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Abstract—To provide on-patient medical data visualization,
a medical augmented reality environment must support volume
rendering, accurate tracking, real-time performance and high
visual quality in the final rendering. Another interesting feature
is markerless registration, to solve the intrusiveness introduced
by the use of fiducial markers for tracking. In this paper we
address the problem of on-patient medical data visualization in a
real-time high-quality markerless augmented reality environment.
The medical data consists of a volume reconstructed from 3D
computed tomography image data. Markerless registration is
done by generating a 3D reference model of the region of interest
in the patient and tracking it from the depth stream of an
RGB-D sensor. From the estimated camera pose, the volumetric
medical data and the reference model are combined allowing
a visualization of the patient as well as part of his anatomy.
To improve the visual perception of the scene, focus+context
visualization is used in the augmented reality scene to dynamically
define which parts of the medical volume will be visualized in
the context of the patient’s image. Moreover, context-preserving
volume rendering is employed to dynamically control which parts
of the volume will be rendered. The results obtained show that
the markerless environment runs in real-time and the techniques
applied greatly improve the visual quality of the final rendering.

Keywords—Augmented Reality; Volume Rendering; Markerless
Registration.

I. INTRODUCTION

Augmented Reality (AR) is a technology in which the
view of a real scene is augmented with additional virtual
information. Medical AR is a sub-field of AR in which the
virtual entity is a medical data. Typically, a successful medical
AR environment must support:

1) Volume rendering - when the virtual entity consists
of a 3D medical volume;

2) Accurate tracking - for the proper alignment of the
virtual object into the augmented scene;

3) Real-time performance - for user interactivity;
4) High visual quality in the final rendering - to improve

the user’s perception of the augmented scene.

Medical AR is useful to solve the problem of on-patient
medical data visualization. In general, patient’s anatomical
structures are shown on monitors and based on 2D images,
corresponding to slices of the 3D data. In this case, the
physician has to mentally compose what is shown on the screen

to the patient. AR takes over this task of mental mapping by
transferring it to a computer. Therefore, the physician is able
to visualize, at the same time, the patient and a part of his own
anatomy in the display. On-patient medical data visualization
aims to improve medical diagnosis, surgical operation, post-
operative examination and training.

AR applications can be divided into two basic groups:
marker-based or markerless. Marker-based AR uses fiducial
markers as a point of reference in the field of view to help
the system to estimate the camera pose. These markers need
to exist in the real world to be tracked by the application.
Markerless AR (MAR) uses a part of the real scene as the
marker. Tracking becomes more complex in MAR. However,
because artificial markers are not part of the original scene,
MAR is desirable in several AR scenarios.

Most of the existing medical AR systems use bulky equip-
ment (e.g. marker-based optical tracking systems) to help in the
tracking of the 3D medical data. While they give accuracy in
the tracking and positioning of the virtual medical data in the
patient, in some applications these markers can be intrusive and
the hardware too expensive. To solve these issues, markerless
tracking can be implemented taking advantage from the visual
features of the scene, such as texture or geometry of the object
of interest to be tracked. Currently, the high computational
power of hardware, mostly based on parallel computing, like
GPUs, allied to low-cost capture devices, allows this solution
to be used with enough accuracy and in real-time. In this
way, we proposed in [1] a MAR environment in which a 3D
reference model of the region of interest is generated and
tracked from the Kinect depth stream. From the estimated
camera pose, the 3D reference model can be displayed and
augmented with the volumetric medical data visualization
generated by standard volume rendering techniques. However,
the obtained solution needs to be improved in some aspects.
The registration between medical volume and patient’s region
of interest is semi-automatic, where the user must position and
adjust pose and scale of the volume. Moreover, the rendering
quality is poor. Medical volume is almost superimposed over
the patient, which is already known to be an ineffective
visualization method in the context of on-patient medical data
visualization [2], with some exceptions for specific scenarios
[3].
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The visual quality of the final rendering (i.e. composition
between real and virtual AR entities) is fundamental for the
success of the application. Instead of superimposing the raw
medical volume onto the patient, an improved solution is to
extract the region of interest in the volume (e.g. bone, soft
tissue, organ) and show it as a focus region in the context
of the patient’s body. The extraction step can be done by pre-
segmenting the volume into regions of interest or by defining a
transfer function which highlights the features of volume. Both
solutions solve the problem, but they are time-consuming.

In this sense, illustrative context-preserving volume ren-
dering can be applied to define on-the-fly which parts of the
volume are relevant and must be rendered [4], [5] in order
to reduce the computational cost. The final rendering step
based on focus and context regions is called focus+context
(F+C) visualization paradigm [6] and it is known to improve
the visual perception of the scene in an AR environment [2],
[7]. In the medical volume-to-patient registration step, we can
reduce user’s assistance by scaling the medical volume based
on 3D reference model’s size. Initial pose can be computed
by using a pose estimator for the patient’s region of interest.
These considerations are the starting point for this work and
compose its contributions.

