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Abstract
Internet access in both private and public environments allows users to broadly access their data what makes possible
the deployment of new services based on Internet of Things. This fact created Smart Environments (SEs) that are
composed of a huge amount of heterogeneous devices, for example, personal devices (smartphones, notebooks,
tablets, etc) and IoT devices (sensors, actuators, and others). However, these environments can facilitate the action
of malicious agents interested in promoting Distributed Denial of Service (DDoS) attacks to the network, and, when
they are public places, it is challenging to locate these attackers. In this way, it is necessary to deploy solutions that
can detect DDoS in SEs and to determine the physical location of the attacker, which is essential to prevent future
attacks. Within this context, this article presents an Intelligent System for detection of DDoS and physical location
of devices in SEs, applying Machine Learning (ML) and trilateration techniques. The experiments performed, using
real network traffic and simulation, suggest that the proposed system is capable of detecting attacks and finding
malicious devices.
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1 Introduction
The ease of accessing Internet over public wireless networks
allows people to access their data online from anywhere,
what makes possible the provision of services and the de­
ployment of smart cities (Chamoso et al., 2018). This kind
of environment has been called Smart Environments (SEs),
which can be implemented in several contexts: Smart Cam­
pus, Smart Homes, Smart Cities, Industry 4.0, Smart Hospi­
tals, etc. (Doshi et al., 2018).
The presence of Internet of Things (IoT) devices in these

public environments brought several security issues. One
important category of attacks in these environments is Dis­
tributed Denial of Service (DDoS), where an attacker targets
the availability of the servers by flooding the communication
channel with requests coming from distributed devices (Vish­
wakarma and Jain, 2020). The DDoS attacks come from nu­
merous security vulnerabilities in the devices (Andrea et al.,
2015; Diro and Chilamkurti, 2018) that directly affect Qual­
ity of Service (QoS) and Quality of Experience (QoE). As a
result, in the last few years, several cyber­attacks were per­
formed in the Internet through the infection of both personal
and IoT devices (Brun et al., 2018).
A suitable approach forDDoS detection is the usage ofMa­

chine Learning (ML) techniques, which understand the net­
work flows and progressively improve the understanding of
them (Doshi et al., 2018). Nevertheless, it is necessary to use
the most relevant network traffic characteristics to train the
DDoS attack detection mechanism using ML, since the con­
sideration of unsuitable characteristics harms the accuracy of
ML techniques. Once the attack is detected, it is possible to

identify information such as the MAC address and the signal
strength between the access point and the malicious device
(Alotaibi and Elleithy, 2016). Then, the malicious device can
be blocked, preventing the attacking machine’s access to the
network. Additionally, it is important to identify the location
of these malicious devices, which is important to prevent fur­
ther attacks (Halder and Ghosal, 2016).
One way to physically locate devices in public environ­

ments is to use unmanned aerial vehicles (UAV) such as
drones. According to (Mozaffari et al., 2019), these vehicles
are advantageous when used in solutions for public wireless
network environments due to their characteristics, such as
mobility, path flexibility, and adaptive altitude. Additionally,
drones can locate targets using only digital signals (Halder
and Ghosal, 2016).
Within this context, this article proposes a system to detect

DDoS attacks and to locate immobile devices used to attack a
network, using a drone and the information obtained from the
attack detection module. Both attack detection and location
processes work together to improve the security level of SEs.
The attack detection module is based on network mon­

itoring with a trained ML model. The detection module
starts with a labeled dataset, with traffic corresponding to
attacks being distinguished from normal traffic. Then, start­
ing with 80 important network flow features for DDoS from
(Sharafaldin et al., 2019), themodule performs features selec­
tion and training theMLmodel, which is then used for detect­
ing DDoS attacks. The training phase identifies the main fea­
tures for detecting DDoS in SEs, and several ML algorithms
are used to train the model for detecting DDoS attacks.
With the information of the attacker’s signature and the
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Table 1. Location Process Related Work

network signal strength obtained at the final of the detection
process, the location process seeks to find the distance from
the drone to the target and from the target to the access point
used by the attacking device. The attacker signature and the
network signal strength, along with the location of the access
point and the drone, are used in the trilateration calculation to
determine the approximate location of the attacking machine.
The detection experiments, using a dataset of real net­

