Journal of Internet Services and Applications, 2023, 14:1, doi: 10.5753/jisa.2023.2847

© This work is licensed under a Creative Commons Attribution 4.0 International License.

A Network Function Virtualization Architecture for Automatic
and Efficient Detection and Mitigation against Web Application

Malware

Leopoldo Mauricio ® & [
Janeiro | leopoldo@g.globo| leopoldo@gta.ufvj.br |

Globo and COPPE/PEE/GTA, Universidade Federal do Rio de

Marcelo Rubinstein @ [PEL/DETEL-FEN, Universidade do Estado do Rio de Janeiro | rubi@uer;j.br |

& Universidade Federal do Rio de Janeiro, Av. Hordcio Macedo, 2030, Centro de Tecnologia - Sala H-301 - Cidade

Universitaria do Rio de Janeiro - RJ, 21941-598

Received: 04 September 2021 e Accepted: 27 October 2022 o Published: 16 February 2023

Abstract This paper proposes and implements a Network Function Virtualization (NFV) security architecture to
provide automatic and efficient detection and mitigation against Web application malware. The mitigation is given
by dynamically chaining a Virtual Security Function (VSF) to the data stream to block malicious exploitation traffic
without affecting the benign traffic. We implement an NFV Security Controller (NFV-SC) that interacts with an
Intrusion Detection System and a Web Application Firewall (WAF), both implemented as VSFs. We also implement
a vulnerability scanner and a mechanism to automatically create rules in advance in the WAF-VSF when a security
vulnerability is found in an application, even if no malicious traffic has attempted to exploit the flaw. In addition,
it dynamically identifies and removes no longer used security rules to improve performance. We implement and
evaluate our security proposal in the Open Platform for NFV (OPNFV). The evaluation results in our experimen-
tal scenarios show that the NFV security architecture automatically blocks 99.12% of the HTTP malicious traffic
without affecting 93.6% of the benign HTTP requests. Finally, we show that the number of rules in the WAF-VSF
severely affects the latency to load HTTP response headers and that the number of redirection OpenFlow rules within
Open vSwitches is not enough to significantly impact the end-user experience in modern web browser applications.

Keywords: Security, Malware, Network Function Virtualization, Software-Defined Networking

1 Introduction

Web application malware is increasingly frequent and causes
significant harm to people and organizations, despite the sub-
stantial amount of research conducted on the detection and
prevention of their malicious intent [Ashodia and Makadiya
(2022); Abdelrahman et al. (2021); Zolotukhin et al. (2021);
Andreoni Lopez et al. (2019)]. In the last ten years, the
magnitude of the cybersecurity issues has not decreased,
and several companies have contended with serious data
breaches and significant financial losses caused by mal-
ware [The Guardian (2011); Varonis (2020); CBS News
(2019); FORBES (2015)]. Only one database attack ille-
gally exposed 191 million users’ personal information in
2013 [Chou (2013)], while 98% of Internet companies had
to deal with malware attacks in 2017 [Ponemon and Accen-
ture (2017)]. Five hundred forty million personal informa-
tion records of Facebook users were stolen and disclosed in
2019 [CBS News (2019)], and Capital One had to deal with
a data breach that exposed more than 100 million customer
records in 2020 [Varonis (2020)]. Additionally, recent se-
curity research has estimated a 6 trillion US dollar cost re-
lated to cybersecurity threats in 2020 [Williams et al. (2020)].
Therefore, innovative architectures are needed for the auto-
matic and efficient detection and mitigation of cybercrime.
Many security attack sources are botnet nodes [Mtibaa
et al. (2015)], which are a set of zombie machines with mal-
ware that allows an attacker to control them remotely. They

are also known as “infected” devices. In many cases, own-
ers of enslaved hosts, which may be computers, TVs, cam-
eras, and mobile devices, do not know that their devices are
generating malicious traffic. Some estimates indicate that
botnets with more than one million zombie devices already
exist [Malwaretech (2017)]. Furthermore, the source IPs of
a security attack may belong to a Network Address Transla-
tion (NAT) gateway that serves many network nodes. There-
fore, efficient Web application security systems must be able
to prevent vulnerability exploitations, such as SQLI (Struc-
tured Query Language Injection), LFI (Local File Inclusion),
and Cross-Site Scripting (XSS), without affecting the benign
traffic of the same source IPs.

Network operators typically protect systems, applications,
and control traffic between networks by deploying and chain-
ing sequential hardware Network Functions (NFs). Security
NFs are typically expensive specialized middleboxes found
in both data center and Internet Service Provider (ISP) net-
works. They require a high deployment time and rely on
manual configuration by network administrators. An Intru-
sion Prevention System (IPS), for instance, is an NF that ex-
amines traffic flows and detects and prevents vulnerability
exploits. Web Application Firewalls filter traffic based on
an analysis of the packet contents.

Network Function Virtualization (NFV) is a cost-effective
new paradigm that increases flexibility by enabling cus-
tomized and dynamic software-based service chains with
suitable Virtual Network Functions (VNFs). Thus, by us-

https://doi.org/10.5753/jisa.2023.2847
https://orcid.org/0000-0001-6529-0537
mailto:leopoldo@g.globo
mailto:leopoldo@gta.ufrj.br
https://orcid.org/0000-0002-2509-4010
mailto:rubi@uerj.br

A Network Function Virtualization Architecture

ing software-based Service Function Chains (SFCs), differ-
ent route policies can be implemented to steer traffic through
hardware-agnostic VNFs [Han et al. (2015)]. Software-
based SFCs are not tied to network topologies and their phys-
ical connections since NFV decouples NFs from specialized
hardware to increase flexibility. Because of this, we can
chain VNFs to deliver services at the edge, closer to end-
users, and fine-grain service chains can deploy VNFs on-
demand to meet security or other specific constraint [Mauri-
cio et al. (2018)]. In addition, there is a relationship be-
tween NFV, cloud computing, and Software-Defined Net-
working (SDN). NFV can use the automation and isolation
provided by SDN and the orchestration and on-demand re-
source allocation capabilities offered by cloud computing to
create VNFs and service chains. [Mijumbi et al. (2016)], for
instance, state that the best approach to accelerate the de-
velopment and maturation of NFV is by combining it with
SDN technologies and cloud computing capabilities. Regard-
ing security applications, ETSI suggests the development of
NFV security architectures containing suitable Virtual Secu-
rity Functions to deal with malicious activity [Dutta et al.
(2017)]. We argue that efficient mitigation systems should be
able to dynamically steer malicious traffic through security
software-based service chains to block exploitation attacks
without affecting the benign traffic.

In this paper, we propose an NFV security architecture
to provide automatic and efficient detection and mitigation
against Web application malware. The security architec-
ture dynamically steers traffic through a WAF (Web Appli-
cation Firewall) implemented as a Virtual Security Function'
(WAF-VSF), which can block only malicious activity with-
out interrupting the benign traffic from the same source. We
implement an NFV Security Controller (NFV-SC) that exe-
cutes an algorithm to dynamically create secure chains by ap-
plying redirection OpenFlow rules on virtual switches. The
NFV Security Controller is also able to periodically assess
applications to remove no longer used rules. Additionally, it
creates rules in advance in the WAF-VSF when it finds a secu-
rity vulnerability, even if no malicious traffic has attempted
to exploit the flaw. We implement a prototype in the Open
Platform for NFV (OPNFV) [OPNFV (2021)] using com-
modity servers to investigate the efficiency of the proposed
NFV security architecture in capturing traffic samples, de-
tecting threats, and automatically filtering malicious activity.
The evaluation results show that 99.12% of exploit attacks
are automatically blocked, and 93.6% of benign HTTP re-
quests are not affected when the WAF-VSF is dynamically
chained. The results also show that the number of rules on
the WAF-VSF can impact the latency to load HTTP response
headers. Thus, we implement a mechanism to automatically
remove unnecessary rules from WAF-VSF to reduce its con-
sumption of resources and increase its performance. Further-
more, we show that the redirection OpenFlow rules within
the Open vSwitches are not sufficient to significantly im-
pact the end-user experience in modern web browser appli-
cations [Pourghassemi et al. (2019)].

