
Journal on Interactive Systems, 2021, 12:1, doi: 10.5753/jis.2021.999
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Procedural Dungeon Generation: A Survey
Breno M. F. Viana [Universidade de São Paulo | bmfviana@gmail.com]
Selan R. dos Santos  [Universidade Federal do Rio Grande do Norte | selan.santos@ufrn.br]

Abstract Procedural content generation (PCG) is a method of content creation entirely or partially done by comput­
ers. PCG is popularly employed in game development to produce game content, such as maps and levels. Represen­
tative examples of games using PCG are Rogue (1998), which introduced the rogue­like genre, and No Man’s Sky
(2016), which generated whole worlds with fauna and flora. PCGmay generate final contents, ready to be added to a
game, or intermediate contents, which might be polished by human designers or work as an input level sketch to be
interpreted by a level translator. In this paper, we survey the current state of procedural dungeon generation (PDG)
research, a PCG subarea, applied in the context of games. For each work we selected in this survey, we examined
and compared how they created game features, what type of level structure and representation they propose, which
content generation strategy they applied, and, finally, we classify them according to the taxonomy of procedural
content generation proposed by Togelius et al. (2016). The most relevant findings of our survey are: (1) PDG for 3D
levels has been little explored; (2) few works supported levels with barriers, a game mechanic which temporarily
blocks the player progression, and; (3) mixed­initiative approaches, i.e., software that helps human designers by
making suggestions to the levels being created, are little explored.

Keywords: Survey, Procedural Content Generation, Dungeon, Game

1 Introduction

Togelius et al. (2016) defined Procedural Content Generation
(PCG) as computer software capable of creating “game con­
tent on its own, or together with one or many human players
or designers.” Over the years, PCG has become a valuable
asset for the game development process because it may bring
several benefits, such as reducing the high cost of produc­
tion of game features by reducing the need of human design­
ers to generate content; helping human designers to increase
their creativity and productivity; controlling the game diffi­
culty or help game balancing, or both, and; increasing the
replay value of a game by providing unexpected content, for
instance.

Dungeon level generation in games is a great example
of how PCG can be very useful, particularly when it sup­
ports the creation of different dungeons every time the game
is replayed. In this paper’s context, we are following the
definition offered by van der Linden et al. (2014), who de­
fined dungeons as labyrinthine environments that offer struc­
tured gameplay progressions through interrelated rewards
challenges, and puzzles.

The game community usually classifies games that
have computer­generated dungeons as rogue­like/rogue­lite
games. Some examples are: Rogue (Toy and Wichman,
1980), the game which introduced the rogue­like genre, Di­
ablo (Blizzard Entertainment, 1996), The Binding of Isaac
(McMillen and Himsl, 2011), Don’t Starve (Klei Entertain­
ment, 2013), Crypt of the NecroDancer (Brace Yourself
Games, 2015), Moonlighter (Digital Sun, 2018) and Dead
Cells (Motion Twin, 2018).

In 2014 van der Linden et al. published a survey on Pro­
cedural Dungeon Generation (PDG). They compared differ­
ent approaches to content generation and tried to understand
how the control works in the surveyed methods. However,
they did not attempt to classify the methods under a unified

taxonomy. This shortcoming motivated us to produce a re­
view exclusively focused on PDG and target at classifying
the research under the PCG taxonomy defined by Togelius
et al. (2016). We believe this categorization might be useful
since it helps us understand the approaches’ behavior better
and identify shortcomings, strengths, and tendencies (or lack
thereof) in the recent research body aimed at PDG.

In this paper, we extend our last survey on PDG – Viana
and dos Santos (2019) – to improve the classification of some
works and provide an updated review of state of the art by in­
cluding recent papers in our review. We selected papers from
Scopus, ACM Digital Library, and IEEE Xplore. We consid­
ered works related to the generation of dungeons, maze­like,
cavern, and other types of levels similar to the dungeons as
defined by van der Linden et al. (2014). Our review analyzed
the selected papers under the following categories: (1) the
game genre, such as RPG, rogue­like, action­adventure, 2D
platform, etc.; (2) the game space, i.e., if the generated space
is the level layout or just a level sketch; (3) the game dimen­
sionality (two­ or three­dimensional); (4) the level represen­
tation, i.e., which structures are used to represent the level;
(5) the solution strategies adopted by the PDGs; (6) howwell
they fit the PCG taxonomy (Togelius et al., 2016), and; (7)
the level contents, i.e., if the level is composed by rewards,
challenges, etc.

The main contributions of this paper are the findings that
resulted from our classification, of which we highlight the
following: (1) few works presented solutions for PDG of 3D
levels; (2) the generation of levels with barriers (a game me­
chanic which blocks, temporarily, the player progression),
although interesting, has not been much explored, and; (3)
surprisingly, few approaches relied on mixed­initiative ap­
proaches when a human design steers the computer content
generation. Other contributions are a revised version of To­
gelius’s PCG taxonomy by reorganizing some of the original
categories and improving its descriptions, and the suggestion

https://doi.org/10.5753/jis.2021.999
https://orcid.org/0000-0003-3441-508X
mailto:bmfviana@gmail.com
https://orcid.org/0000-0002-8056-1101
mailto:selan.santos@ufrn.br

Procedural Dungeon Generation: A Survey Viana and dos Santos 2021

(a) TDML dungeon. Source: Lavender and Thompson (2017). (b) TDCL dungeon. Source: Liapis (2017). (c) SS dungeon. Source: Baghdadi et al. (2015).
Figure 1. Types of 2D dungeon structures: top­down mansion­like (TDML), top­down cavern­like (TDCL), and side­scrolling (SS) dungeons.

of potential PDG related research problems to investigate.
This paper is structured as follows. Section 2 presents the

definitions of dungeon levels in games and defines some
game elements, features, and mechanics that we were inter­
ested in while evaluating the papers. We also briefly intro­
duce the revised taxonomy of procedural content generation,
and, finally, we overview some of the generation strategies
we identified during the survey. In Section 3, we overview
the current state of PDG under the parameters introduced in
Section 2 by presenting the quantitative results of our sur­
vey. In Section 4, we discuss, based on the survey results,
limitations, tendencies, and new possibilities of research to
pursuit. Finally, in Section 5, we conclude the paper by pro­
viding some suggestions for open challenges in the field.

2 Background
Surveys are important mechanisms to understand an area bet­
ter and help to map problems, failures, and successes, aiming
at the progress of knowledge (Mulrow, 1994; Moher et al.,
2009). They are relevant for researchers because they might
help them to: (1) understand existing techniques within a
common context or framework (e.g., taxonomy); (2) iden­
tify how to improve existing methods; (3) identify niches of
little­explored methods; and, (4) discover new methods, per­
haps combining elements or strategies that have been used
successfully to date.

Therefore, this section presents the definitions of some
game features and mechanics that we were interested in and
the definition of dungeon levels. We also present the revised
PCG taxonomy introduced by Togelius et al. (2016) and an
overview of the solution strategies found in our survey.

2.1 Game Features

According to van der Linden et al. (2014), dungeons are lab­
yrinthine environments mostly composed of rewards, chal­
lenges, and puzzles, distributed over the level to offer highly
structured gameplay progressions. Several games of differ­
ent genres use dungeons in some parts – e.g., Pokémon (Nin­
tendo, 1996) – or the entire game – e.g., The Binding of Isaac
(McMillen and Himsl, 2011).

Game genres are classifications of games based mainly on
the gameplay and how players interact with the game, i.e.,
the game space and the game dimension. The game space
is the environment where the gameplay happens through
the user interaction, e.g., the game levels of a level­based
game. The game dimension refers to the dimensionality of
the game space, which usually are two­ (2D), two­and­half­
(2.5D), or three­dimensional (3D). The game space of dun­
geons usually tries to simulate real­world labyrinth­like en­
vironments, such as caves, intricate buildings, medieval dun­
geons, among others. The game’s genre, space, and dimen­
sion are essential features that directly affect the game level
representation and the automatic generation method a PCG­
based game may choose to follow.

In this survey, we have identified works that generate the
layout of the level space, the sketch of the level space – i.e.,
meta­data that represents the layout of the level space that can
be translated into an actual level space – or both, at different
stages of the generative process. A layout of the level space
is usually represented by grids or shapes, whereas a sketch
of the level space is often represented by grids, graph nodes,
or grammar strings.

Concerning the works that generated 2D dungeons, we
found three types of 2D dungeon structures: (1) top­down
mansion­like dungeon (TDML) – example in Figure 1a –,
e.g., The Legend of Zelda’s dungeons (Nintendo, 1986); (2)
top­down cavern­like dungeon (TDCL) – example in Fig­
ure 1b –, e.g., Pokémon’s dungeons (Nintendo, 1996), and;
(3) side­scrolling dungeon (SS) – example in Figure 1c –,
e.g., Spelunky’s dungeons (Yu, 2008). In our survey, we also
consider levels with both rooms and corridors as TDCL dun­
geons. It is worth mentioning that we could only find three
papers that tackled 3D dungeons: Santamaria­Ibirika et al.
(2014) dig terrain to create the dungeon; Baron (2017) only
translates 2D level into a 3D environment; and, Antoniuk
et al. (2018) that generated 3D dungeon rooms. Since only
the first work truly generated connected 3D dungeons, we
decided not to create an exclusive category just for 3D dun­
geon generation.

Next, we introduce some gameplay elements usually
present in dungeon levels.

• Room is a structural part of a level that may be con­
nected to other rooms by doors or corridors. Figure 1a

Procedural Dungeon Generation: A Survey Viana and dos Santos 2021

presents an example of a level structured into several
rooms.

• Item/Skill is a collectible element or learned ability that
grants to the player some gameplay benefit, such as a
health kit that regenerates some of the player’s health
or when a player earns some limited capacity to fly over
obstacles.

• Barrier is a game feature that temporarily blocks the
player from reaching certain regions on a level. Over­
coming a barrier usually requires the player to collect
one or multiple items or to learn some special skills that
unlock or remove the blockage.

• Reward is something the player is encouraged to locate
and acquire through some effort. Items, skills, money,
tools, for instance, are typical examples of rewards. Re­
wards may or may not be mandatory goals (originally
defined by van der Linden et al. (2014)).

• Challenge is an obstacle that hinders the player’s pro­
gression. In the dungeon context, challenges are usually
treated as battle challenges or traps (originally defined
by van der Linden et al. (2014)).

• Puzzle is an intellectual obstacle that requires the player
some reasoning to solve it. Puzzles usually involve reor­
ganizing items in a specific sequence to unblock a bar­
rier or figuring out how to use game elements in an un­
conventional way, such as moving pieces of furniture to
reach a tunnel initially out of reach. Sometimes, a puz­
zle is hidden in the game level, and the player has to find
it first before attempting to solve it (originally defined
by van der Linden et al. (2014)).

