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AbstractWe have developed an autonomous virtual character guided by emotions. The agent is a virtual character
who lives in a three-dimensional maze world. Results show that emotion drivers can induce the behavior of a trained
agent. Our approach is a case of goal parameterized reinforcement learning, which creates the proper conditioning
between emotion drivers and a set of goals that determine the behavioral profile of a virtual character. We train
agents who can randomly assume these goals while maximizing a reward function based on intrinsic and extrinsic
motivations. A mapping between motivation and emotion was carried out. So, the agent learned a behavior profile
as a training goal. The developed approach was integrated with the Advantage Actor-Critic (A3C) algorithm. Ex-
periments showed that this approach produces behaviors consistent with the goals given to agents, and has potential
for the development of believable virtual characters.
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1 Introduction

Emotion and autonomy of virtual characters are first-class el-
ements of the virtual reality scenario’s plausibility. An emo-
tionally guided virtual character can respond more convinc-
ingly to interactions with users and promotes user engage-
ment. Therefore, developing a believable autonomous virtual
character is still a challenging issue (Gillies, 2018). More-
over, simultaneously getting autonomy in some task and be-
haviors with emotion and personality traits require meeting
multiples goals.
We take a viewpoint that autonomy means agents act by

themselves, without external control. Artificial intelligence
techniques provide methods to get autonomous agents. Of
these techniques, Reinforcement Learning (RL) has a long
story with computational theories of emotion and motiva-
tions (Moerland et al., 2018). It is doubly hard to find an
autonomy that shows emotion and other required properties
of the virtual world. Recent work on the development of au-
tonomous Non-Player Characters (NPCs) based on deep re-
inforcement learning focuses primarily on maximizing a re-
ward function based on the overall game score. The VR em-
phasis goes beyond the maximization of the overall game
score. Specifically, interaction with virtual characters can be
a challenge to engage in virtual reality.
Generating a behavior profile according to a writer’s spec-

ifications of the autonomous characters is a problem in nar-
ratives of video games or other virtual reality applications.
Justesen et al. (2017) perceive there is currently a lack of
tools for designers to efficiently train Non-Player Charac-
ters. Therefore, a tool that allows designers to specify de-
siredNPC behaviors (while assuring a certain level of control
over the final trained behavior) would accelerate the uptake
of these new methods in the game industry (Justesen et al.,
2017).
In order to show that an artificial agent can achieve auton-

omywhile emotionally motivated, Gomes et al. (2019) devel-
oped an approach based on homeostasis. When homeostatic
variables are outside a given range, two things happen. First,
the neural component of the decision model is disturbed. Sec-
ond, a secondary reward for the agent is produced. This ap-
proach is a particular type of Goal Parametrized Reinforce-
ment Learning (GPRL) despite the biological and psycholog-
ical inspiration of these works. Thus, in this paper, we show
not only the relationship between GPRL and our approach
(Gomes et al., 2019), but also how to obtain character behav-
iors guided by intrinsic emotions and motivations.

This paper is organized in seven sections, starting with
the present introduction. In Section 2, we present some back-
ground regarding the topics approached in this work, namely
deep neural network, and GPRL. In Section 3, we show state
of the art related to believable virtual characters (or agents)
with emotions and intrinsic motivations based on reinforce-
ment learning. In Section 4, we describe our approach based
on reinforcement learning and deep learning. In Section 5,
we describe our main results and findings organized accord-
ing to our approach. In Section 6, we present and discuss our
contributions in the face of our main findings. Finally, we
conclude the paper in Section 7.

2 Background

Developing a tool that allows designers to easily specify de-
sired NPC behaviors (and undesired ones) while assuring a
certain level of control over the final trained outcomes is chal-
lenging problem. To address this problem, we use deep learn-
ing and goal-parameterized reinforcement learning. In this
section, a brief discussion on the theoretical basis for those
two research areas is presented.
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2.1 Deep Neural Networks

A classical artificial neural network (ANN) architecture is
the Multi-Layer Perceptron (MLP). Traditionally, MLP has
up to three layers. Gradient-based optimization struggles to
achieve convergence in the training phase of ANNs with
more than three layers. However, current progress in algo-
rithms and hardware made gradient-based optimization of
RNAs surpass traditional methods in computer vision (Good-
fellow et al., 2016) and other fields.
It is easy to determine the structure of neural networks’ in-

put and output because it depends only on the nature of the
subjacent functions to learn. However, determining the num-
ber and the nature of the hidden layers requires more exper-
tise. Although the power of representation of a deep neural
network is proportional to the number of layers in its struc-
ture, to train such a network is a hard task. Fortunately, there
are several heuristics in the literature for the definition of the
number of neurons in the hidden layers of neural networks.
For example, Hecht-Nielsen (1987) demonstrated, based on
Kolmogorov’s theorem, that any function of n variables can
be represented by 2n + 1 functions of a given variable. So,
the number of neurons in hidden layers can be defined as

Nhidden = 2 ·Nin + 1

where Nhidden is the number of hidden neurons and Nin

is the number of entries.
One of the major bottlenecks in neural networks was pat-

tern recognition in image data and other types of multidimen-
sional data. Convolutional neural networks efficiently solve
this problem. Convolutional networks (ConvNets) are a train-
able, biologically inspired architecture that can learn invari-
ant resources. Each stage in a ConvNets is composed of a
filter bank, some nonlinearities, and feature pooling layers.
With multiple stages, a ConvNet can learn multi-level hierar-
chies of features.While ConvNets have been successfully de-
ployed in many commercial applications from OCR to video
surveillance, they require large amounts of labeled training
samples (LeCun et al., 2010). In Reinforcement Learning,
Mnih et al. (2016) use two convolutional layers to deal with
three-dimensional environments.

2.2 Reinforcement Learning

Mathematically, RL is idealized as a Markov Decision Pro-
cess (MDP). As the agent interacts with the environment, in a
given instant t, it perceives a state st and executes an action
at. The state st and the action at determine the next state
st+1 uniquely. For every action at, the agent receives a re-
ward rt ∈ R. The cycle perception-action-reward progresses
with time.

The function shown on Equation 1 represents the agent’s
performance, which is the discounted reward Rt from time
step t, where rt is the reward received after the transition
from time step t to time step t+ 1, and γ is a discount term.
The term γ ∈ [0, 1] adjusts the importance of the long-term
consequences of the agent’s actions. The reinforcement sig-
nal can be positive, negative, or zero.

Rt =
∞∑

k=0

γk rt+k. (1)

The agent’s policy consists in selecting an action based on
a state value function V : S → R or on the (state, action)
value function Q : S ×A → R to maximize Rt.

In Approximate Reinforcement Learning, value functions
are approximated by parameters θ. The representation of the
value functions can be a non-linear model, as several types of
neural networks.Mnih et al. (2015) shown that reinforcement
learning with deep neural networks gets a superhuman per-
formance in several Atari games. In this approach, the agent
selects actions based only on high dimensional inputs repre-
sentation (as the pixels of video-game frames). This achieve-
ment paved the way for the emergence of Deep Reinforce-
ment Learning (DRL).
In DRL, θ is a set of weights of the neural network and,

usually, gradient-based optimization is used to maximize the
goal function shown in Equation 1. Therefore, in DRL the
state value function is Vπ(s; θ), which means the expected
value from state s using the policy π based on parameters θ.

Asynchronous Advantage Actor-Critic (A3C) is a success-
ful algorithm for many tasks in virtual worlds, and is a base-
line for more sophisticated algorithms. Thus, we chose A3C
as a baseline for the training of autonomous virtual characters
with emotions.