work traffic with DDoS attacks, indicate that the proposal
reaches 99% of accuracy when the most suitable features are
selected. Regarding the location experiments, we executed
simulations using Network Simulator 3 (NS­3) (Riley and
Henderson, 2010), suggesting that the proposal was able to
the approximate position of the target with a time of ten sec­
onds in all the situations evaluated.
Thus, the main contribution of this paper is the investiga­

tion of the performance and viability of using combined ML
techniques and algorithms for the detection and location of
an attacker in a Smart Environment. In particular, it is evalu­
ated how fast and accurately it is possible to detect and locate
devices performing DDoS attacks.
The remainder of this article proceeds as follows. Sec­

tion 2 presents relatedwork. Section 3 describes the proposed
system. Section 4 details the performance evaluation and re­
sults. Finally, Section 5 concludes the article.

2 Related Work
This section summarizes related works on cybersecurity and
DDoS detection and physical location of the attacking device.
We initially describe the existing proposals related to loca­
tion, and, later, we detail the solution for attacks detection.
Nobles et al. (2011) present a strategy for tracking a net­

work attacker in an indoor environment. This strategy uses
wireless signal strength to calculate the distance between the
target and the various access points. This distance is then
used to locate the target using trilateration.
Halder and Ghosal (2016) present different strategies for

locating sensors in a wireless sensor network. These strate­
gies use trilateration and moving and static targets in open
environments. Aligned to the previous study, Betti Sorbelli
et al. (2018) propose two algorithms for locating static tar­
gets in open environments, using directional and omnidirec­
tional antennas. This work compares the results of the two
proposed algorithms through a simulation made in the MAT­
LAB programming language.

Acuna et al. (2017) propose a solution that identifies the
wifi signal of smartphones captured by the network and a
drone that captures this signal from the network, maps the
environment into zones based on the received signals, and
applies a Random Forest algorithm to find the zone where
the target is. Sun et al. (2018) uses a similar idea, but seeks to
filter the zones using new drone measurements, trilateration,
and Kalman filters, thereby increasing the accuracy of the
found location.
Table 1 summarizes the main characteristics of the afore­

mentioned related works. We can observe that the stud­
ies by Halder and Ghosal (2016) and Betti Sorbelli et al.
(2018) focus on locating target nodes in wireless sensor net­
works, which communicate with the drone. On the other
hand, Acuna et al. (2017) and Sun et al. (2018) search for
devices capturing signals from the wifi network to map spe­
cific zones. Our work distinguishes from them since we pro­
pose a technique to locate attacking devices in indoor or out­
door smart environments using the network information ob­
tained by our attacker detection process.We trigger the drone,
which uses the information provided by the detection process
to find the target. In addition, we consider information from
the access point used by the target device, which decreases
the number of measurements the drone needs to take.
Regarding the works related to the detection of attacks,

several proposals use Artificial Intelligence (AI) techniques.
Vinayakumar et al. (2020) propose a botnet detection system
based on a two­tier ML structure to semantically distinguish
botnets from legitimate behavior in the application layer of
DNS domain name system services. In the first level, scores
are used to define the similarity. When reaching a difference
established by the authors, the domain name is passed to the
second level that uses a deep learning architecture to detect
and classify DDoS occurrences. This work focuses on detect­
ing DDoS exclusively on DNS servers, preventing its appli­
cation in other types of IoT network services.
Sharafaldin et al. (2019) present a study on the traffic char­

acteristics of the most important networks for detecting dif­
ferent types of DDoS attacks on traditional networks, that is,
TCP/IP networks. Two networks with traditional computers
were designed and implanted in the carried out experiments.
In short, the behavior extracted from the dataset samples be­
comes different compared to networks designed with IoT de­
vices. The behavior of IoT networks communicates with a
small finite set of endpoints. It is prone to have repetitive net­
work traffic patterns (small packages at fixed time intervals
for registration purposes, for example).
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Yamauchi et al. (2019) describes a model for detecting
anomalous operations of IoT devices in smart homes (SHs)
based on user behavior. The model learns the sequence of ac­
tivities performed by the hour of the day and then compares
the current sequence with the sequences learned for the con­
dition corresponding to the current condition. If it has any
predefined changes, the method classifies the operation as
an IoT device anomaly. Thus, this model proposed by the
authors is limited to understanding SHs.
Table 2 summarizes the characteristics of the detection pro­

cess from the related works.

