problem presented previously and used as param-
eter for the analyses will be exposed in order to show the
visual coherence of the simulation. In Figure 8 the length L
and height H of the water column is 0.6 m. The time of every
screenshot taken is presented too.

2) Numerical Analysis: During the development of the
GPU version of the method, strict attention was paid to data
types used in order to not compromise the numerical precision.
This was done so that the precision of the GPU version was
maintained (compared to the CPU version). Figure 9 shows
the comparison between the methods. For this comparison, the
wave front position in relation to the x-axis (its absolute value
is represented by x) is being monitored since the beginning of
the dam burst and it is represented by a dimensionless format,
(x/L), which for this numerical analysis is equal to 0.6 m.
As said before, the size of the floor is four times the size of L,
implying that the maximum value x can reach is four times
L. The time in the chart is represented by a dimensionless
format as well: t

√
g/L, where t is the time in seconds and g

the gravitational acceleration (9.8 m/s2).
As evidenced in Figure 9, the GPU version of the method

behaved in an extremely similar way as the CPU version did,
making it clear that the numerical precision from the CPU
version was virtually maintained.

3) Performance Analysis: To analyse the performance of
the implementations, the percentage of time that was spent

SBC Journal on Interactive Systems, volume 9, number 2, 2018 61

ISSN: 2236-3297

(a) t = 0.0s

(b) t = 0.2s

(c) t = 0.45s

(d) t = 0.8s

Fig. 8: CMPS-HS-HL-ECS method visual results for L =
H = 0.6 m

Fig. 9: Evolution of the water wave front through dimension-
less time

Fig. 10: Functions relative execution time in the CPU

by each function and memory usage in both versions will be
exposed. Finally, the absolute time spent by each version is
shown in order to calculate the speedup reached by the GPU
implementation.

a) Functions Duration & Memory Usage:

The Performance and Diagnostics tool of Microsoft Visual
Studio 2013 was used to get the duration of each function
of the CPU version as presented in Figure 10. This result
was generated by the same simulation scenario presented in
subsubsection V-A2.

It is possible to see that the assembly and resolution of
the PPE takes about three-quarters of the program’s execution
time. Also, a good portion of the execution time (13.02%) is
due to the search and setting of the particle neighbors. The
remaining 10.92% is due to all the other calculations and
functions of the code, showing the significance of these three
functions, taking almost 90% of time program’s execution time
in the CPU.

In this sense, special attention was paid to the PPE during
the implementation of the GPU version. Through the use of
the NVIDIA Visual Profiler, absolute and relative times of
each CUDA kernel function were extracted. Figure 11 shows
the relative amount of time each kernel spent executing in the
GPU.

As it can be seen, the shrinkage of the relative amount of
time taken by the PPE’s solution is significant, as the gain
for this operation was about 38.88%. This result shows the
relevance of parallelizing the solution of the PPE’s linear
system. Assembling the coefficient matrix of the PPE and the
neighborhood search and setting are now the main bottleneck

62 SBC Journal on Interactive Systems, volume 9, number 2, 2018

ISSN: 2236-3297

Fig. 11: Functions relative execution time in the GPU

Fig. 12: Memory consumption in both implementations

of the program, however, it is notable the execution time of the
functions is better distributed than in the CPU version, show-
ing that the parallelization of the functions that dominated the
execution in the CPU are taking less time in their execution,
diminishing the bottleneck caused by them. All other functions
spent less than 2% of the total execution time in the GPU.

The Performance and Diagnostics tool of Visual Studio
was also utilized in order to evaluate memory usage in the
CPU version. As for the GPU version, the CUDA function
cudaMemGetInfo was called before the deallocation of the
variables and arrays in the GPU memory. Figure 12 shows the
amount of memory in megabytes used in both code versions
for a test case with 6, 622 particles.

The memory usage is similar in both versions (2, 170 MB

Fig. 13: Execution time versus total particle number in the
system

from the CPU against 1, 758 MB from the GPU) even though
for the CPU there is more unused memory than for the
GPU execution, showing that the GPU version uses a smaller
amount of memory than the CPU.

b) Speedups:

For this analysis, various test cases were built based on the
dam break problem, only increasing the total particle number,
but always keeping the proportions shown in the beginning of
section V. By dividing the absolute execution time in the CPU
by the GPU’s in each test, the speedups provided by the GPU
version were obtained.