Specifically, this paper presents an extension of the real-
time MAR environment for on-patient medical data visual-
ization proposed in [1] in order to address the mentioned
limitations. Firstly, a 3D reference model of the region of
interest in the patient is generated. Next, the user positions
the medical data into the scene based on the reference model.
Afterwards, sensor’s raw depth data is aligned to the 3D
reference model, predicting the current camera pose. From
the estimated camera pose, a volumetric medical data can
be displayed to a physician at the location of the patient’s
real anatomy. Volume rendering is performed by standard
techniques [8]. Finally, to improve the visual perception of
the scene, F+C visualization and illustrative context-preserving
volume rendering are employed to give to the physician a
tool for direct interaction with the application. Moreover, our
approach supports occlusion handling. The final result is shown
in the physician’s monitor. In the experimental results, we
perform the validation of the proposed solution by considering
performance and visual quality of the techniques used in this
environment.

The rest of the paper is arranged as follows. Section II
provides a review on the related work of Medical AR systems
for on-patient medical data visualization. Section III presents
the markerless tracking solution used in this work. Section
IV introduces the techniques used for on-patient medical
data visualization, focusing on the volume rendering and its
integration with the MAR environment. Section V discusses
the experimental results. The paper is concluded in Section
VI, with a summary and discussion of future work.

II. RELATED WORK

Medical AR systems for on-patient visualization have been
driven by different approaches in recent years. Kutter et al. [7]
proposed a marker-based method for real-time high quality on-
patient visualization of volumetric medical data on a Head
Mounted Display (HMD). Their work focuses on efficient

implementations for high quality volume rendering in an
augmented reality environment. They also provide occlusion
handling for physician hands. An improved version of this
work was proposed by Wieczorek et al. [9] to handle with
occlusions due to medical instruments as well. Also, they
included additional effects in the system, such as virtual mirror
and multi-planar reformations.

Debarba et al. [10] proposed a method to visualize
anatomic hepatectomy (i.e. anatomic liver resections) in an
AR environment. The use of a fiducial marker made possible
the positioning and tracking of the medical data in the scene.
A mobile device was used to allow the visualization of internal
structures of the patient’s body.

Suenaga et al. [11] proposed a method for on-patient
visualization of maxillofacial regions. A 3D optical tracking
system and a fiducial marker are used to track the patient. A
semi-transparent display is placed in front of the mouth region
of the patient. The display shows the maxillofacial medical
data. This method runs in 5 FPS (frames per second).

Different from the previous approaches, Maier-Hein et
al. [12] proposed a method for markerless mobile AR for
on-patient visualization of medical images. They proposed a
system in which a Time-of-Flight (ToF) camera is mounted
on a mobile and portable device (e.g. tablet PC, iPad) and the
physician might move the portable device along the body of
the patient to see his anatomical information. To estimate the
camera pose, they use a graph matching procedure [13] and
an anisotropic variant of the ICP algorithm [14] to align the
surfaces continuosly captured by the ToF camera. This method
runs in 10 FPS.

Lee et al. [15] proposed a markerless registration frame-
work for a medical AR system. They use three cameras:
two of them are mounted to form a stereo vision system
and reconstruct the patient’s head; the other camera is used
to capture the images of the patient in real-time. In a pre-
processing step, a surface is reconstructed from computed
tomography (CT) and a variant of the ICP algorithm is used
to do the image-to-patient registration. The estimation of the
third camera’s pose is done by using a fiducial marker.

In the field of anatomy education, Blum et al. [16] proposed
the mirracle, a magic mirror for teaching anatomy. They
used a display device and a Kinect sensor to allow volume
visualization of a CT dataset augmented onto the user. To track
the pose of the user, they used the NITE skeleton tracking.
As the system is for educational purposes, they could use a
generic CT volume which was scaled to the size of the user and
augmented onto him. Based on the assumption that the Kinect
provides inaccurate depth data, Meng et al. [17] proposed an
extension to mirracle in which landmarks are used to improve
the accuracy of the positioning and tracking of the medical
data. A recent extension of this application for bone anatomy
learning has been proposed in [18].

Mercier-Ganady et al. [3] presented a novel markerless
augmented reality application for on-patient brain activity
visualization. User’s head is tracked by using a face tracking
algorithm. Brain activity is computed from an electroen-
cephalography cap (EEG), which is worn by the user.