2.2 PCG Taxonomy
In this section, we present the PCG taxonomy defined by To­
gelius et al. (2016). We renamed each title of the classifica­
tions in an attempt to improve their understanding. The tax­
onomy defines seven axes to classify procedural generation
approaches:

• Content Requirement defines if the generated content
is necessary for the gameplay or if it is optional. For
instance, a key may be necessary to open the door to the
boss’ room. In contrast, the level may have a blocked
room that the player can ignore and yet finish the level.

• OutcomeRandomness defines theway that choices are
made during the generation process. An approach is de­
terministic when it generates the same content with the
same set of parameters. Alternatively, it is stochastic
when it generates different contents, even with the same
set of parameters. Although this classification seems
silly at first – since one of the PCG goals is to provide
variety –, deterministic approaches may be useful, as
discussed later in this paper.

• Generation Time defines when the content is gener­
ated. An approach is offline when it generates the con­
tent before the gameplay (i.e., when the player is play­
ing the game), or it is online when it generates the con­
tent during the gameplay. For instance, the levels on
Moonlighter (Digital Sun, 2018) are generated before
the gameplay. On the other hand, the levels of any End­

less Runner are generated during the gameplay.
• Generation Control defines how to parameterize the
approaches and dimensions of control. The control of
an approach may be made by random seeds that allows
only one dimension of control. Alternatively, the control
may be made by a set of parameters that allows more
dimensions of control. For instance, a set of parameters
may be composed of width, height, and difficulty.

• Generality defines the audience that the content is be­
ing generated for. An approach is genericwhen the con­
tent is generated for several players. Alternatively, it is
adaptive when the content is generated for a specific
player. For instance, Left4Dead 2 (Valve Corporation,
2009) send zombie hordes of different sizes according
to the player’s gameplay rhythm.

• Generation Method defines how the generation can
be performed. An approach is constructive when it
generates content in only one pass without validation
of the generated content. Alternatively, an approach
is generate­and­test when it alternates the generation
and the consistency or evaluation test or both of the
content. Constructive approaches are usually faster
than generate­and­test techniques. However, they are
more susceptible to content inconsistency. Within the
generate­and­test, a nested classification called search­
based PCG defines the PCG approaches in which the
test function grades the generated content. For instance,
in Evolutionary Algorithms (EA), the grading function
is the fitness function. Another nested class of generate­
and­test is the solver­based PCG (Summerville et al.,
2018). For instance, we classify as solver­based PCG
the approaches built with Answer Set Programming
(ASP). Summerville et al. (2018) described a new PCG
paradigm based on Machine Learning (ML) where the
content is generated directly from ML models. How­
ever, Reinforcement Learning (RL) cannot be classified
as ML­based. The contents generated by this approach
are not created by amodel but by agents instead. Charity
et al. (2020) classify these approaches as RL­based.

• Content Authorship defines the degree of human in­
terference in the generative process. An approach is au­
tomatic generation when only the computer generates
the content. Alternatively, it is mixed­initiative when it
allows the designer (or the gamer) to have finer con­
trol over content (not only by parameters) that is being
generated. Usually, mixed­initiative programs are dedi­
cated to increasing the productivity of game designers.

2.3 Solution Strategies
In this section, we present an overview of the solution strate­
gies from the papers selected for this survey. We begin with
the Cellular Automata (CA). CAs were created as a model of
biological self­reproduction (Wolfram, 1983). A CA­based
algorithm follows a set of rules to define cell­state transitions
based on the cells’ neighbors in a grid (Adams and Louis,
2017). In PCG, CAs have been adapted to generate game lev­
els (Johnson et al., 2010); in particular, they work quite well
to create cavern­like levels.

Generative Grammars (GG) are systems of grammatical

Procedural Dungeon Generation: A Survey Viana and dos Santos 2021

rules that generate words (Chomsky, 2006). Based on GGs,
other kinds of grammars have been developed, e.g., Graph
and ShapeGrammars. GraphGrammars define rules for node
and edge transformations in order to generate new graphs
(Rozenberg, 1997). The graphs generated by these systems
can be used to generate several types of game content, e.g.,
the works of Lavender and Thompson (2017) and van der
Linden et al. (2013). On the other hand, Shape Grammars de­
fine rules that transform geometric two­ or three­dimensional
shapes (Halatsch et al., 2008). This kind of GG is suitable for
the generation of level layouts.

Voronoi Diagram (or Voronoi Tessellation) is a method of
dividing space into regions based on a set of points (Voronoi,
1908). This method is applicable in several fields. In PCG,
however, it is mostly used for the generation of terrains
(Olsen, 2004). Delaunay Triangulation is a technique that
triangulates the space based on a set of points (Delaunay
et al., 1934). This technique was also used to generate ter­
rains (De Kok et al., 2007).

Since PCG can be interpreted as Constraint Satisfaction
Problems (CSPs), we can use search algorithms to generate
content – these are the search­based PCG approaches. Sim­
ulated Annealing is a metaheuristic based on annealing in
metallurgy. This technique involves heating and controlled
cooling of a material (Van Laarhoven and Aarts, 1987). Evo­
lutionary Computation is a family of algorithms based on
theories of evolution. They are widely used for PCG pur­
poses. The most common is the Genetic Algorithms (GA),
a metaheuristic that is based on the neo­Darwinian theory of
evolution (Gendreau et al., 2010). GAs evolves lists that are
usually represented as strings. Similar to the latter approach,
there is Genetic Programming (GP) that evolves individuals
represented as syntax trees (Gendreau et al., 2010). There is
also an approach that evolves two populations of feasible and
infeasible individuals, FI2Pop GA (Kimbrough et al., 2005).

Still in evolutionary computation, a new subclass has
emerged, the Quality Diversity (QD) algorithms. This new
paradigm prioritizes the search for a set of diverse indi­
viduals first and then maximizes their quality (Pugh et al.,
2016). QD approaches are especially interesting for PCG
due to the content variety provided by them. No wonder that
some researchers started to explore QD algorithms on their
PCG solutions, as reviewed by Gravina et al. (2019). Some
QD algorithms are: Deluged Novelty Search Local Compe­
tition (DNLSC); MAP­Elites, and; Constrained MAP­Elites
(a combination of MAP­Elites and FI2Pop GA).

PCG approaches also have been developed using solver­
based solutions. Answer Set Programming (ASP) is a kind of
declarative logic programming created to solve search prob­
lems (Smith et al., 2018). Since, as we said, PCG problems
can be mapped as search problems, ASP may be a useful tool
for generating content. Some content constraints – e.g., level
layout constraints – can also be interpreted as integer linear
constraints. Therefore, the generation of these kinds of con­
tents can be solved by Satisfiability Modulo Theories (SMT)
solvers. Whitehead (2020) describes this approach better and
its use of STM for PCG purposes.

Regarding the PCG ML paradigm, several approaches
models can be used directly to generate game content (Sum­
merville et al., 2018). However, in this survey, we are in­

terested only in Generative Adversarial Networks (GAN).
GANs are generative models that are trained to produce con­
tent based on the learned content (Gutierrez and Schrum,
2020). As for RL­based algorithms, we found a work that
used Reinforcement Learning (RL) to create agents that are
used to generate content (Sutton and Barto, 2018).

It is worth mentioning that some works based on construc­
tive approaches have exclusive steps that depend only on the
content type. These exclusive algorithms are usually based
on the random or constrained random placement of game
spaces. For instance, the Drunkard’s Walk (or RandomWalk
Simulation) in PCG may work as a digger to create levels.

Finally, all of the described strategies can be combined to
take benefit of their advantages. Hybrid approaches act in a
way to generate different contents or the same content in dif­
ferent steps of the generative process. For instance, a hybrid
approach can generate level sketches using Graph Grammars
and generate level rooms using CA rules using previously
generated sketches (Gellel and Sweetser, 2020).

3 Survey
We carried out this survey based on the guidelines of the Pre­
ferred Reporting Items for Systematic Reviews and Meta­
Analyses (PRISMA) model (Moher et al., 2009; Liberati
et al., 2009). Such methodology is widely applied in sev­
eral research fields for gathering comprehensive literature re­
views (Harper et al., 2021; Moray et al., 2021; Assadi et al.,
2020; Masotta et al., 2020). The PRISMA states the follow­
ing steps to perform a systematic literature review: (1) lit­
erature search; (2) selection of eligible papers; and (3) data
extraction and summarizing.

We collected data from Scopus1, ACM Digital Library2,
and IEEEXplore3. Table 1 presents search terms divided into
three groups we defined to compose the search string: PCG,
level, and game.

Table 1. Search terms. The terms were divided into three groups we
defined to compose the search string: PCG, level, and game

PCG Group Level Group Game Group

PCG Dungeon Game
Procedural Generation Labyrinth
Procedural Content Generation Maze
Procedural Generated Content Cave
Level Generation Cavern
Procedural Level Generation Rogue­like
Automatic Generation

Procedural Dungeon Generation
Procedural Playable Cave
Procedural Playable Cavern

We build the search string by connecting each word from
each term group with the boolean operator OR. Then, we
combined the exclusive term of PCG and Level group with
the operator AND and, then, the shared terms with OR. Fi­
nally, we combined the resulting string with the Game group
with AND. Below, we present the final search string.

1Scopus: https://www.scopus.com/.
2ACM Digital Library: https://dl.acm.org/.
3IEEE Xplore: https://ieeexplore.ieee.org/.

https://www.scopus.com/
https://dl.acm.org/
https://ieeexplore.ieee.org/

Procedural Dungeon Generation: A Survey Viana and dos Santos 2021

(((PCG OR “Procedural Generation” OR “Proce­
dural Content Generation” OR “Procedural Gener­
ated Content” OR “Level Generation” OR “Procedu­
ral Level Generation” OR “Automatic Generation”)
AND (Dungeon OR Labyrinth OR Maze OR Cave
OR Cavern OR Rogue­like)) OR (“Procedural Dun­
geon Generation” OR “Procedural Playable Cave”
OR “Procedural Playable Cavern”)) AND Game

To validate the search string, we verified whether the top 3
most relevant papers of the PDG scenario were returned as
a valid result. These target papers are: Togelius et al. (2011)
because this paper introduced the PCG taxonomy, and it is
widely cited by the PCG papers; van der Linden et al. (2014)
because it was the first survey on PDG; and, Johnson et al.
(2010) because it is one of the most cited papers on the PDG
scenario. Despite this, we are aware that the use of a search
string has its own limitations. It is not possible to ensure that
all the possible papers related to the subject we are interested
in will be captured with a search string.