In each test, the size of the water column was increased
in 0.1 m from 0.3 m to 0.7 m, such in length as in height
(keeping the column and floor proportions). The execution
time of each scenario and its total particle number, can be
seen side by side in Figure 13.

The CPU execution time clearly exceeds by far the GPU
execution time, and exceeds even more when only considering
the CUDA kernel execution times, where is not taken into
consideration transfer operations between host and device
memory, in any direction.

It is now possible to calculate how many times the GPU
version of the implementation is faster than the CPU version,
in other words, the relative speedup for each test case built.
The chart presented in Figure 14 shows the speedup values,
depending on the total particle number of the test case. The
speedups range from 6.41 to 10.69, and the average speedup
in this set of scenarios is a considerable 8.82 times.

Unexpectedly, as the system size increased the speedup did
not increase, as expected in a GPU-optimized code. In order
to investigate this issue, a comparison of execution times was
made, as exhibited in Figure 15. It shows the absolute time, in
milliseconds, spent in the most time consuming functions of
the execution for each test case. The function represented by
’1’ is the neighborhood calculation, ’2’ the coefficient matrix
assembly, ’3’ the PPE solving, ’4’ the calculation of the time

SBC Journal on Interactive Systems, volume 9, number 2, 2018 63

ISSN: 2236-3297

Fig. 14: Speedups of the GPU version over the CPU version

Fig. 15: Execution time in milliseconds of each function for
each test case on GPU

step duration, ’5’ the PPE’s source term calculation and ’6’
represents the velocity correction calculation.

It is noted that, as the total particle number increases,
the time for assembling the coefficient matrix (function 2)
increases more rapidly than the other functions. Since the
size of the PPE’s coefficient matrix is the total number of
particles (TNP) in the system squared (TNP 2), which is
the majority of particles in the system, any minor change or
issue in the implementation can cause an expressive change
in the execution time or even problems related to memory
unavailability due to the high quantity of data allocated to
it. Certainly, this is preventing the GPU-accelerated system
from achieving the higher speedup values it is capable of,
and, consequently achieve real-time for more complex and
bigger simulation examples. A possible solution to this issue
is to assemble the matrix directly into its sparse format since
allocating memory to its dense form, performing operations to
remove certain useless matrix elements and then slicing/resiz-

Fig. 16: Frame rate as the total particle number increases on
GPU

ing it to convert it to its sparse format, is consuming a lot of
memory and processing time.

Even though this issue occurred, the achieved speedups
enable entering the field of real-time simulation or at least
interactive applications (depending on the number of particles)
since more than one simulation frame is being generated
within a second [66]. Taking the last scenario with 6, 622
particles, where the total execution time of 100 iterations in
the GPU is 11, 306 ms, approximately one frame is generated
every 113.06 ms, which gives a rate of about 8.85 frames
per second (fps) being generated. It is noteworthy that the
speedup is shortened by the memory copy operations, i.e. when
copying the particles’ information from the device memory
to the host memory to save the particles state of that time
step. These operations, specifically, are not necessary when
exhibiting the simulation in real-time using some graphics
library, such as OpenGL [67] or DirectX [68]. Figure 16 shows
the frame rate for each test case considering all operations in
the code of the GPU version.

The memory copy operation from device to host memory
is not needed when the simulation is being displayed in real-
time, so, depending on how big the rendering overhead is,
the frame rates presented here can reach higher values for the
same amount of particles presented here when using a graphics
library for the exhibition.

4) Rendering: With the purpose of showing our improved
MPS method applicability in VR a simulation result was
rendered using a technique based on the work of van der Laan
[69]. The approach can be summarized into three steps: using
the fluid particle’s position, the surface depth and thickness
are computed into different buffers. Then, the surface depth
is smoothed using a bilateral filter and a final pass is done to
combine depth, thickness and the scene behind the fluid into

64 SBC Journal on Interactive Systems, volume 9, number 2, 2018

ISSN: 2236-3297

the final image.
Fluid color can be calculated as Equation 23, where F is the

Fresnel function, a is the refracted fluid color, b, the reflected
scene color, ks and α are constants for specular highlight, n
is the surface normal and h is the half-angle between camera
and light and v is the camera vector.