Most of the approaches described in this section share the
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Fig. 1. Overview of the proposed approach. Top layer: From an RGB-D live stream, the patient’s region of interest is located and segmented from the rest of
the scene. A 3D reference model is reconstructed to serve as basis for markerless tracking. Middle layer: 3D reconstruction is stopped and the medical volume
is rendered and segmented by using context-preserving volume rendering. Bottom layer: The user positions the segmented volume into the scene and MAR
tracking is done based on the 3D reference model. F+C visualization based on curvature and distance fall-off terms is applied to improve visual perception. The
approach supports occlusion.

same drawback: they use markers to help in the calibration,
positioning and tracking of the objects in the scene. The use of
fiducial markers provides fast and accurate tracking. However,
these markers are still intrusive, because they are not part of the
original scene. Moreover, the hardware of the optical tracking
system in some applications is too expensive. The approaches
that does not use marker-based hardware, in general, do not
obtain real-time performance in its application due to the
computational cost of the markerless tracking in conjunction
with the volume rendering techniques used. One exception
of this is the mirracle system and its extensions. However,
the main drawback of the fast NITE skeleton tracking is
that it does not track accurately some parts of the body,
such as head. Another exception is the approach proposed for
brain activity visualization. However, the authors have used
a specific technique for face tracking. Different from them,
our approach based on a markerless tracking runs entirely in
real-time with low-cost hardware components. The solution

proposed in this paper is general in the sense that it can track
any part of the body with enough accuracy. Moreover, in terms
of visual quality, we integrate into our approach state-of-the-
art techniques proposed in this field (e.g. [2]) to enhance the
augmented visualization of the virtual internal structures on
the patient, instead of superimposing the virtual content on
the scene, as done by the major of the existing systems (e.g.
[10], [12], [15]).

III. REFERENCE MODEL RECONSTRUCTION AND
REGISTRATION

In this section we describe the markerless tracking solution
in which this work was based on. An overview of this
environment can be seen in Figure 1-top layer.

A. Environment setup

The proposed approach is based on an RGB-D sensor
and a computer with GPU, therefore being accessible to any
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user. The Kinect [19] is used as RGB-D sensor to capture
patient’s color and depth information. Real-time performance
is achieved by using parallel processing power of the GPU in
all critical algorithms.

B. Vertex and Normal Maps Generation

In this subsection we describe the algorithms that are used
for every input frame to generate vertex1 and normal2 maps,
with the exception of the segmentation procedure to extract the
patient’s region of interest, which is only performed during the
reconstruction stage pictured on Figure 1-top layer. All of these
algorithms run on the GPU.

As mentioned before, the Kinect has two sensors that
capture color and depth information of the scene. Therefore,
the Kinect sensors are calibrated to enable a mapping between
them.

In order to segment the patient’s region of interest from
the scene, we need to use a trained classifier or do it semi-
automatically. As will be discussed in Section V, our region of
interest consists in the patient’s head. Therefore, we apply the
Viola-Jones face detector [20] implemented in GPU to locate
and segment the face in the color image. From the segmented
face, its location can be transposed to the depth image by
using the extrinsic parameters computed from the calibration
step. Doing so, we achieve a more restricted area of the depth
map to be used through the other steps of our approach.

Depth map is denoised using a bilateral filter [21] that
preserves discontinuities of the raw depth map. Depth of the
background scene is segmented by applying a Z-axis threshold
on the filtered depth map. This threshold is defined semi-
automatically.

Filtered depth map is then converted into a vertex map
and a normal map. Vertex map is constructed by the product
between filtered depth map and Kinect IR camera’s intrinsic
calibration matrix. Normal map is constructed by computing
the eigenvector of smallest eigenvalue of the local covariance
matrix computed for every vertex. This technique produces
normal maps with less error than traditional approaches based
on neighboring points for normal estimation [22].

C. 3D Reference Model Reconstruction

With the patient’s region of interest properly segmented,
we need to track it through the Kinect live stream (whose
tracking algorithm is described in the Section III-E) and to
integrate the different viewpoints acquired from the scene into
a single reference model shown in Figure 1.

KinectFusion algorithm [23] is used in this context to
reconstruct a 3D reference model in real-time. This algorithm
integrates raw depth data from a Kinect into a volumetric grid
to produce a high-quality 3D reconstruction of a scene. The
grid stores at each voxel the distance to the closest surface
(i.e. Signed Distance Function - SDF) [24] and a weight that
indicates uncertainty of the surface measurement. SDF values

1Point cloud.
2In this paper, we refer to normal map as an array which stores the normal

vector for each vertex in the vertex map.

are positive in-front of the surface, negative behind and zero-
crossing where the sign changes. In KinectFusion, SDF is only
stored in a narrow region around the surface, in other words, a
truncated SDF (TSDF). These volumetric representation and
integration are based on the VRIP algorithm [25]. Surface
extraction is achieved by detecting zero-crossings through a
ray caster. All these operations run on the GPU.

The 3D reference model reconstruction is done only one
time and is the basis for MAR live tracking. The reconstruction
is stopped semi-automatically and the medical volume-to-
patient registration can be computed.

D. Medical Volume-to-Patient Registration

The next step is the placement of the medical data into
the scene. However, as will be discussed in Section V, in
this work the patient’s region of interest is augmented with a
generic volumetric data instead of his own. Therefore, we do
not use an automatic registration method. Instead, we propose
a new method for coarse registration between medical volume
and patient’s 3D reference model. Then, the result can be fine
adjusted by the user. An overview of the coordinate systems
used for the coarse registration process is shown in Figure 2.