We selected conference and journal papers published in
the last ten years (2010 to October 2020) in which their title
and abstract specifically mention the generation of dungeon,
cave, or maze­like levels. We also selected works that gener­
ated levels similar to the dungeons as defined by van der Lin­
den et al. (2014) and used the GVG­AI framework4 to gen­
erate dungeon systems of Zelda­like games. Although one
may argue that mazes are a type of labyrinths, we discarded
any work that strictly generated mazes because they have a
slightly different type of level structure. Mazes are puzzles
that mainly create a labyrinthine path connection between
a starting point and an end point, while dungeons are more
complex environments that present rooms, doors, floors, en­
emies, among others (van der Linden et al., 2014). From now
on, we call all of them just dungeon levels.

The search and the selection process resulted in a total 41
papers, 3 of which described and compared more than one
dungeon generation approach. Therefore, this pool yielded a
total of 52 different approaches for dungeon generation. The
data we collected from these 41 papers were: the game genre;
the game space, type of level that is generated (i.e., either the
entire level layout or just a sketch); the level dimensionality;
the level representation; the type of solution strategy to gener­
ate dungeons; the categories of the PCG taxonomy; and, the
game features. The description for each of these data items
was provided in Section 2. To classify the approaches’ game
genre, dimensionality, representation, and game features of
the levels generated by the works as follows: (1) based on
what the authors themselves wrote (self­classification); (2)
based on the methodology used by the works; and, (3) based
on the images provided in the works. The Tables 2, 3 and 4
summarizes the collected data. In the following subsections,
we present these data in detail.

3.1 Solution Strategy Classification
Game genre From the 41 papers, 18 of them described so­
lutions target at specific game genre, whereas the rest were

4GVG­AI (General Video Game AI) is a framework for AI competi­
tions (http://www.gvgai.net/).

game genre­agnostic. Only six of them specified the game
the solutions were developed for (van der Linden et al., 2013;
Baghdadi et al., 2015; Lavender and Thompson, 2017; Kar­
avolos et al., 2016; Gutierrez and Schrum, 2020; Charity
et al., 2020), and only the works from Pereira et al. (2018),
Sheffield and Shah (2018), Goandy et al. (2020) and Gutier­
rez and Schrum (2020) developed game prototypes to collect
player’s feedback about the level quality.
Level space A total of 25 papers generated directly the
level layout. Valtchanov and Brown (2012), van der Lin­
den et al. (2013), Karavolos et al. (2016), Forsyth (2016),
Hell et al. (2017), Smith et al. (2018), Pereira et al. (2018),
and Sheffield and Shah (2018) generated only the level
sketches. However, only Forsyth (2016), Hell et al. (2017),
and Smith et al. (2018) did not present a level translator for
the level sketches they generated or translations to an existing
game. The remaining papers presented solutions that gener­
ated both, first a sketch and then the level layout (Dormans
and Bakkes, 2011; Smith and Bryson, 2014; Baghdadi et al.,
2015; Lavender and Thompson, 2017; Liapis et al., 2015;
Nepožitek and Gemrot, 2018; Gutierrez and Schrum, 2020;
Gellel and Sweetser, 2020).
Level dimensionality A total of 30 papers presented so­
lutions exclusively target at 2D dungeon level generation.
For instance, Figure 1a, Figure 1b and Figure 1c presented
examples of 2D dungeon levels generated by Lavender and
Thompson (2017), Liapis (2017) and Baghdadi et al. (2015),
respectively. Just Antoniuk et al. (2018) proposed the use
of Shape Grammars, which is capable of generating 3D
dungeon levels. Santamaria­Ibirika et al. (2014) and Baron
(2017) described solutions that worked both 2D and 3D lev­
els. Santamaria­Ibirika’s work is based on Voronoi Diagram
and Delaunay Triangulation, enabling a less artificial level
generation. Figure 2b presents an example of a level gener­
ated with their approach. The Baron’s work, however, does
not generate true 3D levels. Instead, it generates a 2D text­
based sketch which undergoes an extrusion process to be­
come a 3D level (see Figure 3). Finally, the works from
Valtchanov and Brown (2012), van der Linden et al. (2013),
Karavolos et al. (2016), Pereira et al. (2018), and Sheffield
and Shah (2018) generated level sketches and translated them
into levels. van der Linden et al. (2013) and Karavolos et al.
(2016) translated the sketches into 3D levels. Note, how­
ever, that these two works, in fact, did not generate true 3D
structures. Rather, they laid out 2D generic structures (called
sketches) and then connected 3D chunks (rooms) previously
created by a human designer based on these sketches. Both
works generated levels for Dwarf Quest (Wild Card Games,
2013). Figure 4 presents examples from each paper. Finally,
Forsyth (2016), Hell et al. (2017), and Smith et al. (2018) gen­
erated a high level representation (sketches) for a dungeon
level that could neither be classified as 2D nor as 3D.
Level representation We identified 23 papers that rep­
resented their levels as grids. Liapis (2017), for instance,
represented both the dungeon level and its rooms as grids.
van der Linden et al. (2013), Forsyth (2016), Hell et al.
(2017) and Smith et al. (2018) expressed the levels they gen­
erate as graphs, all of them created levels sketches and only
van der Linden et al. (2013) translated them into real levels.
Santamaria­Ibirika et al. (2014), Antoniuk et al. (2018) and

http://www.gvgai.net/

Procedural Dungeon Generation: A Survey Viana and dos Santos 2021

Whitehead (2020) represented their levels directly as shapes.
Pereira et al. (2018) and Valtchanov and Brown (2012) de­
scribed their levels as trees. Some works presented combi­
nations of different representations. Ashlock and McGuin­
ness (2014), Lavender and Thompson (2017), Karavolos
et al. (2016), Alvarez et al. (2018), and Gellel and Sweetser
(2020) use grids and graphs to represent the level. How­
ever, Ashlock et al. (2011a) generate the level as a grid and
then extract the room adjacency graph to populate the level.
The other authors generated missions as sketches to the lev­
els. Dormans and Bakkes (2011) and Nepožitek and Gemrot
(2018) represented level sketches as graphs and then gener­
ate the level shapes based on them. Smith and Bryson (2014)
represented their levels as Answer Sets, working as sketches,
and grids (the result of the solved Answer Sets). Gutierrez
and Schrum (2020) generated both levels and their rooms,
the level sketches are represented by graphs and converted
into grids, and the rooms are directly represented as grids.
Algorithm strategy A group of 16 papers described
evolutionary­based approaches, as follows: 5 papers relied
on GA (Ashlock et al., 2011a,b; McGuinness and Ashlock,
2011; Ashlock and McGuinness, 2014; Baghdadi et al.,
2015), 5 on FI2Pop GA (Liapis et al., 2015; Liapis, 2017;
Baldwin et al., 2017a,b; Alvarez et al., 2018) 2 on GP
(Valtchanov and Brown, 2012; Pereira et al., 2018), 2 on
Constrained MAP­Elites (Alvarez et al., 2018; Charity et al.,
2020), 1 on DNSLC (Melotti and deMoraes, 2018), and 1 on
a general EA (Karavolos et al., 2016).

Another group of 15 presented distinct solutions, as fol­
lows. Johnson et al. (2010) suggested CA­based algorithms
capable of generating infinite cave­like dungeon levels in
real­time. van der Linden et al. (2013) created a Graph Gram­
mar approach (Gameplay Grammar) that generates a mis­
sions’ graph, which aims to build the level. Forsyth (2016)
developed an algorithm that generates level sketches by sim­
ply placing rooms randomly. Hell et al. (2017) proposed an
algorithm that generates level sketches from the expansion of
a graph, representing the level sketch. Hilliard et al. (2017)
introduced two algorithms: Span* that generates a set of ran­
dom points which becomes rooms and connect them with
Prim’s algorithm (Prim, 1957); and Growth that generates
a level by a set of points which becomes rooms, and new
random rooms are connected with them. Baron (2017) pre­
sented five different algorithms, which are combinations of
Room­Generation and Corridor­Generating algorithms: Ran­
dom Room Placement and Random Point Connect; Random
Room Placement and Drunkard’s Walk; Binary Space Par­
titioning (BSP) Room Placement and Random Point Con­
nect; BSP Room Placement and Drunkard’s Walk; and SP
Room Placement and BSP Corridors. Like Baron, Sampaio
et al. (2017) presented a solution to level generation derived
from Random Placement of rooms and corridors. Smith et al.
(2018) implemented an ASP program capable of generating
sketches as graphs for dungeon levels. Nepožitek and Gem­
rot (2018) applied Simulated Annealing search to find the
best fit of room shapes for dungeon levels from graphs as
sketches. Sheffield and Shah (2018) created RL agents to per­
form digging and distribute game features in a grid. Like the
latter, Goandy et al. (2020) used a digger to generate dungeon
levels, but they used the Drunkard’s Walk algorithm instead.

Antoniuk et al. (2018) introduced a L­system (Shape Gram­
mar) solution for the creation of 3D dungeon levels. Green
et al. (2019) combined three algorithms for level creation
(creators) and three for object placement (furnishers). Each
set of algorithms is constraint­based, CA­based, and agent­
based. Finally, Whitehead (2020) created SMT formulas and
applied SMT solvers to distribute rooms of different sizes.

The last group of 11 papers employed hybrid approaches
to generate dungeon levels. Togelius et al. (2012) presented
a combination of ASP programs that generate the dungeon
levels, with an EA that evolves values that define the level
(e.g., level height and width). While the ASP is responsi­
ble for ensuring level viability (well­formedness, playabil­
ity, and winnability), the EA evolves level values to optimize
the challenge and skill differentiation. Dormans and Bakkes
(2011) and Lavender and Thompson (2017) generated mis­
sions fromGraph Grammars and then generated the dungeon
levels with Shape Grammars. Similarly, Smith and Bryson
(2014) generate ASP programs and run them in a Python
solver to generate dungeon levels. Santamaria­Ibirika et al.
(2014), as we already said, use Voronoi Diagram and De­
launay Triangulation algorithms to dig volumes and place
game elements. Ashlock (2015), Pech et al. (2015), Pech
et al. (2016) and Kreitzer et al. (2019) used GA to evolve
CA rules which generate the dungeon levels. More specifi­
cally, CA rules generate the maze­like dungeon levels, while
the GA evolved the CA rules to satisfy some level’s con­
straints. Gutierrez and Schrum (2020) generated missions us­
ing Graph Grammars and use them as sketches to generate
the dungeon levels. Moreover, they also applied GANs to
generate the layout of each room of the levels. Finally, Gellel
and Sweetser (2020) also generated missions by using Graph
Grammars. To generate the levels, however, they introduced
a new CA­inspired solution and applied a heuristic to maxi­
mize the quality of the levels.

