
An Analysis of Five Different Native and
Web-Hybrid Platforms for Building Android Apps

and their Accessibility for Screen Readers
Lucas Pedroso Carvalho

Depto. de Ciência da Computação
Universidade Federal de Lavras

Lavras, MG, Brazil
lucaspedrosocarvalho@gmail.com

Felipe Silva Dias
Depto. de Ciência da Computação

Universidade Federal de Lavras
Lavras, MG, Brazil
fsdias.v@gmail.com

André Pimenta Freire
Depto. de Ciência da Computação

Universidade Federal de Lavras
Lavras, MG, Brazil
apfreire@dcc.ufla.br

Abstract—The choice of an interface platform to develop
mobile applications may have important implications to how
accessible the resulting product can be for visually-disabled
users. This paper aimed to analyze four platforms to develop
native and web-hybrid mobile Android applications, and to
verify the adequacy of their interface components to implement
mobile applications, in order to identify the main accessibility
problems that could be encountered by developers when using
them, and the main strategies to overcome those issues. We built
5 prototypes of mobile applications with the aim of adhering
as much as possible to accessibility recommendations. The
applications were built using techniques of native applications
developed with Android Studio with and without Web compo-
nents and hybrid development using the frameworks Apache
Cordova, Ionic and Appcelerator Titanium. We then performed
an accessibility inspection of a sample of 30 Android interface
components present in 5 prototypes of mobile applications, to
verify their adequacy for working with screen readers. The results
showed that the prototypes developed using web components
were more compatible with accessibility criteria in the Web
Content Accessibility Guidelines (WCAG 2.0) and with the screen
reader TalkBack. The most frequent accessibility problems in
native components occurred in tables, headings and multimedia
elements. We conclude by showing initial evidence that web-
based components in hybrid applications developed using web-
hybrid and native with embedded web components currently
have better support for accessibility than applications with only
native components.

Index Terms—Accessibility, Mobile Applications, Screen Read-
ers

I. INTRODUCTION

Enabling disabled people to effectively participating in
society by means of digital resources is fundamental to their
lives. This includes providing access to services, products
and information in order for them to be more independent
and confident to have their rights preserved and to be active
citizens.

According to Part 171 of the ISO 9241 standard [16],
the accessibility of interactive systems can be defined as the
“usability of a product, service, environment, or facility by
people with the widest range of abilities”.

We thank CNPq for the financial support to this research project

Different guidelines provide developers with resources to
develop more accessible applications. The Web Accessibility
Initiative (WAI) from the World Wide Web Consortium (W3C)
proposed the Web Content Accessibility Guidelines (WCAG)
[5], currently in its second version. Despite not yet having
specific recommendations for mobile applications, the model
was conceived with the aim to try to be independent from
specific technologies (such as was the case with its first
version, strongly tied to web technologies). WCAG has been
used as the main reference in terms of accessibility by several
countries, and has also been the basis for other national
standards, such as the Brazilian e-MAG (the Accessibility
Model for e-Government) [3].

With the growth and the increasing need to use mobile
devices to access the Internet, the inclusion of disabled people
becomes an important goal to be achieved. According the
the market research company Statista [25], the number of
smartphone users worldwide was expected to grow from 1.5
billion users in 2014 to 2.5 billion users in 2019.

The development of mobile applications should take into
account the way in which different disabilities can impact
on different ways of interaction. Designers and developers
should be aware of those needs when considering developing
approaches and platforms to choose for their systems.

Different approaches have been used in the construction
of mobile applications. In this paper, in particular, we have
investigated different platforms for development based on
three main approaches for building mobile applications: hybrid
development (using web technologies as basis for building
native mobile apps), pure native apps (without the use of
any web-based interface components) and mostly-native de-
velopment, with some occasional use of embedded web-based
interface components.

Given the different techniques to build mobile applications,
there is still limited information for developers and designers
about the resources provided by them to implement accessible
interactions for disabled users. In that sense, members from
the international community have endeavoured many efforts
to make changes to WCAG 2.0 and its success criteria to

20 SBC Journal on Interactive Systems, volume 9, number 3, 2018

ISSN: 2236-3297



make it possible to apply them in the mobile web context.
Further to this, there are technical recommendations specific
to developers of mobile platforms, such as iOS and Android.
However, little is known about the extent to which the re-
sources developed as hybrid, native or native with occasional
embedded components can help developers deliver accessible
resources that can be used by assistive technologies.

In a previous study performed by the authors of the present
paper [8], we investigated the adequacy of three different types
of interface components implemented using purely native
Android components, hybrid applications implemented with
Apache Cordova, and applications with occasional embedded
web components into a mostly native application. The results
obtained in that study showed that mobile web-hybrid ap-
plications and native apps with embedded web components
provided screen-reader users with better support in providing
accessibility features to users. On the other hand, many native
Android interface components had shortcomings that could
seriously hamper blind users while performing their tasks, such
as the lack of structural elements to guide navigation (in tables
and headers, for instance).

However, despite the initial implications of the findings, the
previous work was still limited in the sense that only one
platform for building web-hybrid applications was analysed.

Thus, the goal of the work presented in the present paper
was to carry out a new set of analyses expanding on the
previous analysis of platforms for building mobile applications
regarding their accessibility. The current paper aims at expand-
ing the understanding of the interplay between the choices of
interface components and platforms and their consequences in
terms of the ability to enable developers to build accessible
applications for users with visual disabilities. Thus, this paper
set out to analyse the adequacy of five prototypes of mobile
applications, built with the aim of adhering as much as
possible to accessibility recommendations, implemented using:
Android Studio 1) with and 2) without Web components and
hybrid development using the frameworks 3) Apache Cordova,
4) Ionic and 5) Appcelerator Titanium.

The remainder of this paper is organised as follows. Section
II presents the main concepts related to the development of
mobile applications. Section III presents a literature review
regarding studies related to the accessibility of mobile appli-
cations. Section IV presents the method adopted in this study.
Section V lists the results and, finally, Section VI discusses
the conclusions and proposed future work.

II. BACKGROUND

The development of apps for mobile devices has grown
considerably, as well as the popularization of such apps. Ac-
cording to the most recent report from the Android consultancy
AppBrain [1], 686,888 new apps were made available on
Google’s PlayStore in 2016, totaling an accumulated number
of 2,623,790 apps available in that year. Following the growth
in availability of apps for the Android platform, the use of
this operating system in Brazil has also grown. Android had
a share of 82.15% of the Brazilian market in 2016 [26].

Different approaches and platforms can be used to build
applications for mobile devices, conceiving different types of
applications. According to Budiu [4], one way of classifying
different types of apps for smartphones and tablets is as: native
apps, web apps or hybrid apps. According to that author,
there is not a single best solution for mobile development:
each approach has its weaknesses and strengths, in terms of
performance, interaction and development capabilities. The
choice of one or another option depends on the needs of each
organisation. However, each implementation approach brings
important implications for design decisions, particularly for
accessibility.

Native applications are developed using specific languages
according to each platform. For example, Android apps are
developed in Java, iOS apps in Objective C and Windows
phone apps in C++. In particular, native development for An-
droid also enables the use of embedded web components using
HTML (HyperText Markup Language), making it possible to
mix web elements to native components. In the development
of native apps, the code developed for one platform cannot
be ported to another operating system directly, making it
necessary to rewrite the entire code to have portability, which
may make the process slower and more expensive.

When developing native apps, it is possible to explore
the smartphone’s resources to the fullest, such as sensors,
accelerometer, compass, calling and interface, graphical pro-
cessing and others. This enables building apps with many re-
sources, able to process images and videos at high resolutions.
These apps can use notifications and run off-line [2].

Web applications render web pages accessed via the Internet
by means of a web browser installed on mobile devices. Those
websites are developed using common technologies, such as
HTML, CSS (Cascading Style Sheets) and JS (JavaScript),
making the development process faster for many developers,
not requiring specific coding for each different platform.
On the other hand, web applications have limited access to
hardware resources and data on devices, being also dependent
on Internet connection for accessing content.