Given the reference model Mref extracted from Kinect-
Fusion’s volume and the medical volume inside a normalized
unitary bounding box, the scale factor Smed can be computed
for each axis based on the average size of the bounding box
sides of Mref (line 1). Next, the centroid cref is computed
from Mref (line 2). The rotation matrix of the medical data
Rmed is initially set to be a pre-defined initial pose R0 (line 3).
Pose Rroi and center of mass croi of patient’s region of interest
are estimated with a trained pose estimator based on the region
of interest (lines 4-5). croi is assigned to be the translation
vector of the region of interest: troi (line 6). As the region
of interest in this work is a head, we estimate these values
from the current depth map captured by the Kinect sensor
with the real-time head pose estimation proposed in [26]. The
centroid of the region of interest’s center of mass rotated crot
is computed (line 7). Because we want the centroids of the
medical data and the reference model to be the same (i.e. at
the same position), and assuming that the initial centroid of the
volume is in the origin, the translation vector of the medical
data can be computed by the subtraction of cref and crot (line
8).

Algorithm 1 Estimating coarse pose
1: Smed ← compute scale factor from Mref .
2: cref ← compute centroid from Mref .
3: Rmed ← R0.
4: Rroi ← estimate rotation matrix for the region of interest.
5: croi ← estimate centroid of the region of interest.
6: troi ← croi.
7: crot ← Rroicroi.
8: tmed ← cref − crot.

After the computation of the coarse pose, the medical
volume data V can be positioned into the scene for every frame
by the following expression:

Vlive = TliveTmedTroiVbase. (1)
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Fig. 2. Relationships among the coordinate systems used for medical volume-to-patient registration. 3D cartesian coordinate system courtesy of VRArchitect2

where Tlive is the 3D rigid transformation estimated by the
tracking algorithm. Troi = [Rroi|troi] is the 3D rigid transfor-
mation that registers the medical data in relation to the pose
measured for the region of interest, Vbase means the volume in
an initial position, and Tmed, which is defined by the following
equation:

Tmed = [Rmeddiag(Smed)|tmed]. (2)

is the 3D transformation that gives the coarse placement of
the volume into the scene. The function diag creates a 3×3
diagonal matrix from the input vector. The final result, Vlive,
is the volume aligned to the patient in the current frame.

Once in the origin on the unitary bounding box, the
sequence of transformations can be applied to place the volume
on the current pose of the patient’s region of interest. The user
can adjust volume’s position and orientation by controlling
Tmed. The next subsection explains how Tlive is estimated.

E. Live Tracking

Live tracking is done in two steps: during reconstruction of
the 3D reference model and during MAR with the patient and
the medical data. Instead of using an image-based tracking,
we use a real-time variant of the Iterative Closest Point (ICP)
[27], [28]. As done in [29], we choose a depth-based method
because it does not suffer from changes in illumination or
presence of complex texture patterns in the scene. The ICP
is used to estimate the transformation that aligns the current
depth frame captured by the RGB-D sensor with the previous
one represented by the 3D reference model.

In presence of fast rotations and translations in the scene,
the real-time variant of the ICP algorithm may fail. To mini-
mize this problem, a real-time head pose estimation algorithm
is used to give a new initial guess to the ICP to correctly
compute the current transformation [30]. The head pose esti-
mation used is the algorithm proposed by Fanelli et al. [26].

2http://www.vrarchitect.net/anu/cg/Maths/cartesian3D.en.html

This probabilistic approach achieves high accuracy and runs
in real-time even in a single CPU.

After the computation of the rigid transformation, it is
applied to the medical data, which can be composed with the
real scene captured by the Kinect.

IV. ON-PATIENT VOLUMETRIC MEDICAL DATA
VISUALIZATION

In this section we describe the techniques used to render the
medical volume (Figure 1-middle layer) and to integrate the
volume rendered into the MAR environment (Figure 1-bottom
layer).

A. Volume Rendering

Volume rendering is concerned with techniques for gen-
erating images from volume data [8]. The majority of vol-
ume rendering algorithms are based on the volume rendering
integral. This formulation is based on a emission-absorption
optical model as shown in Equation 3.

I(D) = I0e
−
∫ D

s0
k(t)dt

+

∫ D

s0

q(s)e
−
∫ D

s
k(t)dt

ds. (3)

The radiance energy I(D) is the result of integrating from
entry point into the volume (s = s0) to the exit point toward the
camera (s = D). The absorbed energy and emission components
are represented by the absorption and emission coefficients k
and q respectively. The term I0 is the radiance in the entry
point s0.

The volume is rendered according to a compositing
scheme, which gives the numerical computation of the volume
rendering integral:

I(D) =
n∑

i=0

ci

n∏

j=i+1

Tj (4)
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where ci = I(si) and Ti = T(si−1, si) = e
−
∫ si

si−1
k(t)dt

.

