
Journal of Internet Services and Applications, 2024, 15:1, doi: 10.5753/jisa.2024.3634
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Hardware-Independent Embedded Firmware Architecture
Framework
Mauricio D.O. Farina [Federal University of Rio Grande do Sul - PPGEE|
email: mauriciofarina@icloud.com]
Daniel H. Pohren [Federal University of Rio Grande do Sul - PPGEE|
email: daniel.pohren@ufrgs.br]
Alexandre dos S. Roque [Federal University of Rio Grande do Sul - PPGEE|
email: ale.roque@gmail.com]
Antonio Silva [Federal University of Rio Grande do Sul - PPGEE|
email: aassilva@inf.ufrgs.br]
Joao Paulo J. da Costa [Hamm-Lippstadt University of Applied Sciences - PK NRW|
email: JoaoPaulo.daCosta@hshl.de]
Lisandra Manzoni Fontoura [Federal University of Santa Maria - PPGCC|
email: lisandra@inf.ufsm.br]
Julio C. S. dos Anjos [Federal University of Ceara Campus Itapajé - PPGETI|
email: jcsanjos@ufc.br]
Edison Pignaton de Freitas [Federal University of Rio Grande do Sul - PPGEE|
email: edison.pignaton@ufrgs.br]

 Federal University of Rio Grande do Sul - UFRGS - PPGEE - Av. Osvaldo Aranha, 103 - Bom Fim, Porto Alegre, RS
, 90035-190, Brazil

Received: 18 August 2023 • Accepted: 19 February 2024 • Published: 16 April 2024

Abstract Unlike other forms of development, the way firmware development is designed is somewhat outdated.
It is not unusual to come across whole systems implemented in a cross-dependent monolithic way. In addition,
the software of many implementations is hardware-dependent. Hence, significant hardware changes may result in
extensive firmware implementation reviews that can be time-consuming and lead to low-quality ports, which may
represent an important problem for Internet of Things (IoT) applications that evolve very frequently. To address this
problem, this study proposes an embedded firmware development framework that allows reuse and portability while
improving the firmware development life cycle. In addition, the typical mistakes of a novice software developer
can be reduced by employing this methodology. An embedded IoT system project was refactored for this frame-
work model to validate this proposal. Finally, a comparison was made between a legacy and framework project
to demonstrate that the proposed framework can make a substantial improvement in portability, reuse, modularity,
and other firmware factors.

Keywords: Embedded Systems, Firmware Architecture, Development Guidelines

1 Introduction

Even though many embedded devices are designed to last
for a short time, they constantly face unexpected situations
that may reduce their lifespan. For example, unforeseen cir-
cumstances may require devices to adopt extra routines that
result in energy overheads and thus shorten their battery lives.
Moreover, power failures are the norm rather than accidental
[Jia et al., 2022], and, thus, inevitably, all these devices will
soon reach the end of their life cycle, some, early.
At all events, device replacement is a ”bound-to-happen”

issue that must be addressed. However, at the time of re-
placement, the components used in the original devices may
no longer be available. Several factors may drive companies
to change their products to ensure their availability [Farina
et al., 2023]. For example, dunn2021covid discusses the im-
pacts of the COVID-19 pandemic on global supply chains
and shows how the shortage of microchips has forced compa-

nies to redo consolidated projects to make use of alternative
components available on the market.

Internet of Things (IoT) devices are widely used on emerg-
ing applications due to their ease of implementation, their
flexibility, and their proximity to the data source [Anjos et al.,
2021]. However, the heterogeneity of hardware devices pro-
vided by various vendors requires continuous firmware up-
dates to overcome software flaws and security issues or to
provide functionality improvements. A concrete example
of this demand is the growing use of the Arduino platform,
where several new components are added daily, making com-
patibility between different hardware a reality. It is known
that this platform brings a chronic problem: the need for
compatibility between new and legacy equipment. New plat-
forms are being created to correct these limitations, but they
are returning to the initial model of being dedicated to certain
families of Microcontroller Unit (MCU) andMicroprocessor
Unit (MPU).

https://doi.org/10.5753/jisa.2024.3634
https://orcid.org/0000-0002-2541-7238
mailto:mauriciofarina@icloud.com
https://orcid.org/0000-0002-7646-3541
mailto:daniel.pohren@ufrgs.br
https://orcid.org/0000-0001-5422-5414
mailto:ale.roque@gmail.com
https://orcid.org/0000-0003-3709-4007
mailto:aassilva@inf.ufrgs.br
https://orcid.org/0000-0002-8616-4924
mailto:JoaoPaulo.daCosta@hshl.de
https://orcid.org/0000-0002-4669-1383
mailto:lisandra@inf.ufsm.br
https://orcid.org/0000-0003-3623-2762
mailto:jcsanjos@ufc.br
https://orcid.org/0000-0003-4655-8889
mailto:edison.pignaton@ufrgs.br

