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Abstract
Many new network-oriented services have been developed in recent years, and Multi-access Edge Computing
(MEC) has been standardized to improve the responsiveness of services. When deploying services in a MEC envi-
ronment, it is necessary to consider a service structure that can flexibly switch service behaviors to meet various user
requests and that can change service behaviors according to the real-world environment at a low implementation
cost. In this paper, we introduce a core/periphery structure for service components, which is known as a model for
flexible behavior in biological systems, and design and implement a network-oriented mixed reality service based
on this structure. We investigate what kinds of functions should be developed to accommodate user requests in
conjunction with various types of devices and real-world environments in which users and devices are located. To
utilize the flexibility of a core/periphery structure, we regard core functions as those whose behaviors remain un-
changed even when there are changes in user requests or the environment. In contrast, peripheral functions are those
whose behaviors can change under such circumstances. Experiments reveal that implementation costs are reduced
while retaining increases in service response time to less than 31 ms. These results show that taking advantage of
a core/periphery structure allows appropriate division of service functions and placement of functions in a MEC
environment, with only small penalties on latency and at a low implementation cost.

Keywords: Core/Periphery Structure, Multi-access Edge Computing (MEC), Mixed Reality (MR),
Telexistence Service, Network Robot

1 Introduction

Many new network-oriented services have arisen with devel-
opment of the Internet of things (IoT), and information net-
works are rapidly changing. Using these new services, we
can send real-world information from cameras and sensors
to the cloud, or perform high-load processing such as im-
age recognition or voice and sound recognition. For example,
telexistence services using robots andVirtual Reality (VR) or
Mixed Reality (MR) technologies are now being developed.
The ANA Avatar project (ANA, 2017) investigates use of
robotics and techniques for transmitting tactile sensations to
develop services throughwhich users operate avatar robots to
communicate at remote places as if they were actually there.
In such applications, application-level delay is a signifi-

cant factor affecting service quality. However, communica-
tion distance and load concentrations can significantly in-
crease application-level delay in cloud computing environ-
ments (Baktir et al., 2017). Recently, multi-access edge com-
puting (MEC) (Hu et al., 2015; Taleb et al., 2017; Baktir
et al., 2017) has been standardized to mitigate increases in
application-level delay for delay-sensitive services. In an
edge computing environment, computing resources and stor-
age are allocated at the network edge so that processing re-
quired by end devices is performed at closer sites. This im-
proves the responsiveness of applications by shortening com-
munication distances and load distributions.

Because many new network-oriented services have devel-
oped to meet various user requests, it is important to consider
service designs that can accommodate as many services as
possible when deploying network services in a MEC envi-
ronment. However, implementation costs increase if devel-
opers must reconstruct entire services to meet different user
requests or to adapt to environmental variation such as de-
vice evolution. Moreover, MEC environment resources are
not necessarily the same as those in a cloud computing envi-
ronment. Specifically, MEC environment resources are lim-
ited by spatial restrictions, making it difficult to locate all
possible services, such those on the edge that can adapt to
each user request and environmental variation. It is therefore
necessary to consider service structures that can change ser-
vice behaviors in a flexible manner. Service function place-
ment in MEC environments has been studied in, for exam-
ple, (Ouyang et al., 2018) and (Liu et al., 2018), but most
of them correspond to user mobility. We consider a service
design where the developers can modify or add service func-
tions in a flexible manner with less cost against changes of
real environment and user requirements.
We has been investigating a core/periphery structure (Cser-

mely et al., 2013; Miele et al., 2019) that allows service com-
ponents to effectively adapt to each user request and envi-
ronmental variation. A core/periphery structure is a model
for flexible and efficient information processingmechanisms
in biological systems. Information processing units in a
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core/periphery structure are classified as core or periphery
units. Core units are densely composed with system con-
straints, and process information more efficiently. Periphery
units, which are connected to core units, can have various
configurations, allowing them to flexibly adapt to environ-
mental changes surrounding the system and to build flexi-
ble, efficient information processing mechanisms with the
core. The advantages of a core/periphery structure for ac-
commodating information services, represented by chains
of functions, were numerically investigated in our previ-
ous work (Tsukui, 2020), with the results showing that a
core/periphery structure reduces developmental costs for ac-
commodating various kinds of information services. Service
based on a core/periphery structure adapts service behaviors
to various user requests, devices, and real-world environmen-
tal changes where the end devices are located.