Hybrid development aims to combine the advantages of
native development and web applications for creating mobile
applications [2]. For this, different frameworks, tools and
platforms have been deployed by developers, such as: Ap-
pcelerator Titanium1, Adobe PhoneGap 2, Apache Cordova 3,
Ionic4, among others.

Those tools help the development by using web-based
technologies, such as HTML, CSS and JS, so that, at the
end of the process, an installable application be generated,
working in the same fashion as a native app. This favours the
possibility for portability and interoperability among different
smartphones, such as Android, iOS and Windows Phone.

In the same way as web apps, hybrid apps also need a web
navigator to render HTML. Hybrid apps use embedded web

1Appcelerator Titanium - Available on-line at http://www.appcelerator.com
2Adobe PhoneGap - Available on-line at http://build.phonegap.com
3Apache Cordova -Available on-on-line at http://cordova.apache.org
4Ionic - Available on-line at ionicframework.com

SBC Journal on Interactive Systems, volume 9, number 3, 2018 21

ISSN: 2236-3297



navigators made available by those platforms incorporated in
the apps. In the case of Android, the navigator WebView is
used in such cases.

Hybrid applications help the development of multi-platform
apps, and hence, can reduce significantly the development
cost. The same HTML components can be reused to generate
installable apps in different operating systems for mobile
devices.

In the present study, we investigated some of the technolo-
gies to develop mobile and web-hybrid applications for the
Android platform, the most widely-used in Brazil [26]. We
implemented native apps (with and without web components)
using Google’s Android Studio, and the frameworks Apache
Cordova, Ionic and Appcelerator Titanium to build web-hybrid
apps.

Frameworks such as Apache Cordova, Appcelerator Tita-
nium and Ionic enable the use of standard web technologies
(HTML, CSS and JS) to design user interfaces and to develop
the functionalities of the application. Apps executed in each
different platform generated by Apache Cordova rely on
compatible connections with default interface components in
each device, such as sensors, data, and others.

III. RELATED STUDIES ON THE ACCESSIBILITY OF
MOBILE APPLICATIONS

A growing number of studies in the literature have dedicated
efforts to research methods to evaluate the accessibility of
mobile applications. However, fewer studies have focused on
the way in which such applications are built and on the
implications of the choices of types of interface components
on the accessibility of those applications when used in mobile
apps.

Many research studies have been conducted on the ac-
cessibility of applications and websites on mobile devices
for screen reader users. In a study conducted by Chiti and
Leporini [10], 4 visually-disabled users (two experienced and
two beginner users of smartphones) evaluated a prototype of an
Android application. Users provided useful information, such
as issues with touchscreen gestures, which could help develop-
ers who work to conceive and develop assistive technologies
for mobile devices.

Leporini et al. [18] later evaluated usability and accessibility
problems encountered on Apple’s mobile devices with the
VoiceOver screen reader. Their research involved the usability
inspection of the device’s interface components and the input
from 55 blind users about their experiences. The results
confirmed that VoiceOver was fundamental for their users to
interact with their mobile applications. However, there were
still usability problems that needed fixing, such as the lack
of clarity of details in certain elements, expansible navigation
elements and handling form filling.

According to Siebra et al. [28], there are several initiatives
for the development of recommendations for accessible mo-
bile applications. However, existing recommendations consist
mostly of suggestions and not a concrete list of functional
requirements. According to those authors, it is still necessary

to perform an assessment of requirements for each type of
disability to better understand what impact they have on the
usability of mobile applications. In their work, they elicited
36 requirements for mobile apps from the literature, being 13
of them focused on visual disabilities, followed by an analysis
with visually-disabled users. However, they did not examine
the influence of the means of implementation of applications
on the accessibility of the resulting apps.

Another study, conducted by Shitkova et al. [27], sought to
answer which usability guidelines should be considered when
developing an accessible mobile website or app. They also
investigated to which point those guidelines were applicable
in the development process. Those authors proposed a catalog
of usability guidelines and applied it in the development of
a mobile app and website. However, it was not possible to
perform a more in-depth evaluation of the relevance, utility,
sufficiency and coverage of the guidelines, due to the nature
of the research method applied to create the catalog.

Park et al. [20] evaluated how four visually-disabled partic-
ipants performed certain tasks on their mobile devices. The
results pointed out severe accessibility problems in typing
tasks and in other tasks on VoiceOver screen reader. As a
consequence, the authors of that paper proposed a set of
10 heuristics for the development of more accessible mobile
applications.

Barriers from the use of touchscreen devices motivated the
studies from Kane et al. [17] and Piccolo et al. [21]. The
authors of those studies also defined a set of guidelines focused
on accessible interactions for mobile devices.

Clegg-Vinell et al. [11] analysed the WCAG 2.0 guidelines
in another paper. They invited people with different disabilities
to evaluate several websites and apps in different mobile
platforms, comparing the problems encountered by users with
the guidelines. The results from that study pointed to the need
of a new approach to the guidelines, combining elements of
accessibility, usability and user experience. This would help
optimise their efficacy and reduce the time spent by developers
when applying them.

Casadei et al. [9] conducted a study to investigate the ex-
periences of developers in terms of accessibility issues related
to user interface design patterns for Android applications. By
means of an ethnographic study in 18 virtual communities of
developers, they identified recommendations related to input,
list and pagination and navigation, as well as specific issues
related to the use of the “hamburger menu” and tab navigation.

Silva et al. [24] investigated the accessibility of the What-
sApp application on mobile devices, involving five users with
visual disabilities. Their study revealed problems with the lack
of labels on buttons, difficulties to understand the options
available on the app, the lack of sound feedback to actions
taken by users.

Damaceno et al. [14] performed a review to identify accessi-
bility problems encountered by people with visual disabilities
on mobile devices, which were synthesised in the groups: bor-
ders not touch sensitive, buttons, voice commands, data entry,
gesture interactions, screen reader issues, and user feedback.

22 SBC Journal on Interactive Systems, volume 9, number 3, 2018

ISSN: 2236-3297



They then performed a user study in order to identify which
gestures were best for interactions with users, suggesting that
gestures resembling the letters V, upside-down V and Z had
better performance.

A recent study by Carvalho [7] involved 6 blind and 4
normal-vision users in the evaluation of 4 mobile applications
and websites, resulting in 409 problems encountered by blind
users and 105 problems by normal-vision users. The results
showed that blind users were more severely impacted than
other users with no disabilities that participated in the study,
with problems related to navigation, lack of alternative text,
unclear features when using with screen readers, among others.

In other recent studies from the research group of the
authors of the present paper [6], [23], accessibility inspections
of governmental mobile applications in Brazil were performed.
The methodology of those studies helped form the basis of
the method applied in this paper, with the adaptations carried
out on WCAG 2.0 for the mobile context, as well as the
accessibility problems identified.

IV. METHODOLOGY

This section presents the methodological aspects used in this
paper, regarding the implementation of mobile applications
using different platforms and approaches. It also describes the
accessibility inspection methods used to evaluate the imple-
mented prototypes, using an adaptation of the WCAG 2.0,
tailoring them to the context of mobile applications, following
the methods used and adapted in previous studies [6], [23].

A. Sample of Interface Components

We selected a sample of interface components, based on
Web elements, from a categorisation performed by Freire [13]
and Power et al. [22] in previous studies. Those authors
categorised problems encountered by disabled users when
using websites into six levels: Content, Delivery media, Web
page structure, Website Navigation, Information Architecture
and Underlying system characteristics. Each level presented
subcategories that described the nature of the problem en-
countered by users. In particular, in the present work, we used
two of those levels: Delivery media and Web page structure.
Those levels relate to the structural layer in a web page, with 8
categories of web interface components and their equivalents
in native applications, such as text, images, audio, video,
multimedia and others.

In order to perform the accessibility inspections, 30 interface
components from the web context were selected for the
samples, drawn from the 8 categories in the aforementioned
categorisation scheme. The 30 interface components were
selected from an investigation in the official documentation
of HTML and Android. All 30 interface components as listed
as follows:

Media
• Text: text in paragraph, text in ordered list, text in

unordered list, text in columns and text in citation.

• Images: informative image, decorative image, functional
image, image of text, complex image, group of images
and image maps.

• Audio, video and multimedia: video and audio player.
• Other media types: Mathematical and Chemistry formu-

lae.