Hardware-Independent Embedded Firmware Architecture Framework Farina et. al., 2024

The firmware that is currently being developed is written
in a somewhat outdated manner. Each product-development
cycle is limited to no code platforms or reuse, with reinven-
tion being a significant concern among development teams.
A simple example is when development teams refuse to use
an available Real-Time Operational System (RTOS) but pre-
fer to develop their own in-house scheduler instead [Beningo,
2017]. Similarly, teams may also develop custom proto-
cols for their IoT devices rather than making use of avail-
able ones such as Matter (Connectivity Standards Alliance
[2024]). Another problem is that most firmware is set in
a cross-dependent monolithic way. As a result, it becomes
tricky to debug, maintain, and introduce new features into
the software while it is becoming less reusable and portable.
This type of undocumented change is common on open-
source platforms, where each programmer changes features
at their own pleasure.
Firmware maintenance usually takes up a large stage of a

product life cycle, and automated testing may significantly
reduce costs. Conducting automated tests for embedded
systems is a considerable challenge and, in the case of dis-
organized firmware, an unsustainable task. Finally, even
well-architected firmware may not be reusable or portable
if novice software developers make unsupervised changes to
the production code.
Frameworks make it possible to abstract low-level details,

and thus allow developers to focus on a specific functionality
without dealing directly with matters of complexity, which
enables the development of new applications. These advan-
tages are possible because the development of frameworks
involves the employment of best practices in software en-
gineering, such as the use of design principles for writing
clean and high-quality code [Martin, 2017], applying design
patterns [Gamma et al., 1995], and defining a robust, scal-
able, and reusable architecture [Fowler, 2012]. In addition,
frameworks that enable reuse can generally dispense with the
most tedious tasks related to MCU development [Tremaroli,
2023].
According to Sommerville [2015], a framework is a

generic structure designed to create a specific application or
subsystem. Schmidt et al. define a framework as an inte-
grated set of software artifacts (such as classes, objects, and
components) that collaborate to create a reusable architecture
for a family of related applications [Schmidt et al., 2004].
Thus, by forming a pre-defined structure, frameworks can
accelerate software development by allowing developers to
focus on its specific features. In addition, frameworks can
improve software quality by reusing components that have
already been implemented, tested, and checked.
Embedded software, particularly for IoT, still requires im-

provements in the development process and methodology
[Fahmideh et al., 2022]. The current world scenario requires
a more flexible and robust firmware development process for
embedded software, particularly IoT, like other more mature
software areas. This paper attempts to fill this gap by intro-
ducing an embedded firmware development framework that
addresses problems such as the lack of code maintainability,
reuse, portability, and the absence of development standard-
ization. In the 1980s, Brooks and Bullet [1987] declared
there is no silver bullet for software development [Brooks

and Bullet, 1987], which is still applicable today.
The embedded world covers an extensive universe that

requires different development approaches. The proposed
framework aims at a fraction of MCU based systems where
the firmware’s resources are less constrained and can be de-
veloped in a more generic format. For example, modern
MCUs are designed to address the most common require-
ments for a given group of applications. Consequently, sys-
temsmay require a givenMCU based on the provided periph-
erals rather than a minimal processor power or memory size.
Finally, systems based on application processors or sophisti-
cated System-on-Modules (SoM) that possess advanced fea-
tures, for example, Graphics processing unit (GPU), Non-
uniform Memory Access (NUMA), or multiple heteroge-
neous core architectures, are not covered by this approach.
For the growth of the IoT universe to be solid, the ease and
reliability of the resources used are essential, making it nec-
essary to be able to reuse functionalities, services, and inter-
faces in an easy and friendly way.
The main research contributions of this study are as fol-

lows and seek to:

• Provide an embedded firmware development frame-
work that allows reuse and portability;

• Improve firmware development life cycle phases;
• Reduce the risk of mistakes being made by novice de-
velopers while not limiting or restricting the scope of
advanced developers; and

• Establish development standards and lay down guide-
lines for embedded firmware development.

The rest of this article is structured as follows. Section
2 reviews the concepts of reuse, portability, maintainability,
and rehosting. Section 3 describes the proposed hardware-
independent embedded firmware architecture framework,
and Section 4 sets out a practical demonstration of the pro-
posed framework. Finally, Section 5 summarizes the main
findings of this work.