2.3 Asynchronous Advantage Actor-Critic
A3C is a model-free and on-policy reinforcement learning al-
gorithm, which determines a π policy by directly parameter-
izing it asπ(a|s; θ) and using an estimating functionV (st; θ).
The function π(a|s; θ) means the probability that the agent
selects the action a, given the state s in accordance with a
parameter θ.
The θ parameters are updated using gradient methods of a

function E(Rt), which is the expected return. The elements
that form the basis of the A3C algorithm, the actor, and the
critic originate from the family of algorithms REINFORCE
(Williams, 1992), whose standard version updates the param-
eters θ of the policy π in the direction of∇θlogπ(at|st; θ)Rt,
which is an unbiased estimate of the expected reward, given
by ∇θE[Rt]. To reduce the variance of this estimate, one
chooses the modern approach of gradient-based actor and
critic:

∇θlogπ(at|st; θ)(Rt − V (st; θ)), (2)

where Rt is an estimate Qπ(at, st) of the policy value
function π; and V (st; θ) is an estimate of V π(st). Thus,
π(at|st; θ) is an actor that determines the action to perform.
The function V (St; θ) is a critic, which estimates the value
of a state. The difference between the value of the action in
the current state and the estimated value of the state is the
advantage of the action in the considered state.
The A3C algorithm runs m copies of both the agent and

the environment in parallel. Figure 1 shows the architecture
of the A3C algorithm. Instances of the environment and in-
stances of the agents’ policies are potentially different from
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Figure 1. A3C architecture. A worker runs in its own thread or process,
interacting with a copy of the environment. A separate process collects each
worker’s gradients separately and applies them to a global neural network
model. Although each worker has its copy of the neural network and runs
in its simulation, after a finite number of time steps, the worker’s neural
network is synchronized with the global neural network.

one another. Each agent has its actor as a π(at|st; θ) pol-
icy and its critic as an estimate of the V (St|θv) function.
Notice that the policy and the state value function share
some of their parameters. Mnih et al. (2016) update both
the policy and the value function every tmax actions or
when the state is terminal. The update performed by the al-
gorithm is calculated as ∇θ′ logπ(at|st; θ′)A(st, at; θ, θv),
where A(St, at; θ, θv) is an estimate of the advantage func-
tion given by

∑k−1
i=0 (γirt+i) + γkV (St+k; θv) − V (St; θv)

and k can vary from state to state, having an upper bound
equal to tmax.
Implementations of the A3C algorithm usually use feed-

forward or recurrent neural networks with the sharing of
parameters by two output-layer branches, one that approxi-
mates the policy π and another that approximates the state-
value function V that guides the search of π.

2.4 Goal-Parameterized Reinforcement
Learning

Goal-Parameterized Reinforcement Learning (GPRL) gen-
eralizes Deep Reinforcement Learning (DRL) to multi-goal
learning. Although there are many ways of using multi-goals
in RL, only two approaches that are relevant to this work are
presented.
In GPRL, The common viewpoint is that there exists a

vector space where a goal has a representation. Goals’ rep-
resentation is concatenated with the state to shape an ex-
panded state. The value function V (s; θ) is a single func-
tion approximator that estimates a long-term reward from
any state s, using parameters θ. Schaul et al. (2015) intro-
duce an approach named Universal Value Function Approxi-
mator (UVFA). Based on UVFA, the value function becomes
V (s, g; θ), which, now, depends not only on the states s but
also on the goals g. Similarly, the policy π(a|s; θ) becomes
π(a|s, g; θ), which, now, is conditioned by the goal g.
Andrychowicz et al. (2017) show a way to learn multiple

goals in only one interaction. Thus, the agent uses interaction
to achieve a goal by learning another goal through modifica-

tion of the reward function. For example, the agent acts in
the environment, producing a transition (s, s′, rg, a, g)where
rg is the reward associated with the goal g. The agent can
learn from this transition, but can also use this interaction to
learn other goals; to do so, it can change the goal into a new
one and recompute the reward, resulting in a new transition
(s, s′, rg′ , a, g′). The only constraint for doing that is the re-
ward functionR(s, a, s′, g′) to be known. Typically, an agent
can have a goal state and a reward function which is 1 if it
is into that state and 0 otherwise. At every interaction, it can
change its true goal state for its current state and learn with
a positive reward.

2.5 Psychological Theories of Emotion
The psychological theories of emotion are generally
grounded in current psychological theories. The three main
groups of theories of emotion are the categorical theory, the
dimensional theories (Russell, 1978), and the componential
theories (Lazarus, 1991).
The categorical theory considers a set of discrete emotions.

Ekman et al. (1987) identified a pattern of facial expressions
across various cultures. These combinations produce a more
complex emotional state. Anger, fear, joy, sadness, surprise,
and disgust compound the set of basic expressions. A basic
emotion is a pattern of response or the tendency of action
from an evolutionary viewpoint. Therefore, models of cate-
gorical emotions reveal tendencies of actions.
The dimensional theory considers an underlying affective

space, which involves two dimensions: valence and arousal.
According to componential theory, emotion is the ap-

praisal of input stimuli in accordance with personal rele-
vance. This theory is about the elicitation of emotion. Exam-
ples of appraisal dimensions are valence, novelty, relevance,
congruence, and potential coupling.
It is advocated that emotions always precede actions. In

a broader viewpoint, emotions are considered in a loop of
reward that involves the function and elicitation of emotion.

2.6 Neurophysiological Evidences and Emo-
tional Model

Noradreline’s role in emotion and motivation is highlighted
in several works. Galvin (1985) concluded that noradrenaline
is involved in stress responses, stress pathology, and conse-
quences of stress exposure. Particularly, Harley (1987) high-
light the role of noradrenaline in increasing or inhibiting
synaptic connections in some regions of the brain.
Specifically, Doya (2002) identified that dopamine signals

the error in reward prediction, serotonin controls the time
scale of reward prediction, noradrenaline controls the ran-
domness in action selection, and acetylcholine controls the
speed of memory update.

2.7 Extrinsic and Intrinsic Motivations
Singh et al. (2010) identified extrinsic and intrinsic rewards.
Extrinsic rewards refer to stimuli in the external world, such
as food, possibly influenced by internal variables, such as
insulin level. Extrinsic motivation is studied together with
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homeostasis, while intrinsic motivation shows a strong over-
lap with the theory of emotion assessment. Our perspective
on intrinsic motivation is that adopted by Singh et al. (2010)
that intrinsic motivation is independent of the specific envi-
ronment. For example, mating depends on the environment
in which physical contact between two agents is important
for the reproduction of the agent. Curiosity, on the other hand,
can be implemented in all environments as a more informa-
tive state search.

2.8 Homeostasis
Homeostasis, a concept borrowed from biology that inspires
many works in computing, can be defined as the ability to
maintain the internal environment in an almost constant bal-
ance, regardless of the changes that occur in the external en-
vironment. In response to internal imbalances resulting from
external factors, the agent seeks actions that bring the inter-
nal state back into balance.More formally, considering ht the
homeostasis at time, t, the physiological state of the agent at
t is described asHt = {h1,t, h2,t, ..., hN,t}, where hi,t is the
i-th homeostatic variable at t. A homeostatic variable i has
a tolerance interval h∗i . That is, h∗i = (min,max), where
usuallymin,max >= 0 and some casesmax = ∞.
The agent has no direct control over the value of a homeo-

static variable. However, there must be a causal link between
the agent’s actions and the current or future level of the vari-
ables. The variable level is modified by resources that are
consumed. The consumption of these resources changes the
values of the homeostatic variables. For example, a specific
homeostatic variable can increase its value as a result of re-
source consumption. Other actions or time may decrease the
value of the variable. Let ā be the set of the actions that lead
to the consumption of resources and let s̄ be a set of states
that contains resources. A homeostatic dynamics (Konidaris
and Barto, 2006) is usually described as

hi,t+1 =

{
hi,t + ψ(st, at) if at ∈ ā, st ∈ s̄
hi,t − ϵ, otherwise,

(3)

where ψ(st, at) is the effect of the presence of the resource
and ϵ is a decrease value of a variable whenever resources are
not collected. An emotional impulse is explicitly identified
as the difference between the current value and the level of
the homeostatic variable (for example, di,t = 1 if hi,t ∈ h∗i ,
else di,t = 0). The total emotional impulse in the system is
defined as in (Cos et al., 2013):

Dt =
N∑

i=1
widi,t, (4)

where wi is the weight of the i-th homeostatic variable.

3 Related Works
There is comprehensive literature on deep reinforcement
learning and believable virtual agents or characters. In this
section, one selects the works that most closely relates to our
approach. For better contextualization, we group these works

as follows: those with an emphasis on believable characters,
and those with emphasis on reinforcement learning, emotion
models, and intrinsic motivation.

3.1 Believable Agents and Virtual Characters

In the context of Virtual Reality, Moussa and Magnenat-
Thalmann (2013) use the emotional attachment as an impulse
to determine the intensity of decision-making emotions of
virtual humans interacting with the user. Their approach uses
emotions to calculate rewards for the reinforcement learn-
ing mechanism, but they use only emotion appraisal. Further-
more, they do not provide emotional stimulus directly as an
input to the decision-making process. Our approach supports
virtual humans who interact with the user. Also, we use emo-
tion stimuli directly in the agent decision-making process to-
gether with function approximation through neural networks
to represent action selection policy. The neural model takes
inputs from the emotional model to guide the action selec-
tion.
Asensio et al. (2014) presented an approach in which a

virtual character, developed with reinforcement learning, ex-
hibits behavior that is guided by intrinsic motivations in ac-
cordance with explicit models of human needs. The environ-
ment used by those authors was simpler than the one pre-
sented in our work. However, it is not clear how reinforce-
ment learning produced the agent’s behavior.
Wang et al. (2017) investigated the effectiveness of Q-

network based in DRL for interactive narrative personaliza-
tion. They introduced a bipartite player simulationmodel that
uses a pair of validated classifiers to generate synthetic data
on sequences of player actions and outcomes.
In the field of Intelligent Virtual Agents (IVAs), Shvo et al.