The rest of the paper is organized as follows. Section 2

I'Security Virtual Network Functions and Virtual Security Functions are
synonyms in this work.

Mauricio and Rubinstein 2023

discusses related work. Section 3 presents the proposed NFV
security architecture and its prototype implementation. We
discuss the performance evaluation results in Section 4, and
Section 5 presents conclusions and future work.

2 Related Work

Some studies propose security solutions using Network Func-
tion Virtualization and Software-Defined Networking prop-
erties [Porras et al. (2012); Xing et al. (2013); Zanna et al.
(2014); Lin et al. (2015); Deng et al. (2015); Haugerud ef al.
(2021); Repetto et al. (2022); Mauricio et al. (2016)]. [Porras
et al. (2012)] present a programming language and software
modules of a solution named FRESCO that simplifies the de-
velopment and deployment of security services in SDN net-
works using NOX controllers. Network administrators can
program policies to interconnect security modules, such as
firewalls and IDSs (Intrusion Detection Systems). They can
also insert instructions for monitoring security alerts, block-
ing malicious traffic, redirecting them to a dynamic quaran-
tine or a remote reflector scanner, and so on. FRESCO acts
on SDN-enabled switches and NOX controllers to create cus-
tom OpenFlow (OF) rules. However, it is not able to program
application firewalls to automatically block malware without
disrupting the nonmalicious traffic from the same source IP.

[Xing et al. (2013)] propose SnortFlow, which is a Snort-
based IDS that uses the OpenFlow protocol to detect at-
tacks. SnortFlow implements countermeasures against at-
tacks through a network reconfiguration. However, the pro-
posal is limited only to the Xen hypervisor virtualization plat-
form, and the Snort [Gupta and Sharma (2020)] agent in-
stalled in each management domain (Dom 0) can overload
Xen Dom 0. Dom 0 overhead can become a bottleneck, de-
grading the network performance of all Virtual Machines
(VMs) hosted on the same physical server. This can happen
because all VMs use the same Dom 0 network drivers to ac-
cess the network resources located on other machines [Fer-
nandes et al. (2011)]. Furthermore, SnortFlow also blocks
benign traffic from the same IPs.

[Zanna et al. (2014)] integrate an Intrusion Detection Sys-
tem with an SDN controller to identify and block Denial-of-
Service (DoS) attacks. The authors configured an IDS Bro
to send a blocking flow request to the Application Program-
ming Interface (API) of the Ryu controller to filter IPs that
generate malicious traffic. However, in addition to block-
ing the malicious network traffic, the proposed solution also
blocks the benign traffic that is generated by the same source
IPs.

Lin et al. (2015) propose an SDN security architecture to
classify traffic and perform intrusion prevention. The pro-
posal detects Denial of Service attacks and vulnerability ex-
ploits by identifying malicious patterns in the HTTP requests.
However, despite the significant reduction in network perfor-
mance when the number of rules increases in the VNF, no
workaround is presented. Moreover, the authors do not deal
with the automation of attack detection and blocking.

Deng et al. (2015) propose the VNGuard framework,
which uses SDN and NFV to provide and manage virtualized
firewalls. The authors use ClickOS [Martins et al. (2014)]

A Network Function Virtualization Architecture

to implement VNGuard components. VNGuard defines a
high-level language to simplify policy management so that
users do not need to know the low-level information from
the virtual networks to create filtering rules. However, the
proposed framework does not deal with the meaningful re-
duction in network performance when the number of rules in
the VNF increases.

Haugerud et al. (2021) propose an architecture for dis-
tributing network traffic between parallel Network Intrusion
Detection System (NIDS) nodes based on Network Function
Virtualization to reduce the processing time of the pattern
matching and reduce the number of packets dropped. The
authors have created adaptive algorithms to distribute both
the network traffic and the signature rules across the NIDS
nodes to make an elastic virtualized IDS. They adjust the
number of virtual components which analyze the network
traffic in response to the workload. Additionally, they dy-
namically adjust and divide the signature rules evenly across
different Snort NIDS nodes using a node level parallelism
method [Jiang et al. (2013)] in order to save system resources
to keep a zero percent packet drop ratio. The proposed solu-
tion duplicates the traffic to send them to several Snort sen-
sors and does not automatically drop packets that raise an
alert.

Repetto et al. (2022) designed the ASTRID framework
to detect and mitigate amplification attacks into a 5G Core
(5GC) architecture implemented as an NFV service aiming
to block them at their origin, at the boundary of a 5G net-
work, before they get amplified by vulnerable servers in the
Internet. ASTRID is a Java Spring Framework, created in-
side a 5GC network by using the Open5GS project, running
inside a Kubernetes cluster. It automates the mitigation of
Distributed DoS (DDoS) attacks sent to the User Plane Func-
tion (UPF), which is a relevant part of the SGC. An Analytics
Toolkit (ATk) has been created to monitor and detect ampli-
fication attacks by distinguishing between periodic fluctua-
tions of requests and anomalies. ASTRID also has a Context
Manager (CM) and a Security Controller (SC) that automate
as much as possible the collection of data and the implemen-
tation of response actions to DDoS. It is a solution suitable
to deal only with DDoS, not able to mitigate exploitation at-
tacks.

In a previous work [Mauricio et al. (2016)], we study the
performance of a firewall implemented as a Virtual Security
Function in OPNFV using commodity servers. The imple-
mentation exhibits great adaptability, scaling the number of
firewall VSFs according to the amount of network traffic.
However, it does not include a dynamic mechanism to im-
prove the VSF performance, and it does not deal with mal-
ware.

This article proposes and implements an automated and
integrated solution for detecting and mitigating Web appli-
cation malware using the SDN and NFV technologies. The
proposal is compliant with the ETSI Network Function Vir-
tualization security management and monitoring specifica-
tion [Dutta et al. (2017)]. Our NFV security architecture
algorithm chains the data stream to an application firewall
Virtual Security Function with suitable policy rules to only
block the attack traffic without harming the benign traffic
generated from the same source IPs. Additionally, we pro-

Mauricio and Rubinstein 2023

pose a mechanism to dynamically improve the performance
of the implemented VSF.

Table 1 lists the main features of our NFV/SDN proposal
versus those implemented by others.

3 NFV Security Architecture Pro-
posal and Implementation

In this section, we present an NFV security architecture pro-
posal that dynamically creates a software-based chain with
a WAF Virtual Security Function to block attacks. We focus
on Web Application attacks in this paper.

Figure 1 illustrates the ETSI NFV reference architec-
ture [Dutta et al. (2017)] extended with our security compo-
nents, which aim to provide automatic and efficient detection
and mitigation against Web application malware. Our three
new components are highlighted in Figure 1. The central ele-
ment is the NFV Security Controller module, which interacts
with an Intrusion Detection System (IDS-VSF) and a Web
Application Firewall (WAF-VSF). The IDS Virtual Security
Function analyzes the data traffic, detects threats, and sends
alerts to Security Controller (Figure 1 (a)). Upon receiving
an alert and identifying the type of attack, the NFV Security
Controller decides whether an update of the application fire-
wall rules is required. Then, it chains the WAF-VSF to filter
the detected malicious activity. The NFV Security Controller
writes suitable security rules into the WAF Virtual Security
Function to block the detected attacks (Figure 1(b)). Then,
the NFV Security Controller sets up redirection OpenFlow
rules into the virtual switches to steer traffic (Figure 1(c)),
which blocks the malicious traffic without stopping the be-
nign traffic.