The division of responsibility in generative processes is a
common feature in constructive approaches. However, due
to the high number of contents or the level representation,
one search­based algorithm relies on this feature to facilitate
its development and improve its results. Liapis (2017) intro­
duced two similar search­based algorithms: the first one gen­
erates the dungeon sketch, and the second generates the rest
of the dungeon (the dungeon rooms).

3.2 Taxonomy Classification
In this section, we analyze the papers in terms of Togelius’
PCG taxonomy. We decided not to consider the Content Re­
quirement category in this survey because this is a difficult
feature to identify just by reading the paper and not actually
playing the game.
Outcome Randomness Only three papers were clearly
deterministic (Sampaio et al., 2017; Smith et al., 2018;
Goandy et al., 2020). The remaining papers had stochastic
approaches. This result is somehow expected since it is more
interesting to generate different contents – dungeon levels in
this case – to increase the replayability of the game. However,
deterministic approaches may present useful applications in
the game context. For instance, mixed­initiatives software
could implement undo functionality without saving all the

Procedural Dungeon Generation: A Survey Viana and dos Santos 2021

(a) Rooms of a dungeon generated by Antoniuk et al. (2018). (b) Slice of a cave generated by Santamaria­Ibirika et al. (2014).
Figure 2. 3D dungeons.

(a) 2D dungeon. (b) 3D dungeon.
Figure 3. Dungeon levels generated by Baron (2017).

(a) Dungeon generated by van der Linden et al. (2013). (b) Dungeon generated by Karavolos et al. (2016).
Figure 4. Dungeon levels generated for Dwarf Quest.

previous suggestions. These suggestions could be recreated
by using the same set of parameters.
Generation Time All papers presented offline generation.
This result was also found by van der Linden et al. (2014).
The only work that might be considered online was Johnson
et al. (2010). They applied CA to generate cavernous dun­
geons in real­time. However, there is no information about
the level being generated during gameplay in their paper.
Clearly, we need to begin to explore processing efficient on­
line solutions since it has the advantage of saving memory as
the content is generated while the player is progressing.
Generation Control Only two papers presented solutions
with random seeds as the only dimension of the approach’s
generation control (Smith et al., 2018; Goandy et al., 2020).
The solution of Sampaio et al. (2017) has only two parame­
ters: the random seed, and the level difficulty value. The so­
lutions of the remaining papers were controlled by a set of pa­
rameters with more than two parameters. The overwhelming
choice for sets of parameters makes sense since they enable

the human designer to have finer control over the results.
Generality All but two presented solutions for generic
level generation. Only the papers from Alvarez et al. (2018)
and Alvarez et al. (2019) were adaptive in the sense that
a human designer is responsible for selecting levels to be
“evolved” by the automatic process, edit and evolve to main­
tain the designer’s level aesthetic. Both works are from the
same research group. To maintain the human designer aes­
thetics, their software – the Evolutionary Dungeon Designer
(EDD), see Figure 5 – present the option of “freeze” cells
of the grid, so they do not be able to evolve. Ultimately, the
human designer decides when the generation process stops.
Nonetheless, the existence of only two papers on the adaptive
approach does not mean that the generic approach generates
perfect solutions. There are still some game features that in­
fluence the level structure and, therefore, might be generated
in conjunction with the dungeon level.
Generation Method We have identified 29 generate­and­
test solutions. Ensuring dungeon levels’ consistency is a chal­

Procedural Dungeon Generation: A Survey Viana and dos Santos 2021

Figure 5. Evolutionary Dungeon Designer by Alvarez et al. (2019).

lenging task for PCG since it is necessary to perform consis­
tency tests to ensure the generated level is playable. That is
why this approach is often much more computationally ex­
pensive than constructive approaches. Within these 29 pa­
pers, 17 papers are solely search­based generative processes
– e.g., Pereira et al. (2018). Nine of the generate­and­test
works are hybrid, with emphasis on the works of Pech et al.
(2015), Ashlock (2015), Pech et al. (2016) and Kreitzer et al.
(2019) that hybridize a search­based approach (GA) with a
constructive approach (CA). One of the hybrid works pre­
sented a ML­based solution for dungeon generation together
with a CA­inspired approach. The other hybrid works present
a simple test stage in their approach. The remaining papers
are constructive solutions, and most of them are based on ex­
clusive algorithms.
Content Authorship The automatic generation dominates
over mixed­initiative. Only four papers presented solutions
for mixed­initiative PCG software (Baldwin et al., 2017a,b;
Alvarez et al., 2018, 2019). These four papers are all from
the same research group. All of them present the same tool,
the EDD. Their tool enables the human designer to (1) edit a
level that was automatically generated, (2) observe this level
evolve into a set of possible levels, (3) choose the best one,
and, if necessary, (4) repeat the evolutionary cycle until he
or she is satisfied. Figure 5 presents the EDD tool developed
by their research group.

3.3 Game Features Classification
In this section, we list the quantitative results that account
for the presence of the game elements described earlier in
Section 2.1.

Recall that a dungeon is ideally composed of rewards,
challenges, and puzzles. However, the results show us that
most works, 31 out of 41, do not present solutions that si­
multaneously generate levels with all these game features5.

5Note that, in this context, we are considering the barrier mechanics as
a type of puzzle.

When we examined which works were capable of creating
dungeons with puzzles, rewards, and challenges, we identi­
fied these possibilities:

• Solutions that only generate puzzles: a total of 9 pa­
pers presented solutions for generating puzzles (Dor­
mans and Bakkes, 2011; van der Linden et al., 2013;
Lavender and Thompson, 2017; Karavolos et al., 2016;
Smith et al., 2018; Pereira et al., 2018; Sheffield and
Shah, 2018; Gutierrez and Schrum, 2020; Gellel and
Sweetser, 2020), and only 3 papers, namely Karavo­
los et al. (2016), Smith et al. (2018), and Gutierrez and
Schrum (2020), are capable of creating other puzzles
besides the barrier­style puzzle.

• Solutions that only offer rewards and challenges: the
work of Hell et al. (2017) only offers rewards, whereas
Togelius et al. (2012) andMelotti and de Moraes (2018)
created dungeons that only offer challenges. A total of
12 works are capable of creating levels with both re­
wards and challenges. They are: Ashlock and McGuin­
ness (2014); Smith and Bryson (2014); Santamaria­
Ibirika et al. (2014); Liapis et al. (2015); Baghdadi et al.
(2015); Liapis (2017); Baldwin et al. (2017b,a); Sam­
paio et al. (2017); Alvarez et al. (2018, 2019); Green
et al. (2019).

• Solutions that offer all three elements, puzzles, rewards,
challenges, simultaneously: Dormans and Bakkes
(2011), van der Linden et al. (2013), Lavender and
Thompson (2017), Karavolos et al. (2016), Smith et al.
(2018) and Sheffield and Shah (2018) presented levels
with all three elements, if we consider barriers as puz­
zles. Although Charity et al. (2020) also generated lev­
els with rewards, challenges, and barrier puzzles, they
actually generated rooms, not entire levels as such. It is
worth mentioning that only a few of these works pro­
vided finer control over the number of rewards or chal­
lenges.

Another relevant aspect we were interested in was to un­

Procedural Dungeon Generation: A Survey Viana and dos Santos 2021

(a) Level without door distinction. (b) Level with door distinction.
Figure 6. Examples of dungeon sketches generated by Pereira et al. (2018).

Figure 7. Example of a sketch generated by Smith et al. (2018).

derstand how solutions control the level of difficult of their
created levels. We found out that 10 works presented solu­
tions that consider the level difficulty as input information
while generating a level (Dormans and Bakkes, 2011; van der
Linden et al., 2013; Baghdadi et al., 2015; Forsyth, 2016;
Hell et al., 2017; Baldwin et al., 2017b,a; Sampaio et al.,
2017; Alvarez et al., 2018, 2019). All these works support
control over the level’s difficulty by setting a difficulty value.

Providing control over the level of difficulty of dungeons
automatically generated by an algorithm may be considered
a valuable asset for game designers. They would naturally
appreciate having some influence over the outcome of these
algorithms since the level difficulty is a feature that often di­
rectly impacts the player’s overall experience while playing
a game.

The next aspect we wanted to consider is the insertion of
barriers in a level as a gameplay mechanics. We learned that
just 9 papers presented a level generator that supports barrier
mechanics. There were two types of barriers: (1) a barrier
that needs only one key to be unlocked, and; (2) several bar­
riers that are opened by a single key. The first kind of barrier
was presented as a door (a barrier) that needs only one key
to be unlocked in Dormans and Bakkes (2011); van der Lin­
den et al. (2013); Lavender and Thompson (2017); Karavolos
et al. (2016); Pereira et al. (2018); Sheffield and Shah (2018);
Gutierrez and Schrum (2020); Gellel and Sweetser (2020).
These works present solutions that generate dungeon levels
with barriers that are opened with corresponding keys, as de­
picted in Figure 6 by the color association between doors and
keys (Pereira et al., 2018).

All other papers did not focus on the barrier mechanics per
si. Instead, they treated it together with other kinds of con­
tent, such as missions. Thus, some interesting characteristics
of this mechanic could not be properly explored. In contrast,
Smith et al. (2018) generated both the first and the second
kinds of barriers (Figure 8a). For the second one, the player
needs to take a bow (a weapon that works as a key) to defeat
enemies (they work as barriers). Since Charity et al. (2020)
generated only rooms and not entire levels, we could not clas­
sify the generated doors and keys of their work as barriers.

Barriers are clearly a promising research topic because
they play an important role in engaging the player: overcom­
ing barriers requires skill (to acquire the keys) and planning
(to figure out the sequence of keys that open up the barriers).

One more aspect we were concerned with was the 2D dun­
geon structures. Here is what we discovered:

• A total of 27 works presented solutions for the genera­
tion of top­down cavern­like dungeons.

• Just 8 works generated top­down mansion­like dun­
geon (TDML); these solutions were introduced by
Valtchanov and Brown (2012), van der Linden et al.
(2013), Lavender and Thompson (2017), Karavolos
et al. (2016) Pereira et al. (2018), Sheffield and Shah
(2018), Gutierrez and Schrum (2020) and Gellel and
Sweetser (2020).

• Just Baghdadi et al. (2015) created side­scrolling (SS)
dungeons (Spelunky’s dungeons).

This result means that there is still much to explore in level
generation research of both TDML and SS dungeons.

The next aspect we analyze is how the papers addressed
the presentation of level spaces. Some approaches need to
distinguish the spaces of the levels they are generating so
that they can determine which game element will appear in
these spaces. A total of 13 papers fall in this category.Most of
them use this feature to control what kind of content (e.g., en­
emies, rewards, among others) will appear in the respective
area/room. However, the works presented different ways to
do this. Let us provide more details on that.

• Smith et al. (2018) introduced a solution that only differ­
entiates the nodes in the level sketch, e.g., the entrance
node, the boss’ node, enemy node, key node, among oth­
ers (Figure 7).