Web page structure
• Headings: section headers.
• Links: internal link, external link e link with image.
• Tables: table with one header, table with two headers, ta-

ble with irregular headers, table with multi-layer headers
e table with caption and summary.

• Controls, forms and functionality: selection box, radio
button, button, list and text box.

B. Implementation of the interface components

In order to inspect the applications in the different platforms,
we created prototypes of mobile apps containing the aforemen-
tioned interface components in their standard forms. Those
apps represent examples of applications with such components
and made it possible to verify the accessibility of the features
with screen readers on mobile devices. The development of the
prototypes was split between two of the authors, following
the same principles. One author developed three prototypes
and another developed two prototypes. The developers made
all possible efforts to adhere their implementations to the
guidelines in WCAG 2.0.

Each of the 30 components was implemented in five pro-
totypes of mobile apps. The first prototype used standard
interface components in Android studio for native develop-
ment. In the second prototype, HTML interface components
were included in a native app developed in Android studio,
generating a native app with embedded web components. The
third prototype used the framework Apache Cordova 6.3.1
to implement the components in a hybrid app. The fourth
prototype was developed using the open source framework
Ionic 3.19.1, also using HTML components to generate a hy-
brid application. Finally, the fifth prototype used the platform
Appcelerator Titanium 5.0 to develop an also hybrid app from
HTML interface components.

All prototypes were developed for the Android 6.0 operating
system.

1) Purely native Android app with Android studio: The
implementation of the prototype using native components was
performed using native standard components, without the use
of any Web elements. For this, some components had to be
adapted, when a direct equivalent was not available.

The interface components “text in ordered list” and “text
in unordered list” were replaced by an equivalent standard
component in Android Studio - the ListView. The different
types of markup for the component “section header” were
not available in Android Studio and, hence, were replaced
by visual representations of the component TextView. The
components “internal link” and “external link” were also

SBC Journal on Interactive Systems, volume 9, number 3, 2018 23

ISSN: 2236-3297



adapted, considering that Android studio does not have the
same specific markup for links as HTML does.

Table components were implemented in Android Studio us-
ing the GridView component, differently from HTML, which
uses specific markup for table elements and its parts. Some
more specific types of images also were adapted to the existing
components available at Android Studio.

2) Native Android app with Android studio containing em-
bedded web interface components: In the development of the
prototype of the native app with embedded web components,
no adaptations were needed to fit specific elements. Web-based
components were implemented in the same way as in HTML
and rendered by means of the WebView service.

On Android, WebView uses the native navigator from the
platform. It applies the rendering motor Webkit to show web
pages and to include methods to navigate in the history, apply
zoom, perform searches, among others.

3) Web-hybrid application using Apache Cordova: Apache
Cordova was used to develop the first of the hybrid application,
generated from the code implemented as web pages. By
default, we created a local file named “index.html”, with
references to CSS, JavaScript, images, media files and other
resources that are necessary for the execution of the app.
The application is rendered using the WebView component,
available natively at the Android platform.

4) Web-hybrid application using Ionic: The hybrid appli-
cation developed with Ionic was built using vestion 3.19.1 of
the framework. The same HTML components used for the de-
velopment of the native app with embedded web components
were employed in this app, using the same methodology. At
the end of the development of the application, we generated
an apk file, which was installed in an Android device.

Ionic uses Cordova as its basis to access native resources
from the device it is running on. The process to generate
an apk file with Ionic uses Cordova’s commands to generate
and built the installable app. For instance, the command ionic
cordova build –release android was used to compile the code
on Ionic for the Android platform.

5) Web-hybrid application using Appcelerator Titanium:
Appcelerator Titanium allows developers to create cross-
platform applications using JavaScript code, which allows
access to all Android APIs, for example. We used the App
Builder Studio made available by Appcelerator, which allows
development in a single, scalable environment to create, test,
compact and publish mobile applications on various devices
and operating systems.

The web-hybrid application developed from Appcelerator
Titanium used the ”Titanium.UI.createWebView” method to
create the WebView and load the interface components into
HTML5. It is important to mention that Appcelerator Titanium
also provides methods that allow the development of native ap-
plications that use native components of the mobile operating
system. In this work, we included the development and eval-
uation of the web-hybrid application created by Appcelerator
Titanium, allowing the Web components used to be contrasted

with the components present in other web-hybrids and with the
native application developed from Android Studio.

C. Accessibility Inspections Procedure

The accessibility inspections were performed using review
of guidelines on interface components of the developed
prototypes. The inspections involved verifying the interface
and source codes of the applications by means of verifying
whether all interface components adhered or not to the
guidelines under consideration. Considering this, each success
criterion would be deemed as having passed or failed.

Evaluators: The inspections were performed by two of the
authors, who have extensive experience with the design and
evaluation of mobile applications and with accessibility guide-
lines. The two evaluators had a Computer Science degree,
and had been working for at least two years on projects
related to mobile accessibility, and were well versed with
WCAG 2.0. Each prototype was inspected by another author
who had not been involved in its development. The evalua-
tions were overseen by the third author, who has more than
ten years of experience with accessibility. The third author
checked for possible inconsistencies between the evaluations,
and suggested corrections to ensure reliability, with follow-
up discussions between the three authors when disagreements
occurred.

As previously mentioned, currently there are not
consolidated accessibility guidelines for the evaluation
of mobile applications. Despite the existence of guides
for Apple’s iOS and Google’s Android, those are more
restricted to technical aspects related to the coding of specific
interface components. Those guides do not include broader
accessibility issues present in wider accessibility guidelines,
such as the Web Content Accessibility Guidelines. Thus,
we analysed different possibilities of guidelines sets for the
inspections, such as ISO 9241-171 [16] and WCAG 2.0 [5].
However, those recommendations were not specific to the
mobile context.

The set of guidelines for the inspections: According to
the Web Accessibility Initiative (WAI) [29] from the World
Wide Web Consortium, who published the WCAG 2.0, the
main technologies endorsed by the W3C provide support to
accessibility, including those most essential to the Web on
mobile devices. The W3C has made efforts in version 2.0
of WCAG to make it less technology-specific as its previous
version. Further to this, most standard interface components
on desktop systems have equivalents in smartphones, including
texts, hyperlinks, tables, buttons, menus and others. Consid-
ering those points, we opted for WCAG 2.0 to support the
accessibility inspections on the developed prototypes, after
performing adaptations to specific issues related to the inter-
action with mobile devices.

For the adaptation, we analysed all 61 success criteria in
WCAG 2.0 and verified which criteria were not directly appli-
cable in the case of mobile devices, in order to perform the due

24 SBC Journal on Interactive Systems, volume 9, number 3, 2018

ISSN: 2236-3297



adaptations. The success criteria that needed adaptations were
those corresponding to enabling keyboard navigation, specific
web markup, layout consistency and text resizing.

One of the adaptations performed was related to success
criteria 2.1.1 and 2.1.3, which state that “Keyboard: All
functionality of the content is operable through a keyboard
interface without requiring specific timings for individual
keystrokes”. Success criteria 2.1.1 allows for exceptions for
essential functions, and 2.1.3 allows no exceptions. When
using assistive technologies in mobile devices, such as screen
readers, users interact with icons, buttons and other elements
using gestures, such as swipe right to go to the next element on
the screen, or swipe left, to go the the previous one, or double
tap to activate a given feature. Those gestures emulate the
“tab” key used on keyboard navigation in desktop interaction
for screen-reader users.

Other success criteria that were strongly tied to web
technologies, such as HTML, had to be adapted. Among
those criteria, we can mention success criterion 4.1.1, which
states: “Parsing: In content implemented using markup
languages, elements have complete start and end tags,
elements are nested according to their specifications, elements
do not contain duplicate attributes, and any IDs are unique,
except where the specifications allow these features”. To
inspect the developed prototypes, evaluators should also
consider other technologies, such as Java, used in Android
Studio for the development of native Android applications.
In such cases, evaluators should verify faults in the coding of
interface components that could cause problems for users of
assistive technologies.