Table 2. Detection Process Related Work

To the best of our knowledge, there is no proposal in the
literature focused on the study of the performance and viabil­
ity of a system to detect DDoS in heterogeneous smart envi­
ronments integrating this detection with a location process to
identify the physical location of the attacking devices. The re­
sults obtained by the system are encouraging and evolve the
state of the art regarding security and network management
in smart environments.

3 Proposal
This section details the proposed system to detect DDoS at­
tacks and locate immobile devices used to attack a network,
using a drone and the information obtained from the detec­
tion process. Thus, the proposed solution has two main mod­
ules: Detection and Location.
The detection module encompasses the task of features ex­

traction, feature selection, andML training, where, in the end,
the trained model is able to perform network monitoring and
detection of DDoS attacks. When an attack is detected, the
detection module passes the information about the malicious
devices (MAC Address) to the module Location, which exe­
cutes the tasks of getting signal strength in the AP, defining
the drone flight plan, and calculates the location using tri­
lateration. An overview of the organization of the proposed
system is illustrated in Figure 1.

Figure 1. Overview of the Proposed System

In Figure 1, the modules in blue represent the functionali­
ties of the detection process, while the modules in red illus­
trate the steps performed during the location process. The de­
tection process monitors the network to collect data to detect
possible attacks. When an attack is identified, the location
process is triggered to physically locate the malicious device
using a UAV.
Next, the detection process and the location process are

detailed in Subsections 3.1 and 3.2, respectively.

3.1 Detection Process
The detection module performs the following steps:
Database Construction; Selection of Features; Training
of Model and Detection of DDoS; Network Monitoring;
Feature Extraction and Detection of DDoS Attacks use the
trained model.
Before the network monitoring, we need to train the ML

model that is used to identify the DDoS attack. At the be­
ginning, we need a labeled dataset with network traffic con­
taining normal (benign) traffic and traffic corresponding to
DDoS attacks. From this raw data in the database, we ex­
tract 80 features that are important for DDoS detection, fol­
lowing the work from Sharafaldin et al. (2019). We then per­
form automatic feature selection techniques that choose the
features to be used as input to training a ML model. After
training, the generated classifier acts to detect DDoS attacks.
Various techniques can be used during the features selection
and model training phases. We tested different combinations
of techniques, as described in the next subsections.
With the trained ML model, it is possible to monitor the

network and detect new DDoS attacks. When the DDoS at­
tack is detected, the information is logged, and the localiza­
tion process is started.

3.1.1 Selection of Features

All the information extracted from de database represents
some aspect of IoT Networks. However, the use of many fea­
tures will result in certain noises that may interfere with the
process of the ML model. In addition, noise affects the func­
tioning of ML techniques unevenly. That is, a certain noise
may or may not affect another technique. Therefore, it is im­
portant to select the most relevant characteristics to achieve
the best performance of the classifiers used in DDoS detec­
tion.
The features selection regarding network traffic analysis

is a challenging process, since it becomes even more com­
plex when it comes to DDoS attacks due to the variety of
types and the complexity of its action timing. The selection
purpose of characteristics is to enable the construction of ML
models that make it possible to understand the data and max­
imize the detection capacity. Therefore, the selection of char­
acteristics helps to know irrelevant and redundant attributes
that can have a negative impact on the model performance,
decreasing the accuracy of the model. Another important is­
sue is the computational resources, since reducing the num­
ber of features brings important benefits to this issue. Less
data means reduced training time, less misleading data that
improve model performance, faster processing, less memory
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consumption, easier data extraction, less storage space, and,
mainly, dimensionality reduction. In this way, the usage of
most suitable features about the network traffic enables the
optimization of the time for training and detection of these
ML models.
Based on these facts, in this research, we analyze the

following techniques for selecting characteristics: (1) Max­
imum Relevance Minimum Redundancy (mRMR) (Peng
et al., 2005), uses Fisher’s test scores and Pearson’s corre­
lation; (2) Low Variance (LV), removes all characteristics
whose variation does not reach a certain limit; (3) Extra­Tree
(EA) (Geurts et al., 2006), builds a set of the non­pruned de­
cision or regression trees according to the classic top­down
procedure; (4) SVC (Chang and Lin, 2011), a linear model
that estimates sparse coefficients based on important char­
acteristics; and, (5) Lasso (Friedman et al., 2010), a linear
model that estimates sparse coefficients.
These techniques can be used to select the DDoS data

set’s relevant characteristics that improve the model’s perfor­
mance. Nevertheless, the different strategies applied by them
(filter methods, wrapping methods, or embedded methods)
lead to different selected characteristics (Kaushik, 2016).
In this way, we present in Section 4 a study to define the

most suitable selection technique that improves the accuracy
of the existing ML models to detect DDoS in SEs. Addition­
ally, timing issues are evaluated: Training time and detection
time. This timing evaluation allows the identification of the
tuple selection technique and the faster ML model, allowing
its application in time­constrained scenarios.