Cout = a(1− F (n· v)) + bF (n· v) + ks(n·h)α (23)

Despite of the possibility of using a technique based on
implicit function, which would impact positively on the re-
alism of the resulting images, there is a negative impact on
the rendering process performance, since these techniques are
generally used on offline applications [70].

A simulation containing a total of 62, 600 particles, 21, 296
of these being fluid particles (which are the ones making the
liquid column), was generated. Here, it is worth noting the
high number of static elements (wall particles), which is not
a very common issue. This happens due to some steps of the
algorithm not being fully optimized (neighborhood search and
matrix assembly), so a bigger test case could not be set up,
which would mean more fluid particles than static elements.
The time step of the displayed simulation is 0.001 s and
its complete duration is 3 s. The initial particle spacing is
0.0125 m. In this scenario, the height of the liquid column is
a little over than half a meter (0.55 m) and it has a square base,
so its width and length are both equal to 0.275 m, half the
size of its height. Figure 17, Figure 18 and Figure 19 show the
state of the simulation at 0.0 s, 0.43 s and 1.6 s, respectively.
At 0.0 s the simulation is at its initial state, at 0.43 s the
liquid column, which was close to the left wall, is colliding
with the right wall and at 1.6 s the liquid is colliding with
the left wall, back from the other side. The different shades
of blue of the fluid are due to amount of liquid concentrated
in a single location; more liquid in one place, the darker the
color at that place is and also the lesser transparent the liquid
is at that place. Particles torn from the main portion of the
fluid form the sprinkling aspect of the liquid in Figure 19.

VI. CONCLUSION

The various works making efforts to improve further and
further the stability and accuracy of the MPS method, show
the complexity of this task, the importance of the method to the
community and the great potential it has to simulate, increas-
ingly more realistically, incompressible fluid flows. Regarding
the MPS optimization, it has been gradually evolving through
the combination of increasingly more sophisticated algorithms
to minimize the communication during the solution of the
system of linear equations (PPE) and to reorganize the systems
coefficient matrix. Another aspect that helps the evolution of
the method’s parallelization is the hardware development.

This work provides a stable, GPU-accelerated, free-surface
incompressible 3D fluid simulation method with speedups
ranging from 6.41 to 10.69 times, which are considerable
speedup values when compared to those found in related
works. Since one of this work’s goals is to enable the use

Fig. 17: Simulation state at 0.0 s

Fig. 18: Simulation state at 0.43 s

Fig. 19: Simulation state at 1.6 s

SBC Journal on Interactive Systems, volume 9, number 2, 2018 65

ISSN: 2236-3297

of the MPS method in VR and CG applications, the frame
rate generated by each scenario was calculated. To exemplify,
for a system with 2, 602 particles the frame rate reached is
approximately 35.13 fps.

A simulation of a 3D dam break scenario was generated
from the developed method with 62, 600 particles and then
coupled with a rendering solution with the purpose of display-
ing the method’s capability and potential in a VR application.

A. Future Works

The neighboring particles search algorithm can still experi-
ence improvement, both in the CPU and GPU versions of the
code, with the implementation of cell grids in order to narrow
the search for neighbors to the closest particles to a target
particle i [13], [34]. Also, refinements in every part of the
code will lead to more a optimized version; this is considered
the path to a notable real-time simulation.

Further investigation in the assembly of the PPE’s coef-
ficient matrix implementation and in the program’s memory
usage is necessary since it most likely forbade that the system
could be fully explored with respect to its size, restraining
the results to smaller systems. It also prevented that the GPU
version speedup could achieve higher values as the particle
number increased.

ACKNOWLEDGMENT

The present work was supported by the CNPq, Conselho
Nacional de Desenvolvimento Cientı́fico e Tecnológico - Brasil
(National Council of Scientific and Technological Develop-
ment - Brazil).