: NFV Management
""""" OS5/BSS and Orchestration
Security Os-Ma
Controller
Service, VNF and Orchestrator =
H T - Infrastructure
©) : (a) H b Description Se-Ma
¢);() Ha Or-Vnfm
i [VNF H T
: |EM51|§ |EMSZ| |EMSN|
H ; : ; : ! VNF
H — H —r— —— I Manager
“..] s % WAF Ve-vnfm i
viF i viF VNFN
p Y é Vn-Nf Py
NEVI VI-Vnfm Or-Vi
_____) Virtual Virtual Virtual - -T-
Network Storage Computing
Virtualization Layer Virtualized
Vi-Ha [Infrastructure
1 Manager
Hardware Resources NLVI (OpenStack)
[Hardware Hardware Hardware
| Computing Storage Network

@—® Execution reference points I Other reference points —|— Main NFV reference points

Figure 1. Extended Network Function Virtualization architecture. The pro-
posed security components are colored. The main interactions of the pro-
posed Security Controller are a) receiving alerts; b) automatic installation
of the customized security rules in a Web Application Firewall; and c) fire-
wall chaining to block malicious traffic.

Figure 2 details how the proposed modules of the NFV se-
curity architecture work. Furthermore, we detail the interac-
tions when malicious traffic sent to a vulnerable Web applica-
tion is blocked. We have used Service Function Chaining to
steer traffic when needed. The NFV Security Controller cre-

A Network Function Virtualization Architecture

Mauricio and Rubinstein 2023

Table 1. NFV/SDN features implemented versus related work.

Features Porras Xing Zanna Lin et al. | Deng Haugerud Repetto Mauricio This work
et al. et al. et al. (2015) et al. et al. et al. et al.
(2012) (2013) (2014) (2015) (2021) (2022) (2016)
Provides access con- | v v v v v v v v
trol
Detects malware v v v v v v
Automatically v v v
blocks malware
Dynamically recon- v v v
figures the network
to block malicious
traffic
Filters malware v
without affecting
the benign traffic
i packet to the IDS-VSF. The IDS-VSF receives copies of each
| — . . .
E;;umaq o Vulnerabiilty ‘ network packet without being chained to the data stream so
Cl ificati M nt S i . . .
il) c(:"'"g that it does not overwhelm the end-to-end communication of
IDS-VSF WAF-VSF the software-based Security Chain, which we automatically
o] i || oleme | O] R | e | create if needed.
' k. @ Interaction (1) in Figure 2 shows that the Intrusion Detec-
™A [soN cgmm,,e,] e tion System receives traffic through its TAP network inter-
@\ I(s) OFP_FLOW_MOD) o face. The IDS-VSF Threat Notification is a Python code we
V - i | have designed that extends the Bro IDS code to send HTTP
Virtual Switch N b 5 . .
A messages with threat alerts to the NFV Security Controller
: ———» Maliciuous Traffic - Automated installation / configuration . . .
(Interaction (2) in Figure 2). Each alert reports the IP ad-

.......... » Benign Traffic ——— Continuous vulnerability scanning Server |«

Figure 2. NFV Security Controller interactions with Virtual Security Func-
tions and the NFV Virtual Network.

ates OpenFlow Service Function Chains managing an SDN
controller that is inside the NFVI Virtual Network module
(Figure 1). We chose to create OpenFlow SFCs because SFC
using the Network Service Header (NSH) protocol was still
an experimental feature that exhibited poor network perfor-
mance when our tests were executed [Sanz et al. (2018)].

We have also implemented the Vulnerability Scanning
module, which performs a periodic vulnerability scan, based
on known vulnerability signatures, on the attacked Web Ap-
plication. Therefore, it can also validate if other vulnerabili-
ties not yet exploited and detected exist in the attacked Web
Application. This is because Web application developers fre-
quently update their source code to provide new functions. If
a vulnerability is no longer identified and blocked the NFV
Security Controller will automatically remove the unneces-
sary rule related to it. Thus, with fewer rules, we are able to
reduce the consumption of resources in the WAF-VSF and
increase its performance [Mauricio et al. (2016); Sanz et al.
(2018)]. Consequently, the efficiency of the software-based
Service Chain will also rise as the consumption of computa-
tional resources decreases.

We have implemented the Intrusion Detection System as a
Virtual Security Function with Threat Detection and Threat
Notification mechanisms (Figure 2). To build the IDS-VSF
Threat Detection, we use the open-source IDS Bro [Sommer
(2003)], which we configure to passively monitor network
traffic, searching for suspicious activity. Thus, it can ana-
lyze network traffic to find events with malicious patterns,
such as those related to XSS, SQL Injection, and LFI. We
have used the TAP technique? to send a copy of each network

2TAP network operation type sends a copy of each network interface

dress generating the malicious traffic, the destination IP ad-
dress, the attack-related Uniform Resource Locator (URL),
the Uniform Resource Identifier (URI) used, and the type of
threat detected.

The Threat Classification of the NFV Security Controller,
its VSF chaining mechanism, and the SDN Management en-
gine are Python applications. We use w3af®, which is an
open-source web vulnerability scanner, to build the Vulnera-
bility Scanning module. In addition, the NFV Security Con-
troller has a Security Policy Database (DB) that we have
built to store threat alert types; in our case, the OWASP
top ten most critical Web Application security risks [OWASP
(2021)], and suitable security rules able to block them. We
have used MongoDB to create this database. Moreover, we
have created our security rules in Mod Security, which is a
widely deployed open-source WAF [Ristic (2010)].

The NFV Security Controller executes the proposed Algo-
rithm 1 to handle packets when malicious activity is detected.
Upon receiving alerts from the IDS-VSF Threat Notification,
the Threat Classification engine of the NFV Security Con-
troller validates whether malicious traffic is a Denial of Ser-
vice (V) attack (Algorithm 1, Line 2). If so, the NFV Se-
curity Controller automatically sends OpenFlow rules to the
OpenDaylight controller (Interaction (4) in Figure 2) to filter
all the network traffic generated by the identified source IP
address (Line 3).

Unknown vulnerability exploitation is a zero-day attack
that has no available fix. Therefore, every time the Threat
Classification module of the NFV Security Controller re-
ceives an unknown vulnerability exploitation alert (Line 4),
it sends HTTP messages to the OpenDaylight REST API
to block all the network traffic generated by the identified
source IP address, protecting the vulnerable application IP

event to a configured system, which usually analyzes the captured data.
3http://w3af.org/

A Network Function Virtualization Architecture

Algorithm 1: Security Attack Treatment

:0 = {srcIP,dstIP,URL,URLtype}: Detected attacks;
®: Known vulnerability exploitations;
WAF-VSF: the WAF Virtual Security Function;
W: Denial of service attacks;

input

1 begin

2 if d.type € ¥ then

3 | Filter security attack(8.srcl P, *);

4 else if §.type ¢ ® then

5 ‘ Filter security attack(d.srcI P, d.dstl P);

6 else

7 edit waf-vsf rules(6.URL, §.URI, §.type);

8 create_chain(WAF-VSF);

9 divert_traffic(d.srcI P, 6.dstIP);

10 Register(d);

1 while ® € (URL || URI) do

12 if & ¢ WAF-VSF then

13 ‘ write_policies(WAF-
VSF(security_module));

14 end

15 remove_policies(WAF-VSF(security_module))

16 end

(Line 5). Thus, the NFV security architecture automatically
blocks traffic when it is not able to write a countermeasure
rule within the WAF Virtual Security Function. This hap-
pens when there is no appropriate rule in the Security Policy
Database to mitigate the malicious traffic. However, secu-
rity network operators can register new security rules on the
Security Policy Database at any time.