3.1.2 Model Training and Detection of DDoS Attacks

After processing the processed data, the Knowledge Dataset
is fed, and it is used as the basis for the ML training. ML
training encompasses the input of the data in the Knowledge
Dataset and the execution of the ML technique. Later, the de­
tector (ML model trained) is used to identify possible DDoS
attacks.
TheDDoS attack behavior is not defined but rather learned

from the training dataset, whose data points are labeled “nor­
mal” or “attack”. Depending on the quality and diversity of
the dataset characteristics, the system will correctly detect
when an attack occurs.

The proposed system was designed to enable the usage
of any ML technique. This Independence allows the pro­
posed system to execute the most suitable ML technique in
the training stage. Thus, we evaluated the ML techniques
that have distinct singularities: K­Nearest Neighbor (KNN),
Naive Bayes (NB), RandomForest (RF), Decision Tree (DT),
Logistic Regression (LR), and Support Vector Machines
(SVM).

The defined process flow is repeated constantly to keep
the detector updated according to the behavior of the devices
in the SE. This continuous feedback process enables the re­
current information knowledge about the smart environment.
Consequently, the proposed solution can adapt and under­
stand the usual behavior of the network flows and detect
DDoS attacks.

3.2 Location Process
The location process is initiated upon detecting an attack, trig­
gering the drone. Then, the detection module sends to the
drone and to the access point the malicious device is con­
nected to, the MAC address of the attacker. The server also
calculates the trajectory that the drone should follow. In ad­
dition, the server maintains a T­tuple with three positions to
store the information coming from the access point and the
drone.
When receiving the attacker’s MAC address, the access

point sends the server the signal strength between itself and
the attacking machine and the access point’s location. While
following its trajectory, the drone uses the broadcast strat­
egy of the wi­fi signal and the MAC address provided by
the server. This strategy consists in sending the drone’s wi­
fi signal and trying to detect all nodes within its range as
it moves until the drone finds the attacking node, which is
identified based on the MAC address information provided
by the detection system. When the drone finds the attacking
machine, it sends to the server the information of the drone’s
location and the signal strength between it and the target. Un­
til the location of the attacking machine is undetermined, the
drone continues to search for the target machine and send
the information to the server. Finally, the location algorithm
calculates the attacker’s position when all tuple positions are
filled.
The drone’s trajectory follows the strategy SCAN (Kout­

sonikolas et al., 2007), in which the area where the drone
will travel is divided into a square area and equidistant sub­
squares with centers connected using straight lines. We use
this strategy as the uniform coverage of the lattice field helps
to ensure a small location error (Koutsonikolas et al., 2007).
It is worth noting that the analysis of the drone’s energy

cost is not part of the scope of this proposal. Furthermore,
we assume that there are no aerial obstacles and that we can
continuously determine the drone’s location. The impact of
the number of messages exchanged between all nodes can be
an important aspect but it is not in the scope of this study.

3.2.1 Trilateration

Initially, we will define the trilateration technique, which is
a calculation that uses distance measurements to determine a
position in three­dimensional space (Murphy and Hereman,
1995). This calculation makes it easy for real­time position­
ing systems to find targets without the need to measure an­
gles. In a simplified way, to calculate the coordinates of a
fixed target, we can use a simple system of three equations,
as defined in Equation 1 (Courtay et al., 2019).


d2

N1 = (xA − xN1)2 + (yA − yN1)2 + (zA − zN1)2 + eN1

d2
N2 = (xA − xN2)2 + (yA − yN2)2 + (zA − zN2)2 + eN2

d2
N3 = (xA − xN3)2 + (yA − yN3)2 + (zA − zN3)2 + eN3

(1)
In Equation 1, dNi represents the distance between the

node i, whose position is known (for example, a drone), and
the target. XNi, YNi, and ZNi are the X , Y , and Z coor­
dinates of nodes whose location is already known. XA, YA,
and ZA are the coordinates of the target. And eNi is the error
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due to the signal noise used to calculate the distances from
node i to the target.