REFERENCES

[1] P. Cleary, M. Prakash, and J. Ha, “Novel applications of smoothed
particle hydrodynamics (sph) in metal forming,” Journal of materials
processing technology, vol. 177, no. 1, pp. 41–48, 2006.

[2] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl,
“Meshless methods: an overview and recent developments,” Computer
methods in applied mechanics and engineering, vol. 139, no. 1, pp.
3–47, 1996.

[3] A. A. Johnson and T. E. Tezduyar, “Advanced mesh generation and
update methods for 3d flow simulations,” Computational Mechanics,
vol. 23, no. 2, pp. 130–143, 1999.

[4] E. Oñate, S. R. Idelsohn, F. Del Pin, and R. Aubry, “The particle finite
element method?an overview,” International Journal of Computational
Methods, vol. 1, no. 02, pp. 267–307, 2004.

[5] P.-J. Frey and F. Alauzet, “Anisotropic mesh adaptation for cfd compu-
tations,” Computer methods in applied mechanics and engineering, vol.
194, no. 48, pp. 5068–5082, 2005.

[6] L. B. Lucy, “A numerical approach to the testing of the fission hypoth-
esis,” The astronomical journal, vol. 82, pp. 1013–1024, 1977.

[7] R. A. Gingold and J. J. Monaghan, “Smoothed particle hydrodynamics:
theory and application to non-spherical stars,” Monthly notices of the
royal astronomical society, vol. 181, no. 3, pp. 375–389, 1977.

[8] S. Koshizuka and Y. Oka, “Moving-particle semi-implicit method for
fragmentation of incompressible fluid,” Nuclear science and engineer-
ing, vol. 123, no. 3, pp. 421–434, 1996.

[9] R. Xu, P. Stansby, and D. Laurence, “Accuracy and stability in incom-
pressible sph (isph) based on the projection method and a new approach,”
Journal of Computational Physics, vol. 228, no. 18, pp. 6703–6725,
2009.

[10] C. J. S. Brito, M. W. S. Almeida, A. L. B. V. e Silva, J. M. X. N. Teixeira,
and V. Teichrieb, “Screen space rendering solution for multiphase SPH
simulation,” in 2017 19th Symposium on Virtual and Augmented Reality
(SVR), Nov 2017, pp. 309–318.

[11] ——, “Large viscoelastic fluid simulation on GPU,” in XVI Simpósio
Brasileiro de Jogos e Entretenimento Digital (SBGames), Nov 2017,
pp. 462–469.

[12] A. L. B. Vieira e Silva, M. W. S. Almeida, C. Brito, and V. Teichrieb,
“Improved meshless method for simulating incompressible fluids on
GPU,” in 2017 19th Symposium on Virtual and Augmented Reality
(SVR), Nov 2017, pp. 297–308.

[13] C. Hori, H. Gotoh, H. Ikari, and A. Khayyer, “Gpu-acceleration for
moving particle semi-implicit method,” Computers & Fluids, vol. 51,
no. 1, pp. 174–183, 2011.

[14] D. T. Fernandes, L.-Y. Cheng, E. H. Favero, and K. Nishimoto, “A
domain decomposition strategy for hybrid parallelization of moving
particle semi-implicit (mps) method for computer cluster,” Cluster
Computing, vol. 18, no. 4, pp. 1363–1377, Dec 2015. [Online].
Available: https://doi.org/10.1007/s10586-015-0483-3

[15] S. Shao and E. Y. Lo, “Incompressible sph method for simulating
newtonian and non-newtonian flows with a free surface,” Advances in
Water Resources, vol. 26, no. 7, pp. 787–800, 2003.

[16] S. Koshizuka, H. Tamako, and Y. Oka, “A particle method for in-
compressible viscous flow with fluid fragmentation,” Comput. Fluid
Dynamics J., 1995.

[17] H. Gotoh and A. Khayyer, “Current achievements and future
perspectives for projection-based particle methods with applications
in ocean engineering,” Journal of Ocean Engineering and Marine
Energy, vol. 2, no. 3, pp. 251–278, Aug 2016. [Online]. Available:
https://doi.org/10.1007/s40722-016-0049-3

[18] H. GOTOH and T. SAKAI, “Lagrangian simulation of breaking waves
using particle method,” Coastal Engineering Journal, vol. 41, no. 3 &
4, pp. 303–326, 1999. [Online]. Available: https://www.worldscientific.
com/doi/abs/10.1142/S0578563499000188

[19] A. Khayyer, “Improved particle methods by refined models for free-
surface fluid flows,” Ph.D. dissertation, Kyoto University, 2008.