In this paper, we show that a core/periphery structure al-
lows services to adapt to increasing the number of device
types with low implementation cost, and evaluate the actual
penalty of locating core functions on edge servers with re-
gards to the service responsiveness through a service imple-
mentation. Unlike model-based evaluations, we implement
a network-oriented MR service based on a core/periphery
structure using actualMR devices and robots. Our implemen-
tation focuses on a shopping service, but service design based
on a core/periphery structure is not limited to the shopping
service and can be applied to other network services.

When designing services based on a core/periphery struc-
ture, it is necessary to consider which functions should be
implemented as core units and which should be implemented
as periphery units. We first investigate what kinds of func-
tions would be required in a shopping service. To utilize the
flexibility of a core/periphery structure, we regard as core
functions those whose behaviors remain unchanged under
changes to user requests or the real-world environment, and
peripheral functions as those whose behaviors can change
under such circumstances. In this way, core functions allow
adaptation to the emergence of new services by adding or
changing some peripheral functions instead of recreating en-
tire services. We next evaluate the design of a service based
on a core/periphery structure in terms of implementation cost
and service responsiveness. The results shows that as com-
pared to a conventionally designed service, the implementa-
tion cost for adding new functions of a service design based
on a core/periphery structure is reduced without increasing
service responsibility. We close with a summary of the ad-
vantages of service design based on a core/periphery struc-
ture, which are not numerically verified but are experienced
through the service implementation.

The remainder of this paper is organized as follows. Sec-
tion 2 describes related work on services that are currently
being developed or are expected to be developed in the future.
Section 3 describes the services targeted in this paper and a
service design based on a core/periphery structure. Section 4
describes details of the service implementation and evalua-
tion. Section 5 describes lessons learned from service imple-
mentation based on a core/periphery structure. Finally, Sec-
tion 6 describes our conclusions and future work.

2 Current and Future Network-
oriented Mixed Reality Services

This section describes network-oriented services that have
been developed recently or are expected to be developed in
the future.

2.1 Current Services
Telexistence services have been actively developed in recent
years, and momentum for their social implementation has
been rising. Telexistence aims at allowing people to feel as
if they are actually at a remote place. TELESAR V (Tachi,
2016) is a telexistence master–slave system allowing users
to feel present in a remote environment by transmitting
not only video and audio, but also haptic sensations. ANA
Avatar (ANA, 2017) is conceived as a new mode of instan-
taneous transportation allowing users to communicate and
work as if actually present in remote places, using robotics
and technologies for sending tactile sensations and allowing
remote robot operations. ANAhas begun testing via theANA
Avatar Museum, which allows users to view a remote aquar-
ium, and ANA Avatar Fishing, through which users can re-
motely fish. A telexistence application using drones is also
being developed (Xia et al., 2019).
Existing conventional MR services implement service

functions targeted for specific devices and specific function-
ality. Flexible service development is necessary to easily
adapt to changes in users’ requests on the real-world side,
such as future development of devices and shifting locations.
Moreover, users of a MR service send related information to
the centralized server, and the information is processed, and
then, the results are sent to the remote devices. Typically, the
centralized server is located on the cloud in services such as
the above-mentioned ANAAvatar. Conceptually, the central-
ized server can be a remote device; users directly communi-
cate with remote devices. By developing service functions
with design of a core/periphery structure, less part of the pro-
gram code needs to be modified. In addition, service func-
tions can be placed separately on cloud/edge servers, users’
devices, and remote devices. More importantly, placing the
service functions on edge servers has a potential to reduce
application-level delay. Note, however, that separating ser-
vice functions into core and periphery may lead to increased
overhead at the function’s processing delay and implementa-
tion cost. Therefore, it is necessary to design and implement
the actual MR services by the concept of a core/periphery
structure, and then measure the increased overhead.
VRPN (Virtual-Reality Peripheral Network) (Taylor et al.,

2001), which is used for developing VR services, is similar
to the concept of core/periphery structure since it absorbs the
difference of VR devices. In this paper, we use an MQTT
(Message Queuing Telemetry Transport), which is a messag-
ing protocol to absorb the differences between devices as a
core function.