Figure 2. Example of Trilateration with drones

Figure 2 presents an example of trilateration in the context
of this work, in which two dronemeasurements and an access
point are used. Note that the z axis is not considered in the
example. Then, to simplify the calculation, we assume that
the attacker and the access point are at the same reference
height, therefore their values for the z axis are zero and, for
the drone, this value is equal to the drone’s height in the time
of measurement.
The calculation of trilateration seeks to solve the system

represented in Equation 1 to determine the coordinates of the
target (Courtay et al., 2019). One way to do this is to trans­
form the Equation 1 into the Vector Equation u = V.a + e,
which can be achieved by developing the terms of the sys­
tem of equations and subtracting the distances in Equation 1,
where:

u =

(
(d2

N1 − d2
N2) − (x2

N1 − x2
N2) − (y2

N1 − y2
N2) − (z2

N1 − z2
N2)

(d2
N1 − d2

N3) − (x2
N1 − x2

N3) − (y2
N1 − y2

N3) − (z2
N1 − z2

N3)
(d2

N2 − d2
N3) − (x2

N2 − x2
N3) − (y2

N2 − y2
N3) − (z2

N2 − z2
N3)

)
(2)

V = 2 ∗

(xN2 − xN1) (yN2 − yN1) (zN2 − zN1)
(xN3 − xN1) (yN3 − yN1) (zN3 − zN1)
(xN3 − xN2) (yN3 − yN2) (zN3 − zN2)

 (3)

e =

eN1 − eN2
eN1 − eN3
eN2 − eN3

 (4) a =

xA

yA

zA

 (5)

Given this transformation, we can determine the values of
xA, yA, and zA using some mathematical artifice. In our pro­
posal, we use Cramer’s rule (Courtay et al., 2019), due to the
simplicity of implementation and the fast response time (in
the place of milliseconds), which is important for our context
of public environments. Thus, we calculate the value of xA,
solving the equations 6 and 7.

v1 =

2 ∗ (xN2 − xN1)
2 ∗ (xN3 − xN1)
2 ∗ (xN3 − xN2)

 (6)

xA = det((u − e).v1)
det(V )

(7)

Analogously, we can use Cramer’s rule to calculate the val­
ues of yA and zA and thereby find the target’s location.

3.2.2 Distance Calculation

To calculate the attacker’s location based on trilateration, you
need three measurements from different sources. In each
measurement, we obtain the coordinates of the location of the
source (access point or drone) and calculate the distance from
the source to the attacker using the signal strength between
source and target. The signal strength is generated based on
the attenuation of the signal energy between the two devices.
This calculation is directly related to the (Abhayawardhana
et al., 2005) signal propagation model, which has to be ade­
quate to the environment configuration.
In this work, we use the Log Distance model, which mod­

els the propagation of wireless networks in indoor and out­
door environments with and without obstacles (Al­Hourani
and Gomez, 2017). The signal strength for the Log Distance
model is calculated following Equation 8. In this Equation,P
andP0 represent the signal strength (in dBm) for the distance
d and d0. The value α is the attenuation coefficient, which is
a constant and depends on the medium and frequency used
in the network. Finally, n is the signal strength measurement
error. This measurement error impacts the signal noise of
the trilateration formula. Thus, to calculate the distance, we
transform the Equation 8 into the Equation 9.

P = P0 − 10 ∗ α ∗ log10

(
d

d0

)
+ n (8)

d = 10(P0−P +10∗α∗log10(d0)+n) (9)

We can obtain the values P and P0 during measurement.
The value d0 is equal to 1 meter and the α, in terrestrial
environments, is equal to 3 (Al­Hourani and Gomez, 2017).
Moreover, empirically, we were observed that in an open en­
vironment covered by a home router, there is a little variation
for the signal strength measurement error between the access
point, the drone, and the attacker. Then, for our current solu­
tion, we calculate the value of n based on the signal mea­
surement between the drone and the access point. For this,
we just isolate the value of n in Equation 9 and calculate the
distance between the access point and the drone, based on
their locations, which are known.