• Smith and Bryson (2014) presented rooms and corridors
with different shapes and connection directions (Fig­
ure 8a). Rooms may or may not contain rewards; how­
ever, this distinction is not presented visually in their
work.

• Baghdadi et al. (2015) distinguish the chambers of their
levels by defining: the entrance, the exit, where the
bomb is, and where the princess is (Figure 8b).

• Santamaria­Ibirika et al. (2014), after creating the cham­
bers, distinguish the rooms to perform later the game
elements’ placement, e.g., rewards and enemies (Fig­
ure 8c).

• Ashlock (2015) and Kreitzer et al. (2019) (Figure 8d)
generate levels with different types of terrains, e.g., a
level with ground, water, and lava.

Procedural Dungeon Generation: A Survey Viana and dos Santos 2021

(a) Rooms of levels by Smith and Bryson (2014). (b) Sample of a level sketch by Baghdadi et al. (2015). (c) Dungeon by Santamaria­Ibirika et al. (2014).

(d) Level by Ashlock (2015). (e) Level by Kreitzer et al. (2019). (f) Level patterns by Baldwin et al. (2017a).

(g) Level by Valtchanov and Brown (2012). (h) Level by Ashlock and McGuinness (2014).

(i) Level by Gellel and Sweetser (2020). (j) Level generated by Liapis (2017).
Figure 8. Some works that presented area or room distinction in their levels.

Procedural Dungeon Generation: A Survey Viana and dos Santos 2021

• Baldwin et al. (2017b), Alvarez et al. (2018) and Al­
varez et al. (2019) detect the type of room and uses this
information in their heuristics to evolve the levels (Fig­
ure 8f). The rooms in their work can become an am­
bush area (only enemies in a dead­end), a guard cham­
ber (only enemies), a treasure chamber (only treasure),
or a heavily guarded treasure chamber (a room full of
enemies and treasure).

• Valtchanov andBrown (2012) is designed to identify the
entrance and event rooms, in single rooms or in regions
(Figure 8g).

• Ashlock and McGuinness (2014) assign areas to the
level’s components such as the entrance, armory, and
location of enemies, e.g., goblins and magical beings
(Figure 8h).

• Gellel and Sweetser (2020) distinguish their levels by
what they call subsections. Since they generate levels
with barriers, the keys must be placed to be collected
by the player and reach all the level’s rooms. Therefore,
the definition of subsections is a feature that assists their
approach to ensure the reachability of keys.

• Finally, Liapis (2017) creates eight different types
of rooms (which he called segments): wall segment
(blocked for the player); empty segment (just an empty
room, with no monsters or treasures); simple segment
(a room with few monsters and treasures); exit segment
(a room with the level’s exit); sparse challenge segment
(contains more monsters than rewards); sparse reward
segment (contains more rewards than monsters); high
challenge segment (ops, only monsters here!); and high
reward segment (bingo! just rewards). Liapis also dis­
tinguishes rooms based on the type of connection they
support (see Figure 8j).

4 Discussions
The data collected in this survey showed us that the search­
based approaches are popular in PDG research (Figure 9).
In particular, evolutionary algorithms are the most popular
approaches in dungeon generators, corresponding to 16 out
of 17 occurrences of the search­based approaches. This result
is somewhat expected since search­based approaches usually
try to ensure the feasibility of levels and optimize the quality
of them by, for instance, ensuring degrees of level linearity
(Pereira et al., 2018).

Within EA, Quality Diversity approaches are slowly be­
ginning to be explored in this area. This class of algorithms
focuses on diversity, increasing the variety of the generated
levels (Gravina et al., 2019). Constrained MAP­Elites is par­
ticularly interesting because they combine the QD approach
of MAP­Elites with the evolutionary structure of FI2Pop, an­
other strategy to increase diversity. Although ML­based ap­
proaches are also promising since there are very successful
uses of learningmodels in other areas, we found out just a sin­
gle paper that implements such a solution for PCG (Gutierrez
and Schrum, 2020). Since one of the PCG goals is to increase
replayability, most works should explore these techniques to
ensure a good variety of dungeons.

Just a handful of solutions presented solver­based meth­

Figure 9. Number of works by solution strategy.

ods in some stages of their generative process. This result
might be explained by the fact that these solutions are often
developed with logic­based programming languages, which
are not as popular as, say, imperative or object­oriented lan­
guages. Nevertheless, exclusive constructive approaches are
still being explored. Clearly, this has to continue since these
approaches are faster than the others since they do not per­
form tests to evaluate the content they generate.

As Whitehead (2020) described, the dungeon generative
process is composed of: (1) mission generation; (2) layout
generation, and; (3) interior decoration and layout of rooms.
The missions work as sketches to generate the level layout
and, sometimes, to determine the content that will be present
in the interior of rooms. However, as we observed in our sur­
vey, these steps may appear combined in some approaches.
For instance, Charity et al. (2020) generated the room layout
and placed challenges and rewards.

An aspect interesting explored by the solution introduced
by Liapis (2017) was the division of responsibility in its gen­
erative process. He combined two search­based approaches
to perform the generation in different stages of the generative
process in his solution. He could easily add another stage that
could perform the generation of another kind of content. For
instance, he could add the generation of barriers. However,
since Liapis’ approach represents its levels as grids, it could
be hard to ensure his levels’ feasibility. We believe that a so­
lution similar to proposed by Gellel and Sweetser (2020) –
called subsections – could help with this problem.

In terms of the game genres, most works disassociate the
level generation from the game genre (Figure 10). We ob­
served that the works that defined the game genre a priori
narrowed down the contents and constraints involved in the
level generation process. For instance, Platform Rogue­like
games, e.g.,DeadCells (Motion Twin, 2018), are structurally
different from Top­Down Rogue­like games, e.g., Moon­
ligher (Digital Sun, 2018). The former needs ladders, which
are intrinsically related to the level structure, to allow the
player to access other areas, while the latter does not require
such a feature. Moreover, these games also present different
strategies for the placement of challenges, rewards, and puz­
zles in games. Therefore, different strategies could prioritize
the placement of these features.

On the other hand, general approaches are interesting since
they can deal with the content generation of multiple game
genres. However, there are also drawbacks in using general
approaches such as performance loss, and too general con­

Procedural Dungeon Generation: A Survey Viana and dos Santos 2021

0

5

10

15

20

25

Figure 10. Number of works by game genre.

Figure 11. Number of works by level representation.

Figure 12. Number of works by level dimensionality. The ‘*’ occurrences
mean that the work only performed a translation from a generated sketch to
a level layout.

straints may be hard to develop in a single approach. For
instance, Pereira et al. (2018) evolved levels represented as
trees to ensure the barrier mechanics’ feasibility. Ideally, the
levels should be represented as graphs to allow the pres­
ence of cycles, but this can lead to problems of level feasi­
bility. This problem remains unsolved because Smith et al.
(2018) generated acyclic dungeon levels although they ap­
plied graph representation.

With respect to the level representation of dungeons, the
most common is the grid (Figure 11). Most of the works di­
rectly generated the layout of 2D levels (Figure 12). Other
papers first generate sketches before creating the level lay­
out. All works produced some kind of planar sketches, i.e.,
2D sketches. Here we observe that the dungeon sketch gener­
ation may be extended by producing 3D structures to create
dungeons of similar levels as “The Legend of Zelda” dun­

geons (Nintendo, 1986) or Pokémon dungeons (Nintendo,
1996) – at least the games from GBA. These dungeons con­
tain multiple floors, which increases the labyrinthine degree.
The works proposed by Santamaria­Ibirika et al. (2014) and
Antoniuk et al. (2018) are the only two that yield truly 3D
dungeons. Both works represented their dungeons as shapes.
Only Santamaria­Ibirika et al. (2014) generated levels with
enemies and treasures. However, both works do not support
other game features, such as puzzles or barriers. Furthermore,
dimensionality is not always a matter of visual representa­
tion only. There are mechanics that are intrinsically related
to how the player interacts with the level that was not ex­
plored by these works. For instance, vertical paths, 3D verti­
cal exploration (jumping between floors or climbing walls),
3D puzzles, barriers, among others.

As for the dungeon features, as defined by van der Linden
et al. (2014), only six works generated rewards, challenges,
and puzzles (Dormans and Bakkes, 2011; van der Linden
et al., 2013; Lavender and Thompson, 2017; Karavolos et al.,
2016; Smith et al., 2018; Sheffield and Shah, 2018). Themost
uncommon feature of all works was the puzzles. Some au­
thors probably decided to focus on other dungeon features,
but the puzzle generation is also a challenge in PCG, as sur­
veyed byDeKegel and Haahr (2019). For instance, DeKegel
and Haahr (2019) present the generation of Sokoban puzzles
as a tough challenge. Furthermore, Sokoban­like puzzles also
appear in dungeons of games, e.g., The Legend of Zelda dun­
geons (Nintendo, 1986) or Pokémon dungeons (Nintendo,
1996). Therefore, generate dungeons is not trivial, especially
when it involves puzzles.

In relation to the outcome randomness in PDG, only Sam­
paio et al. (2017), Smith et al. (2018) andGoandy et al. (2020)
proposed deterministic solutions for PDG. Even though vari­
ety is a goal in PCG, deterministic may become very useful
for mixed­initiative software. For instance, a deterministic
generator could allow the software to have a undo function­
ality that saves RAM memory since it is not necessary for
saving all the previous suggestions.

Online PDG remains a mostly unexplored problem, as ear­
lier observed by van der Linden et al. (2014). According to
them, it is the nature of the dungeons’ environment since they
usually have a fixed final goal to reach, e.g., a boss or the
dungeon exit. Yet, this does not mean that we should not be
exploring new forms of dungeons in games, such as an “End­
less Dungeon Crawling”. In short: exploring online solutions
in dungeon generation may payoff somehow.

Concerning the Content Authorship, only Baldwin et al.
(2017a), Baldwin et al. (2017b), Alvarez et al. (2018) and Al­
varez et al. (2018) (who belong to the same research group),
presented the progress of their solution (EDD) for mixed­
initiative approach. Considering the definition of dungeons
we presented earlier, we suggest adding puzzles and barrier
mechanics features or providing support for SS dungeons as
an extension for this work. Alvarez et al. (2018) and Alvarez
et al. (2019) also were the only authors that presented so­
lutions for adaptive dungeon generation. Their work used
area/room distinction and geometric patterns to help with
the adaptive generation. Besides, they provide a feature to
“freeze” cells in a grid (a dungeon’ room), these cells cannot
evolve, and the system uses this information to learn the de­

Procedural Dungeon Generation: A Survey Viana and dos Santos 2021

✓

Figure 13. Number of works that generated levels with barriers. The ‘*’ oc­
currences mean that the paper was not clear in the respective classification.