2.2 Future Services
Sixth-generation (6G) networks will allow development of
services using technologies that would be difficult to sup-
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port over fifth-generation (5G) networks. Within ten years,
current remote interaction technologies will become obso-
lete, and new forms of interaction such as holographic and
five-sensory communication will allow immersion in remote
places (Strinati et al., 2019). Tactile Internet and full-sensory
digital reality can be realized by 6G networks (Zhang et al.,
2019). It has also been suggested that 6G networks will
further support underwater and space communications, al-
lowing deep-sea sightseeing and space travel (Zhang et al.,
2019).
Application-level delay, which significantly increases in

cloud computing environments with communication dis-
tances and load concentrations, will be a significant factor
for service quality in these applications (Baktir et al., 2017).
MEC is therefore expected to be further standardized (Hu
et al., 2015; Taleb et al., 2017; Baktir et al., 2017). In edge
computing, computing resources and storage are allocated
at the network edge, so that processing required by end
devices is performed at closer sites. This improves the re-
sponsiveness of applications by shortening communication
distances and optimizing load distributions. Our research
group demonstrated thatMEC environments improve the ser-
vice quality of network-oriented MR services (Takagi et al.,
2019). The ETSI Industry Specification Group (Sabella et al.,
2019) suggests video content delivery, video stream analysis,
and Augmented Reality (AR) as key use cases for MEC, and
suggests guidelines for software developers.
Current mainstream services include audio and video

transmission, but realizing transmission of information for
the five senses will require construction of service systems
that can handle multiple inputs and outputs. In this paper,
we propose guidelines for service function placement in a
core/periphery structure, a biological model for flexibly and
efficiently processing information.

3 Service Design Based on a Core/Pe-
riphery Structure

This section describes a service design based on a
core/periphery structure.

3.1 Supposed Service for Network-oriented
Mixed Reality

We consider a shopping service usingMR and robots. Robots
are placed in an actual store to allow users to shop from home
as if they were actually there. Robots provide a video feed
while moving about the store under user operations. Real-
world information on the store side is added to videos de-
livered to users. Users can move robots with gamepads, ges-
tures, or gaze. Figure 1 shows an overview of the shopping
service and its functions.
Robot-side applications provide functions for moving, tak-

ing video, processing images, collecting and aggregating in-
formation around the robot, and adjusting movement speed
so as not to collide with people or objects. User-side applica-
tions provide functions for displaying video, sending instruc-
tions to the robot, collecting and aggregating information

around users, and detecting objects at a user-defined gran-
ularity.
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Robot
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Aggregate 
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Move
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Display video
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Figure 1. The presumed service and its functions.

3.2 Service Decomposition Based on a Core/
Periphery Structure

To design the service described in Section 3.1 based on a
core/periphery structure, we divide the service functions into
core and peripheral functions. This section discusses core
and peripheral functions for video transfer and robot oper-
ations, and explains the process at each function in detail.
The service function provides a functionality to services.

The functionality ranges from primitive functionality to aux-
iliary functionality or specific functionality. A service is then
provided by selecting a set of service functions and by com-
bining/chaining the service functions over the network. Note
that the number of possible services drastically increases as
the number of functions increases, which makes deployment
cost being low by numerical examples in our previous work
(Tsukui, 2020).

In this paper, we investigate the effectiveness of
core/periphery design using the actual implementation of
MR services. However, because we cannot design and im-
plement all of the possible (MR) services, we select three ser-
vices as service scenarios, and design/implement them by us-
ing functions for video transfer (Section 3.2.1) and for robot
operation (Section 3.2.2).

3.2.1 Video Transfer

Functions for video transfer provide video capture and out-
put, perform object detection, and distribute video to users.
For video transfer, we consider three functions depending
on user requests, devices, and real-world environments. First
function is the video I/O.When a new camera or device is de-
veloped, the performance of the camera capturing the video
may not match the performance of users’ devices. In that
case, the function to change the rate and resolution of the
video is needed. Users can also change the video resolution
and rate depend on the network environment they are placed
in. Second function is object detection. Users switch object
detection methods appropriate to the location of the robot
or information the users want. For example, in a shopping
service, when a robot is moving through the halls of a shop-
ping mall or window shopping by walking a street, users may
select fast but coarse-grained method, and when users want
to know the detailed classification of a product in a specific
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store, they select slow but fine-grained method. Fine-grained
object detection is supposed to be used at the user side to
provide detailed information about the object based on the
user’s preference or intention. Also, when new object detec-
tion methods are developed, service developers implement
additional functions to support them. Third function is the
video distribution. A video transfer service which requires
real-time video transmission from robots to users may use
UDP and mpeg-ts, and other video transfer service may use
HLS (HTTP Live Streaming) for transmitting video to mul-
tiple users. HLS is a live streaming protocol using HTTP,
which allows video delivery/playback to be executed on a
web server/client. HLS can distribute video to multiple users
at the same time, but HLS transfers the chunk of video with
TCP, which makes the delay larger. Table 1 summarizes the
functions for video processing that are used to realize service
scenarios in Section 3.3.