Auditing procedures with screen readers: After adapting
the success criteria for the context of mobile devices, two
specialists inspected the applications using all 61 success
criteria in WCAG 2.0. They then audited the 30 interface
components in each of the five prototypes. For this, they used
the basic gestures used in TalkBack by visually-disabled users,
to navigate between elements and activate features.

Evaluators then recorded each problem encountered as hav-
ing passed or failed each success criterion, using a checklist
containing all success criteria in WCAG 2.0 and the adapta-
tions previously described. In this evaluation in particular, we
did not observe the numbers of instances of violations of each
success criterion. The reason for this was the fact that the
prototypes under evaluation had included only one interface
component of each type.

The manual inspections were performed using the TalkBack
screen reader version 5.1.0.12 in a Moto G 2nd generation
smartphone with the operating system Android 6.0.

Other screen readers for Android are available, such as
Mobile Accessiblity5 and Samsung’s Voice Assistant6. How-
ever, according to the latest survey with screen reader users

5Available at http://codefactoryglobal.com/app-store/mobile-accessibility/
6Available at https://www.samsung.com/uk/accessibility/mobile-voice-

assistant/

conducted by WebAIM [30], TalkBack was the most widely
used screen reader by Android users.

V. RESULTS AND DISCUSSION

This section presents the main results obtained from the
accessibility inspections of the five implemented prototypes,
followed by a discussion of implications.

The implications and suggested are based on the inspections
performed and on the behaviour of the screen reader with each
element.

A. Detailed analysis of the accessibility inspection of interface
components

In this section, we present the detailed results of the
accessibility inspection of the sample of interface components
used with TalkBack, considering the 61 success criteria in
WCAG 2.0. The inspection outcome for each success criterion
could lead to “P” (Pass), in cases in which the component
met all the requirements in the success criterion and worked
appropriately with the screen reader, or “F” (Fail), when it did
not meet the recommendations and did not work appropriately
with the screen reader.

Considering that several success criteria were only applica-
ble to certain interface components, the tables in the following
sections present a selection of the main success criteria related
to each type of component.

1) Text: Textual components are important structures in the
development of an application. They enable the use of texts
in paragraphs, lists, column arrangements and citations, and
convey a significant part of the information available in an
app to users.

During the accessibility inspections of text components in
web-hybrid apps and in the native app with embedded web
components, only success criterion 2.4.7 - focus visible was
violated for the component “text in columns”, as shown in
Table I. In this case, TalkBack did not visually highlight the
component in focus, making the interaction more difficult for
certain users, such as people with low vision who use their
residual vision along with the screen reader.

In the native application (without embedded web compo-
nents), textual components in lists (ordered and unordered)
presented problems with TalkBack. As previously mentioned,
the standard Android ListView component was used as an
alternative to text in lists. Different from list elements in
HTML, TalkBack could not relate the items in the list in the
native components as list elements of numbering them, thus
violating success criteria 1.3.1 - Info and relationships.

According to WCAG 2.0, it is important to enable users
to separate foreground and background information, making
the presentation in its standard form adequate for people with
visual disabilities. In this context, enabling the resizing of
text and changing the visual presentation of blocks of text
make it possible to customise content according to users’
needs. Android provides tools such as zooming gestures, set
larger text sizes, high contrast text, inverted colours and colour
corrections. Those features enable changes in the presentation,

SBC Journal on Interactive Systems, volume 9, number 3, 2018 25

ISSN: 2236-3297



TABLE I
ACCESSIBILITY INSPECTION TEXT COMPONENTS

Component Native Native Hybrid Hybrid Hybrid
Interface (without Web) (with Web) (Cordova) (Appcelerator) (Ionic)
Text in paragraph 1.4.4 - P 1.4.4 - P 1.4.4 - P 1.4.4 - P 1.4.4 - P

1.4.8 - P 1.4.8 - P 1.4.8 - P 1.4.8 - P 1.4.8 - P
2.4.7 - P 2.4.7 - P 2.4.7 - P 2.4.7 - P 2.4.7 - P
3.1.4 - F 3.1.4 - P 3.1.4 - P 3.1.4 - P 3.1.4 - P

Text in ordered list 1.3.1 - F 1.3.1 - P 1.3.1 - P 1.3.1 - P 1.3.1 - P
Text in unordered list 1.3.1 - F 1.3.1 - P 1.3.1 - P 1.3.1 - P 1.3.1 - P
Text in columns 2.4.7 - P 2.4.7 - F 2.4.7 - F 2.4.7 - F 2.4.7 - F
Text in citation 1.4.4 - P 1.4.4 - P 1.4.4 - P 1.4.4 - P 1.4.4 - P

1.4.8 - P 1.4.8 - P 1.4.8 - P 1.4.8 - P 1.4.8 - P
1.3.1 Info and Relationships, 1.4.4 Resize Text,

1.4.8 Visual Presentation, 2.4.7 Focus Visible, 3.1.4 Abbreviations

but require implementations that do not hinder their function-
ing. The component “text in paragraph”, specifically, was in
accordance with success criteria 1.4.4 - resize text and 1.4.8 -
visual presentation.

In summary, despite occasional violations in some success
criteria, textual components were in general more accessible in
hybrid apps and native apps with embedded web components.
In such cases, TalkBack was able to have access to more
information about the semantics and behaviour of the text
components. Figure 1 presents an ilustration of the textual
elements in the five apps.

Fig. 1. Components ”text in sorted list”, ”text in unordered list” and ”text
in columns” implemented in the native application (without Web resources),
native application (with Web resources), Cordova application, Appcelerator
application and Ionic application, respectively.

2) Images: In order to provide accessibility, images have
provide textual alternatives that describe their content or func-
tion. This makes it possible for people with several disabilities

to have access to their content. Despite having an overall good
performance in the evaluation, some of the image components
present in the prototypes still had violations of some specific
success criteria. According to Table II, the component “group
of images” did not meet success criterion 1.3.1 - Info and
relationships in any of the five developed prototypes. TalkBack
failed to identify the relationship between the images in the
group.

For success criterion 1.1.1 - Non-textual content, all five
platforms provided resources to include textual alternatives
in the images. The component “image of text”, for example,
which shows text coded as an image (as shown in Figure
2), provides the possibility to include alternative text to
describe the information in it. It is important that devel-
opers pay attention to the use of appropriate markup of
non-textual content to enable its use by screen-reader users.
In AndroidStudio, for example, developers should use the
tag android:contentDescription=“image description”, and in
HTML, the attribute alt=“description” to provide a descriptive
text representing the content of the image.

Fig. 2. Components ”group of images” and ”text images” implemented
in the native application (without Web resources), native application (with
Web resources), Cordova application, Appcelerator application and Ionic
application, respectively.

3) Audio, Video and Multimedia: HTML 5 introduced two
new multimedia tags to display audio and video on web pages.

26 SBC Journal on Interactive Systems, volume 9, number 3, 2018

ISSN: 2236-3297



TABLE II
ACCESSIBILITY INSPECTION OF IMAGE COMPONENTS

Component Native Native Hybrid Hybrid Hybrid
Interface (without Web) (with Web) (Cordova) (Appcelerator) (Ionic)
Informative image 1.1.1 - P 1.1.1 - P 1.1.1 - P 1.1.1 - P 1.1.1 - P
Decorative image 1.1.1 - P 1.1.1 - P 1.1.1 - P 1.1.1 - P 1.1.1 - P
Functional image 1.1.1 - P 1.1.1 - P 1.1.1 - P 1.1.1 - P 1.1.1 - P
Image of text 1.1.1 - P 1.1.1 - P 1.1.1 - P 1.1.1 - P 1.1.1 - P

1.4.5 - P 1.4.5 - P 1.4.5 - P 1.4.5 - P 1.4.5 - P
1.4.9 - P 1.4.9 - P 1.4.9 - P 1.4.9 - P 1.4.9 - P

Complex image 1.1.1 - P 1.1.1 - P 1.1.1 - P 1.1.1 - P 1.1.1 - P
1.3.1 - F 1.3.1 - P 1.3.1 - P 1.3.1 - P 1.3.1 - P

Group of images 1.1.1 - P 1.1.1 - P 1.1.1 - P 1.1.1 - P 1.1.1 - P
1.3.1 - F 1.3.1 - P 1.3.1 - P 1.3.1 - P 1.3.1 - P

Image maps 1.1.1 - P 1.1.1 - P 1.1.1 - P 1.1.1 - P 1.1.1 - P
1.3.1 - F 1.3.1 - P 1.3.1 - P 1.3.1 - P 1.3.1 - P
2.4.7 - P 2.4.7 - P 2.4.7 - P 2.4.7 - P 2.4.7 - F

1.1.1 Non-text Content, 1.3.1 Info and Relationships,
1.4.5 Images of Text, 1.4.9 Images of Text (No Exception)

This enabled different file types to be used in different nav-
igators. Multimedia components may include images, songs,
sounds, videos, record, films and animations, which can be
incorporated in several mobile applications.