Two of the most known compositing schemes are the
direct volume rendering (DVR) and the maximum intensity
projection (MIP). The DVR is the discretization presented in
the Equation 4 and it is based on a front-to-back or back-
to-front compositing. The most common is the front-to-back
DVR:

Cdst = Cdst + (1− σdst)Csrc (5)

σdst = σdst + (1− σdst)σsrc (6)

where Cdst = ci+1, Csrc = ci, σdst = 1 − Ti+1, σsrc =
1 − Ti given the voxel i being traversed. C represents the
color contribution and σ the opacity of the voxel.

Different from the DVR compositing scheme, MIP is
computed according to the following compositing equation:

Cdst = max(Cdst, Csrc) (7)

The final result is the maximum color contribution along a
ray [8]. This compositing scheme is particularly important in
the virtual angiography (i.e. the display of the vessel structures
in medical scans) [31].

The volume data is represented as a 3D texture with
associated colors. This representation allows the generation
of images with higher quality than the 2D texture-based
solution [8]. To render the medical data based on DVR or MIP
compositing scheme, the ray casting technique is used. The
start positions of the ray are obtained by rasterizing the front
faces of the volume bounding box and the exit positions of the
ray are obtained by rasterizing the back faces of the bounding
box. Direction is computed from the difference between the
exit and start positions. Ray casting is performed by sampling
the space in-between the volume bounding box by using an
adaptive sampling rate (which is discussed below). Ray casting
is done on GPU in a single rendering pass on the fragment
shader [32].

One of the main advantages of ray casting is that it
is flexible in the sense that many other techniques can be
integrated to improve image quality or performance of the
rendering.

To reduce sampling artifacts, a stochastic jittering (i.e.
random ray-start off-setting) is applied to the ray start position.
To reduce the filtering artifacts, a fast GPU-Based tri-cubic
filtering [33], [34] and a GPU pre-filter for accurate tri-cubic
filtering [35] are used.

The performance of our volume rendering is optimized by
empty-space leaping the non-visible voxels. The volume is
subdivided into an octree. In order to detect empty space, each
block stores the minimum and maximum scalar values. The
visibility of each block can be determined after evaluation of
the transfer function [36]. If the block is considered invisible,
the step size of the ray is increased, otherwise, it is decreased.
Our approach also supports early ray termination, if the
opacity accumulated is greater than a threshold, and image
downscaling, when the volume size is not supported by the
graphics rendering.

The volume data consists in scalar values that represent
some spatially varying physical property. Transfer functions
can be applied on these scalar values to improve the user’s
visual perception and data interpretation of the volume. The
transfer functions map the values to colors in the RGB space.
In this work, pre-integrated transfer functions [37] are used
to capture the high frequencies introduced in the transfer
functions with low sampling rates.

The volume rendering integral presented in the Equation
3 does not account for illumination effects caused by external
light sources. Such illumination effects, however, add a great
deal of realism to the resulting images. This is specially
important in an AR environment, where this illumination
effect serves as an approximation of the illumination of the
real scene. To compute local illumination, it is used Blinn-
Phong shading [38] with on-the-fly gradient computation by
central or forward differences on the GPU. Non-polygonal iso-
surface rendering is realized by first hit ray-casting. The local
illumination is included in the Equation 3 by extending the
emission coefficient q(s) = qea(s) + qil(s), where qea(s) is
the emission coefficient of the emission-absorption model and
qil(s) is the coefficient that adds the local illumination [8].

B. Context-Preserving Volume Rendering

When the medical volume is rendered based on DVR, at
first glance, the final rendering may not be the result desired
by the user. In this sense, transfer functions can be used
to change the visual aspect of the volume, enhancing the
features of the medical data. However, the process to find
an appropriate transfer function can be a complex task and
time-consuming. An alternative is to pre-segment the volume
in regions of interest and define transfer functions for these
regions separately. This solution improves the quality of the
final rendering, but it is more time-consuming than defining
the transfer function without pre-segmentation.

Volume clipping can be used to reveal hidden structures
of the volume by completely cutting away occluding areas.
Traditionally, clipping planes are used to perform this task in a
faster and intuitive way [8]. However, when clipping a volume,
some important information can be lost in this process if the
information is located in the cutted region. Therefore, volume
clipping is not the best way to enhance the visualization of the
volume.

Illustrative volume rendering is a field which aims to
improve the visualization of volumetric structures by the use
of non-photorealistic strategies integrated into the rendering
algorithm. Inspired by the fields of volume clipping and
illustrative volume rendering, Bruckner et al. proposed the
context-preserving volume rendering [4], [5], which uses a
function of:

1) Shading intensity - to decrease opacity in regions
which receive high illumination intensity;

2) Gradient magnitude - to preserve and enhance con-
tours;

3) Distance to the eye point - to simulate the cut effect
of a clipping plane;

4) Previously accumulated opacity - to turn structures
located behind semi-transparent regions more opaque.
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Fig. 3. Some of the visualization options. A) Direct volume rendering (DVR). B) DVR with pre-integrated transfer function. C) DVR with pre-integrated
transfer function and Blinn-Phong illumination. D) Non polygonal iso surface volume rendering.