When IDS-VSF detects known vulnerability exploitation
different from DoS (Line 6), the Threat Classification en-
gine will find suitable rules on the Security Policy Database
to block the malicious activity. Then, it triggers the VSF
chaining mechanism of the NFV Security Controller that au-
tomatically configures rules inside the WAF Virtual Secu-
rity Function (Interaction (3) in Figure 2) to mitigate the de-
tected attack. Then, through the SDN controller OpenDay-
light (Interaction (4) in Figure 2), the NFV Security Con-
troller inserts redirection OpenFlow rules into the OVS (In-
teraction (5) in Figure 2). Thus, all traffic previously chained
directly to the vulnerable Website (Interaction (6) in Figure 2)
is routed first through the WAF Virtual Security Function (In-
teraction (7) in Figure 2), which filters the malicious traffic
without blocking the benign HTTP requests (Lines 7-9). Af-
ter that, the NFV Security Controller starts its Vulnerability
Scanning module (Lines 11-15) to periodically assess the ap-
plication attacked (Interaction (<) in Figure 2). If it finds a
new vulnerability different from the previous one detected
by the IDS-VSF Threat Detection, the NFV Security Con-
troller adds rules to the WAF-VSF Security Module (Line
13). Thus, we can discover vulnerabilities and mitigate the
threats before an attacker can exploit other weaknesses of the
attacked Web application. Furthermore, if a known vulnera-
bility that has been once identified no longer exists, the NFV
Security Controller removes this unnecessary policy from the
WAF-VSF Security Module (Line 15). The NFV Security
Controller also records all attacks received (Line 10).

We have used Mod Security to create our WAF-VSF Se-
curity Module. We have implemented our Proxy Module us-
ing NGINX, which is the second most used Web server on
the Internet [Netcraft (2019)]. The NFV Security Controller
automatically chains and configures the WAF-VSF Security

Mauricio and Rubinstein 2023

Module to remove malicious traffic and the WAF-VSF Proxy
Module to act as a “reverse proxy” that redirects all the be-
nign HTTP requests it receives to the vulnerable Web server
(Interaction (8) in Figure 2). In this way, the WAF Virtual Se-
curity Function removes malicious traffic without blocking
the benign HTTP requests generated from the same source
address.

We have implemented this proposal using the Open Plat-
form for NFV. Our OPNFYV installation involves five Com-
mercial Off-The-Shelf (COTS) machines. The OPNFV man-
ager is a desktop, we use one machine to build an Open-
Stack [OpenStack (2022)] controller node, and the three
others are OpenStack compute nodes, which host our three
VSFs: the NFV Security Controller, the WAF, and the IDS.
The OPNFV virtual network module uses OpenDaylight
(ODL) as an SDN controller, the virtual switches are Open
vSwitches (OVSes), and OpenStack acts as an NFV VIM,
managing all the physical resources of the Network Function
Virtualization Infrastructure. We create an OpenFlow data
plane using the Open vSwitches from the OpenStack com-
pute nodes. Furthermore, we built the SDN control plane us-
ing the OpenDaylight controller that we install on the Open-
Stack network node.

As our prototype has served as the basis for implement-
ing Globo’s production security architecture, we can not pro-
vide its source code. However, Globo has provided detailed
instructions and an open-source code [Globo (2021b)] that
allow a researcher to carry out the OWASP top ten attacks
discussed in the paper by provisioning local environments
via docker-compose. We teach how to exploit the most crit-
ical Web application security risks and how to fix the given
vulnerable codes to mitigate them. We have also released
huskyCI [Globo (2021a)] as an open-source tool that can
perform static security analysis in Python, Ruby, JavaScript,
Golang, Java, and HCL.

4 Experimental Results

In this section, we detail the experiments carried out to eval-
uate the proposed NFV security architecture.

4.1 Efficiency

To assess the efficiency of the proposal in blocking the mali-
cious traffic, without affecting the benign traffic generated
by the same source, we developed a script to send mali-
cious and benign HTTP requests from a client to a honey-
pot [OWASP (2021)]. The honeypot acts as a vulnerable
Web server. The script runs for a fixed time interval, in
which it sends 220 benign and 340 malicious HTTP requests,
on average. Benign HTTP requests access the main page of
the vulnerable Website*. In contrast, the malicious HTTP re-
quests (malware) try to exploit the OWASP top ten security
vulnerabilities [OWASP (2021)].

Table 2 illustrates some security attack types we use in the
first evaluation. The HTTP request of Line 1 tries to obtain
the encrypted password, IDs, and names of all the registered

4We use the curl command to send several HTTP requests to the vul-
nerable Website.

A Network Function Virtualization Architecture

Table 2. Web application attack examples.

HTTP . HTTP Response
Method Malicious HTTP request Status Code
GET http://mysite/?rHPbc8c=../../../../etc/passwd 200 OK
PUT http://mysite/oRnQL file:9zseqh 201 OK
http://mysite/?XzuFzsw=SELECT TOP
GET 3 * FROM adminusers 200 0K
GET http://mysite/?rHPbc8c=ps -aux 403 Forbidden

users of a vulnerable Operating System (OS) hosting the ex-
posed Website. Line 2 shows an HTTP request used to insert
a file named “9zseqh” on the Web server. This file could be
malware that is able to execute malicious code to enslave or
damage an operating system. Line 3 is an SQL Injection at-
tack to obtain all the information from three registered users
in the “adminusers” table of the honeypot database. We can
also inject malicious JavaScript to redirect the users to phish-
ing sites or modify the visited HTML. Line 4 describes an at-
tack to list all the running processes on the honeypot OS. We
have also carried out attacks to explore more of the OWASP’s
top ten Web application security risks. The other types of at-
tacks and the steps to perform each of them are in the lab we
have created to teach secure Web and mobile development in
a practical way [Globo (2021b)].

The evaluation results can have different HTTP response
types. Malicious HTTP requests described in our example
of Table 2, Lines 1, 2, and 3 are successful because they re-
ceive 2xx (OK) HTTP response status codes. This can hap-
pen when our automatic NFV security architecture does not
block the malicious traffic sent to the honeypot. On the other
hand, the HTTP response status code of Table 2, Line 4 indi-
cates that the malicious request is unsuccessful, which means
that our security architecture would have been able to prevent
the attack.

As already mentioned, we have installed the Open Plat-
form for NFV with one OpenStack controller node, three
computing nodes, and one OPNFV installation manager.
The computing nodes are Ubuntu 14.04, KVM is the vir-
tualization platform, and OpenStack is the OPNFV Virtu-
alized Infrastructure Manager. The OPNFV manager and
the OPNFV controller node are Intel (R) Core (TM) i7-4770
CPU @ 3.40 GHz. Each controller has four cores, 8 threads,
32 GB of RAM, and three 1 Gb/s Ethernet interfaces. The
OpenStack compute nodes are Intel (R) Xeon (R) E5-2650
CPU @ 2.00 GHz. Each OpenStack compute node has eight
cores, 16 threads, 64 GB of RAM, and three 1 Gb/s Eth-
ernet interfaces. The NFV Security Controller, the WAF
Virtual Security Function, the IDS-VSF, the Security Policy
Database, the Web client, and the vulnerable Web server are
VMs with four virtual CPUs and 4 GB of RAM. The evalua-
tions are averages of 10 runs with 95% confidence intervals.
Some confidence intervals are hard to see because they are
too small.

In the initial scenario, we have sent malicious and benign
HTTP requests to the honeypot without enabling the pro-
posed security modules on the NFV security architecture,
and, as expected, all the malicious HTTP requests success-
fully received 2xx (OK) status code responses. Next, we

Mauricio and Rubinstein 2023

evaluate the NFV security architecture efficiency in dynami-
cally blocking malicious traffic without stopping benign traf-
fic. There are no preconfigured rules on the WAF-VSF Secu-
rity Module and no previous URL redirection policies on its
Proxy Module when we start this evaluation. Furthermore,
all the malicious HTTP requests generated in the evaluation
have appropriate security rules stored in the Security Policy
Database.

Benign traffic | Malicious traffic

400 HTTP
HTTP requests status code

requests “ (malicious) received (2xx

(benign) 0K)

HTTP response

w
=]
]

HTTP response
status code
205.9 received (2xx
(93.59%) 0K)

N
o
1<)

220
(100%)

iy
o
<]

3
(0.88%)

HTTP requests and responses

<)

Web client (tx) Web client (rx)

Figure 3. Web client’s benign and malicious HTTP requests (tx) and re-
sponses (rx).