The video player (Figure 3) and audio player components,
present in the sample, present similar violations of WCAG 2.0
success criteria in the five prototypes developed. Among those
violations, we can mention lack of description of standard
button to play video, problems showing subtitles on videos,
and the lack of consolidated means to insert audio description,
subtitles and sign language in the audio and video components
in mobile devices.

According to the results presented in Table III, the interface
components related to audio, video and multimedia still lack
ideal accessibility support for the TalkBack screen reader.
Developers who wish to use audio, video and multimedia
components in an accessible manner should be aware that
some users might not have access to that content, and think
of alternative solutions to provide adequate accessibility while
more definite solutions be implemented.

4) Other media types: In this study, we also investigated the
accessibility to other media types in mobile applications, such
as mathematical and chemical notation. Current development
resources for mobile devices, as well as screen readers such
as TalkBack, have not yet provided adequate support for more
complex formulae and mathematical equations. Current web-
based and Android native components to not provide resources
to visually render mathematical equations and formulae in
standard notation, such as MathML (Mathematical Markup
Language), as shown in Figure 4.

Table IV shows that those types of special markup ele-
ments in the interface of the 5 prototypes violated success
criterion 4.1.2 - name, role and value. Those components
were completly incompatible with the TalkBack screen reader,
preventing important information related to the role, state and
value from being synthesised in voice to blind users.

In this case, providing alternative texts to mathematical and
chemical formulae in graphics can be an alternative solution
for the time being. Despite being in accordance to current

Fig. 3. Video player component implemented in the native application
(without Web resources), native application (with Web resources), hybrid
application, Appcelerator application and Ionic application, respectively.

accessibility guidelines, this solution is not as rich as making
mathematical and chemical content available in a way that
enables interaction and navigation to interpret its meaning.
Different applications could be used to work around this issue
to make this type of content more accessible to screen readers.
The use of MathML (Mathematical Markup Language) would
enable screen readers to describe mathematical notation and
inform users about its structure. However, in the particular case

SBC Journal on Interactive Systems, volume 9, number 3, 2018 27

ISSN: 2236-3297



TABLE III
ACCESSIBILITY INSPECTION OF AUDIO, VIDEO AND MULTIMEDIA COMPONENTS

Component Native Native Hybrid Hybrid Hybrid
Interface (without Web) (with Web) (Cordova) (Appcelerator) (Ionic)

Video player 1.2.1 - F 1.2.1 - F 1.2.1 - F 1.2.1 - F 1.2.1 - F
1.2.2 - F 1.2.2 - F 1.2.2 - F 1.2.2 - F 1.2.2 - F
1.2.3 - F 1.2.3 - P 1.2.3 - P 1.2.3 - P 1.2.3 - P
4.1.2 - F 4.1.2 - P 4.1.2 - P 4.1.2 - P 4.1.2 - P

Audio player 1.2.1 - F 1.2.1 - F 1.2.1 - F 1.2.1 - F 1.2.1 - F
1.2.2 - F 1.2.2 - F 1.2.2 - F 1.2.2 - F 1.2.2 - F
1.2.6 - P 1.2.6 - P 1.2.6 - P 1.2.6 - P 1.2.6 - P

1.2.1 Audio-only and Video-only (Prerecorded),
1.2.2 Captions (Prerecorded), Audio Description or Media Alternative (Prerecorded),

1.2.6 Sign Language (Prerecorded), 4.1.2 Name, Role, Value

TABLE IV
ACCESSIBILITY INSPECTION OF COMPONENTS OF OTHER MEDIA TYPES

Component Native Native Hybrid Hybrid Hybrid
Interface (without Web) (with Web) (Cordova) (Appcelerator) (Ionic)
Mathematical notation 4.1.2 - F 4.1.2 - F 4.1.2 - F 4.1.2 - F 4.1.2 - F
Chemical formula 4.1.2 - F 4.1.2 - F 4.1.2 - F 4.1.2 - F 4.1.2 - F

4.1.2 Name, Role, Value

Fig. 4. Components ”mathematical notation” and ”chemical formula” imple-
mented in the native application (without Web resources), native application
(with Web resources), Cordova application, Appcelerator application and Ionic
application, respectively.

of Brazil, even desktop-based screen readers do not currently
have support to reading mathematical formulae in Portuguese,
let alone for mobile devices.

Developers who wish to use the aforementioned components
in their applications should seek for alternative solutions to
integrate in their applications, in order to make their content
presentable visually and compatible with the main screen
readers available on the market.

5) Headings: HTML enables the use of up to 6 levels
of headings to define titles and subtitles in documents. A
heading is defined as delimited by its correspondent tag,
usually applying the styles with bold and a specific font size,
according to the level. Android Studio does not offer specific
markup options for different levels of headings, as shown
in Figure 5. The lack of such tags in native applications

not using embedded web components impacts directly on the
ability of screen readers to convey information to help blind
users understand the structure of the content. Further to this,
TalkBack has a feature that enables users to navigate between
the headings of a page, making it possible for blind users
to have a better overall view of the screen, making navigation
more efficient. However, this feature is currently available only
to web pages, due to the lack of structural markup in native
components.

Fig. 5. Component ”title of the sections” implemented in the native ap-
plication (without Web resources), native application (with Web resources),
Cordova application, Appcelerator application and Ionic application, respec-
tively.

According to the main results of the accessibility inspection
of the section title components, shown in Table V, hybrid
applications and applications with embedded web components
had a far superior performance regarding headings than the
purely native app. In this context, developers of applications

28 SBC Journal on Interactive Systems, volume 9, number 3, 2018

ISSN: 2236-3297



with different sections, where navigation speed is important,
should consider using hybrid approaches of native apps with
embedded web components.

6) Links: A link is a connector between one web resource
to another. In mobile applications, a link can be used to
have access, for example, to an image, a video clip, an audio
excerpt, a new page in the application, notifications, an HTML
document or others.

WCAG 2.0 provides two specific success criteria dealing
with link purpose: one regarding the purpose of a link when
read in context (2.4.4) and another one considering the under-
standing of the purpose of a link with its description alone
(2.4.9). According to these success criteria, there should be
a mechanism to allow the understanding of a link when read
out of context (in a level-AAA criterion), or when the link
is read alongside surrounding contextual content, such as
paragraphs, lists, headings, and others (level-A criterion). In
the inspections, TalkBack did not encounter issues to identify
internal links, external links and links in images, making it
possible to determine the purpose of a link and explore its
content in all platforms investigated. An example of external
links implemented in the five prototypes is shown in Figure 6.

Fig. 6. Component ”external link” implemented in the native application
(without Web resources), native application (with Web resources), Cordova
application, Appcelerator application and Ionic application, respectively.

Success criterion 4.1.2 - name, role and value also provides
specific recommendations for links in HTML, which can be
applicable to both native and hybrid applications, as shown in
Table VI. This success criterion recommends that links should
be used with adequate attributes and values, which could
enable assistive technologies to operate those components
accordingly. There are different means to implement links in
native applications without using web components on Android
Studio. However, there are alternatives which would be not
accessible to screen readers, resulting in links without name,
description and values.

7) Tables: Tables are used to organize data by means of
a grid layout with logical relation between them. In order to
make tables accessible, it is very important to use appropriate
tags to indicate headers and their relation to data cells.
Screen readers rely on that information to explicitly convey
its meaning. The following code snippet illustrates how to
properly code tables relating cells and headers, using the tag
< th >. The resulting table from that code is shown in Figure
7.