Figure 14. Number of works by level structure.

signer aesthetics. To extend this functionality, they could al­
low the designer to select cells from the suggestions of rooms
which s/he wants to appear in other new. Another appealing
feature they can add to their software is using a ML­based
approach to learn the final version of the levels and improve
the suggestions. The latter approach would be more interest­
ing if the model comprehends the differences in the levels’
difficulty.

The control over the levels’ difficulty is an essential fea­
ture of a dungeon generator, even though we notice that few
works supported this feature. To employ generators in real
games, game developers and designers must produce subse­
quent levels with increasing difficulty. The same can be con­
sidered with rewards; they must be placed in strategic loca­
tions to encourage players to explore the levels. However, too
many rewardsmake the game seem too easy or evenmake the
player devalue the rewards. As we observed, area/room dis­
tinction is a promising way to control game features like dif­
ficulty and rewards. For instance, this concept was greatly ap­
plied by Liapis (2017). He generated dungeons’ rooms with
different connections and content accordingly with the types
of rooms (Figure 8j), which presented different degrees of
rewards and enemies. Besides, this feature in generators also
may support the production of levels with different terrains.

Surprisingly, just 9 papers (from a total of 41 articles re­
viewed, see Figure 13) promote dungeons with barriers (Dor­
mans and Bakkes, 2011; van der Linden et al., 2013; Laven­
der and Thompson, 2017; Karavolos et al., 2016; Smith et al.,
2018; Pereira et al., 2018; Sheffield and Shah, 2018; Gutier­
rez and Schrum, 2020; Gellel and Sweetser, 2020), and only
Smith et al. (2018) proposed two different mechanics that

we can interpret as barriers: (1) a single barrier that requires
a single key to be unblocked, and; (2) several barriers that
require a single key to be unblocked. Here we can observe
two natural extensions of this mechanics: (1) a single barrier
that requires several keys to be unblocked, and; (2) several
barriers that require several keys to be unblocked. This ex­
tension is particularly interesting for generative grammars.
It is especially challenging if we consider that there might
be barriers in the path towards a key to other barriers. Sur­
prisingly, not a single work generated levels with these me­
chanics in a 3D level structure. Most of these works focused
exclusively on TDML dungeon generation (Figure 14), and,
again, new solutions that support barriers for TDCL or SS
dungeon levels might be promising. Finally, other kinds of
game features that are intrinsically related to the players’ in­
teraction with levels and affect gameplay progression should
also be explored. For instance, portals (Green et al., 2019),
spatial puzzles (De Kegel and Haahr, 2019), and climbing
(e.g., God of War (Sony, 2005)).

5 Conclusion
In this paper, we surveyed research papers on procedural dun­
geon generation. Our review indicates that there is a clear
preference for evolutionary algorithms for generating dun­
geon levels. This behavior probably happens due to the high
number of constraints that are involved in this process. We
identified that the quality diversity approaches just started to
be explored for dungeon generation. In terms of dungeon con­
tent, few papers presented solutions for dungeons as defined
by van der Linden et al. (2014). However, the main problem
is that the puzzle generation itself is a very complicated chal­
lenge (De Kegel and Haahr, 2019).

Here is a brief list of our main findings, which may indi­
cate potential research topics to pursuit in PDG: (1) the pro­
cedural generation of 3D dungeons needs more investigation
because it has the potential to support new gameplay expe­
riences; (2) a small number of works introduced solutions
for levels with the barrier mechanics, and; (3) a handful of
papers presented mixed­initiative solutions. In terms of re­
search topics, we underline the lack of more PDG solutions
that support barriers and their complexities, mainly when ap­
plied to TDML and SS dungeons. It may be inviting to ex­
plore the barrier mechanics applied in 3D structures. Finally,
we need to explore further adaptive and mixed­initiatives
approaches – not necessarily both together – because they
present the potential to generate complex and challenging
levels and increase the game designers’ creativity and pro­
ductivity involved in the creation process.

Since the survey made by van der Linden et al. (2014)
much has progressed in PDG research, and several works
crafted excellent solutions. Nonetheless, as we have ob­
served throughout this paper, the procedural generation of
dungeons still remains a complex problem. In Section 4, we
discuss some potential open problems and research sugges­
tions that might help in expanding the field.

It is worth mentioning that some works were somehow dif­
ficult to classify or grasp due to the lack of information. To
overcome these difficulties in the future, we encourage the

Procedural Dungeon Generation: A Survey Viana and dos Santos 2021

authors to: (1) define the game genre or the specific game for
which the level will be generated; (2) define the level struc­
ture (TDML, TDCL, SS, or any other); (3) highlight the gen­
erative process pipeline; (4) classify the solution based on the
Togelius’s PCG taxonomy (Togelius et al., 2016), and; (5) de­
fine the generation problem mathematically, when possible.
These suggestions will hopefully improve the overall under­
standing of the field and help us keep track of open problems,
and map important avenues of research.

Acknowledgements
Breno Maurício de Freitas Viana acknowledges the financial sup­
port of the National Council for Scientific and Technological De­
velopment (CNPq).

References
Adams, C. and Louis, S. (2017). Procedural maze level gen­

eration with evolutionary cellular automata. In Computa­
tional Intelligence (SSCI), 2017 IEEE Symposium Series
on, pages 1–8. IEEE.

Alvarez, A., Dahlskog, S., Font, J., Holmberg, J., and Johans­
son, S. (2018). Assessing aesthetic criteria in the evolu­
tionary dungeon designer. InProceedings of the 13th Inter­
national Conference on the Foundations of Digital Games,
page 44. ACM.

Alvarez, A., Dahlskog, S., Font, J., and Togelius, J. (2019).
Empowering quality diversity in dungeon design with in­
teractive constrained map­elites. In 2019 IEEE Confer­
ence on Games (CoG), pages 1–8. IEEE.

Antoniuk, I., Hoser, P., and Strzęciwilk, D. (2018). L­system
application to procedural generation of room shapes for
3d dungeon creation in computer games. In International
Multi­Conference on Advanced Computer Systems, pages
375–386. Springer.

Ashlock, D. (2015). Evolvable fashion­based cellular au­
tomata for generating cavern systems. In Computational
Intelligence and Games (CIG), 2015 IEEE Conference on,
pages 306–313. IEEE.

Ashlock, D., Lee, C., and McGuinness, C. (2011a). Search­
based procedural generation of maze­like levels. IEEE
Transactions on Computational Intelligence and AI in
Games, 3(3):260–273.

Ashlock, D., Lee, C., and McGuinness, C. (2011b). Simulta­
neous dual level creation for games. IEEE Computational
Intelligence Magazine, 6(2):26–37.

Ashlock, D. and McGuinness, C. (2014). Automatic gener­
ation of fantasy role­playing modules. In Computational
Intelligence and Games (CIG), 2014 IEEE Conference on,
pages 1–8. IEEE.

Assadi, H., Jones, R., Swift, A. J., Al­Mohammad, A., and
Garg, P. (2020). Cardiac mri for the prognostication of
heart failure with preserved ejection fraction: A systematic
review and meta­analysis. Magnetic Resonance Imaging.

Baghdadi, W., Eddin, F. S., Al­Omari, R., Alhalawani, Z.,
Shaker, M., and Shaker, N. (2015). A procedural method
for automatic generation of spelunky levels. In European

Conference on the Applications of Evolutionary Computa­
tion, pages 305–317. Springer.

Baldwin, A., Dahlskog, S., Font, J. M., and Holmberg, J.
(2017a). Mixed­initiative procedural generation of dun­
geons using game design patterns. In Computational In­
telligence and Games (CIG), 2017 IEEE Conference on,
pages 25–32. IEEE.

Baldwin, A., Dahlskog, S., Font, J. M., and Holmberg, J.
(2017b). Towards pattern­based mixed­initiative dungeon
generation. In Proceedings of the 12th International Con­
ference on the Foundations of Digital Games, page 74.
ACM.

Baron, J. R. (2017). Procedural dungeon generation analysis
and adaptation. In Proceedings of the SouthEast Confer­
ence, pages 168–171. ACM.

Blizzard Entertainment (1996). Diablo. Accessed in: 2020­
11­02.

Brace Yourself Games (2015). Crypt of the necrodancer. Ac­
cessed in: 2020­11­02.

Charity, M., Green, M. C., Khalifa, A., and Togelius, J.
(2020). Mech­elites: Illuminating the mechanic space of
gvgai. arXiv preprint arXiv:2002.04733.

Chomsky, N. (2006). Language and mind. Cambridge Uni­
versity Press.

De Kegel, B. and Haahr, M. (2019). Procedural puzzle gen­
eration: a survey. IEEE Transactions on Games, 12(1):21–
40.

De Kok, T., Van Kreveld, M., and Löffler, M. (2007). Gen­
erating realistic terrains with higher­order delaunay trian­
gulations. Computational Geometry, 36(1):52–65.

Delaunay, B. et al. (1934). Sur la sphere vide. Izv. Akad. Nauk
SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk,
7(793­800):1–2.

Digital Sun (2018). Moonlighter. Accessed in: 2020­07­25.
Dormans, J. and Bakkes, S. (2011). Generating missions and

spaces for adaptable play experiences. IEEE Transactions
onComputational Intelligence and AI inGames, 3(3):216–
228.

Forsyth, W. (2016). Globalized random procedural content
for dungeon generation. Journal of Computing Sciences
in Colleges, 32(2):192–201.

Gellel, A. and Sweetser, P. (2020). A hybrid approach to
procedural generation of roguelike video game levels. In
International Conference on the Foundations of Digital
Games, pages 1–10.

Gendreau, M., Potvin, J.­Y., et al. (2010). Handbook of meta­
heuristics, volume 2. Springer.

Goandy, H., Young, J. C., and Hansun, S. (2020). No es­
cape: A 2d top­down shooting roguelike game embedded
with drunkard walk algorithm. International Journal of
Advanced Trends in Computer Science and Engineering.

Gravina, D., Khalifa, A., Liapis, A., Togelius, J., and Yan­
nakakis, G. N. (2019). Procedural content generation
through quality diversity. In 2019 IEEE Conference on
Games (CoG), pages 1–8. IEEE.

Green, M. C., Khalifa, A., Alsoughayer, A., Surana, D., Li­
apis, A., and Togelius, J. (2019). Two­step constructive
approaches for dungeon generation. In Proceedings of the

Procedural Dungeon Generation: A Survey Viana and dos Santos 2021

14th International Conference on the Foundations of Dig­
ital Games, pages 1–7.

Gutierrez, J. and Schrum, J. (2020). Generative adversarial
network rooms in generative graph grammar dungeons for
the legend of zelda. arXiv preprint arXiv:2001.05065.