[20] H. GOTOH, H. IKARI, T. MEMITA, and T. SAKAI, “Lagrangian
particle method for simulation of wave overtopping on a vertical
seawall,” Coastal Engineering Journal, vol. 47, no. 2 & 3, pp. 157–181,
2005. [Online]. Available: https://www.worldscientific.com/doi/abs/10.
1142/S0578563405001239

[21] A. Khayyer and H. Gotoh, “Modified moving particle semi-implicit
methods for the prediction of 2d wave impact pressure,” Coastal
Engineering, vol. 56, no. 4, pp. 419–440, 2009.

[22] B.-H. Lee, J.-C. Park, M.-H. Kim, and S.-C. Hwang, “Step-by-step
improvement of mps method in simulating violent free-surface motions
and impact-loads,” Computer methods in applied mechanics and engi-
neering, vol. 200, no. 9, pp. 1113–1125, 2011.

[23] K. Shibata and S. Koshizuka, “Numerical analysis of shipping water
impact on a deck using a particle method,” Ocean Engineering, vol. 34,
no. 3, pp. 585–593, 2007.

[24] H. Gotoh and T. Sakai, “Key issues in the particle method for
computation of wave breaking,” Coastal Engineering, vol. 53,
no. 2, pp. 171 – 179, 2006, coastal Hydrodynamics and
Morphodynamics. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S037838390500133X

[25] L. Fu and Y.-C. Jin, “Investigation of non-deformable and deformable
landslides using meshfree method,” Ocean Engineering, vol. 109, pp.
192 – 206, 2015. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0029801815004497

[26] K. Shibata, S. Koshizuka, M. Sakai, and K. Tanizawa, “Lagrangian
simulations of ship-wave interactions in rough seas,” Ocean
Engineering, vol. 42, pp. 13 – 25, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0029801812000315

[27] S.-C. Hwang, A. Khayyer, H. Gotoh, and J.-C. Park, “Development
of a fully lagrangian mps-based coupled method for simulation
of fluid-structure interaction problems,” Journal of Fluids and
Structures, vol. 50, pp. 497 – 511, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0889974614001595

[28] A. Khayyer and H. Gotoh, “Development of cmps method for accurate
water-surface tracking in breaking waves,” Coastal Engineering Journal,
vol. 50, no. 02, pp. 179–207, 2008.

[29] ——, “A higher order laplacian model for enhancement and stabilization
of pressure calculation by the mps method,” Applied Ocean Research,
vol. 32, no. 1, pp. 124–131, 2010.

[30] ——, “Enhancement of stability and accuracy of the moving particle
semi-implicit method,” Journal of Computational Physics, vol. 230,
no. 8, pp. 3093–3118, 2011.

66 SBC Journal on Interactive Systems, volume 9, number 2, 2018

ISSN: 2236-3297

[31] ——, “A 3d higher order laplacian model for enhancement and stabi-
lization of pressure calculation in 3d mps-based simulations,” Applied
Ocean Research, vol. 37, pp. 120–126, 2012.

[32] A. L. B. Vieira e Silva, M. W. Almeida, C. J. Brito,
V. Teichrieb, J. M. Barbosa, and C. Salhua, “A qualitative
analysis of fluid simulation using a sph variation,” in Proceedings
of the Congress on Numerical Methods in Engineering,
2015. [Online]. Available: http://www.dem.ist.utl.pt/cmn2015/html/
CD-Proceedings/PDF/Papers/CMN 2015 submission 289.pdf

[33] M. Almeida, C. Brito, A. L. B. Vieira e Silva, V. Teichrieb, and
J. M. Barbosa, “Meshless methods,” in Applied Topics in Marine
Hydrodynamics, G. Assi, H. Brinati, M. de Conti, and M. Szajnbok,
Eds. São Paulo: Escola Politécnica da Universidade de São Paulo
(ISBN 978-85-86686-89-4), 2016, ch. 8, pp. 8.1–8.38.