< t a b l e >
<c a p t i o n>Opening hours </ c a p t i o n>
<t r >

<td ></ td>
<th>Sunday </ th>
<th>Monday</ th>

</ t r >
<t r >

<th >08:00 − 12:00 < / th>
<td>Closed </ td>
<td>Open</ td>

</ t r >
<t r >

<th >12:00 − 18:00 < / th>
<td>Closed </ td>
<td>Open</ td>

</ t r >
</ t a b l e >

Listing 1. Example of a marked-up table in HTML

Fig. 7. Component ”table with two headers” implemented in the native
application (without Web resources), native application (with Web resources),
Cordova application, Appcelerator application and Ionic application, respec-
tively.

Android Studio does not provide components with tags to
properly mark table headers and their relation with data cells,
which causes serious problems for disabled users with assis-
tive technologies, such as screen readers. In the inspections
performed in this study, TalkBack could not relate to which
column a given piece of information in a data cell was related
to in the heading columns. It is important that developers pay
attention to find appropriate alternatives to enable assistive
technologies to establish those relationships to make those
tables accessible to all users. In the case of technologies that
do not support automatic definition of those relationships, this
could be done explicitly on text. Table VII presents the two
success criteria that failed for the native application that did
not use web components.

TalkBack also encountered barriers to identify the relation-
ships in more complex tables in applications that use HTML-
based components, such as those with irregular headings and
with several levels of headings.

SBC Journal on Interactive Systems, volume 9, number 3, 2018 29

ISSN: 2236-3297



TABLE V
ACCESSIBILITY INSPECTION OF HEADING COMPONENTS

Component Native Native Hybrid Hybrid Hybrid
Interface (without Web) (with Web) (Cordova) (Appcelerator) (Ionic)
Section title 1.3.1 - F 1.3.1 - P 1.3.1 - P 1.3.1 - P 1.3.1 - P

2.4.2 - P 2.4.2 - F 2.4.2 - F 2.4.2 - F 2.4.2 - F
2.4.6 - P 2.4.6 - P 2.4.6 - P 2.4.6 - P 2.4.6 - P
2.4.10 - P 2.4.10 - P 2.4.10 - P 2.4.10 - P 2.4.10 - P
4.1.2 - F 4.1.2 - P 4.1.2 - P 4.1.2 - P 4.1.2 - P

1.3.1 Info and Relationships, 2.4.2 Page Titled, 2.4.6 Headings
and Labels, 2.4.10 Section Headings, 4.1.2 Name, Role, Value

TABLE VI
ACCESSIBILITY INSPECTION OF LINKS COMPONENTS

Component Native Native Hybrid Hybrid Hybrid
Interface (without Web) (with Web) (with Web) (Appcelerator) (Ionic)
Internal link 2.4.4 - P 2.4.4 - P 2.4.4 - P 2.4.4 - P 2.4.4 - P

2.4.9 - P 2.4.9 - P 2.4.9 - P 2.4.9 - P 2.4.9 - P
4.1.2 - F 4.1.2 - P 4.1.2 - P 4.1.2 - P 4.1.2 - P

External link 2.4.4 - P 2.4.4 - P 2.4.4 - P 2.4.4 - P 2.4.4 - P
2.4.9 - P 2.4.9 - P 2.4.9 - P 2.4.9 - P 2.4.9 - P
4.1.2 - F 4.1.2 - P 4.1.2 - P 4.1.2 - P 4.1.2 - P

Link in image 2.4.4 - P 2.4.4 - P 2.4.4 - P 2.4.4 - P 2.4.4 - P
2.4.9 - P 2.4.9 - P 2.4.9 - P 2.4.9 - P 2.4.9 - P
4.1.2 - F 4.1.2 - P 4.1.2 - P 4.1.2 - P 4.1.2 - P

2.4.4 Link Purpose (In Context)), 2.4.9 Link
Purpose (Link Only), 4.1.2 Name, Value, Role

TABLE VII
ACCESSIBILITY INSPECTION OF TABLE COMPONENTS

Component Native Native Hybrid Hybrid Hybrid
Interface (without Web) (with Web) (Cordova) (Appcelerator) (Ionic)
Table with 1.3.1 - F 1.3.1 - P 1.3.1 - P 1.3.1 - P 1.3.1 - P
a header 1.3.2 - F 1.3.2 - P 1.3.2 - P 1.3.2 - P 1.3.2 - P

1.4.8 - P 1.4.8 - P 1.4.8 - P 1.4.8 - P 1.4.8 - F
Table with 1.3.1 - F 1.3.1 - P 1.3.1 - P 1.3.1 - P 1.3.1 - P
two headers 1.3.2 - F 1.3.2 - P 1.3.2 - P 1.3.2 - P 1.3.2 - P

1.4.8 - P 1.4.8 - P 1.4.8 - P 1.4.8 - P 1.4.8 - F
Table with 1.3.1 - F 1.3.1 - F 1.3.1 - P 1.3.1 - P 1.3.1 - P
irregular headers 1.3.2 - F 1.3.2 - F 1.3.2 - P 1.3.2 - P 1.3.2 - P

1.4.8 - P 1.4.8 - P 1.4.8 - P 1.4.8 - P 1.4.8 - F
Table with 1.3.1 - F 1.3.1 - F 1.3.1 - F 1.3.1 - F 1.3.1 - F
multi-level headers 1.3.2 - F 1.3.2 - F 1.3.2 - F 1.3.2 - F 1.3.2 - F

1.4.8 - P 1.4.8 - P 1.4.8 - P 1.4.8 - P 1.4.8 - F
Table with 1.3.1 - F 1.3.1 - P 1.3.1 - P 1.3.1 - P 1.3.1 - P
caption and abstract 1.3.2 - F 1.3.2 - P 1.3.2 - P 1.3.2 - P 1.3.2 - P

1.4.8 - P 1.4.8 - P 1.4.8 - P 1.4.8 - P 1.4.8 - F
1.3.1 Info and Relationships, 1.3.2 Meaningful Sequence, 1.4.8 Visual Presentation

According to the results presented, tables developed with
web-based components provide more resources to allow screen
readers as TalkBack to provide users with more detailed
information and their structure. Unfortunately, default interface
components from Android, such as GridView did not provide
the same features. The use of tables in native applications that
do not embed web components may create serious barriers to
blind users with screen readers. Developers of mobile applica-
tions should use alternative components or alternative means
of presenting information, making sure that these alternatives
are also accessible to disabled people.

8) Controls, Forms and Functionality: Controls, forms and
dynamic features are used to provide important means of inter-

action for users on websites and mobile applications. The five
interface components implemented to be tested in this category
had positive results in the accessibility inspections. We could
not find any violation to any WCAG 2.0 success criteria,
and they showed good possibilities for the implementation of
accessibility features for screen readers. They allowed screen
readers to properly identify and facilitate the understanding of
functionality and behaviour of form controls, by associating
labels and other structural elements.

In general, it is important for developers to pay attention
to the labelling of all input elements. In HTML, for example,
the elements label and the attribute title should be use to help
blind users have confidence to interact with an application, be

30 SBC Journal on Interactive Systems, volume 9, number 3, 2018

ISSN: 2236-3297



it searching for information or entering personal data, such as
credit card or phone numbers. Table VIII shows the success
criteria related to those elements that were inspected during
the evaluations.

Fig. 8. Components ”radio button”, ”checkbox” and ”text field” implemented
in the native application (without Web resources), native application (with
Web resources), Cordova, Appcelerator application and Ionic application,
respectively.

Figure 8 presents an example of the main interface compo-
nents related to controls, forms and features created with the
five development platforms developed in this study.

B. Discussion

The results of the analyses reported in this paper presented
positive aspects related to the implementation of mobile ap-
plications using web-based components, both in the case of
hybrid applications using Cordova, Appcelerator Titanium and
Ionic, and in the case of native applications with embedded
web components.

The results of the present paper confirm the findings of a
previous study of the authors [8], in which the comparison had
been performed using native applications implemented only
using Cordova.