(2019) propose a computational model of affect that incorpo-
rates an empirically-based interplay between its components
of personality, motivation, emotion, andmood. Although this
approach allows specifying intelligent agents with personal-
ity traits, the agent’s decision-making is based on classical
search and planning. The authors use their approach in a
simple quiz problem. We believe that Deep Reinforcement
Learning (DLR) is better suited to complex problems.

3.2 Reinforcement Learning, Emotion Mod-
els and Intrinsic Motivation

Merrick and Maher (2006) have presented motivated rein-
forcement learning agents as a means of creating non-player
characters that can both evolve and adapt. The author’s em-
phasis is on adaptation to environments in evolution. Also,
the authors use Q-Learning for training their agents. Al-
though this publication is old, it has many similarities with
our approach. The main differences are that we use the A3C
algorithm for training agents with deep neural networks, and
our emphasis is on getting emotional guided behaviors with
different behavior profiles.
Moerland et al. (2016) implemented the elicitation of fear

and hope with reinforcement learning. Their model allows
agents to elicit fear and hope during the agent’s training and
also explains which previous event caused these emotions.
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The authors’ approach was based on tabular learning, which
makes it inappropriate for large state spaces.
Collenette et al. (2017) show how to integrate a humor

model into the classic SARSA reinforcement learning algo-
rithm. Moreover, the authors show how this integration can
enable self-interested agents to be successful in a multi-agent
environment. The apparentmodel improves the level of coop-
eration within the multi-agent system compared to the stan-
dard SARSA algorithm. Still, the agent interactionmodel and
the agents’ ability to differentiate opponents influence the
convergence of learning.
Moerland et al. (2018) present several models of emo-

tional agents based on reinforcement learning. Their paper
derived some aspects of the reinforcement learning process.
The authors found that emotional behavior can persist after
training. Many other works deal with virtual characters with
reinforcement learning, such as Glavin and Madden (2015),
Justesen et al. (2017), andWang et al. (2017). However, these
works usually do not use an emotional model, and do not al-
low controlledmodifications of the character’s behavior after
training.
Research on intrinsic motivations and reinforcement learn-

ing is very comprehensive. In many settings, researchers
use curiosity as an intrinsic motivation that generates re-
wards for encouraging agents to explore the environment
and learn useful skills. Pathak et al. (2017) define curiosity
as the error of the agent’s prediction of his actions’ results
(Pathak et al., 2017). For Stanton and Clune (2018), curios-
ity promotes intra-life exploration, rewarding agents to visit
as many states as possible in the episode. Gomes et al. (2019)
use the elicitation of emotion to motivate an agent to explore
its environment. That is the approach we take in this work.

4 Methods
Our agent’s architecture is based on reinforcement learning
with intrinsic and extrinsic motivations (Singh et al., 2010).
Two algorithms used as the basis for new reinforcement
learning approaches are DQN (Deep Q-Network) (Mnih
et al., 2015) and A3C (Mnih et al., 2016). The A3C algorithm
has the advantage of producing significant results even in
non-specialized hardware. Using an A3C-derived approach,
such as the UNREAL and IMPALA algorithms (Hernandez-
Leal et al., 2019), would add an extra layer of complexity
that would not bring clear benefits to the current stage of this
work. Therefore, A3C was the natural choice for the devel-
opment of the approaches presented herein.
The agent makes a decision based on the state of its inter-

nal environment. Notice, however, that the agent’s decision
is restricted to a discrete set of actions, and that the agent’s in-
ternal state is a set of variables driving the agent’s emotional
state. Hence, in this work, the development of a virtual char-
acter is realized in five stages (see Figure 2):

1. Mapping of internal state levels to an emotional state,
2. Definition of the agent’s behavioral profiles,
3. Training of the agent,
4. Evaluation of the agent’s general behavior in the envi-

ronment, and
5. Validation of the behavior profiles.

Figure 2. Stages to obtain the agents’ profiles in the explicit motivation
model. The left block shows the architecture of the reinforcement learning
agent with intrinsic motivation given by Singh et al. (2010).

In stage (1), one uses two variables that drive agent emo-
tions. First, the restitution of the agent’s energy at the pre-
defined level drives the agent to high arousal and positive
affective states. However, the energy level out of a specific
energy range drives agents to high arousal but negative affec-
tive states. This negative state can result in an emotional state
of dismay or despair. The resulting emotional state depends
on the agent’s behavior profile.
Direct agent interaction with objects of the external envi-

ronment changes energy level, and that change produces an
internal reward. Therefore, the energy level drives extrinsic
motivation. Also, when the energy level is outside adequate
ranges, it perturbs the agent’s decisionmaking. Patience is an-
other factor whose value results from the evaluation of state
sequences seen by the agent. That factor produces an intrin-
sic motivation because changes in its value generate rewards
based on the history of the expected state’s value. We made
the mapping of internal variable values to emotional states
before the agent’s training.
In stage (2), energy levels and patience levels determine

the agent’s behavioral profile. Agent Behavioral Profile is a
set B of ranges of internal variables. Each subset b ∈ B de-
termines a list of ranges or limits for each internal variable.
Behavior profiles determine a pattern of behavior. For exam-
ple, an agent with a high level of patience may take longer to
respond to negative states. Each behavior profile has a goal
because of the reward function change for each behavior pro-
file. So, one uses Goal-Parameterized Reinforcement Learn-
ing (GPRL) to address this issue.
In stage (3), during agent training, multiple goals are se-

lected during each agent’s lifespan, and the reward function
associated with each goal is calculated. So, we get the con-
ditioning between the agent’s profile and the agent’s policy
function. We evaluate three strategies of GPRL (Andrychow-
icz et al., 2017). In Section 4.3, we show more details about
this.
In stage 4, we evaluate whether or not the behavior of the

agent is consistent with the target environment. Our approach
is coupled with a decision model based on neural networks.
Before detailing each stage separately, we show an overview
of this decision model.

4.1 Agent’s Decision Model
The developed agent’s decision-making model consists of
a feed-forward neural network that receives two groups
of inputs. The first input group is a sequence Ik =
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Figure 3. The general architecture for training agents with intrinsic motiva-
tions.

(qt, qt+1, ..., qt+k−1) of k images captured by the agent’s vir-
tual camera from time t to time t+k−1 (one frame for each
discrete time instant). The second input group is a vector of
real numbers containing the state variables that model the
state of the agent’s internal environment. The neural network
has two output groups. The first one represents the agent’s
policy, giving the probability of each action to be selected for
execution. The second group consists of a scalar indicating
the expected future value of the state perceived by the neural
network. More details are presented In the next section, one
shows more detail about the network’s architecture.

4.1.1 The Agent’s Neural Network

The agent’s decisionmodel is a multi-layer feed-forward neu-
ral network with two types of input and two types of output.
Therefore, this network has a two-stream architecture. Two
stream deep neural networks were applied in other domains
as action detection in video (Simonyan and Zisserman, 2014).
We adapted this idea to select an action based on an environ-
ment signal containing different input types. The first input
is a sequence of frames from the agent’s virtual camera. The
second input is a vector of real numbers from the state of the
agent’s internal environment. A set of convolutional layers
is attached to the first input because convolution is an effi-
cient operation for extracting features from images. Another
independent set of fully-connected layers is attached to the
second input. Those layers are called dense layers.
The architecture of the network used in this work is shown

in Figure 3. We show an instance of that architecture, which
works for two different environments, and, in Section 5, that
instance is put to work.
The agent’s neural network parameters were optimized

to get maximum the Function 1. So, we present the agent’s
learning task in the next section.