Table 1. Service functions for video transfer.

Function User requests Processing
Video I/O Real time Change rates

High-resolution Change resolution

Object detection Fast but coarse Choose methodsSlow but fine

Video distribution To one user UDP-based protocol
On a large scale TCP-based protocol

We decompose the service into functions, and consider
which of those described in Section 3.1 are core functions
and which are peripheral functions, based on the concept of
a core/periphery structure in which core functions processes
information more efficiently, while periphery functions have
various configurations for flexibly adapting to environmen-
tal changes.

(2) Camera User
UDP (mpegts) TCP (HLS)

(1) Camera User
UDP (mpegts) UDP (mpegts)

Video
I/O

Format 
conversion

Change
rate

(3) Camera User
UDP (mpegts) UDP (mpegts)

(4) Camera User
UDP (mpegts)

Fast but
coarse-
grained
Object
detection

UDP (mpegts)

Slow but
fine-
grained
object
detection

Figure 2. Examples of processing in video transfer. (1) Video providers
change video frame or bit rates. (2) Video providers distribute video to mul-
tiple users. (3) Object detection with only a standard part is executed. (4)
Object detection with a new part is executed.

Figure 2 shows examples of video transfer processing.
When video providers want to change the video frame or
bit rates to adapt to the amount of available resources, the
video is processed before input. Users too can change the
frame or bit rate. In that case, video is processed after output.
Protocols and the video format can be changed at the video
providers’ request. For example, video providers use the
UDP-based transfer protocol to send video to a single user,

and TCP-based protocols such as HTTP otherwise. When
users want to know what is in the video, object detection is
executed. There are various object detection methods, such
as YOLOv3 (Redmon and Farhadi, 2018), which is fast and
widely used, and Mask R-CNN (He et al., 2017), which pro-
vides more detail but is slow. Users can adopt their preferred
method. Orange functions in Fig. 2 are common core func-
tions, while light orange and blue functions are peripheral
functions.

Input video

Coarse-grained
object detection

Fine-grained
object detection

Convert format
Core

UDP (mpegts)

OutputInput

UserCamera
UDP

HLS server

TCP

Object detection

Output videoChange 
frame/bit rate

Figure 3. Video transfer based on a core/periphery structure.

Figure 3 shows the core/periphery structure for video trans-
fer, with orange fields indicating core functions, light orange
fields indicating camera-side periphery functions, and blue
fields indicating user-side periphery functions. Video is sent
from the camera, whose frame and bit rates are adjusted
based on provider requests as a peripheral function. The
video then passes through core functions, including those for
inputting video, outputting video, and the standard part of
object detection. Finally, the video format and distribution
protocol are selected and sent to users. By utilizing the flex-
ibility of a core/periphery structure, all developers have to
do is remake or add peripheral functions for adapting to dif-
ferent user requests, changes in the real-world environment
where devices are placed, or device evolution.

3.2.2 Robot Operation

Robot operations provide functions for recognizing user ac-
tions, sending messages from users, accessing APIs, adjust-
ing robot speeds to avoid obstacles, and collecting and ag-
gregating information obtained from robots. For robot op-
erations, we consider three functions depending on user re-
quests, devices, and real-world environments. First function
is command interfaces based on the users’ devices, which in-
cludes either separately or in combination of gamepads, ges-
tures, and gaze. Users select how to operate remote devices
depending on the users’ device type and its specification. In
the future, as new command interfaces or devices are devel-
oped, new functions to use the new devices are developed
and provided to users. Second function is the selection of
a remote device to operate. Users select the remote devices
e.g. robots and drones to operate based on the remote envi-
ronment or users’ requests. The APIs used in the service are
switched accordingly. When new remote devices are devel-
oped, users can use the new remote devices. Third function is
related to adapting changes in the real environment in which
the robot is located. For example, when the robot is located in
a crowded area, it moves slower, andwhen it is in a large area,
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it moves faster. Table 2 summarizes the functions for robot
operation variation of service on different user requests/real-
world environments for requests for robot operations.