In general, web-based components provided more accessi-
bility resources to users who use the TalkBack screen reader.
However, in the case of more complex interface components,
such as text in columns, tables with several layers of headings,
audio, video, and other types of non-conventional media did
not provide elements to meet some WCAG 2.0 success criteria
even with web-based components. This was the case on
Cordova and on the new development platforms included in
the new prototypes developed in this paper using Appcelerator
Titanium and Ionic.

In the purely native application, which did not use web
components, we found a relatively larger number of viola-

tions than in the other four prototypes. The native Android
components had the highest number of violations of WCAG
2.0 success criteria 1.3.1 - Info and relationships and 4.1.2
- name, role and value, related to the principles of making
applications perceivable and robust. The accessibility problems
encountered in native components implemented in Android
Studio may imply in the lack of presentation of information or
difficulties to interpret content by many users who use assistive
technologies.

It is also worth noting that the results with hybrid apps and
native apps with embedded web components had the same
performance. This is largely due to the fact that they all use
the component WebView to render web components. When
viewing the application, there is little difference for users
between hybrid applications and native apps with embedded
web elements. However, native apps with embedded web
components are more limited in terms of the web features they
use, and those features have more limitations in terms of the
interaction with the integration with native services available
in Android Studio. Hybrid applications, on the other hand,
can enable the use of the full potential of HTML, CSS and
JavaScript, and other services in the cloud, with the possibility
to integrate with other services from the mobile device.

This shows that hybrid applications, besides being a good
strategy to promote portability of applications [19], can also
help provide better accessibility with its interface components
for the TalkBack screen reader.

With the development and inspection of a wider range
of hybrid mobile applications using Cordova, Appcelerator
Titanium and Ionic, in the present paper we showed that differ-
ent platforms for developing web-hybrid Android applications
did not have an impact on the accessibility of the resulting
apps. With this, we can confirm the relationship between the
behaviour of such applications in terms of the development
approach (web-hybrid or native), independent of the platform
in which web-hybrid applications have been developed.

It is worth noting that the inspections were performed using
only one screen reader in the Android, and that different
results could be obtained with evaluation in other screen
readers. However, we can point to the fact that the accessibility
limitations encountered in the native Android applications
were due to limitations in the way in which the platforms
implements such components. At the moment, they do not of-
fer accessibility features that could be used by either TalkBack
or other screen reader used at Android.

Despite the advantages in accessibility provision of hybrid
applications, this paper has not approached issues related to the
efficiency and processing performance of those apps. Due to
the use of the WebView component as an intermediary, hybrid
apps can lag in performance in particular contexts, such as
real-time systems, which were not the focus of this paper.

The lack of well-defined accessibility guidelines for mo-
bile applications, be it for native of web-based apps, still
imposes important barriers for developers due to the lack of
standardisation of interface components. While more mature
accessibility resources are not available for native components,

SBC Journal on Interactive Systems, volume 9, number 3, 2018 31

ISSN: 2236-3297



TABLE VIII
ACCESSIBILITY INSPECTION OF CONTROLS, FORMS AND FUNCTIONALITIES COMPONENTS

Component Native Native Hybrid Hybrid Hybrid
Interface (without Web) (with Web) (Cordova) (Appcelerator) (Ionic)
Checkbox 3.3.2 - P 3.3.2 - P 3.3.2 - P 3.3.2 - P 3.3.2 - P
Radio button 3.3.2 - P 3.3.2 - P 3.3.2 - P 3.3.2 - P 3.3.2 - P
Button 4.1.2 - P 4.1.2 - P 4.1.2 - P 4.1.2 - P 4.1.2 - P
Drop-down list 3.3.2 - P 3.3.2 - P 3.3.2 - P 3.3.2 - P 3.3.2 - P
Text field 3.2.2 - P 3.2.2 - P 3.2.2 - P 3.2.2 - P 3.2.2 - P

3.3.1 - P 3.3.1 - P 3.3.1 - P 3.3.1 - P 3.3.1 - P
3.3.2 - P 3.3.2 - P 3.3.2 - P 3.3.2 - P 3.3.2 - P
4.1.2 - P 4.1.2 - P 4.1.2 - P 4.1.2 - P 4.1.2 - P

3.2.2 On Input, 3.3.1 Error Identification,
3.3.2 Labels or Instructions, 4.1.2 Name, Role, Value

developers should seek alternative solutions to make their apps
accessible to people with visual disabilities.

VI. CONCLUSIONS AND FUTURE WORK

The research study presented in this paper involved the
implementation of 30 interface components in five different
platforms to develop mobile applications for Android. This
was made by means of the implementation of five different
prototypes, employing the best available accessibility tech-
niques to those interface components. The study then involved
the accessibility inspection of the implemented prototypes
using a screen reader.

The results from a previous study from the authors [8]
had shown that hybrid applications developed with Apache
Cordova and native applications with embedded web compo-
nents were more compatible with WCAG 2.0 success criteria
than applications with purely native Android interface compo-
nents. In the present paper, we have extended the analyses
to include other platforms to generate hybrid applications,
namely Appcelerator Titanium and Ionic. The results from
the present study have confirmed that hybrid applications,
even in other platforms, were indeed more compatible with
accessibility requirements, with no differences encountered in
terms of accessibility compatibility in Apache Cordova, Ionic
or Appcelerator Titanium. Despite having similar results in
terms of accessibility, the development of native apps with
embedded web components may have negative impacts on the
overall performance of the app.

With regards to the development of purely native Android
applications using interface components available in Android
Studio, the results indicate that developers should be cautious
when implementing them. The accessibility inspections re-
vealed that several of those components may have problems
providing accessibility features, particularly in content with
tables, headings, and multimedia. Developers concerned with
the accessibility of their apps should be aware of those
shortcomings and propose alternative solutions to avoid ac-
cessibility problems that could prevent disabled users from
using their features.

As to the developers of Android interface components,
it would be important to consider those results to improve
the provision of accessibility features that developers and

designers could use to make more accessibility interactive
systems in native Android apps.

Despite the discussions about the accessibility in hybrid
and native applications, we acknowledge that the choice from
developers need to take other factors into account, which were
not in the scope of the present paper. As pointed out by
Bosnic et al. [2], the development of hybrid and native mobile
applications have particular advantages and disadvantages.
While hybrid development approaches enable the generation
of applications for multiple platforms, native development can
be more suitable for more complex development and have
superior processing performance.

Although there are several recommendations to make mo-
bile applications more accessible, it is very important to
advance in the definition of a more consolidated set of
accessibility guidelines for mobile devices. Those guidelines
need to take into consideration the specificities of each type
of user and the different technologies used in the development
of such applications. Even though several studies have used
adaptations of existing guidelines for other platforms, Costa
et al. [12] alert that the use of accessibility recommendations
tailored to specific devices and contexts can yield significantly
better results. The results from the present paper reinforce this
need and provide some leads to guide future research in the
area.

As future work, we intend to select a sample of mobile
applications from Google’s Play Store that were built using
the different platforms investigated in this study, and to carry
out tests with disabled users performing tasks with those
applications. Following this, we intend to identify the main
problems encountered by those users on native and hybrid
apps, in order to help consolidate specific guidelines and
recommendations for those platforms.

In future works, we also intend to perform accessibility
inspections using other less-frequently used screen readers in
Android, and to analyse the differences between the acces-
sibility of native and web-hybrid applications in the Apple’s
iOS platform.

ACKNOWLEDGEMENTS

We thank CNPq (proc. 448521/2014-8) and FAPEMIG
for the financial support to this project. We also thank the

32 SBC Journal on Interactive Systems, volume 9, number 3, 2018

ISSN: 2236-3297



anonymous reviewers for their thoughtful contributions to this
work.

REFERENCES

[1] AppBrain, “Number of Android applications”, Available online at
https://www.appbrain.com/stats/number-of-android-apps, last accessed
on 30th January 2018, 2017.

[2] S. Bosnic, I. Papp, and S. Novak “The development of hybrid mobile
applications with Apache Cordova”, In: Telecommunications Forum
(TELFOR), 2016 24th, pages 1-4, IEEE, 2016.

[3] Brazil, “eMAG - Accessibility Model for Electronic
Government” (in Portuguese) - Version 3.1,Available online at
http://emag.governoeletronico.gov.br/, last accessed on 30th January
2017, 2014.