4.1.2 The Agent’s Learning Task

The tasks considered in this work are those in which an agent
interacts with the environment E through a sequence of ac-
tions, observations, and rewards.
In each interaction t, in response to an observation xt, the

agent selects an action at from a set of possible actions A.
The action modifies the environment, which can be a virtual
world simulator. The agent can receive a reward rt for the ex-
ecution of the selected action. In general, E may be stochas-
tic.
The agent perceives the external environment, its own in-

ternal environment, and its own goals. Goals indicate what
behavior profile the agent should generate. That profile de-
fines the current internal reward. Thus, an observation is a

tuple x = (xe, xp, xg), where xe is the agent’s view of the
external environment, xp are the proprioceptions and internal
levels of the agent, and xg is a goal given to the agent.
An observation xe of the external environment occurs

through the agent’s artificial vision. The considered envi-
ronment is partially observable and noisy, which makes
it difficult for the agent to understand the current situa-
tion based only on the current state. Therefore, an observa-
tion xe can be expressed in the form of a sequence Ik =
(qt, qt+1, ..., qt+k−1) of k frames. Since an observation xe is
of the form Ik, one of the agent’s inputs is a tensor of the form
k ×W ×H , where k is the size of the sequence,W and H
are the width and height of the frames of the sequence. The
agent’s proprioceptions are real-number vectors that indicate
the internal state of the agent. Behavior profiles are ranges
within which the variables must be maintained. The goals
are inputs to the agent’s neural network indicating which be-
havior profile must be produced. Also, the conditioning be-
tween the policy and the value function of the agent with its
goals was generated. These are represented by π(s, g; θ) and
Vπ(s, g; θ) where s is the current state, g is the current goal,
and θ is a set of weights of the agent’s neural network. So,
one preserves theMarkovian property of the agent’s decision
making.
Therefore, the agent takes sequences of actions and ob-

servations represented by st = x1, a1, x2, a2, ..., xt, at, and
learns strategies of action in the environment that depend on
those sequences, which have a finite number of time steps
(Mnih et al., 2015). This formalism results in a finite Marko-
vian Decision Process (MPD - Markov Decision Process)
in with each sequence represents a distinct state. Thus, we
can use reinforced learning techniques for MDPs by sim-
ply applying the complete sequence st as a state represen-
tation at an instant t. In this work, one used A3C algorithm
(Mnih et al., 2016) for this. One of the main advantages of
the A3C algorithm is the ability to run on non-specialized
hardware. Another important advantage is that the algorithm
is the baseline to faster state-of-the-art algorithms on deep
reinforcement learning when applied to bi-dimensional and
three-dimensional scenarios.

4.2 Mapping of Internal Levels to Emotions
The emotion elicitation is closely linked to the generation of
internal rewards for the agent. Changes to the agent’s energy
levels and changes to the expected state value produce the
agent’s internal reward. This section presents how our model
of intrinsic and extrinsicmotivations is used to get the agent’s
internal reward function.

4.2.1 Reward Shaping and Emotion Elicitation

In this work, the general reward as a function of t (time step)
is represented as

R(t) = rt + r∆
t , (5)

where rt is an environment-dependent external reward func-
tion, and r∆

t is an internal reward based on the emotional en-
gine. The value of that internal reward usually results from
the emotional model’s evaluation. Therefore, the emotional
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rewardr∆
t , which is zero on the outset of step t of an episode,

increases in certain emotional states elicited at time t.
Emotion elicitation stimulates the agent’s decision process

while changing the reward function. After training, it is ex-
pected that the conditioning caused by the emotion-reward-
emotion loop will arise. There are two sources of internal
rewards: extrinsic motivations and intrinsic motivations.

4.2.2 Reward Resulting from the Extrinsic Motivation

The energy variable relates to extrinsic motivation because
the emotion associated with it depends on external environ-
ment resources. Depending upon the type of environment re-
source the agent gets, its energy may increase or decrease.
However, the agent’s always lose energy over time. In this
work, we use a homeostatic variable called E , which indi-
cates the agent’s energy level. The rangeEr = (Emin, Emax)
of this variable is taken from the current profile b.
When E is outside Er, three things happen: (1) r∆

t de-
creases; (2) connections to the output layer of the agent’s
network are strengthened or weakened; and (3) the goal vari-
able D changes its value to indicate that the current goal is
to bring E inside Er. The strengthening or weakening of the
connections to the output layer of the agent’s network is done
through a multiplier term M∫ , which is applied to the layer
immediately preceding the output of the neural network.M∫
is taken from the current profile b. Its value can be:{

M∫ = 1 (neutral) , if E ∈ Er,

M∫ ∈ (0, 1) or M∫ > 1, if E /∈ Er.

Whether M∫ ∈ (0, 1) or M∫ > 1, depends upon the agent’s
profile b.

4.2.3 Intrinsic Motivations Model

We derive another control variableP – Patience – associated
with the variable Cp. The variable Cp counts the number of
state transitions without increasing the expected state value.
In this work, Cp relates to intrinsic motivation because the
emotion associated with it is elicited from the variation of
the function Vπ . Let gt = {s0, a0, ..., si, ai, ..., st, at} be the
complete history of agent-environment interaction at time t,
the sensory stimulus over gt in time t > 0, named It, is
equal to V π(st, b; θ) − V π(st−1, b; θ). Now, let P be the
maximum interval without realizing positive stimuli until the
agent enters into a state of impatience. The variable Cp is in-
cremented whenever an agent fails to receive positive stimu-
lus. If Cp is greater than a threshold P , the agent’s emotional
state changes to impatience. If the agent receives a positive
sensory stimulus, then Cp is defined as equal to zero.
Satisfaction is a result of the evaluation of Cp. Thus, if

Cp > P , one defines Ωi = −1; otherwise, Ωi = 1. Along
with the limits of other variables, P is defined at the begin-
ning of an episode as a result of selecting an agent’s behavior
profile b. In this case, Ωi indicates whether or not the goal of
learning the associated homeostatic behavior deserves atten-
tion. Therefore,Ωi is equivalent to a goal definition to satisfy
the pattern of behavior associated with Cp.

4.2.4 Reward Resulting from the Intrinsic Motivation

If Ωi = −1, the mechanism of elicitation of an evaluation
variable ζ is performed. In this work, the value of ζ was com-
puted as the average entropy of the output of the agent’s pol-
icy π(s, g; θ) in the last k steps of the current episode (one
used k = 30).
So, if Ωi = −1, the entropy of the agent’s decisions ζ

must be within a range ζr = [ζmin, ζmax] ∈ b. If the agent
manages to keep the entropy of his actions within that range,
it is rewarded. This interval is previously chosen between a
set of predefined real intervals {[0.1,∞], [0.5,∞], [0.9,∞]}.

4.2.5 Conditioned Emotional Response

Conditioned Emotional Response is the learned emotional re-
action or the response to certain conditioning stimuli (Estes
and Skinner, 1941). We used conditioning during the train-
ing stage. In this way, after the agent is trained, a user can
change the behavior of the agent by changing the tolerance
limits under which the variables operate. Concerning the en-
ergy E , one uses the multiplier term M∫ induced by the in-
ternal energy levels of the agent. The energy levels produce
an agent’s emotional response from a conditioning principle
inspired by biology. More specifically, this strategy was in-
spired by the idea that norepinephrine increases the chemical
energy in the body to give quick responses in a stressful situ-
ation (Doya, 2002). Thus, along with the scale change in the
weights of connections arriving at the network’s output layer,
a signal indicating the agent’s energy level (D ), of three pos-
sible levels, was sent as network input: low, medium, and
high. The D level is calculated as follows:

if


E < Emin → D = −0.5, low energy,
Emin ≤ E ≤ Emax → D = 0.5, normal energy,
E > Emax → D = 1, high energy.

The values of D are input to the agent’s neural network.
The variables Emin, Emax and E are part of the agent’s per-

ceptual input. Thus, after the agent’s training, if conditioning
is successful, the agent acts in accordancewith a user-defined
range.
With respect toΩi, we chose these intervals to match three

different levels of emotional responses. As part of the agent’s
perceptual input, one defines the list [ζmin, ζmax, ζ,Ωi] es-
tablishing the conditioning of the user’s input with the ex-
pected behavior of the agent. Thus, if Ωi = −1, its reward
r∆

t is incremented by a value greater than zero (according to
Equation 5), so that conditioning is generated only when the
agent is disappointed.
The agent’s neural network receives an input vec-

tor [Emin, Emax, E , ζmin, ζmax, Cpmax,Ωi, D] whose com-
ponents are taken form the agent’s internal state, profile defi-
nition and current goal. Some variables in that vector define
the behavior profile, while other variables define goals asso-
ciated with behavior profiles. The choice of appropriate val-
ues is made through a discretization of the input space, which
we describe in the next section.
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4.3 Definition of the Profiles
The agent’s current profile b in an episode is denoted by b =
[(Emin, Emax), (ζmin, ζmax), Cpmax]. Profile b is take from
a distribution B of profiles.
The list of all profiles is largely dependent upon the type

and characteristics of the simulated environment. The gen-
eral idea is that ranges are determined in the domains of
the emotional model’s variables. The limits of those ranges
determine a certain pattern of behavior. For instance, if
E ∈ [0, 1000], examples of limits are E1

r = [0, 30], E2
r =

[10, 20], E3
r = [10, 40], such that E∗r = {E1

r , E
2
r , E

3
r }; or, if

P ∈ [0, 1000], P ∗r could be P ∗r = [30, 50, 100, 300, 500]. If
the emotional model has only two variables, E and P , set B
is defined as {b : b = (Emin, Emax, Pi)∀[Emin, Emax] ∈
E∗r ∧ ∀Pi ∈ P ∗r }.
The agent’s profile can be defined, after its training,

through a Graphical User Interface (GUI). Figure 4 shows
an example of a GUI to configure the agent’s behavior pro-
file.