This model is able to reduce the opacity in less important
data regions and it is controlled by two user-specified param-
eters: one to explore the dataset and another to control the
sharpness of the visualization.

In our environment, we use this technique not only to
enhance features of the volume, but also to separate some
structures in the visualization, such as bones, soft tissue and
organs (see Figure 1-middle layer). This process can be done
just by controlling the two parameters mentioned before.

C. Focus + Context Visualization

An application for on-patient medical data visualization
requires a special attention to the mixing between real (i.e.
patient’s image captured by the sensor) and virtual (i.e. pa-
tient’s anatomy stored in the computer) entities of the AR
environment.

Bichlmeier et al. proposed the Contextual Anatomic Mime-
sis to improve depth perception in a medical AR application
[2]. First, the medical data is not entirely overlaid over the
patient’s image. Focus point and radius are defined by line
of sight. Together, they act like a mask in the AR scene, in
which the medical data can be visualized only inside it. Next,
Bichlmeier and colleagues proposed the control over the AR
visualization by adjusting parameters such as:

1) Curvature (αcurv) - The curvature of the patient’s
skin surface allows regions with high curvature (e.g.
wrinkled, bumpy and sinuous regions) to remain
visible in the final rendering;

2) Distance Falloff (αdistFalloff ) - The distance be-
tween each point on the surface and the focus point
allows a smooth visualization between the patient’s
medical data and the real image;

This method was integrated in our environment, following
the pipeline of the bottom layer of Figure 1, because it has
already proven to provide high-quality on-patient medical data
visualization [7], [9].

D. Integration into a MAR environment

According to Figure 1, after the volume rendering we read
the color frame buffer of the volume and send it to a shader
to blend it with the RGB data coming from the Kinect sensor.
The blending is done by the following linear interpolation:

Ifinal = βIreal + (1− β)Imedical (8)

where Ireal is the image captured by the sensor, Imedical is the
image corresponding to the medical volume, and Ifinal is the
resulting image. In our approach, β is defined dynamically, for
every fragment/pixel, by the F+C visualization technique de-
scribed in the previous subsection, according to the following
equation:

β = clamp(max(αcurv, αdistFalloff )) (9)

clamp is a function that clamps its input parameter to the
interval [0,1].

Incorrect occlusion of virtual and real objects in an aug-
mented scene is one of the fundamental issues in AR applica-
tions. To solve it, the depth maps of the 3D reference object
reconstructed previously and the 3D object coming from the
sensor’s live stream are used. If the live object is in front of
the reference object, the volume is the occludee, otherwise, it
is the occluder.

Blending and occlusion are computed in a GLSL (OpenGL
Shading Language) fragment shader that process the color and
depth buffers, respectively, to do these operations.

V. RESULTS AND DISCUSSION

In this section we analyze visual quality and performance
of the whole approach and particularly the techniques em-
ployed for volume rendering.

A. Experimental Setups

For all tests we used an Intel R© CoreTM i7-3770K
CPU@3.50Ghz, 8GB RAM, NVIDIA GeForce GTX 660. We
used the open-source C++ implementation of the KinectFusion
[23] released by PCL project [39].

The medical datasets used are a magnetic resonance (MR)
volume of a head3 of two different resolutions: 2563 and 5123,
and a CT volume of a head from the Visible Human Project4
of resolution 128× 256× 256. The reference human face was
reconstructed with the KinectFusion using a grid with volume
size of 70cm × 70cm × 140cm and resolutions of 2563 and
5123.

We evaluate our approach in a scenario where the patient’s
head is augmented with a generic volume dataset of a head.
The use of a generic volume does not affect our performance

3http://graphics.stanford.edu/data/voldata/
4http://www.nlm.nih.gov/research/visible/
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evaluation, as it is of a typical volume size. Also, the generic
volume does not affect our visual quality evaluation since the
volume is semi-automatically adjusted on patient’s head.

B. Performance Evaluation

We have evaluated the performance of the proposed ap-
proach in four tests. In the first test, the time required for each
step of our approach was measured in an application with the
resolution of KinectFusion’s grid and medical data given by
5123 and 2563, respectively. The goal of this test is to evaluate
the performance for each step individually.

Figure 4 shows the time measured for each step of 3D
reference model reconstruction. In summary, it takes ≈ 25ms
per frame (40 FPS) and requires about 15 seconds to be
completed if the user has provided sufficient viewpoints. This
processing time could be improved by reducing KinectFusion’s
volume resolution from 5123 to 2563, which would reduce 3D
reference model accuracy as well. Based on the processing
times shown in Figure 5, by using the resolution of 2563, 3D
reference model reconstruction takes ≈ 19ms per frame (53
FPS). All the performance tests performed in this subsection
were done by using maximum resolution of 5123. From the
Figure 5, one can compute the corresponding processing time
by using the resolution 2563 for the other evaluations.