3.2.3 Location Algorithm

Algorithm 1 presents our solution to calculate the location
of the malicious device applying Cramer’s rule. The T tuple
contains the P and P0 signal strengths and the coordinate
vectors of the location of the device that sent the information
to the server (access point or drone). The n value is the sig­
nal strength measurement error. As we are using the value
n, which we calculated previously, we will not use the error
vector e (Equation 4), as we are already handling the errors
during the distance calculation.
In lines 2 and 3, we initialize the auxiliary variables re­

sponsible for allocating the distances and the vector with the
location of the attacking machine. Line 4 contains the initial­
ization of the auxiliary counter. In lines 5 to 8, the distances
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Algorithm 1: Calculation of location
Data: T e n
Result: Location of attacking machine

1 begin
2 D = {}
3 vloc = (0, 0, 0)
4 i = 0
5 for each t ∈ T do
6 D[i] = CalculateDistance(t, n)
7 i++
8 end
9 u = GeneratesVectoru(T , D)
10 V = GeneratesMatrixV(T )
11 v1 = 2 ∗ ((T [2].x − T [1].x), (T [3].x − T [1].x), (T [3].x − T [2].x))
12 v2 = 2 ∗ ((T [2].y − T [1].y), (T [3].y − T [1].y), (T [3].y − T [2].y))
13 v3 = 2 ∗ ((T [2].z − T [1].z), (T [3].z − T [1].z), (T [3].z − T [2].z))
14 xA = det(u.v1)

det(V )

15 yA = det(u.v2)
det(V )

16 zA = det(u.v3)
det(V )

17 vloc = (xA, yA, zA)
18 end
19 return vloc

are calculated, and lines 9 and 10 use the values of the dis­
tances and locations of the access point and the drone to cal­
culate the result related to Equations 2 and 3. Lines 11 to 16
show the direct application of Cramer’s rule. Finally, in line
17, the calculated coordinates are assigned to the malicious
device’s location vector.

4 Results
This section presents the experiments performed to evaluate
the proposed system forDDoS detection and devices location
in smart environments. The experiments focus on evaluating
the designed system to detect the attacks correctly and locate
the devices in a suitable time and approximation.

4.1 Detection Experiments
The network traffic dataset that we use in the experiments is
based on two datasets that were merged to represent an SE
composed of heterogeneous IoT and Personal devices. The
former is the dataset ”BoT­IoT” 1 developed by Koronio­
tis et al. (2018), which contains both normal (benign) traf­
fic and traffic related to the latest DDoS attacks. The lat­
ter is the ”UNSW­IoT” created by Sivanathan et al. (2018),
that has normal (benign) traffic of IoT and Personal devices.
Both datasets are formatted in real­world monitoring data
(PCAPs). Altogether, the dataset used in the experiment con­

1https://www.unsw.adfa.edu.au/unsw­canberra­
cyber/cybersecurity/ADFA­NB15­Datasets/bot_iot.php

tains 100.000 traffic records, where half of the records con­
tain normal traffic and the other half traffic related to DDoS
attacks. From this database, 80 features were extracted us­
ing the CICFlowMeter tool pattern from Sharafaldin et al.
(2019).

The methodology used for the experiment consists of di­
viding the database into two sub­bases, one for training the
ML algorithms, containing 70% of the records and the other
part, with the remaining 30% of records for testing. After
splitting the dataset, the features are extracted and then se­
lected. TheMLmodels are trained with the subset of selected
features. The tests are then carriedwith trainedmodel applied
to the testing data, where again we perform feature extraction
and selection so that the trained model can classify the data­
points.
During the detection experiments, the following selection

techniques were evaluated: Extra­Tree (EA), SVC, Lasso,
Low Variance (LV), and mRMR (cases of 5, 10, 20, 30, and
40 features). These techniques selected the features used in
the ML techniques trained: DT, SVM, KNN, RF, and LR.
Thus, we evaluated all the possible combinations of selec­
tion and ML techniques, allowing a complete analysis of the
possible performances.

4.1.1 Performance Metrics

The performance of the proposed intelligent system (includ­
ing the combination of selection and ML techniques) consid­
ered the following evaluation metrics:

• Accuracy (in percentage): Rate of correct classifications
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Figure 3. Accuracy for DDoS Detection

according to the Equation 10, i.e., the True Positive (TP)
and True Negative (TN) cases about all other cases (TP,
TN, False Positive ­ FP and False Negative ­ FN).