Halatsch, J., Kunze, A., and Schmitt, G. (2008). Using shape
grammars for master planning. In Design Computing and
Cognition’08, pages 655–673. Springer.

Harper, S. L., Cunsolo, A., Babujee, A., Coggins, S., Aguilar,
M. D., andWright, C. J. (2021). Climate change and health
in north america: literature review protocol. Systematic
Reviews, 10(1):1–13.

Hell, J., Clay, M., and ELAarag, H. (2017). Hierarchical
dungeon procedural generation and optimal path finding
based on user input. Journal of Computing Sciences in
Colleges, 33(1):175–183.

Hilliard, N., Salis, J., and ELAarag, H. (2017). Algorithms
for procedural dungeon generation. Journal of Computing
Sciences in Colleges, 33(1):166–174.

Johnson, L., Yannakakis, G. N., and Togelius, J. (2010). Cel­
lular automata for real­time generation of infinite cave lev­
els. In Proceedings of the 2010 Workshop on Procedural
Content Generation in Games, pages 1–4.

Karavolos, D., Liapis, A., and Yannakakis, G. N. (2016).
Evolving missions for dwarf quest dungeons. In 2016
IEEE Conference on Computational Intelligence and
Games (CIG), pages 1–2.

Kimbrough, S. O., Koehler, G. J., Lu, M., and Wood, D. H.
(2005). Introducing a feasible­infeasible two­population
(fi­2pop) genetic algorithm for constrained optimization:
Distance tracing and no free lunch. European Journal of
Operational Research.

Klei Entertainment (2013). Don’t starve. Accessed in: 2020­
11­02.

Kreitzer, M., Ashlock, D., and Pereira, R. (2019). Automatic
generation of diverse cavern maps with morphing cellular
automata. In 2019 IEEE Conference on Games (CoG),
pages 1–8. IEEE.

Lavender, B. and Thompson, T. (2017). A generative gram­
mar approach for action­adventure map generation in the
legend of zelda.

Liapis, A. (2017). Multi­segment evolution of dungeon game
levels. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 203–210. ACM.

Liapis, A., Holmgård, C., Yannakakis, G. N., and Togelius,
J. (2015). Procedural personas as critics for dungeon gen­
eration. In European Conference on the Applications of
Evolutionary Computation, pages 331–343. Springer.

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C.,
Gøtzsche, P. C., Ioannidis, J. P., Clarke, M., Devereaux,
P. J., Kleijnen, J., and Moher, D. (2009). The prisma state­
ment for reporting systematic reviews and meta­analyses
of studies that evaluate health care interventions: expla­
nation and elaboration. Journal of clinical epidemiology,
62(10):e1–e34.

Masotta, V., Dante, A., Marcotullio, A., Bertocchi, L.,
La Cerra, C., Caponnetto, V., Petrucci, C., and Alfes, C. M.
(2020). The concept of high­fidelity simulation and related
factors in nursing education: A scoping review. In Inter­

national Conference in Methodologies and intelligent Sys­
tems for Techhnology Enhanced Learning, pages 119–126.
Springer.

McGuinness, C. and Ashlock, D. (2011). Decomposing the
level generation problem with tiles. In Evolutionary Com­
putation (CEC), 2011 IEEE Congress on, pages 849–856.
IEEE.

McMillen, E. and Himsl, F. (2011). The binding of isaac.
Accessed in: 2020­11­02.

Melotti, A. S. and de Moraes, C. H. V. (2018). Evolv­
ing roguelike dungeons with deluged novelty search local
competition. IEEE Transactions on Games, 11(2):173–
182.

Moher, D., Liberati, A., Tetzlaff, J., and Altman, D. G.
(2009). Preferred reporting items for systematic reviews
and meta­analyses: the prisma statement. Annals of inter­
nal medicine, 151(4):264–269.

Moray, K. V., Chaurasia, H., Sachin, O., and Joshi, B.
(2021). A systematic review on clinical effectiveness, side­
effect profile and meta­analysis on continuation rate of
etonogestrel contraceptive implant. Reproductive Health,
18(1):1–24.

Motion Twin (2018). Dead cells. Accessed in: 2020­07­25.
Mulrow, C. D. (1994). Systematic reviews: rationale for sys­

tematic reviews. Bmj, 309(6954):597–599.
Nepožitek, O. and Gemrot, J. (2018). Fast configurable tile­

based dungeon level generator.
Nintendo (1986). The legend of zelda ­ franchise. Accessed

in: 2020­09­04.
Nintendo (1996). Pokémon ­ franchise. Accessed in: 2020­

09­10.
Olsen, J. (2004). Realtime procedural terrain generation.
Pech, A., Hingston, P., Masek, M., and Lam, C. P. (2015).

Evolving cellular automata for maze generation. In Aus­
tralasian Conference on Artificial Life and Computational
Intelligence, pages 112–124. Springer.

Pech, A., Masek, M., Lam, C.­P., and Hingston, P. (2016).
Game level layout generation using evolved cellular au­
tomata. Connection Science, 28(1):63–82.

Pereira, L. T., Prado, P. V., and Toledo, C. (2018). Evolving
dungeon maps with locked door missions. In 2018 IEEE
Congress on Evolutionary Computation (CEC), pages 1–8.
IEEE.

Prim, R. C. (1957). Shortest connection networks and
some generalizations. The Bell System Technical Journal,
36(6):1389–1401.

Pugh, J. K., Soros, L. B., and Stanley, K. O. (2016). Qual­
ity diversity: A new frontier for evolutionary computation.
Frontiers in Robotics and AI, 3:40.

Rozenberg, G. (1997). Handbook of Graph Grammars and
Comp., volume 1. World scientific.

Sampaio, P., Baffa, A., Feijó, B., and Lana, M. (2017). A fast
approach for automatic generation of populated maps with
seed and difficulty control. In 2017 16th Brazilian Sym­
posium on Computer Games and Digital Entertainment
(SBGames), pages 10–18. IEEE.

Santamaria­Ibirika, A., Cantero, X., Huerta, S., Santos, I.,
and Bringas, P. G. (2014). Procedural playable cave sys­

Procedural Dungeon Generation: A Survey Viana and dos Santos 2021

tems based on voronoi diagram and delaunay triangulation.
In Cyberworlds (CW), 2014 International Conference on,
pages 15–22. IEEE.

Sheffield, E. C. and Shah, M. D. (2018). Dungeon digger:
Apprenticeship learning for procedural dungeon building
agents. In Proceedings of the 2018 Annual Symposium
on Computer­Human Interaction in Play Companion Ex­
tended Abstracts, pages 603–610.

Smith, A. J. and Bryson, J. J. (2014). A logical approach to
building dungeons: Answer set programming for hierar­
chical procedural content generation in roguelike games.
In Proceedings of the 50th Anniversary Convention of the
AISB.

Smith, T., Padget, J., and Vidler, A. (2018). Graph­based
generation of action­adventure dungeon levels using an­
swer set programming. In Proceedings of the 13th Inter­
national Conference on the Foundations of Digital Games,
page 52. ACM.

Sony (2005). God of war. Accessed in: 2021­03­30.
Summerville, A., Snodgrass, S., Guzdial, M., Holmgård, C.,

Hoover, A. K., Isaksen, A., Nealen, A., and Togelius, J.
(2018). Procedural content generation via machine learn­
ing (pcgml). IEEE Transactions on Games, 10(3):257–
270.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learn­
ing: An introduction. MIT press.

Togelius, J., Justinussen, T., and Hartzen, A. (2012). Compo­
sitional procedural content generation. In Proceedings of
the The third workshop on Procedural Content Generation
in Games, page 16. ACM.

Togelius, J., Shaker, N., and Nelson, M. J. (2016). Introduc­
tion. In Shaker, N., Togelius, J., and Nelson, M. J., editors,
Procedural Content Generation inGames: A Textbook and
an Overview of Current Research, pages 1–15. Springer.

Togelius, J., Yannakakis, G. N., Stanley, K. O., and Browne,
C. (2011). Search­based procedural content generation: A
taxonomy and survey. IEEE Transactions on Computa­
tional Intelligence and AI in Games, 3(3):172–186.

Toy, M. andWichman, G. (1980). Rogue. Accessed in: 2020­
07­25.

Valtchanov, V. and Brown, J. A. (2012). Evolving dungeon
crawler levels with relative placement. In Proceedings of
the Fifth International C* Conference on Computer Sci­
ence and Software Engineering, pages 27–35. ACM.

Valve Corporation (2009). Left 4 dead 2. Acessado em: 2020­
11­02.

van der Linden, R., Lopes, R., and Bidarra, R. (2013). De­
signing procedurally generated levels. In Proceedings of
the the second workshop on Artificial Intelligence in the
Game Design Process.

van der Linden, R., Lopes, R., and Bidarra, R. (2014). Pro­
cedural generation of dungeons. IEEE Transactions on
Computational Intelligence and AI in Games, 6(1):78–89.

Van Laarhoven, P. J. and Aarts, E. H. (1987). Simulated an­
nealing. In Simulated annealing: Theory and applications,
pages 7–15. Springer.

Viana, B. M. and dos Santos, S. R. (2019). A survey of pro­
cedural dungeon generation. In 2019 18th Brazilian Sym­
posium on Computer Games and Digital Entertainment
(SBGames), pages 29–38. IEEE.

Voronoi, G. (1908). Nouvelles applications des paramètres
continus à la théorie des formes quadratiques. deux­
ième mémoire. recherches sur les parallélloèdres primitifs.
Journal für die reine und angewandteMathematik (Crelles
Journal), 1908(134):198–287.

Whitehead, J. (2020). Spatial layout of procedural dungeons
using linear constraints and smt solvers. In International
Conference on the Foundations of Digital Games, pages
1–9.

Wild Card Games (2013). Dwarf quest. Accessed in: 2020­
08­10.

Wolfram, S. (1983). Statistical mechanics of cellular au­
tomata. Reviews of modern physics, 55(3):601.

Yu, D. (2008). Spelunky. Accessed in: 2020­08­10.

Procedural Dungeon Generation: A Survey Viana and dos Santos 2021

Table 2. Solution strategy data collected from the found papers. We could classify some solutions because some of them did not fit in an
umbrella classification; therefore, we called them ‘exclusive’ solutions. The ‘*’ occurrences mean that the work only performed a translation
from a generated sketch to a level layout.