Figure 3 illustrates that the Web client test script generates
an average of 340 malicious HTTP requests and 220 benign
ones (see HTTP requests (malicious) and HTTP requests (be-
nign) sent by the Web client (tx)). As soon as the Web client
generates the malicious traffic, the IDS-VSF identifies the
malicious requests and sends an alert message to the NFV
Security Controller. Figure 4 shows that the NFV Security
Controller automatically chains the WAF-VSF in less than
8.2 s after it receives an alert message. The NFV Security
Controller diverts all the traffic to the WAF-VSF by applying
redirection OpenFlow rules on the virtual switches. More-
over, the NFV Security Controller automatically configures
the WAF-VSF Proxy Module to deal with the HTTP requests
sent to the attacked URL, and it inserts security rules into the
WAF-VSF to filter all the identified malicious traffic.

1

0.8

0.6

CDF

0.4

0.2

0

7 7.2 7.4 7.6 7.8 8 8.2
Time (s)

Figure 4. Cumulative Distribution Function of the time to chain the WAF-
VSF after the NFV Security Controller receives an alert message.

Figure 5 shows that the vulnerable Web server sends back,
on average, three (0.88%) successful HTTP response sta-
tus codes related to the malicious requests. Therefore, only
three attacks reach the vulnerable Web server and are suc-
cessful (see HTTP response status code received (2xx OK)
by the Web client in Figure 3). The evaluation results indi-
cate that there are network packet loss issues when the NFV
Security Controller makes changes in the OVS rules to redi-
rect the Web client flow packets to chain the WAF Virtual
Security Function. OVS starts to redirect all the packets
with a Web client source IP and Web server destination IP

A Network Function Virtualization Architecture

Benign traffic ® Malicious traffic

HTTP
response

(91.41%) (94.23%)

iy
o
S

3«
(0.88%)

»400 MaliciousHTTP

o HTTP requests blocked

5 response (403 forbidden) HTTP
2300 | statuscode response
o sent (2xx OK) status code
T sent (2xx OK)
©200 1

@ 1

] 201.1 207.3

S

=2

e

o

E

=

I

<)

WAF-VSF Web server

Figure 5. Malicious HTTP requests blocked by the WAF virtual security
function, successful HTTP responses sent by the Web server, and how many
pass through the firewall when WAF-VSF is automatically chained.

to the WAF Virtual Security Function. During this operation,
packet losses occur, such as those that occur when a router in
a traditional packet-switching network fails. For this reason,
on average, 207.3 (94.23%) (see HTTP response status code
sent (2xx OK) by the Web server in Figure 5) of the 220 be-
nign HTTP requests reach the Web server without problems.

Likewise, on average, 205.9 (93.59% of the benign re-
quests - see the HTTP response status code received (2xx
OK) by the Web client in Figure 3) of the 207.3 of the HTTP
response status codes sent by the Web server successfully
reach the Web client. Moreover, the WAF Virtual Security
Function chained to the data stream blocks 337 (99.12% of
the malicious HTTP requests - see the malicious HTTP re-
quests blocked (403 forbidden) by the WAF-VSF in Fig-
ure 5), and its reverse proxy handles 201.1 (see the 201.1
HTTP response status code sent (2xx OK) by the WAF-VSF
in Figure 5) (91.41%) of the 220 benign HTTP requests made
by the Web client. There were an average of 12.7 (5.78%)
benign HTTP requests lost between the client and the vul-
nerable Web server (220-207.3). The proposed WAF-VSF
proxy module handles approximately, on average, 201.1 of
the 207.3 benign HTTP responses sent from the server to the
client, so six of these HTTP responses do not go through
the WAF-VSF. In addition, the amount of benign HTTP re-
sponses lost between the server and the Web client is, on av-
erage, equal to 1.4 (207.3-205.9). Therefore, the evaluation
results show that the proposed NFV security architecture is
efficient since it dynamically blocks a total of 99.12% of the
generated attacks, and 93.59% of the benign traffic is not af-
fected when dynamically chained with the WAF Virtual Se-
curity Function.

4.2 Performance

Afterward, we have evaluated the performance of our NFV
security architecture. Our goal was to evaluate how the new
software-based Service Chain containing the WAF-VSF af-
fects the HTTP response rate and the Website response time.
We have first varied the number of HTTP requests per second
sent to a Web server, and we have also generated OWASP’s
top ten attacks. Consequently, the proposed NFV security
architecture dynamically configured up to ten suitable rules
in WAF-VSF to block the malicious HTTP traffic sent to the
honeypot, which we use as a vulnerable Web server. As al-
ready mentioned, we have used Mod Security to create the
WAF-VSF Security Module, which handles all communica-
tion between the Web client and the Web server when mali-

Mauricio and Rubinstein 2023

cious traffic is detected. Therefore, we have first evaluated
how the WAF-VSF affects the HTTP response rate and the
website response time. We generate the same benign HTTP
requests using HTTPerf [Mosberger and Jin (1998)], as we
did in the initial scenario, and a Python script orchestrates
the security attacks. Moreover, HTTPerf generates and main-
tains sustainable rates of HTTP requests to overload the Web
server.

400

HTTP response
rate

w
b}
S

N
b
S

=
o)
S

HTTP response
time

Response time (s)

HTTP response rate (unit/s)
o]
&8

o

20 100 180 260 340 420
HTTP request rate (unit/s)

Figure 6. Web application performance when the WAF-VSF is not chained.

10

I
S
53

HTTP response
rate

w
]
o

N
B
5}

-
@
=}

HTTP response
time

Response time (s)

HTTP response rate (unit/s)
o]
o

o

20 100 180 260 340 420
HTTP request rate (unit/s)

Figure 7. Web application performance when the WAF-VSF is chained to
the Web server.

We automate the HTTPerf using Autobench [Midgley
(2020)] and vary the TCP connection rate between 10 and
220, increasing the rate by ten at each second. We send
two persistent HTTP requests per each TCP connection es-
tablished with the Web server. Therefore, the HTTP request
rate varies between 20 and a maximum value of 440 requests
per second, which is the maximum capacity of our honeypot
Web server. We use these values because several preliminary
tests have shown that HTTP request rates over 440 requests
per second cause a significant increase in the HTTP response
time, which is the time elapsed between requesting and re-
ceiving an object from the server. The results are means with
95% confidence intervals. Some confidence intervals are not
shown in the figures because they are narrow.

Figure 6 illustrates the Web application performance when
the WAF-VSF is not chained. The maximum HTTP request
rate supported by the Web server without a significant in-
crease in the HTTP response time is equal to 380 requests per
second. For higher rates, the response time increases consid-
erably, going from approximately zero to approximately 9 s
when the Web client attempts to send 440 HTTP requests per
second to the server.

Figure 7 shows that the automatic WAF Virtual Security
Function chaining reduces the maximum HTTP response
rate to 300 requests per second when the WAF-VSF han-

A Network Function Virtualization Architecture

dles the benign traffic and OWASP’s top ten attacks at the
same time. Therefore, the HTTP request rate is reduced
by approximately 21% when the NFV security architecture
dynamically chains and inserts rules into the WAF-VSF to
block OWASP’s top ten attacks. Traffic filtering performed
by WAF-VSF is a high CPU usage technique. Therefore, by
increasing the number of virtual CPUs (vCPUs) we can im-
prove the WAF-VSF performance [ur Rahman et al. (2018)].
We can also raise the WAF-VSF performance by associating
one vCPU to one physical CPU core instead of associating
each vCPU to a logical CPU core [Wang et al. (2017)]. How-
ever, only modern CPUs and virtualization platforms offer
that feature.