ACC = TP + TN

TP + FN + FP + TN
(10)

• Training Time (in seconds): time required to train the
DDoS detector (ML model) with the selected input fea­
tures.

• Detection Time (in seconds): time spent by the DDoS
detector to define whether a case is a DDoS attack or
not.

4.1.2 Detection Results

From the results shown in Figure 3, it can be seen that the ac­
curacy of the ML techniques varies according to the applied
selection technique, especially when these ML techniques
are based on approaches that focus on dimensionalities, such
as KNN, RL, and SVM classifiers. On the other hand, the
ML techniques based on subset division (DT and RF) have
almost no effect on selection techniques. It happens because
of the recursive derivation process of the subsets, mitigating
the variation on the performance of features and resulting in
possible noises for the ML training.
Regarding NB and LR performance, both ML techniques

present the worst results of the other approaches, regardless
of the selection technique. Thus, NB and LR appear as un­
suitable solutions for DDoS detection in SEs compared to
the other approaches of the experiment.
Tables 3 and 4 show the time spent to perform the ML

model training (creating the DDoS detector) and for the de­
tectors to identify the cases of DDoS attacks, respectively.
The results presented in both tables represent the feasibility
of the ML techniques to be deployed in distinct contexts of
SEs.
Based on the results presented in Table 3, the KNN and

RF classifiers and, mainly, SVM have a higher training time
than the other approaches. Nevertheless, the application of
the mRMR selection technique (with 5 and 10 characteris­
tics) reduces the training time of the RF classifier, enabling
its deployment for SEs, achieving a time closer to the DT
classifier.

Table 3. Training Time (in seconds)
Technique KNN LR NB DT RF SVM
80 Fea-
tures

13.29 2.34 0.53 1.96 22.99 1625.04

LV 11.74 2.14 0.41 1.88 10.10 273.34
SVC 36.30 1.27 0.21 0.28 5.27 1226.96
Extra-Tree 18.55 2.96 0.19 0.68 13.33 351.01
Lasso 11.91 1.20 0.14 0.74 6.73 304.38
mRMR 05 21.78 2.91 0.13 0.16 4.11 1055.70
mRMR 10 16.01 3.43 0.14 0.38 5.45 708.88
mRMR 20 10.67 3.42 0.30 0.81 10.12 1177.78
mRMR 30 7.91 0.93 0.29 0.49 10.68 385.93
mRMR 40 9.16 1.23 0.28 1.19 15.53 467.02

Table 4. Detection Time (in seconds)
Technique KNN LR NB DT RF SVM
80 Fea-
tures

9.02 0.02 0.53 0.02 0.53 162.57

LV 7.98 0.03 0.03 0.01 0.34 15.24
SVC 15.62 0.02 0.02 0.01 0.35 144.13
Extra-Tree 12.95 0.01 0.06 0.02 0.44 21.15
Lasso 8.15 0.01 0.14 0.01 0.45 142.08
mRMR 05 16.29 0.02 0.01 0.01 0.48 146.50
mRMR 10 12.43 0.02 0.01 0.01 0.53 142.84
mRMR 20 7.72 0.01 0.02 0.01 0.58 198.56
mRMR 30 5.46 0.02 0.03 0.01 0.49 86.29
mRMR 40 6.26 0.05 0.04 0.01 0.52 102.73

One explanation for the SVMalgorithm to takemuchmore
time than others is that it needs to work in the high dimen­
sional feature space, where it can be computationally chal­
lenging to separate the points for the 70.000 training data­
points. As an evidence of this, we see that the feature selec­
tion technique has a big impact in reducing the time it takes
to train and detect using SVM as a model.
Similar to the training time, the detection time (presented

in Table 4) of the KNN and SVM classifiers are longer than
the otherML techniques. However, differently from the train­
ing time, the impact of the selection techniques is lower. In
general, the LR, NB, and DT techniques spend very little
time performing the detection. Close to them is the RF, prov­
ing to be a feasible solution.
In general, the DT classifier presented an overall most suit­
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able performance since it can detect attacks with high accu­
racy and in a short time (mainly with methods mRMR 10 and
SVC), while it can be trained fast when compared to other ap­
proaches.