[34] X. Zhu, L. Cheng, L. Lu, and B. Teng, “Implementation of the moving
particle semi-implicit method on gpu,” SCIENCE CHINA Physics,
Mechanics & Astronomy, vol. 54, no. 3, pp. 523–532, 2011.

[35] D. Taniguchi, L. Sato, and L. Cheng, “Explicit moving particle simu-
lation method on gpu clusters,” Blucher Mech. Eng. Proc. 1, vol. 1, p.
1155, 2014.

[36] H. Gotoh, “Advanced particle methods for accurate and stable computa-
tion of fluid flows,” Frontiers of Discontinuous Numerical Methods and
Practical Simulations in Engineering and Disaster Prevention, p. 113,
2013.

[37] NVIDIA, “Cuda zone — nvidia developer,”
https://developer.nvidia.com/cuda-zone, accessed: 2016-01-09.

[38] G. Chen, Y. Onishi, L. Zheng, and T. Sasaki, Frontiers of Discontinuous
Numerical Methods and Practical Simulations in Engineering and
Disaster Prevention. Taylor & Francis Group, London, 8 2013.

[39] T. Kawahara and Y. Oka, “Ex-vessel molten core solidification behavior
by moving particle semi-implicit method,” Journal of Nuclear Science
and Technology, vol. 49, no. 12, pp. 1156–1164, 2012.

[40] X. Sun, M. Sakai, K. Shibata, Y. Tochigi, and H. Fujiwara, “Numerical
modeling on the discharged fluid flow from a glass melter by a
lagrangian approach,” Nuclear Engineering and Design, vol. 248, pp.
14–21, 2012.

[41] K. Shibata, S. Koshizuka, and Y. Oka, “Numerical analysis of jet
breakup behavior using particle method,” Journal of nuclear science
and technology, vol. 41, no. 7, pp. 715–722, 2004.

[42] R. Chen, W. Tian, G. Su, S. Qiu, Y. Ishiwatari, and Y. Oka, “Numerical
investigation on coalescence of bubble pairs rising in a stagnant liquid,”
Chemical Engineering Science, vol. 66, no. 21, pp. 5055–5063, 2011.

[43] A. P. A. Mustari, Y. Oka, M. Furuya, W. Takeo, and R. Chen, “3d
simulation of eutectic interaction of pb–sn system using moving particle
semi-implicit (mps) method,” Annals of Nuclear Energy, vol. 81, pp. 26–
33, 2015.

[44] S. Koshizuka, A. Nobe, and Y. Oka, “Numerical analysis of breaking
waves using the moving particle semi-implicit method,” International
Journal for Numerical Methods in Fluids, vol. 26, no. 7, pp. 751–769,
1998.

[45] M. Kondo, K. Suto, M. Sakai, and S. Koshizuka, “Incompressible free
surface flow analysis using moving particle semi-implicit method.”

[46] B. Ataie-Ashtiani and L. Farhadi, “A stable moving-particle semi-
implicit method for free surface flows,” Fluid Dynamics Research,
vol. 38, no. 4, pp. 241–256, 2006.

[47] G. Duan and B. Chen, “Stability and accuracy analysis for viscous
flow simulation by the moving particle semi-implicit method,” Fluid
Dynamics Research, vol. 45, no. 3, p. 035501, 2013.

[48] J. Monaghan, “Sph without a tensile instability,” Journal of Computa-
tional Physics, vol. 159, no. 2, pp. 290 – 311, 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0021999100964398

[49] M. M. Tsukamoto, K. Nishimoto, and T. Asanuma, “Development
of particle method representing floating bodies with highly non-linear
waves,” in 18th International Congress of Mechanical Engineering,
COBEM, 2005.

[50] H. Ikari and H. Gotoh, “Parallelization of mps method for 3d wave anal-
ysis,” in Advances in Hydro-science and Engineering, 8th International
Conference on Hydro-science and Engineering (ICHE), 2008.