Table 2. Variations of service for robot operations.

Function
User requests/

Variations of serviceReal-world
environments

Command interface
Use gestures

Change interfaceUse gamepad
Use gaze

Device to control Operate robots Switch/Add APIsOperate drones

Adjust robot speed
Some obstacles Move robot slowlySlippy
No obstacles Move robot speedily

We decompose the service into functions and determined
core functions as in Section 3.2.1. Figure 4 shows exam-
ples of processing for robot operations. When users operate a
robot with gamepads or gestures, their device recognizes in-
structions and send messages based on the selected method.
When users operate different devices such drones, service be-
havior after receiving usermessageswill change to access the
robot or drone’s API. Furthermore, robot speeds are adjusted
based on the surrounding environment. When there are no
obstacles or crowds, users can speedily move robots. Other-
wise, robots slow down to avoid collisions.

(1) User Robot

Send
messages Device control

(2) User Robot

Input

Input

Command 
interface

(3) User Drone
Input

(4) User Robot
Input

Adjust speed

(gamepad)

(gesture)

Figure 4. Examples of processing for robot operations.(1) User operates a
robot with gamepad. (2) User operates a robot with gestures. (3) User oper-
ates a drone. (4) Robot speed adjusted based on the environment.

The function for send messages in robot operations is a
common function, and therefore should be divided as a core
function, rather than the whole service being performed as an
all-in-one function. Figure 5 shows the core/periphery struc-
ture for robot operations. Functions for sending instruction
messages from users and aggregating information obtained
from robots are common, so they are core functions. Func-
tions for adapting to user requests and changes in the real-
world environment, such as how to input user instructions,
are peripheral functions. Functions for accessing robot APIs,
collecting information such as the current robot position and
adjusting movement speed are peripheral functions, because
they change according to device type and real-world environ-
ment. Flexibility of a core/periphery structure allows devel-
opers to simply remake or add peripheral functions to adapt

to varying user requests, environmental changes, and device
evolution.

Core OutputInput

User
Robot

MessagingGesture Robot API

Gamepad
Gaze

Adjust speed

Drone

Drone API

Command interface

Figure 5. Robot operation based on a core/periphery structure.

3.3 Service Scenarios
We prepare two service scenarios for implementation. Note
that we use a robot, Pepper(Softbank Robotics, 2014), for the
implementation and did not use the Drone devices. The ap-
plicability to the Drone and other devices is discussed in Sec-
tion 4.1.2. In the first, we modify robot behavior according
to its real-world environment. This scenario realizes commu-
nication between robots’ peripheral functions for adjusting
speed and core functions related to robots, object detection,
and messaging. In the second scenario, we modify behavior
of a user application based on the user’s real-world environ-
ment. This scenario realizes communication between user-
side peripheral functions for displaying information and core
functions related to users, information aggregation, and mes-
saging.

3.3.1 Behavior Based on the Real-world Robot Environ-
ment

The following describes a scenario in which robots modify
their behavior based their real-world environment. Functions
for robot operation and core/periphery functions are as fol-
lows:

• Core: Functions for transmitting instructions from the
user to the robot and functions for object detection.

• Periphery: Functions for obtaining information near the
robot, adjusting the robot movement speed, and aggre-
gating information sent from multiple robots.

Figure 6 shows this scenario. There are users with MR
headsets, robots, cameras, and edge servers on robot side. Or-
ange functions are core functions. Blue functions are periph-
eral functions on robot side, and light orange functions are
peripheral functions on user side. Users send instructions to
robots, moving their bodies and heads by gamepads, gestures,
and gaze. Robots can detect nearby obstacles and stop using
sensors. Video captured by robot-mounted cameras are sent
to the edge servers, which perform object detection to recog-
nize objects and persons around the robots. Object detection,
a core function, needs to be performed in real time and re-
quires powerful servers. These functions should thus be de-
ployed on edge servers, not on end devices. The results of
object detection are returned to robots. For example, when
robots know that there are many people around them, they
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Figure 6. Service scenarios.

can reduce speed to avoid collisions. Moreover, information
from robots can be aggregated on edge servers and shared
with other robots for collision avoidance and the like.