4.2.1 Effect of Varying the Number of Rules on the
WAF-VSF

As already mentioned, the proposed NFV security architec-
ture has a mechanism that dynamically removes unused se-
curity rules from the WAF-VSF when the Vulnerability Scan-
ning module no longer finds the related vulnerabilities in the
Web server. To evaluate the performance of this mechanism,
we have also conducted experiments to emulate its behav-
ior. We have varied the number of rules on the WAF-VSF
between 0 and 100. Hence, we did not just create the num-
ber of rules needed to block attacks, as shown in the previ-
ous sections. Then, we measure the amount of time to load
the HTTP response header when we get the index.html page
from the Web server. In this particular test, the generated
benign traffic corresponds to HTTP HEAD requests so that
we avoid Web browser caching, ensuring more stable results.
All HTTP requests pass through the WAF-VSF.

1
100 WAF-VSF
rules
0.8 7.5 (ms)
1
0.6 80 WAF-VSF
w rules
a
o 60 WAF-VSF
0.4 rules
0 WAF-VSF 40 WAF-VSF
- rules
0.2 rules \
20 WAF-VSF
<« rules
0
0 2 4 6 8 10

Latency (ms)

Figure 8. Cumulative Distribution Function of the time to load the HTTP
response headers from the main Web server page (index.html) when varying
the number of rules in the WAF-VSF between 0 and 100.

Figure 8 illustrates the Cumulative Distribution Function
(CDF) of the amount of time, in milliseconds, to load the
HTTP response header of the index.html honeypot Web page
(latency) when varying the number of rules inside the WAF-
VSF. The latency is less than 2.8 ms, in more than 90% of the
cases when the WAF-VSF acts only as a Web proxy because
its number of security rules is equal to zero. In addition, we
have approximately the same behavior, with a latency of less
than 2.8 ms, in more than 90% of the cases, when there are
20 Web Application Firewall rules in the WAF-VSF Secu-
rity Module. However, when we insert 40 security rules into
the WAF-VSEF, the latency is greater than 7.5 ms in approxi-
mately 40% of the cases. When we create 60 security rules,

Mauricio and Rubinstein 2023

the latency is greater than 7.5 ms in more than 80% of the
cases. With 80 Web Application Firewall rules in the WAF-
VSEF, the latency is greater than 7.5 ms in more than 90%
of the cases. In addition, it is greater than 8 ms in approxi-
mately 40% of the cases. With 100 security rules inside the
proposed WAF-VSF, the minimum latency is equal to 8.8 ms,
and in more than 90% of the cases, it is greater than 9.0 ms.
The latency is, in 90% of the cases, less than 2.8 ms when
the number of rules inside the WAF-VSF is zero, and greater
than 9.0 ms when the number of rules is equal to 100. There-
fore, when the number of rules inside the WAF-VSF varies
between 0 and 100, the increase in latency is approximately
221%.

The results show that the latency is lower when there are
fewer rules inside the WAF-VSF. This indicates the benefits
of the mechanism that dynamically removes unused security
rules from the WAF-VSF.

4.2.2 Effect of Increasing the Number of Redirection
OpenFlow Rules on the Open vSwitches

As already mentioned, we have created an OpenFlow data
plane using the Open vSwitches from OpenStack compute
nodes, and we have built the SDN control plane using
the OpenDaylight controller. The virtual switches of the
NFV/SDN environments in production clouds can have thou-
sands of redirection OpenFlow rules [Mauricio ef al. (2018)].
Therefore, we have also conducted experiments to under-
stand the effect of increasing the number of those redirection
OpenFlow rules inside the Open vSwitches of our OPNFV
cloud.

%102

»
= 8
c
2 }H’I s B R EEEEEEER R
g6 7
1]
Q
4 About 700
o requests/s
o
E 2
I
0
0 0.5 1 15 2
OpenFlow rules <104

Figure 9. Maximum HTTP request rate for different numbers of redirection
OpenFlow rules in the Open vSwitches.

8 x10*
@6 X
k-]
2
= About
24 68k pkt/s
<
=
3
2
F2
0
0 0.5 1 1.5 2
OpenFlow rules «10%

Figure 10. Maximum throughput for different numbers of redirection Open-
Flow rules in the Open vSwitches.

A Network Function Virtualization Architecture

0.8
20000 redirection
0.6 OFP rules
'S
[=]
o
0.4
0.2
0 redirection
<« OFP rules
0
0 2 4 6 8 10

Latency (ms)

Figure 11. Cumulative distribution function of the time to load the HTTP
response headers from the Web test page we have created in the WAF-VSF
when varying the number of redirection OpenFlow rules inserted in the Open
vSwitches between 0 and 20000.

We use HTTPerf to also evaluate how much the increase in
the number of redirection OpenFlow rules in Open vSwitches
can affect the maximum HTTP request rate and the network
throughput when a client sends traffic to a server. In this par-
ticular test, we use the WAF-VSF as a Web server so that the
traffic test does not traverse a VSF. It follows only through
the two Open vSwitches since each VM used is in a different
physical machine. Thus, we avoid the VSF overhead while
measuring the mean time to load the header (HTTP HEAD
requests) of a test page that we have created within the WAF-
VSF. We use HTTPerf to generate only HTTP benign traffic.
To evaluate the network throughput, we use the Iperf tool to
send UDP packets with 1472 bytes at 1 Gb/s from the client
to the WAF-VSF. We vary the number of redirection Open-
Flow rules from 250 to 20000. In these particular tests, the
results are means of 15 runs with 95% confidence intervals.

Figures 9 and 10 illustrate that the increase in the num-
ber of redirection OpenFlow rules within OVSes does not
significantly affect the HTTP request rate (approximately
700 requests/s) and the network throughput (approximately
68k packets/s), respectively.

Figure 11 illustrates that the latency is less than 2.7 ms in
100% of the cases when the number of redirection OpenFlow
rules within the OVSes is equal to zero. With 20000 redi-
rection OpenFlow rules inside the OV Ses, the latency is less
than 2.7 ms in approximately 88% of the cases. However, the
latency is greater than 4 ms in 10% of the cases and higher
than 6 ms in less than 5% of the cases. Therefore, the results
show that we do not have a considerable increase in the la-
tency when the number of redirection OpenFlow rules varies
between 0 and 20000. This occurs because OVS processes
OpenFlow rules using hash tables [Mauricio et al. (2018)].
In practical terms, an HTTP latency growth of 3.3 ms (6 ms
- 2.7 ms) is not enough to significantly impact the end-user
experience in modern web browser applications [Pourghas-
semi ef al. (2019)]. Google, for instance, states that 53% of
mobile site visitors leave a page only when it takes longer
than 3 s to load [An (2018)].

5 Conclusions and Future Work
In this paper, we have implemented an NFV security archi-

tecture that applies countermeasures against vulnerability ex-
ploitation attacks without affecting benign traffic. The cen-

Mauricio and Rubinstein 2023

tral element of the NFV security architecture is the NFV Se-
curity Controller module, which interacts with an Intrusion
Detection System and a Web Application Firewall. The pro-
posed IDS Virtual Security Function sends alerts to the Secu-
rity Controller, which decides whether an update of the appli-
cation firewall rules is required and if the WAF-VSF should
be dynamically chained to filter the detected malicious traf-
fic. The NFV Security Controller sets up redirection Open-
Flow rules into virtual switches to steer traffic through the
WAF-VSF that efficiently blocks 99.12% of the malicious
HTTP traffic without significantly affecting the benign traf-
fic from the same source IP. Furthermore, the NFV Security
Controller implements a Vulnerability Scanning module and
a mechanism that reduces the time between finding a vul-
nerability and the mitigation of the identified threats. In ad-
dition, the NFV Security Controller automatically removes
rules from the WAF-VSF to reduce the number of security
rules implemented and increases its performance when the
vulnerabilities cease to exist. As future work, we intend to
focus on chaining containers to VSFs created as Kubernetes
pods so that we can secure microservices running on PaaS
(Platform as a Service).

Acknowledgements

This work has been sponsored by CNPq, CAPES, and FAPERJ.
This paper is dedicated to the memory of Professor Otto Carlos M.
B. Duarte.