[51] H. Gotoh, A. Khayyer, H. Ikari, and C. Hori, “3d-cmps method for im-
provement of water surface tracking in breaking waves,” in Proceedings
of 4th SPHERIC Workshop. Nantes, France,:[sn]. World Scientific,
2009, pp. 265–272.

[52] T. Iribe, T. Fujisawa, and S. Koshizuka, “Reduction of communication
in parallel computing of particle method for flow simulation of seaside
areas,” Coastal Engineering Journal, vol. 52, no. 04, pp. 287–304, 2010.

[53] D. T. Fernandes, “Implementação de framework computacional de
paralelização hı́brida do moving particle semi-implicit method para
modelagem de fluidos incompressı́veis,” Ph.D. dissertation, Universidade
de São Paulo, 2013.

[54] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl,
“Meshless methods: An overview and recent developments,” Computer
Methods in Applied Mechanics and Engineering, vol. 139, no. 1, pp. 3
– 47, 1996. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S004578259601078X

[55] S. Shao and E. Y. Lo, “Incompressible sph method for simulating
newtonian and non-newtonian flows with a free surface,” Advances in
Water Resources, vol. 26, no. 7, pp. 787 – 800, 2003. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0309170803000307

[56] Y. Suzuki, S. Koshizuka, and Y. Oka, “Hamiltonian moving-particle
semi-implicit (hmps) method for incompressible fluid flows,” Computer
Methods in Applied Mechanics and Engineering, vol. 196, no. 29, pp.
2876–2894, 2007.

[57] A. Shakibaeinia and Y.-C. Jin, “A weakly compressible mps method for
modeling of open-boundary free-surface flow,” International journal for
numerical methods in fluids, vol. 63, no. 10, pp. 1208–1232, 2010.

[58] G. Batchelor, “K. 1967 an introduction to fluid dynamics,” 1970.
[59] J. J. Monaghan, “Simulating free surface flows with sph,” Journal of

computational physics, vol. 110, no. 2, pp. 399–406, 1994.
[60] A. Khayyer and H. Gotoh, “Enhancement of performance and stability

of mps mesh-free particle method for multiphase flows characterized by
high density ratios,” Journal of Computational Physics, vol. 242, pp.
211–233, 2013.

[61] H. Wendland, “Piecewise polynomial, positive definite and compactly
supported radial functions of minimal degree,” Advances in computa-
tional Mathematics, vol. 4, no. 1, pp. 389–396, 1995.

[62] “Intel Processor i7 4790 Specifications,”
http://ark.intel.com/products/80806/Intel-Core-i7-4790-Processor-
8M-Cache-up-to-4 00-GHz, accessed: 2016-01-15.

[63] “NVIDIA GPU GeForce GTX 760 Specifications,”
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-
760/specifications, accessed: 2016-01-15.

[64] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming
standard for heterogeneous computing systems,” Computing in Science
Engineering, vol. 12, no. 3, pp. 66–73, May 2010.

[65] S. Dalton, N. Bell, L. Olson, and M. Garland, “Cusp: Generic parallel
algorithms for sparse matrix and graph computations,” 2015, version
0.5.1. [Online]. Available: http://cusplibrary.github.io/

[66] T. Harada, S. Koshizuka, and Y. Kawaguchi, “Smoothed particle hy-
drodynamics on gpus,” in Computer Graphics International. SBC
Petropolis, 2007, pp. 63–70.

[67] D. Shreiner, B. T. K. O. A. W. Group et al., OpenGL programming
guide: the official guide to learning OpenGL, versions 3.0 and 3.1.
Pearson Education, 2009.

[68] B. Bargen and P. Donnelly, Inside DirectX: in-depth techniques for
developing high-performance multimedia applications. Microsoft Press,
1998.

[69] W. J. van der Laan, S. Green, and M. Sainz, “Screen space fluid
rendering with curvature flow,” in Proceedings of the 2009 symposium
on Interactive 3D graphics and games. ACM, 2009, pp. 91–98.

[70] J. Yu and G. Turk, “Reconstructing surfaces of particle-based fluids
using anisotropic kernels,” ACM Transactions on Graphics (TOG),
vol. 32, no. 1, p. 5, 2013.

SBC Journal on Interactive Systems, volume 9, number 2, 2018 67

ISSN: 2236-3297