Figure 4. A partial view of the Graphical User Interface (GUI) used to de-
termine how the agent reacts to its own emotions.

4.3.1 Agent’s Goals

The agent’s current goal g in an episode is denoted by g =
[D,Ωi]. Goals indicate what behavior profiles agents must
get. If D = 1 and Ωi = 1, the agent’s reward is generated
mainly from external reward sources. In this case, the agent’s
focus can be to select actions that maximize external reward.
If D <= 0.5 or Ωi = −1, the agent’s focus can be to select
actions that maximize internal reward.
Thus, this approach is equivalent to goal-parameterized re-

inforcement learning eliciting emotional states while maxi-
mizing an external reward.

4.4 Agent Training
During training, the agent assumes a behavior profile (b)
from the setB of possible profiles. A profile is selected from
B in accordance with a uniform distribution before the next
episode starts.
The internal reward r∆

t is produced according to the
agent’s current profile b ∈ B, which is selected at the out-
set of an episode.
In this work, one uses the A3C algorithm to maximize the

future discounted reward. We tested the three following ap-
proaches for the A3C algorithm.

4.4.1 Agent with Explicit Goals

The main approach used to select state transitions in the A3C
algorithm was to maintain the properties of the original A3C
algorithm, but use the concept of extended state. Extended
state is a signal (xe) from the external environment, plus a

signal (xp) from the internal environment and a description
(xg) of the agent’s current goal. Transitions are generated
from the extended state st,T = (xq(t, T ), xp(t, T ), xg(T ))
in time step t to the extended state st+1,T = (xe(t +
1, T ), xp(t + 1, T ), xg(T )) in time step t + 1. For simplic-
ity, since the episodes are independent of one another, we
omit the episode’s index T . For example, one mentions the
reward at time t as rt and not as rt,T . When the agent per-
forms an action a at time step t, it receives a reward rt and
gets a new extended state st+1. The state transition is repre-
sented by Tr(t, t + 1) = (st, at, rt, st+1). Other character-
istics of the A3C algorithm are maintained according with
their original description in (Mnih et al., 2016). Note that
xg(T ) = (D,Ωi) and xg(T ) does not change during episode
T .
Although we have separate goals for each behavior profile,

in this approach, the total reward of the agent is always the
sum of the external and internal rewards. Algorithm 1 (Ap-
prendix A) shows the strategy of behavior profile and goal
selection for this approach.

4.4.2 Agent without Explicit Goals

Another approach used to select state transitions also uses
the concept of the extended state. In this case, transitions are
generated from the extended state st = (xq(t), xp(t)) in time
step t to the extended state st+1 = (xe(t+ 1), xp(t+ 1)) in
time step t+ 1. Thus, no explicit goal is given in the agent’s
transitions. Algorithm 2 (Appendix A) shows the reward cal-
culation for this approach.

4.4.3 Agent with Explicit Randomic Goals

Despite some similarities with the latter approach, this ap-
proach has two main differences. First, maximizing external
reward is now an explicit goal. Second, only one goal is se-
lected at a time to add up to the total reward. Algorithm 3 (Ap-
prendix A) shows the reward calculation for this approach.

4.5 Agent Evaluation and Profile Validation
The two last stages of virtual character development are
agent evaluation and profile validation. In agent validation,
one analyzes, visually, whether or not the general agent’s be-
havior converges to coherent actions in the virtual environ-
ment. For example, if the agent sees a fruit, it must get it
when the agent’s level of energy is low.

In profile validations, one analyzes, visually, whether or
not the agent’s behavior is coherent with the currently se-
lected behavior profile, and whether or not the agent’s over-
all behavior is compatible with the allowable actions in the
environment.
If errors or inconsistencies are noted in the last two stages

of the agent’s development, one returns to the first stage.

5 Experiments
We developed two environments as testbeds for the ideas
in this paper. The first one is a traditional grid world, used
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to select good ideas before they are tested in a more com-
plex environment. The more complex environment is a three-
dimensional virtual maze. An agent explores this maze with
the help of first-person view and touch information. There-
fore, in this section, one describes both environments and the
agents used in the developed tests.

5.1 The Grid World
We used an instance of the traditional grid world environ-
ment. Our version of this environment consists of a grid with
one hundred cells arranged in a matrix of ten lines by ten
columns (Figure 5). The cells are indexed by a pair (l, c) of
two non-negative integer coordinates: l is the line index and
c is the column index, where 0 ≤ l, c < 10. The grid world
is a discrete, completely observable, static, episodic environ-
ment.

Figure 5. The agent’s environment is a grid world environment. The red
circle represents the agent. A cell with a green cylinder increases the life of
the agent if it reaches that cell. A cell with a yellow cylinder decreases the
life of the agent if it reaches that cell.

An agent can move around the grid, one block at a time,
in two orthogonal directions (keeping l of c constant). The
actions for this case are: move to the right, move to the left,
move up and move down. The agent is blocked from getting
off the limits of the world.
The cells of the environment can be occupied by two kinds

of cylinders: green cylinders and yellow cylinders. If the
agent reaches a cell with a green cylinder, it earns one life;
on the other hand,if it reaches a cell with a yellow cylinder, it
loses one life. The life span of an agent is approximately ten
seconds. There are two ways an episode finishes: when the
agent’s lifespan expires, or when the agent loses all its lives
(initially the agent gets three lives).

5.1.1 The Grid World’s Agent

At time step t, the external input to the agent in this exper-
iment is a matrix qt that represents the state of the environ-
ment at that time step, i.e., xt

e = (qt). Each cell of the input
matrix stores the code of the object that occupies that cell
(see the objects’ codes in Table 1).

In addition, one uses a simplified motivation model for
this agent. The agent has only one internal variable E that

Table 1. Object’s code in the grid world.
Object Code
Agent 1

Green Cylinder 3
Yellow Cylinder 4

Empty Cell 0

represents the energy level of the agent. The agent starts an
episode with an energy level E = 1

2 (Emin + Emax). The
agent’s energy decreases by 1 percent of its current energy
level for each movement the agent makes between time steps
t and t + 1. The energy level increases by 10 percent of
the maximum energy level at each time step t if the agent
stops. The values Emin and Emax are chosen at the beginning
of an episode from a set of values of predefined intervals,
which are selected according with an uniform distribution.
Thus, the vector of the agent’s internal levels is composed
of Emin, Emax, E and D. Consider Dt to be the value of D
at time step t. Thus, Dt = −1 if the energy level is outside
the range [Emin, Emax] and Dt = 1, otherwise. Therefore,
xt

p = (Emin, Emax, E) and xt
g = (Dt).

The agent actions are up, down, right, left, and no opera-
tion (NoOp). The final score of the agent in each episode is
the agent’s number of lives left.

5.1.2 The Grid World Reward

Reward in the grid world results from the agent interaction
with the environment (external reward) and from the control
of the agent’s internal energy level (internal reward). Reward
can be considered a guide of intrinsic motivation because it
does not directly affect the actions of the agent in the exter-
nal environment but, rather, depends on the history of agent-
environment interaction. At the beginning of a time step t in
a given episode T , both the internal reward (rt) and the exter-
nal reward (r∆

t ) are equal to zero. Those rewards are modi-
fied according with the actions that occurred in time step t−1
on state st−1 and that produced the current state st.
The external reward at time t is equal to 1, if the agent

reaches a cell with a green cylinder, and, −1, if the agent
reaches a cell with a yellow cylinder. The agent’s external
reward on the last time step of an episode is one (1) if the
agent’s number of lives is greater than zero (0), otherwise it
is zero (0).
The internal reward at time step t is calculated as

if


E < Emin → r∆

t = r∆
t − 0.01,

Emin ≤ E ≤ Emax → r∆
t = r∆

t + 0.01,
E > Emax → r∆

t = r∆
t − 0.01.

The total reward at time step t is calculated according to
Equation 5.

5.2 The Three-Dimensional Virtual Maze
World

The environment of the Maze World contains nutritious and
poisonous fruits, which are randomly scattered throughout
the maze. The environment is episodic, which means that an
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episode starts when the agent enters the maze by a fixed gate,
and ends either when the agent dies of starvation or when the
agent gets out of the maze. The agent successfully exits the
maze when it manages to find a key and returns to the portal.
The topology of the maze is shown in Figure 14(a).

Environment-agent interactions define the external com-
ponent rt of the reward function in Equation 5. The term rt

is zero at the start of an episode and changes in accordance
with the agent’s actions. Every time an agent picks up a nutri-
tious fruit, the variable rt increases by 10 (ten) units. On the
other hand, every time an agent picks up a poisonous fruit, rt

decreases by 10 (ten) units. Yet, if an agent picks up the gold
key, rt increases by 300 units. Thus, Equation 5 has a direct
dependence on the agent’s actions and on its emotional state.