3.3.2 Behavior Based on the Real-world User Environ-
ment

The following describes a scenario in which behavior is
based on the real-world user environment. Core/periphery
functions are as follows:

• Core: Functions for sending user instructions to robots
and for aggregating information from multiple robots.

• Periphery: Functions for displaying video, detailed ob-
ject information, and information about each robot.

Figure 6 shows this scenario. As a core function, store
and robot information such as product information or com-
munication status is collected at user-side edge severs. Users
select which robot to operate only by communicating with
an edge server while viewing aggregated information about
stores and robots. Video sent from cameras is roughly clas-
sified by object type on robot-side edge servers. These func-
tions perform real-time image processing and information ag-
gregation, and thus are inappropriate for execution on end
devices. To improve responsiveness, core functions should
be performed on edge servers instead of the cloud. Then, de-
tailed object detection is performed as a peripheral function
on a user-side edge server. User devices collect personal in-
formation such as user tastes, what the user already owns,
and purchase history, and this information is aggregated on
an edge server. Using this personal information, the system
can display content most appropriate for the user. For exam-
ple, the application can recommend commodities based on
previous frequent purchases, or can warn users of impend-
ing expiration dates for food.

4 Implementation andEvaluation of a
Service Based on a Core/Periphery
Structure

This section describes implementation details and evaluates
the service based on Section 3.3.

4.1 Implementation of a Service Based on a
Core/Periphery Structure

This section describes the implementation of our service.
Although there is techniques such as inheritance in object-
oriented languages as an implementation that is based on the
concept of a core/periphery structure, in this paper, we im-
plemented the core and peripheral functions as separate pro-
grams to locate core functions on edge servers and peripheral
functions on robots orMR headsets.We implemented the ser-
vice using only HoloLens devices on the user side and only
robots on the remote side.

4.1.1 Video Transfer

Video from cameras is sent to a robot-side edge server. Video
is captured using OpenCV (OpenCVteam, 2005), then ob-
ject detection is performed using a PyTorch implementation
of YOLO v3 (Redmon and Farhadi, 2018). For video pro-
cessing, mask R-CNN (Region-based Convolutional Neural
Networks) (He et al., 2017), an algorithm that surrounds de-
tected objects with a rectangle and recognizes the object type
for each pixel and colors it accordingly, can be used. The pro-
cessed video is transmitted via UDP using ffmpeg (FFmpeg
team, 2002) to HoloLens (Microsoft, 1991), an MR headset
worn by users, for display. HoloLens is a standalone head-
mounted computer made by Microsoft that displays holo-
grams and recognizes user gaze and gestures to provide a
MR experience.

4.1.2 Robot Operation

HoloLens controller information is transmitted via Message
Queuing Telemetry Transport (MQTT), a publish/subscribe-
type protocol developed for frequent message exchange be-
tween IoT devices. Users use anXbox controller that can con-
nect to HoloLens. The available operations are as follows;

• Xbox controller: moving forward, backward, left, and
right, with left stick, rotation with L button and R button,
and resetting robot’s neck rotation with X button

• gesture: moving forward, backward, left, and right with
dragging, and rotation with holding

• gaze: robot’s neck rotation synchronizedwith HoloLens
direction
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Because we use the MQTT for the core function, some of
the robot operations here are easily extended to other devices
such as Drone (Mukherjee et al., 2020). Note again that we
selected HoloLens and Pepper to evaluate the amount of the
source code and to measure the application-level delay. The
MQTT broker receives controller commands via HoloLens
and sends them to a program running on the robot. The robot
is a Pepper (Softbank Robotics, 2014) running a program de-
veloped using the programming tool Choregraphe. This pro-
gram converts messages from the MQTT broker to the Pep-
per API.
Figure 7 shows a screenshot of the HoloLens application.

Users can see video with the object detection results and a
map made by Pepper displayed at the top left. The green dot
represents Pepper’s position.

Figure 7. AScreenshot of the HoloLens application.

4.2 Evaluation Metrics and Measurement
This subsection describes the evaluation metrics, namely im-
plementation cost and service responsiveness, and how we
measure those metrics.