Declarations

Authors’ Contributions

All authors contributed to the writing of this article, read and ap-
proved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

Data can be made available upon request.

References

Abdelrahman, A. M., Rodrigues, J. J., Mahmoud, M. M.,
Saleem, K., Das, A. K., Korotaev, V., and Kozlov, S. A.

(2021). Software-defined networking security for pri-
vate data center networks and clouds: vulnerabilities,
attacks, countermeasures, and solutions. International

Journal of Communication Systems, 34(4). ¢4706. DOI:
10.1002/dac.4706.

An, D. (2018). Find out how you stack up to new industry
benchmarks for mobile page speed. Avalable at: https:
//bit.1y/3TEpLFz.

Andreoni Lopez, M., Mattos, D. M. F., Duarte, O. C. M. B,
and Pujolle, G. (2019). A fast unsupervised preprocessing

https://doi.org/10.1002/dac.4706
https://bit.ly/3TEpLFz
https://bit.ly/3TEpLFz

A Network Function Virtualization Architecture

method for network monitoring. Annals of Telecommu-
nications, 74(11-12):139-155. DOI: 10.1007/s12243-018-
0663-2.

Ashodia, N. and Makadiya, K. (2022). Detection and mit-
igation of DDoS attack in software defined networking:
A survey. In 2022 International Conference on Sus-
tainable Computing and Data Communication Systems
(ICSCDS), pages 1175-1180. IEEE. DOI: 10.1109/1C-
SCDS53736.2022.9760911.

CBS News (2019). Hundreds of millions of facebook user
records were exposed on amazon cloud server. Available
at: https://www.cbsnews.com/news/millions—
facebook-user-records-exposed-amazon-cloud-
server/.

Chou, T. (2013). Security threats on cloud computing
vulnerabilities. International Journal of Computer Sci-
ence & Information Technology, 5(3):79. DOI: 10.5121/i-
jesit.2013.5306.

Deng, J., Hu, H., Li, H., Pan, Z., Wang, K.-C., Ahn, G.-J., Bi,
J., and Park, Y. (2015). VNGuard: An NFV/SDN com-
bination framework for provisioning and managing vir-
tual firewalls. In IEEE Conference on Network Function
Virtualization and Software Defined Network (NFV-SDN),
pages 107-114. DOI: 10.1109/NFV-SDN.2015.7387414.

Dutta, A., Sood, K., Lu, W,, ef al. (2017). Network func-
tions virtualisation (nfv) release 3; security; security man-
agement and monitoring specification. Technical report,
ETSI. https://bit.1y/2Gbn8II.

Fernandes, N., Moreira, M., Moraes, 1., Ferraz, L., Couto, R.,
Carvalho, H., Campista, M., Costa, L., and Duarte, O. C.
M. B. (2011). Virtual networks: Isolation, performance,
and trends. Annals of Telecommunications, 40(1):339—
355. DOI: 10.1007/512243-010-0208-9.

FORBES (2015). Ashley madison hack data re-
veals interesting statistics. Available at: https:
//www.forbes.com/sites/tonybradley/2015/
08/19/ashley-madison-hack-data-reveals-
interesting-statistics/?sh=55779delcfdc.

Globo (2021a). huskyci - an open source tool that or-
chestrates security tests and centralizes all results into
a database for further analysis and metrics. https://
github.com/leopoldomauricio/huskyCI.

Globo (2021b). secdevlabs - a laboratory for learning secure
web and mobile development in a practical manner. Avail-
able at: https://github.com/leopoldomauricio/
secDevLabs.

Gupta, A. and Sharma, L. S. (2020). A categorical survey
of state-of-the-art intrusion detection system-snort. Int.
J. Inf. Comput. Secur., 13(3/4):337-356. DOI: 10.1504/1-
JICS.2020.109481.

Han, B., Gopalakrishnan, V., Ji, L., and Lee, S. (2015). Net-
work function virtualization: Challenges and opportuni-
ties for innovations. [EEE Communications Magazine,
53(2):90-97. DOI: 10.1109/MCOM.2015.7045396.

Haugerud, H., Tran, H. N., Aitsaadi, N., and Yazidi,
A. (2021). A dynamic and scalable parallel net-
work intrusion detection system using intelligent rule
ordering and network function virtualization. Fu-
ture Generation Computer Systems, 124:254-267. DOI:

Mauricio and Rubinstein 2023

10.1016/.future.2021.05.037.

Jiang, H., Xie, G., and Salamatian, K. (2013). Load balanc-
ing by ruleset partition for parallel IDS on multi-core pro-
cessors. In International Conference on Computer Com-
munications and Networks, ICCCN.

Lin, Y.-D., Lin, P.-C., Yeh, C.-H., Wang, Y.-C., and Lai, Y.-
C. (2015). An extended SDN architecture for network
function virtualization with a case study on intrusion pre-
vention. [EEE Network, 29(3):48-53. DOI: 10.1109/M-
NET.2015.7113225.

Malwaretech (2017). Mapping mirai: A botnet case
study. https://www.malwaretech.com/2016/10/
mapping-mirai-a-botnet-case-study.html.

Martins, J., Ahmed, M., Raiciu, C., Olteanu, V., Honda,
M., Bifulco, R., and Huici, F. (2014). Clickos and
the art of network function virtualization. Available
athttps://www.usenix.org/conference/nsdil4/
technical-sessions/presentation/martins.

Mauricio, L. A. F., Rubinstein, M. G., and Duarte, O.
C. M. B. (2016). Proposing and evaluating the per-
formance of a firewall implemented as a virtualized
network function. In International Conference on
the Network of the Future (NOF), pages 1-3. DOL:
10.1109/NOF.2016.7810127.

Mauricio, L. A. F., Rubinstein, M. G., and Duarte, O. C.
M. B. (2018). Aclflow: An NFV/SDN security frame-
work for provisioning and managing access control lists.
In International Conference on the Network of the Future
(NOF), pages 44-51. DOI: 10.1109/NOF.2018.8598136.

Midgley, J. T. J. (2020). Autobench: An http benchmarking
suite. Available at: https://github.com/menavaur/
Autobench.

Mijumbi, R., Serrat, J., Gorricho, J. L., Bouten, N., Turck,
F. D., and Boutaba, R. (2016). Network function virtu-
alization: State-of-the-art and research challenges. IEEE
Communications Surveys Tutorials, 18(1):236-262. DOI:
10.1109/COMST.2015.2477041.

Mosberger, D. and Jin, T. (1998). Httperf — a tool for
measuring web server performance. ACM SIGMET-
RICS Performance Evaluation Review, 26(3):31-37. DOL:
10.1145/306225.306235.

Mtibaa, A., Harras, K. A., and Alnuweiri, H. (2015).
From botnets to mobibots: A novel malicious com-
munication paradigm for mobile botnets. [EEE Com-
munications Magazine, 53(8):61-67. DOI: 10.1109/M-
COM.2015.7180509.

Netcraft (2019). January 2019 Web Server Survey. Available
at: https://news.netcraft.com/archives/2019/
01/24/january-2019-web-server-survey.html.

OpenStack (2022). The most widely deployed open source
cloud software in the world. Available at: https://
www.openstack.org.

OPNFV (2021). Open platform for NFV. Available at:
https://www.opnfv.org.

OWASP (2021). Owasp honeypot. https://github.com/
OWASP/Python-Honeypot.