5.2.1 The Maze World’s Agent

The agent has a physical body as shown in Figure 6(a).
Agent’s physical body enables it to interact with the environ-
ment and to navigate through the environment, performing
several actions. Table 2 shows the codes associated with com-
mon actions.

Table 2. Action codes.
Action Code
Walk 0

Flipping 1
Run 2

Look to the left 3
Look to the Right 4

Pick up (touched object) 5

The agent’s perceptions are the pair (O,P ), where O is
a sequence of images that represents the agent’s view of
the world, and P is a vector with values from your inter-
nal state, from your profile definition and your current goal.
The agent’s artificial vision is based on ray casting and pro-
duces the sequence of imagesO. In our model, k images with
20 × 20 pixels are generated by casting rays from the agent’s
eye position. For this, one uses asymmetrical frustum with a
90-degree aperture angle, as shown in Figure 6(b). The dis-
tance from the eye to the image plane is d. The vector P
contains the behavior profile, the current goal definition, and
the agent’s proprioceptions. Proprioception information has
two values. The first value is either 0 (indicating no touch)
or 1 (indicating touch). If an object is touched, the second
value of the pair is the identifier of that object, otherwise (no
touch), it is 0 (zero). The identifier of a poisonous fruit is −1,
and the id value of a nutritious fruit is 1.

5.3 The Agent’s Neural Network
We use a feedforward neural network to represent the
agent’s action selection policy. Biologic evidence indicates
that different input signals are processed by different neural
organizations (Lodish et al., 2000). Thus, as shown in Fig-
ure 7, our neural network architecture has two specialized
streams: one is specialized in the processing of emotions, and
another is specialized in visual processing. The output of this
neural network is compatible with the expected outputs in the

Figure 6. (a) Agent’s physical body and (b) ray casting with an aperture
angle of 90 degrees and symmetrical perspective projection.

A3C algorithm. Therefore, our network has an output array
for the policy π(s, g; θ) and an output value for the function
Vπ(s, g; θ).
The visual stream of the neural network architecture was

based on the architecture of Mnih et al. (2016) and Mnih
et al. (2015). The network used a convolutional layer with
16 filters of size 3 × 3 with stride 1, followed by a convolu-
tional layer with 16 filters of size 3 × 3 with stride 2. Con-
volutional layers were connected to a fully-connected layer
with 512 hidden neurons. This hidden layer is shared with
the emotional stream of the agent’s neural network. All three
hidden layers were followed by a rectifier for non-linearity.
The model used by actor-critic agents had two sets of outputs.
The first output is a softmax output with one entry per action
representing the probability of choosing the action. Second
is a single linear output representing the value function.
The stream for processing the emotional model contains

two fully connected (dense connections) layers (E1 andE2),
each with thirty neurons. In the maze world scenario, the in-
put of the emotional model consists of internal levels and lim-
its ([Emin, Emax, E , ζmin, ζmax, ζ, Cpmax]); goal parameters
[D,Ωi]; and touch sensory inputs T and V . Therefore, ac-
cording to the heuristic proposed by Hecht-Nielsen (1987),
thirty neurons are more than sufficient to learn emotional
patterns with an input size of eleven (11) values. In the grid
world, the entry corresponding to the internal levels consists
of [Emin, Emax, E ]. The goal entry consists of only one vari-
able, D. Even though the entry is simpler, in this problem,
one used the same number of neurons in the maze world ex-
periment.
The output of the second convolutional layer was concate-

nated with the E2 layer. The resulting list of neurons was
connected to the shared layer of hidden neurons (H) employ-
ing dense connections. The H layer has connections to an
output layer and the neuron Vs. The neuron Vs predicts the
expected value of the current state. Usually, the neuron Vs is
used only during training because it is used in the algorithm
A3C to calculate the advantage of the current action. How-
ever, one uses the value of Vs as input from the agent’s emo-
tional model. Thus, not rule out the value of Vs after training
in our emotional approach. Output of the Vs neuron is the
output of the function Vπ(s, g; θ).

5.4 Training Parameters and Simulations
One uses the RMSProp gradient optimization algorithm
since this optimizer has obtained good results in maze explo-
ration (Mnih et al., 2016). The parameters’ values are equal
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Figure 7. Agent neural network model.

to those set byMnih et al. (2016), except for the number of ig-
nored frames, whichwe defined as eight, since values smaller
than eight did not produce significant differences between
neighboring states. Moreover, the maximum amount of steps
after which the current neural network of a thread is updated
was set to thirty, since we realized that the commonly used
value in (Mnih et al., 2016) takes longer to converge. Table 3
shows a summary of the parameters’ values. All experiments
used a discount of γ = 0.99 and an RMSProp decay factor
of α = 0.99.

Table 3. Learning Parameters (Mnih et al., 2016).
Parameter Value

Number of threads. 8
Number of frames in which a se-
lected action is repeated.

8

Size of the frame sequence in each
step.

4

Initial learning rate 10−4

A3C update steps (tmax) 30
normalized maximum gradient 5.0
Discount rate of the A3C algorithm
(γ)

0.99

Decay factor of the RMSProp algo-
rithm

0.99

Entropy bonus (β) 0.001

We performed experiments using the same network archi-
tecture, the same optimization algorithm, and the same algo-
rithm settings for the two types of environments analyzed.
The only difference between the two experiments is that the
neural network input to the grid world agent is one frame
with shapeM ×M whereM = 10.

The experiments for the grid world analyze strategies to
be used in a more complex environment. The different strate-
gies analyzed were those described in algorithms 1, 2, and 3.
As the best result obtained was with the strategy shown in
Algorithm 1, only this approach was evaluated in the three-
dimensional maze world. One performed six simulations for
all strategies used in the grid world, and five simulations with
the best strategy in the maze world.
All simulations were performed with the parameters spec-

ified in Table 3, using the RMSProp optimization algorithm
(Mnih et al., 2016). To define the number of training hours in
both experiments, we observed the learning curve. For this,
initial training was carried out to detect how long the agents’
average performance would take to stabilize. In the simula-
tions of the grid world, that stabilization time was about two
hours; and, in the simulation of the three-dimensional world

of the maze, the stabilization time was about eight hours.

6 Results and Discussions
In this section, the presentation is organized in accordance
with the performed simulations: the grid world; and the three-
dimensional maze world.

6.1 Grid World’s Simulations
We analyzed the agent in the grid world to verify whether
the agent’s behavior was consistent with the environment
(through the external reward maximization), and to verify
whether the goals given as behavior profiles were achieved.
For that, four groups of six simulations were performed. In
the first group of simulations, the original A3C algorithm
(Mnih et al., 2016) was used, with the parameters shown in
Section 5.4. The purpose of this simulation is to compare the
results obtained with the approaches shown in algorithms 1,
2, and 3 with the results obtained with the standard A3C algo-
rithm. In all simulations, the same agent settings were used.
In the other three groups of simulations, we obtain the av-
erage performance of the following algorithms: A3C with
Explicit Goal (A3CEG), A3C with Explicit Randomic Goal
(A3CERG), and A3C without Explicit Goal (A3CWEG).

6.1.1 Training phase

The training lasted eight hundred episodes. The average
sum of rewards in the last one hundred registered training
episodes in six simulations is shown in Table 4. One regis-
ters one episode every other one hundred episodes.

Table 4. The average sum of rewards in the last 100 registered train-
ing episodes over six simulations. We register one episode every
other one hundred episodes.

Agent Strategy Sum of Rewards
A3C 240
A3CEG 70
A3CERG 120
A3CWEG 219

The agent trained with the standard A3C algorithm re-
ceives a higher sum of rewards than the agents trained with
the other three A3C algorithms. The agent trained with the
A3CEG algorithm receives the lowest sum of rewards per
episode.
Therefore, the default A3C agent has optimal behavior if

we consider only the maximization of the external reward as
a goal. In this case, optimal behavior is when the agent gets
in and out of cells occupied by green cylinders. This is the
behavior of the agent with the default A3C algorithm. Fig-
ure 8 shows an example of the trajectory generated by the
standard A3C agent. However, the default A3C algorithm
does not allow agents with different behavior profiles. Thus,
the behaviors of the trained agents A3CEG, A3CERG, and
A3CWEGwere analyzed qualitatively after the agent’s train-
ing, focusing on the learning of behavior profiles and on the
influence of goals in the agent’s decision.



An Autonomous Emotional Virtual Character: An Approach with Deep and Goal-Parameterized Reinforcement Learning Gomes et al. 2020

Figure 8. An example of a trajectory obtained in an execution of the grid
world agent with the standard A3C algorithm.