Fig. 4. Performance results measured in average milliseconds for each step of
our approach. OS - Other Steps (i.e. display timing, Kinect latency), FS - Face
Segmentation, VNG - Vertex and Normal Map Generation, LT - Live Tracking,
KFI - KinectFusion’s grid integration, KFR - KinectFusion’s grid raycasting.
Times were measured running our approach with the KinectFusion’s grid in
resolution 5123.

Figure 6 shows the time measured for each step of the
MAR live tracking. It takes ≈ 22ms per frame (45 FPS).
Occlusion computation, which transfers data stored in GPU to
CPU, converts 3D reference model and 3D object coming from
Kinect to the same coordinate system and sends their depth
maps to the shader, takes 5ms in our approach. Meanwhile,
our optimized direct volume rendering takes the lowest time.

As the Kinect sensor provides depth and color maps at
30 FPS, our approach can process every input frame during
3D reference model reconstruction and MAR live tracking
with on-patient medical data visualization. Therefore, we can
conclude that our approach runs in real-time.

The solution proposed in [30] was not included in the mea-
surement of the live tracking because it does not run for every

Fig. 5. Performance results measured in average milliseconds for each
step of the KinectFusion. KFI - KinectFusion’s grid integration. KFR -
KinectFusion’s grid raycasting. Times were measured running our approach
with KinectFusion’s grid in resolutions 2563 and 5123.

Fig. 6. Performance results measured in average milliseconds for each step
of our approach. OS - Other Steps (i.e. display timing, Kinect latency), OCC
- Occlusion Computation, VNG - Vertex and Normal Map Generation, LT -
Live Tracking, VR - Volume Rendering, KFR - KinectFusion’s grid raycasting.
Times were measured running our approach with the KinectFusion’s grid in
resolution 5123 and medical dataset in resolution 2563.

input frame. When used, it added 40ms in total frame time. We
have observed that the user takes about 10 seconds to position
and adjust the volume in the scene. The algorithm for coarse
medical volume-to-patient registration is used only once (i.e.
at the transition between 3D reference model reconstruction
and on-patient medical data visualization) and takes 60ms.
Focus+context visualization runs at maximum application’s
performance as it operates directly on the shader.

In the second test, we evaluate the influence of the volume
resolution on the overall performance of our approach. It has
never dropped below 29 FPS using medical and KinectFusion
volumes of resolution 2563 and 5123 with DVR. Therefore, we
can use the maximum KinectFusion’s volume size to generate
a more accurate 3D reference model.

In the third test, the average processing time for various
volume rendering compositing schemes was measured. The
performance results can be seen in Figure 7. From the analysis
on the first test, if the volume rendering takes less than
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10ms, the application still keeps the real-time performance.
By assuming that the typical resolution of a head medical
volume is 25635 and considering the reported processing times
in Figure 7, we conclude that our approach runs in real-time
because its performance is greater than 30 FPS. However, with
a volume of resolution 5123, depending on which mode is
chosen, we have a loss in the performance of the application.

Fig. 7. Performance results measured in average milliseconds for various vol-
ume rendering compositing schemes. DVR - Direct Volume Rendering. MIP -
Maximum Intensity Projection. IsoS - Non-Polygonal Iso Surface. TF - DVR
+ Transfer Function with Pre-Integration. LI - DVR + Local Illumination via
Blinn-Phong shading. CP - Context-Preserving Volume Rendering. TriCubic
- Fast Tricubic Filtering.

As described in Section IV-A, the volume is stored as a
discrete 3D texture. When the ray is casted into the volume,
it accesses the space between the discrete samples of the
volumetric data. In this case, trilinear interpolation is used to
reconstruct a continuous representation of the volume based
on the eight closest neighbours samples of that space. This is
the most expensive operation in the volume rendering based on
ray casting as it requires eight memory access to perform the
interpolation. Based on this statement, it is possible to evaluate
the variation in performance of the different volume rendering
modes.

In the simplest DVR, trilinear interpolation is performed
only once for each position of the ray casted. Therefore, this
is the rendering mode which takes the lowest processing time.
As consequence, it produces the simplest visual effects, which
can be seen in Figure 3-A.

For the MIP, a variation of DVR mode, the trilinear
interpolation is also done only once. Therefore, it has the same
performance measured for DVR mode.

In non-polygonal iso surface rendering, Blinn-Phong shad-
ing is computed when the ray traverses a voxel with isovalue
greater than a threshold defined semi-automatically. The nor-
mal vector for a given voxel is computed by the normalization
of the central differences of the neighbouring voxels. This gra-
dient estimation requires six trilinear interpolations. However,
as it is not computed for every voxel being traversed, it does
not increase significantly the computational cost of the volume
rendering. An example of non-polygonal iso surface rendering
can be seen in Figure 3-D.

5http://www9. informatik.uni-erlangen.de/External/vollib/

In the DVR with pre-integrated transfer function, after the
trilinear interpolation of the voxel, the scalar value of the
previous and current voxel being traversed are used as a look-
up in a 2-D pre-integration table. This lookup is performed
with a bilinear interpolation. It increases the volume rendering
processing time to 15 ms per frame and slightly decreases the
performance of the application to 35 ms per frame (28 FPS).
Despite of this fact, we have a more pleasant visualization of
the volume. An example of such effect can be seen in Figure
3-B.