OWASP (2021). Top 10 web application security risks.
Available at: https://owasp.org/www-project-top-
ten/.

https://doi.org/10.1007/s12243-018-0663-2
https://doi.org/10.1007/s12243-018-0663-2
https://ieeexplore.ieee.org/document/9760911
https://ieeexplore.ieee.org/document/9760911
https://www.cbsnews.com/news/millions-facebook-user-records-exposed-amazon-cloud-server/
https://www.cbsnews.com/news/millions-facebook-user-records-exposed-amazon-cloud-server/
https://www.cbsnews.com/news/millions-facebook-user-records-exposed-amazon-cloud-server/
http://www.airccse.org/journal/jcsit/5313ijcsit06.pdf
http://www.airccse.org/journal/jcsit/5313ijcsit06.pdf
https://ieeexplore.ieee.org/document/7387414
https://bit.ly/2Gbn8II
https://doi.org/10.1007/s12243-010-0208-9
https://www.forbes.com/sites/tonybradley/2015/08/19/ashley-madison-hack-data-reveals-interesting-statistics/?sh=55779de1cfdc
https://www.forbes.com/sites/tonybradley/2015/08/19/ashley-madison-hack-data-reveals-interesting-statistics/?sh=55779de1cfdc
https://www.forbes.com/sites/tonybradley/2015/08/19/ashley-madison-hack-data-reveals-interesting-statistics/?sh=55779de1cfdc
https://www.forbes.com/sites/tonybradley/2015/08/19/ashley-madison-hack-data-reveals-interesting-statistics/?sh=55779de1cfdc
https://github.com/leopoldomauricio/huskyCI
https://github.com/leopoldomauricio/huskyCI
https://github.com/leopoldomauricio/secDevLabs
https://github.com/leopoldomauricio/secDevLabs
https://doi.org/10.1504/IJICS.2020.109481
https://doi.org/10.1504/IJICS.2020.109481
https://ieeexplore.ieee.org/document/7045396
https://doi.org/10.1016/j.future.2021.05.037
https://ieeexplore.ieee.org/document/7113225
https://ieeexplore.ieee.org/document/7113225
https://www.malwaretech.com/2016/10/mapping-mirai-a-botnet-case-study.html
https://www.malwaretech.com/2016/10/mapping-mirai-a-botnet-case-study.html
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://ieeexplore.ieee.org/document/7810127
https://ieeexplore.ieee.org/document/8598136
https://github.com/menavaur/Autobench
https://github.com/menavaur/Autobench
https://ieeexplore.ieee.org/document/7243304
https://doi.org/10.1145/306225.306235
https://ieeexplore.ieee.org/document/7180509
https://ieeexplore.ieee.org/document/7180509
https://news.netcraft.com/archives/2019/01/24/january-2019-web-server-survey.html
https://news.netcraft.com/archives/2019/01/24/january-2019-web-server-survey.html
https://www.openstack.org
https://www.openstack.org
https://www.opnfv.org
https://github.com/OWASP/Python-Honeypot
https://github.com/OWASP/Python-Honeypot
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

A Network Function Virtualization Architecture

Ponemon and Accenture (2017). 2017 cost of cyber crime
study - insights on the security investments that make
a difference. Technical report. https://accntu.re/
3H5VPgA.

Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M.,
and Gu, G. (2012). A security enforcement kernel for
openflow networks. In ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking (HotSDN), pages
121-126. DOI: 10.1145/2342441.2342466.

Pourghassemi, B., Amiri Sani, A., and Chandramowlish-
waran, A. (2019). What-if analysis of page
load time in web browsers using causal profiling.
Proc. ACM Meas. Anal. Comput. Syst., 3(2). DOI:
10.1145/3341617.3326142.

Repetto, M., Bruno, G., Yusupov, J., Lamanna, G., Ertl,
B., and Carrega, A. (2022). Automating mitigation of
amplification attacks in NFV services. [EEE Trans-
actions on Network and Service Management. DOI:
10.1109/TNSM.2022.3172880.

Ristic, 1. (2010). ModSecurity Handbook: The Complete
Guide to the Popular Open Source Web Application Fire-
wall. Feisty Duck. ISBN 978-1907117022.

Sanz, 1. J., Mattos, D. M. F., and Duarte, O. C. M. B. (2018).
Sfeperf: An automatic performance evaluation framework
for service function chaining. In /EEE/IFIP Network Op-
erations and Management Symposium (NOMS), pages 1—
9. DOI: 10.1109/NOMS.2018.8406237.

Sommer, R. (2003). Bro: An open source network intru-
sion detection system. Available at: https://dl.gi.de/
handle/20.500.12116/29277.

The Guardian (2011). Playstation network hack-
ers access data of 77 million users. Available at:
https://www.theguardian.com/technology/2011/
apr/26/playstation-network-hackers-data.

ur Rahman, H., Wang, G., Chen, J., and Jiang, H. (2018).
Performance evaluation of hypervisors and the effect of
virtual CPU on performance. In 2018 IEEE Smart-
World, Ubiquitous Intelligence & Computing, Advanced
& Trusted Computing, Scalable Computing & Com-
munications, Cloud & Big Data Computing, Internet
of People and Smart City Innovation (SmartWorld/S-
CALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 772—779.
DOI: 10.1109/SmartWorld.2018.00146.

Varonis (2020). Inside out security - capital one’s cloud
breach & why data-centric security matters. Available
at: https://www.varonis.com/blog/capital-ones—
cloud-breach-why-data-centric-security-
matters.

Wang, C., Urgaonkar, B., Nasiriani, N., and Kesidis, G.
(2017). Using burstable instances in the public cloud:
Why, when and how? Proc. ACM Meas. Anal. Comput.
Syst., 1(1). DOI: 10.1145/3084448.

Williams, C. M., Chaturvedi, R., and Chakravarthy, K.
(2020). Cybersecurity risks in a pandemic. J Med Internet
Res, 22(9). €23692. DOI: 10.2196/23692.

Xing, T., Huang, D., Xu, L., Chung, C., and Khatkar, P.
(2013). Snortflow: A openflow-based intrusion preven-
tion system in cloud environment. In GENI Research and
Educational Experiment Workshop, pages 8§9-92. DOI:

Mauricio and Rubinstein 2023

10.1109/GREE.2013.25.

Zanna, P., O’Neill, B., Radcliffe, P., Hosseini, S., and Hoque,
M. S. U. (2014). Adaptive threat management through
the integration of IDS into software defined networks. In
International Conference on the Network of the Future
(NOF) - Workshop on Smart Cloud Networks & Systems,
pages 1-5. DOI: 10.1109/NOF.2014.7119792.

Zolotukhin, M., Kotilainen, P., and Himél&inen, T. (2021).
Intelligent IDS chaining for network attack mitigation in
SDN. In 2021 17th International Conference on Mobil-
ity, Sensing and Networking (MSN), pages 786—791. IEEE.
DOI: 10.1109/MSN53354.2021.00123.

https://accntu.re/3H5VPgA
https://accntu.re/3H5VPgA
https://doi.org/10.1145/2342441.2342466
https://doi.org/10.1145/3341617.3326142
https://ieeexplore.ieee.org/document/9769695
https://ieeexplore.ieee.org/document/8406237
https://dl.gi.de/handle/20.500.12116/29277
https://dl.gi.de/handle/20.500.12116/29277
https://www.theguardian.com/technology/2011/apr/26/playstation-network-hackers-data
https://www.theguardian.com/technology/2011/apr/26/playstation-network-hackers-data
https://ieeexplore.ieee.org/document/8560124
https://www.varonis.com/blog/capital-ones-cloud-breach-why-data-centric-security-matters
https://www.varonis.com/blog/capital-ones-cloud-breach-why-data-centric-security-matters
https://www.varonis.com/blog/capital-ones-cloud-breach-why-data-centric-security-matters
https://doi.org/10.1145/3084448
https://www.jmir.org/2020/9/e23692/
https://ieeexplore.ieee.org/document/6601422
https://ieeexplore.ieee.org/document/7119792
https://ieeexplore.ieee.org/document/9751466

	Introduction
	Related Work
	NFV Security Architecture Proposal and Implementation
	Experimental Results
	Efficiency
	Performance
	Effect of Varying the Number of Rules on the WAF-VSF
	Effect of Increasing the Number of Redirection OpenFlow Rules on the Open vSwitches

	Conclusions and Future Work