6.1.2 Agents’ Behavior Profile

We analyzed the coherence of the agents’ behavior regarding
the homeostatic goal of maintaining the internal level within
the range of the corresponding variable. For each behavioral
profile of an agent, one shows a graphwith the average evolu-
tion per episode of the variable’s value and the limits within
which the variable must be kept.

First, one tried the A3CWEG agent. The convergence to
the expected behavior in the environment occurred in approx-
imately one hour and a half. However, all training sessions
ran for two hours. Although this agent has achieved con-
sistency with the goal in the external environment, Figure
9 shows that the A3CWEG agent does not respond to the
change in the behavior profile. Regardless of the behavior
profiles analyzed, the behavior of the variable (green line)
was the same: the agent’s energy always drops to zero.

Figure 9.Typical behavior of the variable controlled by the agent A3CWEG.
The green line indicates the variable evolution. The orange and blue lines in-
dicate the variable’s target range (min, max). The variable’s behavior was
the same consolidated in this figure, regardless of the target range selected.

Next, given that the A3CWEG agent failed to obtain differ-

ent behavior profiles after training, we attempted to design an
agent with explicit goals, adopting two different strategies.
In the first strategy, named A3CERG, the agents select

goals at random at the outset of an episode. However, the
agents also have some explicit goals that define the comput-
ing of the reward function. i.e., to maximize the external re-
ward function. Figure 10 shows the agent’s average sum of
rewards about one hundred episodes after the learning stage;
and Figure 11 shows the performance of the A3CERG agent
after the learning stage. The result is an average of about one
hundred episodes, and the purpose is to maximize the inter-
nal reward function. One can observe that the agent’s inter-
nal variable is sensitive to the chosen interval. Besides, in
all cases, when the variable goes outside its limits, the agent
tends to change its behavior to bring it back to an appropriate
level. The problem here is that the goal must be given manu-
ally to the agent after the learning step to obtain autonomous
behavior.

Figure 10. Typical behavior of the variable controlled by the agent
A3CERG. The green line indicates the variable evolution. The orange and
blue lines indicate the variable’s target range (min, max). The variable’s
behavior was the same consolidated in this figure, regardless of the target
range selected.

In the second strategy, named A3CEG, the goals were set
explicitly, with the simultaneous computation of the internal
reward and the external reward. However, each time a goal is
selected, a new episode is created. Figure 12 shows the result
of the analyzed behavior profiles.
It is observed that, for a different range of the variable, the

agent’s behavior is coherent with the its internal goal. The
agent is also consistent with the goal derived from the ex-
ternal reward, although it performs much fewer movements
than the other agents. The agent’s trajectory is compatible
with the path of the standard A3C agent (Figure 8).

6.2 Maze World’s Simulations
6.2.1 Overall description

The behavioral analysis of the maze world agents after train-
ing was done based on their respective trajectories. Although
the general strategy is based on the A3CEG agent’s strat-
egy, it is more complex because it involves more than one
internal variable. The analysis of trajectories is widely used
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Figure 11. In these three graphs, the control of the A3CERG agent is shown
over the current value of the internal variable (green line). It is observed that
for different intervals of the variable, the behavior of this variable changes
because the goal is to maximize the internal reward.

to visualize the behavior of agents in virtual environments,
such as mazes. Therefore, to analyze the data generated in
the simulations of this work, a visual exploratory analysis of
the agent’s trajectories inspired by Bechtold et al. (2018) was
carried out. The trajectories show the agent’s emotional state,
which is summarized as a concept of happiness. Thus, look-
ing at the agent’s ordered pair (excitation-discouragement,
satisfaction-disappointment), the agent is:

• happy, if (Emin ≤ E ≤ Emax and Cp ≤ P);
• unhappy, if (E ̸∈ [Emin, Emax] and Cp > P); or
• emotionally neutral, in other cases.

We represent the agent’s steps by the lengths of line seg-
ments; and its emotional state by the colors of line segments.
Thus, green segments represent states of happiness; blue seg-
ments represent states of neutral emotion, and red segments
represent states of sadness. There might be an overlap be-
tween two colors when the agent passes twice through a
given position, each in a different emotional state. So, if Ca

Figure 12. In these three graphs, the control of the A3CEG agent is shown
over the current value of the internal variable (green line). It is observed that
for different intervals of the variable, the agent’s behavior is coherent with
external and internal goals.

is the previous line color and Cb is the recent line color, then
the new line colorCn is calculated as:Cn = 99%Ca+1%Cb.
The maze’s floor is colored white, and the maze’s walls are
black. The lines are the tracks that show the agent’s trajectory.
Since the amount of emotional state combinations is large,
only a subset of the configurations was considered. This sub-
set contains variables that have led to a substantial change in
the agent’s behavior. So one condensed the emotional infor-
mation of the agent in a single variable called happiness.

Also, one analyzed the average speed of the agent in all
configurations of emotional variables. One presents only the
subset of the results with the most considerable difference in
the agent’s final behavior. The configurations of this subset
are shown in Table 5. Each row in this table corresponds to
a different controller.
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Table 5. Agent emotional parameters.
# Emin Emax ζmin M∫ Cpmax

1 10 40 0.9 1.9 3k
2 30 40 0.9 1.9 3k
3 30 40 0.9 0.1 3k
4 5 40 0.1 1.9 100
5 5 40 0.9 1.9 100
6 5 40 0.9 1.9 500

6.2.2 Discussions

We present the results in two steps: exhibition of the agent’s
average reward during five training stages; and analysis of
the higher scored emotional controller.
In Figure 13 (a), one can see the evolution of the aver-

age reward per episode. An examination of the controller
generated after the training shows that, in fact, the learned
controller makes the agent avoid the poisonous fruits (red
spheres) and seek the nutritious fruits (white spheres). Be-
sides, Figure 13 (b) shows that the value of the states in-
creases with time. Finally, in figure 13 (c), the number of
steps per episode increases substantially throughout the train-
ing. These three observations show that learning was effec-
tive.

Figure 13. In these figures, the horizontal axes show the episode and vertical
axis show (a) the average reward, (b) the state value, and (c) the average
amount of time steps by episode. One thousand episodes take eight hours
approximately.

We analyzed that the trained controller obtained the high-
est sum of rewards for different configurations of the emo-
tional model’s variables. In figures 14, 15 and 16, one shows
the effect of changing the variables Emin and M∫ . The con-
trollers corresponding to the configurations of line 1 to line
2 of Table 5, one only changed the value of Emin. So we
verified how M∫ affects the agent’s behavior. Thus, the con-
troller corresponding to line 2 discouraged earlier. The result
was a shortening of the agent’s trajectory. In addition to that,
the controller with the configuration of line 1 spentmore time
in the happy state than the controller with the configuration
of line 2.
We perceived that the agent’s speed with the controller

configuration 2 is higher than that of configuration 1 when
the multiplier is greater than 1 (one). That difference is gen-
erated because the minimum level on line 2 causes M∫ to
act earlier on the efferent channel. In this case, the value of

M∫ > 1 was associated with a higher average speed of the
agent. Although that result may look inconsistent at first, it
can be understood from the analogy that people act accord-
ing to their personalities in certain situations. In danger, some
people become desperate and act on impulse, and others be-
come discouraged and barely able to move.

Figure 14. (a) The agent emotional state, and (b) the agent speed with the
emotional model’s configurations equal to that shown in row 1 of Table 5.

With the configurations of lines 1 and 2 in Table 5, one no-
ticed that the change in the minimum energy threshold of the
agent indicates coherent changes in its behavior. In Figure 16,
one shown the results corresponding to the controller with all
parameters copied from line 2 of Table 5, except M∫ , which
was set to 10%. Thus, we verified if the response to the low
level of energy was coherent with the type of response de-
fined by the choice of the multiplier term. We perceived that
the agent’s speed was significantly lower with this config-
uration. Therefore, the agent’s behavior changes coherently
according to the choice of the multiplier value. The multi-
plier application generates a shortening in the trajectory of
the agent. If M∫ > 1, the agent increases his speed and con-
sequently the probability of ignoring fruits on its way. Thus,
the increase in speed was not triggered by a rational decision,
but rather by term M∫ > 1. If 0 < M∫ < 1, the trajec-
tory of the agent is affected (shortened) due to a reduction of
the agent’s speed. In this way, the agent behaves consistently
with the choice M∫ when its energy level is below a certain
predefined value.
In figures 17 and 18, we show the effect of the change of

value of the variable ζmin when the emotion is elicited ac-
cording to the agent’s energy. We kept all properties equal
between the two configurations except for the uncertainty of
the agent through high energy level. As a result, the color dif-
ference between the trajectories of the two figures is notice-
able. If the agent receives a positive reward to increase the
uncertainty about his actions, its trajectory increases because
it tries to take more actions in low-level states. We perceive
that in Figure 20, where the agent’s uncertainty is the entropy
of the choice of its actions calculated based on the history of
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Figure 15. (a) The agent emotional state, and (b) the agent speed with the
emotional model’s configurations equal to that shown in row 2 of Table 5.