In the DVR with transfer function and local illumination,
for every voxel being traversed, the transfer function is ac-
cessed (with a bilinear interpolation) and the illumination is
computed (with six trilinear interpolations). These interpola-
tions decrease significantly the performance of the volume
rendering to 30 ms per frame and the application to 50 ms per
frame (20 FPS), which is not prohibitive, as the user can still
interact with the application with some delay. In the final result,
the illumination effects add realism to the resulting image. An
example can be seen in Figure 3-C.

Context-Preserving volume rendering adds some computa-
tion for DVR with transfer function and local illumination.
However, there is not a new trilinear interpolation to be
performed. Therefore, Context-Preserving mode has the same
performance as the case mentioned above.

Fig. 8. A volume rendering (left) with stochastic jittering (center) and tri-
cubic filtering (right). The stochastic jittering reduces the wood-grain artifacts
in the volume, however it is almost imperceptible in this scene. The tri-cubic
filtering smoothes the volume data, reducing the artifacts present in the volume
rendered with trilinear filtering.

In the test performed with a simple DVR and fast tri-
cubic filtering, for every voxel being traversed, eight trilinear
interpolations are computed to return one tricubic interpolation.
These interpolations decrease the performance similarly to
the situation of transfer function and local illumination. The
volume requires 30 ms per frame to be rendered and the
application requires 50 ms per frame (20 FPS). The visual
influence of the tri-cubic interpolation against the trilinear one
can be seen in Figure 8.

C. Visual Quality Evaluation

As mentioned in Section IV-A, the proposed approach
supports various volume rendering modes. Some of them can
be seen in Figure 3. As discussed in previous subsection, each
one of them has some impact on application’s performance,
although they still run in real-time for typical-sized medical
data.

Figure 8 shows the influence of some techniques used to
improve the image quality of the volume rendering. Artifacts
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Original Volume
Iso Surface

Increasing parameters’ values

Fig. 9. From volume to iso surface rendering by controlling context-preserving volume rendering parameters.

Increasing distance fall-off parameter

Increasing curvature parameter

Fig. 10. Focus+Context visualization to improve human’s perception of the augmented scene.

are reduced without prohibitive increase in the computational
cost.

As can be seen in Figure 1, our approach supports occlu-
sion at shader level. However, if the occluder overlaps more
than 70% of the occludee, tracking may fail.

Influence of context-preserving volume rendering parame-
ters in our application can be seen in Figure 9. By increasing
the values of the two parameters proposed by Bruckner et al.
[4], [5], external structures of the volume (e.g. soft tissue)
become increasingly invisible, arising the visualization of
internal structures of the volume (e.g. bone). Support for this
kind of rendering is specially important in our application,
as a physician does not necessarily want to visualize the
naive volume rendering, with soft tissue, organs and bones
altogether.

Influence of focus+context visualization parameters pro-
posed by Bichlmeier et al. [2] in our MAR environment can be
seen in Figure 10. As the distance fall-off increases, transition
between real and virtual images becomes smoother and volume
less visible. With respect to the curvature term, as it increases,
regions of the real scene with high curvature (i.e. nose and
glasses in Figure 10) remain visible even if they are inside the

focus region.

VI. CONCLUSION AND FUTURE WORK

On-patient medical data visualization can be used to im-
prove medical diagnosis, surgical planning, training, opera-
tion and post-operative examination. In this paper, we have
presented a marker-free augmented reality approach for on-
patient volumetric medical data visualization. We used the
KinectFusion algorithm to reconstruct the patient’s head and a
variant of the ICP algorithm in conjunction with a face tracking
solution to track it during the MAR. We have tested and ap-
plied standard volume rendering techniques to render volumes
with high quality and shown that, with a typical volume size,
the proposed algorithm is capable to run in real-time and it
provides high visual quality for the final augmented scene
through the use of focus + context visualization. Moreover,
it provides accuracy enough for applications that need good
”visual” accuracy for the registration (i.e. good composition
and tracking of the virtual object into the augmented scene).
Experiments must still be conducted to evaluate if the accuracy
achieved is enough for medical AR applications to aid surgery
operation, for instance.
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Markerless tracking fails if patient’s ROI is not visible
in the scene. Relocalization techniques can be used to solve
this problem. For the MAR environment, we have used a
conventional display to show the augmented scene. Multi-view
solutions based on AR glasses or portable solutions based on
mobile devices can be employed by processing the proposed
approach on a server and transferring the visualization of the
augmented content for these alternative hardwares, allowing a
more seamlessly visualization of the virtual content onto the
real scene. Also, inspired by the field of image-based lighting,
real local illumination and fast global illumination could be
applied to improve the realism of the volume rendering and
the integration with the real scene.
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