[4] R. Budiu, “Mobile: Native apps, web apps, and hybrid apps”, Available
online at https://www.nngroup.com/articles/mobile-native-apps/, last ac-
cessed on 30th January 2018, Nielsen Norman Group, 2013.

[5] B. Caldwell, M. Cooper, L. G. Reid, and G. Vanderheiden, “Web
Content Accessibility Guidelines (WCAG) 2.0”, available online at
https://www.w3.org/TR/WCAG20/, last accessed on 30th January 2018,
World Wide Web Consortium (W3C), 2008.

[6] L. P. Carvalho, B. P. M. Peruzza, F. Santos, L. P. Ferreira, A. P. Freire,
“Accessible Smart Cities?: Inspecting the Accessibility of Brazilian Mu-
nicipalities’ Mobile Applications”, In: Proceedings of the 15th Brazilian
Symposium on Human Factors in Computing Systems, IHC ’16, São
Paulo, Brazil, Article 17, 2016.

[7] M. C. N. Carvalho, F. S. Dias, A. G. S. Reis, A. P. Freire, “Accessibility
and Usability Problems Encountered on Websites and Applications in
Mobile”, In: Proceedings of the 33rd ACM/SIGAPP Symposium On
Applied Computing, Pau, France, p. 2022-2029, 2018.

[8] L. P. Carvalho, A. P. Freire, “Native or Web-Hybrid Apps? An Analysis
of the Adequacy for Accessibility of Android Interface Components
Used with Screen Readers”. In: Proceedings of the XVI Brazilian Sym-
posium on Human Factors in Computing Systems, IHC ’17, Joinville,
SC, p. 362–371, 2017.

[9] V. Casadei, T. Granollers, and L. Zaina, “Investigating accessibility
issues of UI mobile design patterns in online communities: a virtual
ethnographic study”, In: Proceedings of the XVI Brazilian Symposium
on Human Factors in Computing Systems (IHC 2017). ACM, New York,
NY, USA, Article 33, 10 pages, 2017.

[10] S. Chiti and B. Leporini, “Accessibility of Android-based Mobile
Devices: A Prototype to Investigate Interaction with Blind Users”, In:
Proceedings of the 13th International Conference on Computers Helping
People with Special Needs - Volume Part II, ICCHP’12, pages 607-614,
Berlin, Heidelberg. Springer-Verlag, 2012.

[11] R. Clegg-Vinell, C. Bailey, and V. Gkatzidou, “Investigating the appro-
priateness and relevance of mobile web accessibility guidelines”, In:
Proceedings of the 11th Web for All Conference, W4A ’14, pp. 38:1-
38:4, New York, NY, USA. ACM, 2014.

[12] D. Costa, L. Carriço, C. and Duarte, “The Differences in Accessibility of
TV and Desktop Web Applications from the Perspective of Automated
Evaluation”. Procedia Computer Science, vol. 67, pages 388–396, 2015.

[13] A. P. Freire, “Disabled people and the Web: User-based
measurement of accessibility”, PhD thesis, University of
York, Department of Computer Science, Available online at
http://etheses.whiterose.ac.uk/id/eprint/3873, last accessed on 30th
January 2018, 2012.

[14] R. J. P. Damaceno, J. C. Braga, and J. P. M. Chalco, “Mobile Device Ac-
cessibility for the Visually Impaired: Problems Mapping and Empirical
Study of Touch Screen Gestures”, In: Proceedings of the 15th Brazilian
Symposium on Human Factors in Computing Systems (IHC ’16). ACM,
New York, NY, USA, Article 2, 10 pages, 2016.

[15] International Standardisation Organisation, “ISO 9241-11: Ergonomic
Requirements for Office Work with Visual Display Terminals (VDTs) -
Part 11: Guidance on Usability”, 1998.

[16] International Standardisation Organisation, “ISO 9241-171: Ergonomics
of Human-System Interaction - Part 171: Guidance on Software Acces-
sibility”, 2008.

[17] S. K. Kane, J. O. Wobbrock, and R. E. Ladner, “Usable gestures for blind
people: Understanding preference and performance”, In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI
’11, pp 413-422, New York, NY, USA, ACM, 2011.

[18] B. Leporini, M. C. Buzzi, and M. Buzzi, “Interacting with Mobile De-
vices via VoiceOver: Usability and Accessibility Issues”, In: Proceedings
of the 24th Australian Computer-Human Interaction Conference, OzCHI
’12, pages 339-348, New York, NY, USA, ACM, 2012.

[19] I. Malavolta, S. Ruberto, T. Soru, and V. Terragni, “Hybrid Mobile
Apps in the Google Play Store: An Exploratory Investigation”. In:
Proceedings of the Second ACM International Conference on Mobile
Software Engineering and Systems, MOBILESoft ’15, pages 56-59,
Piscataway, NJ, USA, IEEE Press, 2015.

[20] K. Park, T. Goh, and H. J. So, “Toward Accessible Mobile Application
Design: Developing Mobile Application Accessibility Guidelines for
People with Visual Impairment”, In: Proceedings of HCI Korea, HCIK
’15, pages 31-38, South Korea. Hanbit Media, 2014.

[21] L. S. G. Piccolo, E. M. de Menezes, and B. de Campos Buccolo,
“Developing an Accessible Interaction Model for Touch Screen Mobile
Devices: Preliminary Results”, In: Proceedings of the 10th Brazilian
Symposium on Human Factors in Computing Systems and the 5th Latin
American Conference on Human-Computer Interaction, IHC+CLIHC
’11, pp. 222-226, Porto Alegre, Brazil, Brazilian Computer Society,
2011.

[22] C. Power, A. P. Freire, H. Petrie, and D. Swallow, “Guidelines Are Only
Half of the Story: Accessibility Problems Encountered by Blind Users
on the Web”, In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’12, pages 433-442, New York,
NY, USA, ACM, 2012.

[23] L. C. Serra, L. P. Carvalho, Ferreira, J. B. S. Vaz, and A. P. Freire,
“Accessibility Evaluation of E-Government Mobile Applications in
Brazil”. Procedia Computer Science, volume 67, pp, 348 – 357, 2015.

[24] C. F. da Silva, S. B. L. Ferreira, and J. F. M. Ramos. “WhatsApp
accessibility from the perspective of visually impaired people”, In:
Proceedings of the 15th Brazilian Symposium on Human Factors in
Computing Systems (IHC ’16). ACM, New York, NY, USA, Article 11,
10 pages, 2016.

[25] Statista. “Number of smartphone users worldwide
from 2014 to 2020 (in billions)”. Available online at
https://www.statista.com/statistics/330695/number-of- smartphone-
users-worldwide/, last accessed on 30th January 2017. 2016.

[26] Statista. “Market share held by mobile operating systems in
Brazil from January 2012 to December 2016”, Available on-
line at https://www.statista.com/statistics/262167/market-share-held-by-
mobile-operating-systems-in-brazil/, last accessed on 30th January 2018.
2016.

[27] M. Shitkova, J. Holler, T. Heide, N. Clever, and J. Becker, “To-
wards Usability Guidelines for Mobile Websites and Applications”, In:
Wirtschaftsinformatik, pg 1603-1617, 2015.

[28] C. Siebra, T. Gouveia, J. Macedo, W. Correia, M. Penha, M. Anjos, F.
Florentin, F. Q. B. Silva and A. L. M. Santos, “Observation Based Anal-
ysis on the Use of Mobile Applications for Visually Impaired Users”, In:
Proceedings of the 18th International Conference on Human-Computer
Interaction with Mobile Devices and Services Adjunct, MobileHCI ’16,
pages 807-814, New York, NY, USA, ACM, 2016.

[29] World Wide Web Consortium, “Web Accessibility Initiative (WAI)”.
Available online at https://www.w3.org/WAI/, last accessed on 30th
January 2017, 2008.

[30] WebAIM - Web Accessibility in Mind, “Screen
Reader User Survey #7 Results”. Available online at
https://webaim.org/projects/screenreadersurvey7, last accessed 5
July 2018.

SBC Journal on Interactive Systems, volume 9, number 3, 2018 33

ISSN: 2236-3297