Figure 16. (a) The agent emotional state, and (b) the agent speed with the
emotional model’s configurations equal to that shown in row 3 of Table 5.

actions of the last thirty simulation steps in emotional states
of dismay.
Figure 19 shows the result obtained when using the agent’s

configuration in line 6 of Table 5. Here, concerning line 5,
only the agent’s patience changed, from 300 to 500 non-
positive interactions. A substantial difference between the
two configurations is that the agent with the configuration
of line 6 is in the emotional state of sadness fewer times than
the agent with configuration of line 5.
The results showed that the agent’s behavior changes in a

way that is consistent with the configurations of its emotional
model. However, as seen in Figure 20, the agent fails to take
the variable that represents the entropy of its own decisions
to stay above the minimum threshold of 0.9. Our hypothesis
here is that a strict markovian model is not sufficient to ade-
quately capture conditions that are not explicitly represented
in the current state of the agent.

Figure 17. (a) The agent emotional state, and (b) the agent speed with the
emotional model’s configurations equal to that shown in row 4 of Table 5.

Figure 18. (a) The agent emotional state, and (b) the agent speed with the
emotional model’s configurations equal to that shown in row 5 of Table 5.

7 Conclusions
We have developed agents with a configurable emotional
model based on A3C algorithm (Asynchronous Advantage
Actor-Critic). Thus, after the agent’s training, predefined
changes in control variables led the agent to obtain behav-
iors that were consistent with the choice of the settings
made a priori. We show that this approach is a type of goal-
parameterized reinforcement learning. In this case, the pa-
rameterization was designed to project different emotional
responses in accordance with a given behavior profile. To
show the equivalence between the developed approach and
the goal parameterized reinforcement learning, we designed
a simple grid world, and the results were consistent with the
initial hypotheses suggested.
Therefore, we obtained an emotional agent based on re-

inforcement learning. More refinements, however, are wel-
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Figure 19. (a) The agent emotional state, and (b) the agent speed with the
emotional model’s configurations equal to that shown in line in line 6 of
Table 5.

Figure 20.Comparison of the average agent entropy with the configurations
shown in lines 4 and 5 of Table 5.

comed to achieve greater accuracy in customizing NPC be-
haviors. This result is interesting for virtual reality appli-
cations because the elicitation of emotions can be used to
configure avatar animations consistent with their emotional
states. Thus, possible applications of this work are the de-
velopment of autonomous virtual characters with different
emotional profiles for video games, virtual characters that
mimic human emotion to virtual training of medical clinic
attendants in stress situation and to training autonomous ve-
hicles to deal with human emotion in simulated environments
as the Carla Simulator (Dosovitskiy et al., 2017).

The next step of this research is an in-depth analysis of all
the components of the developed model and determining em-
pirically and theoretically how these components affect the
agent’s behavior. Then, an improvement of the model can be
performed to obtain more precision in the generated behav-
iors. The ultimate goal is to get a robust approach for gen-
erating believable virtual character behaviors that look au-
tonomous.
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Appendices

Appendix A: Algorithms

Algorithm 1 Agent-based on Explicit Goals (A3CEG).
Agent, environment, and profiles are objects that encapsulate
agent, environment, and agent’s profile.
1: procedure AgentStep(agent, environment, profiles)
2: goals← [ ] ▷ A list of goals
3: internalreward← 0 ▷ Sum of internal rewards
4: if new episode then
5: xi

e, xi
p, xi

g ← initial_state

6: for all profile ∈ profiles do
7: a← profile.min, b← profile.max
8: m← a + (b− a)/2
9: v ← profile.current_value
10: pv ← profile.preview_value

11: r∆
t ← 0

12: if (a ≤ v ≤ b) and (pv < a or pv > b) then
13: r∆

t ← r∆
t + ϵ ▷ ϵ > 0

14: profile.goal← neutral ▷ usually 0
15: else if v < a then
16: if |v −m| < |pv −m| then
17: r∆

t ← r∆
t + ϵ ▷ ϵ > 0

18: else
19: r∆

t ← r∆
t − ϵ ▷ ϵ > 0

20: profile.goal← low ▷ usually−1
21: else
22: if |v −m| < |pv −m| then
23: r∆

t ← r∆
t + ϵ ▷ ϵ > 0

24: else
25: r∆

t ← r∆
t − ϵ ▷ ϵ > 0

26: profile.goal← high ▷ usually 1
27: internalreward← internalreward + r∆

t
28: goals.append(profiles.goal)
29: xe ← frames_of_the_world
30: xp, xg ← agent.get_internal(profiles) ▷ The agent returns your

internal state
31: action← agent.act(xe, xp, xg) ▷ The agent chooses an action.
32: final_xe, reward, done = environment.step(action) ▷ It

performs a simulation step.
33: T ransition ← ((xi

e, xi
p, xi

g), action, reward +
internalreward, (xe, xp, xg))

34: A3C_learning_from(T ransiction)
35: if not done then
36: xi

e ← xe, xi
p ← xp, xi

g ← xg

Algorithm 2 Agent Without Explicit Goals (A3CWEG).
Agent, environment, and profiles are objects that encapsulate
agent, environment, and agent’s profile.
1: procedure AgentStep(agent, environment, profiles)
2: internalreward← 0 ▷ Sum of internal rewards
3: if new episode then
4: xi

e, xi
p ← initial_state

5: for all profile ∈ profiles do
6: a← profile.min, b← profile.max
7: m← a + (b− a)/2
8: v ← profile.current_value
9: pv ← profile.preview_value

10: r∆
t ← 0

11: if (a ≤ v ≤ b) and (pv < a or pv > b) then
12: r∆

t ← r∆
t + ϵ ▷ ϵ > 0

13: else if v < a then
14: if |v −m| < |pv −m| then
15: r∆

t ← r∆
t + ϵ ▷ ϵ > 0

16: else
17: r∆

t ← r∆
t − ϵ ▷ ϵ > 0

18: else
19: if |v −m| < |pv −m| then
20: r∆

t ← r∆
t + ϵ ▷ ϵ > 0

21: else
22: r∆

t ← r∆
t − ϵ ▷ ϵ > 0

23: internalreward← internalreward + r∆
t

24: xe ← frames_of_the_world
25: xp ← agent.get_internal(profiles)
26: action← agent.act(xe, xp)
27: final_xe, reward, done← environment.step(action)
28: T ransition ← ((xi

e, xi
p), action, reward +

internalreward, (xe, xp))
29: A3C_learning_from(T ransiction)
30: if not done then
31: xi

e ← xe, xi
p ← xp

Algorithm 3 Agent-based on Explicit Randomic Goals
(A3CERG). Agent, environment, and profiles are objects that
encapsulate agent, environment, and agent’s profile.
1: procedure AgentStep(agent, environment, profiles)
2: goals← [ ] ▷ A list of goals
3: internalreward← 0 ▷ Sum of internal rewards
4: if new episode then
5: xi

e, xi
p, xi

g ← initial_state

6: profile← uniform(profiles) ▷ Gets a random access to a list of
profiles uniformly distributed.

7: a← profile.min, b← profile.max
8: m← a + (b− a)/2
9: v ← profile.current_value
10: pv ← profile.preview_value

11: r∆
t ← 0

12: if (a ≤ v ≤ b) and (pv < a or pv > b) then
13: r∆

t ← r∆
t + ϵ ▷ ϵ > 0

14: profile.goal← neutral ▷ usually 0
15: else if v < a then
16: if |v −m| < |pv −m| then
17: r∆

t ← r∆
t + ϵ ▷ ϵ > 0

18: else
19: r∆

t ← r∆
t − ϵ ▷ ϵ > 0

20: profile.goal← low ▷ usually−1
21: else
22: if |v −m| < |pv −m| then
23: r∆

t ← r∆
t + ϵ ▷ ϵ > 0

24: else
25: r∆

t ← r∆
t − ϵ ▷ ϵ > 0

26: profile.goal← high ▷ usually 1
27: internalreward← internalreward + r∆

t
28: xe ← frames_of_the_world
29: xp, xg ← agent.get_internal(profile)
30: action← agent.act(xe, xp, xg)
31: final_xe, reward, done = environment.step(action)
32: T ransition ← ((xi

e, xi
p, xi

g), action, reward +
internalreward, (xe, xp, xg))

33: A3C_learning_from(T ransiction)
34: if not done then
35: xi

e ← xe, xi
p ← xp, xi

g ← xg
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