Work Game Genre Level Dimensionality Representation Algorithm Strategy
Macro Micro

Johnson et al. (2010) ­ layout 2D Grid ­ CA
Ashlock et al. (2011a) ­ layout 2D Grid EA GA

McGuinness and Ashlock (2011) ­ layout 2D Grid EA GA
Ashlock et al. (2011b) ­ layout 2D Grid EA GA

Dormans and Bakkes (2011) Action­
Adventure

sketch +
layout 2D Graph + Shape Hybrid Graph and Shape

Grammars
Valtchanov and Brown (2012) ­ sketch *2D Tree EA GP

Togelius et al. (2012) Rogue­like layout 2D Grid Hybrid EA + ASP

van der Linden et al. (2013) Action­
Adventure sketch *3D Graph Grammar Graph Grammar

Ashlock and McGuinness (2014) RPG layout 2D Graph + Grid EA GA

Smith and Bryson (2014) Rogue­like sketch +
layout 2D Answer Set +

Grid Hybrid ASP + exclusive

Santamaria­Ibirika et al. (2014) ­ layout 2D + 3D Shape Hybrid
Voronoi Diagram
and Delaunay
Triangulation

Pech et al. (2015) ­ layout 2D Grid Hybrid GA + CA
Liapis et al. (2015) Rogue­like layout 2D Grid EA FI2Pop GA
Ashlock (2015) ­ layout 2D Grid Hybrid GA + CA

Baghdadi et al. (2015) Platform
Rogue­like

sketch +
layout 2D Grid EA GA

Lavender and Thompson (2017) Action­
Adventure

sketch +
layout 2D Graph + Grid Hybrid Graph and Shape

Grammars
Pech et al. (2016) ­ layout 2D Grid Hybrid GA + CA

Karavolos et al. (2016) Adventure
RPG sketch *3D Graph + Grid EA ­

Forsyth (2016) Rogue­like sketch ­ Graph ­ exclusive
Hell et al. (2017) ­ sketch ­ Graph ­ exclusive

Hilliard et al. (2017) ­ layout 2D Grid ­ 2 exclusives
Baron (2017) ­ layout 2D + *3D Grid ­ 5 exclusives

Liapis (2017) ­ sketch +
layout 2D Grid EA FI2Pop GA

Baldwin et al. (2017a) ­ layout 2D Grid EA FI2Pop GA
Baldwin et al. (2017b) ­ layout 2D Grid EA FI2Pop GA
Sampaio et al. (2017) ­ layout 2D Grid ­ exclusive

Smith et al. (2018) Action­
Adventure sketch ­ Graph ­ ASP

Alvarez et al. (2018) ­ layout 2D Grid EA FI2Pop GA

Pereira et al. (2018) Action­
Adventure sketch *2D Tree EA GP

Nepožitek and Gemrot (2018) ­ sketch +
layout 2D Graph + Shape ­ Simulated

Annealing

Sheffield and Shah (2018)
Rogue­like

and
Adventure

sketch *2D Grid RL Digger Agents
(RL Agents)

Antoniuk et al. (2018) ­ layout 3D Shape Grammar L­system
Melotti and de Moraes (2018) Rogue­like layout 2D Grid EA DNLSC

Kreitzer et al. (2019) ­ layout 2D Grid Hybrid GA + CA

Alvarez et al. (2019) ­ layout 2D Graph + Grid EA Constrained
MAP­Elites

Green et al. (2019) Rogue­like layout 2D Grid ­ CA + 2 agents +
3 exclusive

Goandy et al. (2020) Rogue­like layout 2D Grid ­ exclusive

Gutierrez and Schrum (2020) Rogue­like

Level:
sketch,
Room:
layout

2D Level: Graph,
Room: Grid

Hybrid.
Level:

Grammar,
Room: ML

Level: Graph
Grammar, Room:

GAN

Gellel and Sweetser (2020) Rogue­like sketch +
layout 2D Graph + Grid Hybrid Grammars +

CA­inspired.
Whitehead (2020) ­ layout 2D Shape ­ SMT Solver

Charity et al. (2020) ­ layout 2D Grid EA Constrained
MAP­Elites

Procedural Dungeon Generation: A Survey Viana and dos Santos 2021

Table 3. PCG taxonomy data collected from the found papers. Classifications: ON (online); OFF (offline); P (parameters); RS (random
seeds); G (generic); A (adaptive); S (stochastic); D (deterministic); C (constructive); GT (generate­and­test); AT (automatic), and; MI
(mixed­initiative).

Work Choice
Method

Generation
Time

Generation
Control Generality Generation

Method
Content

Authorship

Johnson et al. (2010) OFF P G S C AT
Ashlock et al. (2011a) OFF P G S GT AT

McGuinness and Ashlock (2011) OFF P G S GT AT
Ashlock et al. (2011b) OFF P G S GT AT

Dormans and Bakkes (2011) OFF P G S C AT
Valtchanov and Brown (2012) OFF P G S GT AT

Togelius et al. (2012) OFF P G S GT AT
van der Linden et al. (2013) OFF P G S C AT

Ashlock and McGuinness (2014) OFF P G S GT AT
Smith and Bryson (2014) OFF P G S GT AT

Santamaria­Ibirika et al. (2014) OFF P G S C AT
Pech et al. (2015) OFF P G S GT AT
Liapis et al. (2015) OFF P G S GT AT
Ashlock (2015) OFF P G S GT AT

Baghdadi et al. (2015) OFF P G S GT AT
Lavender and Thompson (2017) OFF P G S GT AT

Pech et al. (2016) OFF P G S GT AT
Karavolos et al. (2016) OFF P G S GT AT

Forsyth (2016) OFF P G S C AT
Hell et al. (2017) OFF P G S C AT

Hilliard et al. (2017) OFF P G S C AT
Baron (2017) OFF P G S C AT
Liapis (2017) OFF P G S GT AT

Baldwin et al. (2017a) OFF P G S GT MI
Baldwin et al. (2017b) OFF P G S GT MI
Sampaio et al. (2017) OFF RS G D C AT
Smith et al. (2018) OFF RS G D GT AT
Alvarez et al. (2018) OFF P A S GT MI
Pereira et al. (2018) OFF P G S GT AT

Nepožitek and Gemrot (2018) OFF P G S GT AT
Sheffield and Shah (2018) OFF P G S GT AT
Antoniuk et al. (2018) OFF P G S C AT

Melotti and de Moraes (2018) OFF P G S GT AT
Kreitzer et al. (2019) OFF P G S GT AT
Alvarez et al. (2019) OFF P A S GT MI
Green et al. (2019) OFF P G S C AT
Goandy et al. (2020) OFF RS G D C AT

Gutierrez and Schrum (2020) OFF P G S GT AT
Gellel and Sweetser (2020) OFF P G S GT AT

Whitehead (2020) OFF P G S GT AT
Charity et al. (2020) OFF P G S GT AT

Procedural Dungeon Generation: A Survey Viana and dos Santos 2021

Table 4.Content­related data collected from the found papers. Level Structures: TDML (Top­downmansion­like); TDCL (Top­down cavern­
like); and SS (Side­scrolling dungeon). The ‘*’ occurrences mean that the paper was not clear in the respective classification.

Work Reward Challenge Puzzle Barrier Difficulty Area/Room
distinction

Level
Structure

Johnson et al. (2010) ­ ­ ­ ­ ­ ­ TDCL
Ashlock et al. (2011a) ­ ­ ­ ­ ­ ­ TDCL

McGuinness and Ashlock (2011) ­ ­ ­ ­ ­ ­ TDCL
Ashlock et al. (2011b) ­ ­ ­ ­ ­ ­ TDCL

Dormans and Bakkes (2011) ✓ ✓ ­ ✓ ✓ ­ TDCL
Valtchanov and Brown (2012) ­ ­ ­ ­ ­ ✓ TDML

Togelius et al. (2012) ­ ✓ ­ ­ ­ ­ TDCL
van der Linden et al. (2013) ✓ ✓ ­ ✓ ✓ ­ TDML

Ashlock and McGuinness (2014) ✓ ✓ ­ ­ ­ ✓ TDCL
Smith and Bryson (2014) ✓ ✓ ­ ­ ­ ✓ TDCL

Santamaria­Ibirika et al. (2014) ✓ ✓ ­ ­ ­ ­ TDCL
Pech et al. (2015) ­ ­ ­ ­ ­ ­ TDCL
Liapis et al. (2015) ✓ ✓ ­ ­ ­ ­ TDCL
Ashlock (2015) ­ ­ ­ ­ ­ ✓ TDCL

Baghdadi et al. (2015) ✓ ✓ ­ ­ ✓ ✓ SS
Lavender and Thompson (2017) ✓ ✓ ­ ✓ ✓ ­ TDML

Pech et al. (2016) ­ ­ ­ ­ ­ ­ TDCL
Karavolos et al. (2016) ✓ ✓ ✓ ✓ ✓ ­ TDML

Forsyth (2016) ­ ­ ­ ­ ✓ ­ ­
Hell et al. (2017) ✓ ­ ­ ­ ✓ ­ ­

Hilliard et al. (2017) ­ ­ ­ ­ ­ ­ TDCL
Baron (2017) ­ ­ ­ ­ ­ ­ TDCL
Liapis (2017) ✓ ✓ ­ ­ ­ ✓ TDCL

Baldwin et al. (2017a) ✓ ✓ ­ ­ ✓ ­ TDCL
Baldwin et al. (2017b) ✓ ✓ ­ ­ ✓ ✓ TDCL
Sampaio et al. (2017) ✓ ✓ ­ ­ ✓ ­ TDCL
Smith et al. (2018) ✓ ✓ ✓ ✓ ­ ✓ ­
Alvarez et al. (2018) ✓ ✓ ­ ­ ✓ ✓ TDCL
Pereira et al. (2018) ­ ­ ­ ✓ ­ ­ TDML

Nepožitek and Gemrot (2018) ­ ­ ­ ­ ­ ­ TDCL
Sheffield and Shah (2018) ✓ ✓ ­ ✓ ­ ­ TDML
Antoniuk et al. (2018) ­ ­ ­ ­ ­ ­ ­

Melotti and de Moraes (2018) ­ ✓ ­ ­ ­ ­ TDCL
Kreitzer et al. (2019) ­ ­ ­ ­ ­ ✓ TDCL
Alvarez et al. (2019) ✓ ✓ ­ ­ ✓ ✓ TDCL
Green et al. (2019) ✓ ✓ ­ ­ ­ ­ TDCL
Goandy et al. (2020) ­ ✓ ­ ­ ­ ­ TDCL

Gutierrez and Schrum (2020) ­ ✓ ✓ ✓ ­ ­ TDML
Gellel and Sweetser (2020) ­ ✓ ­ ✓ ­ ✓ TDML

Whitehead (2020) ­ ­ ­ ­ ­ ­ TDCL
Charity et al. (2020) ✓ ✓ ­ * ­ ­ ­

	Introduction
	Background
	Game Features
	PCG Taxonomy
	Solution Strategies

	Survey
	Solution Strategy Classification
	Taxonomy Classification
	Game Features Classification

	Discussions
	Conclusion