4.2 Location Experiments
4.2.1 Simulation Configuration

The simulation was performed using Network Simulator 3
(NS3) (Riley andHenderson, 2010).Wewrote the simulation
code in C++ language, and the analysis of the results was
done using scripts written in python 3.52.
We use a server host for the network topology, connected

by a peer­to­peer connection to the host used as a wi­fi access
point (AP), amobile host (drone)with awi­fi connection, and
several other static hosts connected to the wireless network.
At each simulation run, one of the unidentified static hosts is
randomly chosen to act like an attacker.
The area covered during the simulation is approximately

100m2, the same coverage area as a home wi­fi router. We
have also entered a package shipping error rate of 0.001%.
This rate is suggested in one of the examples in the simu­
lator’s tutorial. The interval between sending packages is 1s.
Finally, the drone’s displacement speed is constant and equal
to 10m/s.
Thirty runs were made for each of the four setups used.

For each setup, the number of unidentified fixed wi­fi hosts
were varied, as shown in Table 5. Note that we use a drone
(mobile node), a server (fixed node), and a fixed AP (fixed
node) in all configurations.

Table 5. Simulation Setup
Setup Number of

fixed nodes
Number
of mobile
nodes

Total of
nodes

ID 1 12 1 13
ID 2 52 1 53
ID 3 102 1 103
ID 4 252 1 253

4.2.2 Location Results

We evaluate the simulation in two aspects: (i) regarding the
distance between the location found and the actual location
of the attacking machine, and (ii) the time taken until the ap­
proximate location of the target is calculated.
For distance, the results showed an accuracy of mm in all

evaluated configurations. The greatest distances occurred in
simulations of types 1 and 2. The time spent during the simu­
lations ranged between 9 and 14 seconds. Again, type 1 sim­
ulations had the worst results. Table 6 summarizes the means
and standard deviations (±) for each setup.
The very positive results of the proposal concerning dis­

tance are directly related to the measurement errorn used. As
the simulator uses a reference value n that practically does
not vary, when calculating our own n, we obtained a value

2The simulation codes are available at https://bit.ly/2LU55st

Table 6. Average Simulation Results
Setup Distance (mm) Runtime (s)
ID 1 0.74 ± 0.57 10.28 ± 1.49
ID 2 0.5 ± 0.37 9.8 ± 0.84
ID 3 0.32 ± 0.26 9.63 ± 0.3
ID 4 0.19 ± 0.11 9.61 ± 0.19

very close to the simulator’s reference value, which, conse­
quently, allowed the high precision of the algorithm.
We believe that the nature of the evaluated scenarios,

which allowed us to obtain the value for n in the way pre­
viously mentioned, made it possible to obtain the very posi­
tive results in the experiments. However, we do not guaran­
tee that this behavior will be the same in a real environment.
In a more realistic scenario, we might need to calculate the
value of n in another way. However, since the proposal al­
lows other types of calculations for this value to be used, we
believe that the results obtained in the simulation are suffi­
cient to validate that our proposal can calculate the approxi­
mate location of the target.
The time taken to locate the target, independent of the lo­

cation calculation, indicates that the time required to locate
the attacking machine using the proposal is small, close to
10s, for the specified area. Also, despite the minimal varia­
tion in the results, the simulations indicated that the number
of nodes has little impact on the proposal’s performance. We
believe the results are related to greater spread with fewer
nodes within the environment.
Finally, it is important to note that the step that consumed

the most processor, memory, and time resources during the
experiments was the training of the ML models. But as it
runs on the server host, it is assumed to have reasonable re­
sources, and therefore memory and processor were not con­
sidered critical in our study. The critical resource considered
was the times needed to train the ML model, detect the at­
tacks and locate the attacking device, that we presented in
our results.

5 Conclusion and Future Work

Internet access in public environments allows users to access
their data online from anywhere and the deployment of new
services based on IoT. This fact created SEs composed of
both personal and IoT devices. Nevertheless, these environ­
ments can facilitate the action of malicious agents perform­
ing DDoS attacks on the network. In this context, this work
presented a system to detect attacks to wireless networks in
public environments and locate the devices used to do that.
This system focuses on an underexplored scenario usingmea­
surements from a drone and an access point to calculate the
target’s location through trilateration.
Regarding our future work, we intend to extend the pro­

posed system to use more than one drone and moving targets
in the network and evaluate other solutions to calculate trilat­
eration, such as methods based on Gaussian elimination. Fur­
thermore, the detection can be improved using deep learning
techniques.
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