4.2.1 Implementation Cost

Using the implemented service, we show that adopting a
core/periphery structure lowers implementation costs.
We evaluate the number of lines of source code as the

implementation cost, comparing source code size when the
service is designed based on a core/periphery structure with
the case where the service is not designed based on a
core/periphery structure and implemented on an end de-
vice. Actually, the number of program code lines highly de-
pends on a programming manner. However, because we im-
plemented functions with the same programming manner,
and program code mainly consists of essential codes to pre-
pare/handle API calls for each device, we use the number of
program code lines for comparison. Comparisons between
other programming manners may be possible with more im-
plementations of MR services, but is left for our future work.
While knowledge and preparation of the development en-

vironment is also part of the implementation cost, such fac-
tors are difficult to numerically evaluate. Section 5 describes
these and other lessons regarding service implementation.

4.2.2 Service Responsiveness

Because sending user instructions via an edge server can in-
crease application-level delay compared with the case of di-
rectly sending instructions to robots, we measure and eval-
uate application-level delay as a penalty for using edge
servers.
We measure times from when the HoloLens applica-

tion publishes a message to return of robot sensor data to
HoloLens directly, and through the edge server. Then, we
compare these times to evaluate the effect of allocating core
functions on an edge server. We regularly sent messages
about 20 times from the HoloLens application and saved
each message return time as t1, t2, . . . , t20. We also record
times when Pepper returned sensor data as t′

1, t′
2, . . . , t′

20 in
the HoloLens application. Then, we calculate the average of
t′
1 − t1, t′

2 − t2, . . . , t′
20 − t20 as the application-level delay.

Application-level delay is a one-way delay. However,
since there are different system clocks between HoloLens
and Pepper, accurate comparison of one-way delay is diffi-
cult. We therefore measure round-trip delay.
We construct a MEC environment using OpenStack lo-

cated in Osaka.

4.3 Results
4.3.1 Implementation Cost

Figure 8 shows the relation between the number of device
types at remote sites and the number of lines of source code
for the connection establishment part (Fig. 8(a)) and for the
messaging part (Fig. 8(b)).We omit the complete source code
due to space limitations, but it is available at our GitHub
repository (Shiori, 2022). The “Direct” represents the design
not based on a core/periphery structure, and Core/Periphery
represents the design based on a core/periphery structure.
Solid lines in the figure represent the number of lines for
two robot types, a Pepper and a presumed robot, and dashed
lines represent the number of lines when using more than
two robot types. We have not implemented the application
with more than two robots, but predict that the number of
lines will linearly increase because applications not based on
a core/periphery structure require source code for establish-
ing connections and messaging for each device API, result-
ing in a constant additional number of IF statements for each.
Figure 8 shows the effect of a design based on a

core/periphery structure increases as the number of device
types increases. Note that when a single type of device or
a single type of service is implemented, the design based
on a core/periphery structure is less effective. When addi-
tional type of remote devices are deployed for the service,
developers need to prepare service functions, i.e., write code,
to establish connections and operations for the remote de-
vices. Writing the code is necessary for both the design based
on a core/periphery structure and the design not based on
a core/periphery structure. However, in the application de-
signed not based on a core/periphery structure, the amount of
source code increases linearly against the increase of remote
device since the service functions are dependent each other.
In the application designed based on a core/periphery struc-
ture, developers can reuse these functions as core functions,
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and the amount of code is constant or increases marginally.
We considered both variation of devices at remote sites

and variation of user-side devices. Both in services based
on a core/periphery structure and those not based on this
structure, developers must add source code for obtaining
controller information, because this is a peripheral function.
However, increasing the number of controller types also in-
creases the number of source code parts to be added on the
remote side, an effect that is mitigated by designing ser-
vices based on a core/periphery structure. Therefore, devel-
opers can implement applications more easily by adopting a
core/periphery structure.
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Figure 8. Number of lines of source code.

4.3.2 Service Responsiveness

Table 3 shows average, maximum, and minimum values
for application-level delay, along with ping round-trip time
(RTT) when the HoloLens application directly connects to
the Pepper and when the HoloLens application connects to
Pepper via edge servers. As shown in Table 3, the application-
level delay in the case of Direct was 21 ms, and that in the
case of Core on Edge was 52 ms. The difference between
the two shows that the penalty for locating the core function,
MQTT, on the edge server is 31 ms. The application-level de-
lay in the case of Core on Edge is 52 ms, and the 52 ms delay
is tolerable because humans’ reaction time is around 190 ms

for light stimuli. The results show that application-level de-
lay when using MQTT on an edge server is about 52 ms.
A 52 ms delay is tolerable because humans’ reaction time
is around 190 ms for light stimuli (Galton, 1899; von Fie-
andt et al., 1956; Welford, 1977, 1980; Brebner and Welford,
1980). In combination with the results presented in Section
4.3.1, therefore, a service design based on a core/periphery
structure reduces implementation costs without significantly
deteriorating service responsiveness. Note that application-
level delay when core functions are placed on the cloud1 was
626 ms, which exceeds the tolerable delay due to the round-
trip time. However, the penalty of separating service func-
tions into core and periphery is the same as the “Core on
Edge”.

Table 3.Results of experiments measuring penalty of using an edge
server.

Direct Core on Edge
Average [ms] 21 52
Max [ms] 24 263
Min [ms] 0 18

Ping RTT [ms] - 1

5 Lessons from Service Implementa-
tion

This section presents lessons learned from service implemen-
tation based on a core/periphery structure, including factors
that cannot be numerically represented.
First, developers do not need to consider device APIs

and specifications. When a service is not based on a
core/periphery structure, functions are not divided and user-
side devices directly establish connections with remote de-
vices. Developers need to know the APIs of many remote
devices to write many parts of source code, including how
to establish connections, how to move devices at remote
sites, and the parameter settings such as the sensitivity to
user operations, which are depend on the speed and other fea-
tures of the remote device. By dividing functions based on a
core/periphery structure, user-side developers need to know
only user-side device APIs, and do not need to consider re-
mote device APIs.
Furthermore, adopting a core/periphery structure absorbs

differences in development environments. We implement the
service using Unity. A 32-bit version of Unity is required to
directly use the Pepper API from a user-side application, but
32-bit versions of Unity are no longer being developed. To
develop for Pepper, therefore, we must use an old version of
Unity and modify the source code as appropriate. When de-
veloping for devices that require an old development environ-
ment and those that require new ones, we need to know the
APIs provided by both. When designing services based on
a core/periphery structure, however, developers need to pre-
pare an environment for the user-side device only, because
core functions absorb differences in device specifications.

1AWS (Amazon Web Services) cloud host in Ohio, USA.
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Second, we consider the implementation cost for shar-
ing information among robots. A non-core/periphery ser-
vice structure does not have edge servers. To share infor-
mation such as positions, robots must establish connections
with each other. Therefore, each time a new robot appears,
developers must modify source code to allow other robots
to connect with the new one. By designing services based
on a core/periphery structure, since robots send information
to only edge servers, where that information is aggregated,
source code does not need to be changed even when new
robots appear.
Third, we derive guidelines for service function place-

ment in a core/periphery structure. Taking advantage of a
core/periphery structure allows appropriate division of ser-
vice functions and deployment of those functions to differ-
ent servers or devices. If no functions are divided and de-
ployed in the cloud or on end devices, new services must be
entirely recreated to adapt to various user requests or device
evolution. Furthermore, allocating core functions on edge
servers and peripheral functions on end devices is the most
effective in terms of service responsiveness and implemen-
tation cost, because it is possible to form feedback loops by
short-distance communication between end devices and edge
servers located near those devices and to adapt to real-world
environmental changes.

6 Conclusion
We revealed implementation cost and actual penalty of ser-
vices using a core/periphery structure, which is a known
model for flexible behavior in biological systems, and eval-
uated it in terms of implementation cost and service respon-
siveness.
To utilize the flexibility of a core/periphery structure, we

regard core functions as those with unchanging behaviors
even when there are changes in user requests or the real-
world environments, and peripheral functions as those whose
behaviors can change under such circumstances. We im-
plemented a service and evaluated the effects of a design
based on a core/periphery structure under an experimental
laboratory environment. These experiments showed that the
penalty due to MQTT on an edge server is about 31ms. Tak-
ing advantage of a core/periphery structure allowed us to ap-
propriately divide service functions and locate functions in
a MEC environment, thus reducing implementation cost for
adding new functions with little penalty.
In future work, we will evaluate implementation costs for

object detection and feedback to robots, and for sharing in-
formation among robots. There is also a need for implemen-
tation and evaluation of the service using robots other than
Pepper. Service design based on a core/periphery structure
is more efficient when there are various devices, but in this
paper we implement and evaluate a service using only one
kind of headset and robot.
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