2 Related Works
Several works in the literature are seeking to address as-
pects of firmware design so as to make it more portable and
reusable. In the reuse field, many papers argue that mod-
ularity is the basis of many reusable architectures. For ex-
ample, Dano analyzes the importance of reuse and modu-
larity while suggesting activities that can maximize these
factors [Dano, 2019]. Also, Yuan et al. [2021] introduce
a component-based framework for embedded software that
confines development to standalone components, and thus
spares the developer from the need to understand the system
in its entirety [Yuan et al., 2021].
Modern programming languages use Object Oriented Pro-

gramming (OOP) to allow modularity and decoupling. How-
ever, the C language does not natively support it. Neser and
Shoor address this question by introducing a framework to
simulate OOP features in C language called Object Oriented
C (OOC) Neser and van Schoor [2009]. The method does
not allow a full OOP implementation, but most core features

Hardware-Independent Embedded Firmware Architecture Framework Farina et. al., 2024

can be imported in a similar way. Quantum Leaps also pro-
poses a similar OOC framework that does not make use of
preprocessors for emulating OOP features [Quantum Leaps,
LLC, 2020].
Concerning portability, several studies have sought to em-

ploy methods to facilitate the implementation of portable
firmware. For example, Marcondes et al. [2006] adopt an
application-oriented and component-based operating system
that includes code portability between MCUs with different
architectural sizes [Marcondes et al., 2006]. In contrast, Sun
et al. [2017]. provide a microservices-based framework for
IoT where service and physical layers communicate through
a commonmessage broker medium [Sun et al., 2017]. At the
same time, many legacy codes may be required so that they
can be ported in the future. In light of this, Martins and Bau-
nach analyse what the current portable IoT operational sys-
tems are like and the quality of the currently available ports
[Martins Gomes and Baunach, 2021].
Motogna et al. [2023] study the quality attributes that are

prioritized in embedded systems and identifies the best prac-
tices and activities they involve [Motogna et al., 2023]. Their
research revealed that the most important quality attributes in
embedded systems development are maintainability, safety,
and security, along with performance and energy efficiency.
Since maintainability is often mentioned in the literature as
an essential feature of a reusable and portable code, several
studies offer solutions for it. For this reason, Spray and Sinha
integrate the knowledge of software architecture with the ex-
perience in designing embedded software from the Tru-Test
Group to a) create an abstraction layered architecture and b)
create code bases with improved long-term maintainability
[Spray and Sinha, 2018]. In addition, Willocx et al. estab-
lish a layered IoT architecture to support the development of
complex and maintainable IoT applications [Willocx et al.,
2018]. By abstracting low-level implementation details, de-
velopers can focus on business logic without having to be
experts in IoT sensor technology.
Rehosting techniques allow firmware testing without a

MCU or a device application process. When conducting the
test, researchers must be able to port the current code to an
emulator or a general application computer so that they can
work out their routines. Even though the objective is not the
same, the result of rehosting methods is very similar to that
of portability since the final aim is to port an existing code to
a different host. In light of this, Zaddach et al. recommend
Avatar, which is a hardware-in-the-loop design for an event-
based arbitration framework that orchestrates the communi-
cation between an emulator and a targeted physical device
[Zaddach et al., 2014].
Pretender makes observations of the interactions between

the original hardware and the firmware to automatically
create models of peripherals, that allow the execution of
firmware in a fully-emulated environment [Gustafson et al.,
2019]. In the same way Feng et al. [2020], find a solution
that involves abstracting various peripherals and handling
firmware I/O on the fly based on automatically generated
models, thus ensuring sufficient code coverage [Feng et al.,
2020]. Clements et al. [2020] adopt another approach, which
entails introducing a HALucinator. This high-level emula-
tion method offers simple, analyst-created replacements that

carry out the same task from the standpoint of the firmware
[Clements et al., 2020]. Afterward, the authors expand
HALucinator by adding a re-hosting support layer, which
significantly reduces the porting time for devices using Vx-
Works [Clements et al., 2021].
A violation of the design of reusable firmware is a notable

cause of portability problems. Thus, the most common mis-
takes in the development process may result from insights
take to find solutions. Hubalovsky and Sedivy [2010] ex-
amine the most common OOP mistakes made by both be-
ginners and experienced programmers [Hubalovsky and Se-
divy, 2010]. Stewart also analyses the most common mis-
takes made in Real-Time (RT) software development [Stew-
art, 1999].
All the previously mentioned works seek to address spe-

cific areas of portable firmware development. However,
none of them can reach a complete end-to-end solution. Ta-
ble 1 and Table 2 make a comparison to illustrate the differ-
ences between this article and the key related works on reuse
and portability.

Table 1. Comparative summary of related works on reusable design

Paper Modularization Object
Oriented

Hardware
Independent

Full Firmware
Architecture

Dano [2019] No No No No
Yuan et al. [2021] Yes No Possible No
Neser and van Schoor [2009] Yes Yes Possible No
Quantum Leaps, LLC [2020] Yes Yes Possible No
This Paper Yes Yes Yes Yes

Table 2. Comparative summary of related works on portable design

Paper Hardware
Abstraction

Hardware
Decoupling

Firmware
Refactoring Rehosting

Marcondes et al. [2006] Yes No No No
Sun et al. [2017] Yes No No No
Martins Gomes and Baunach [2021] No No Yes No
Zaddach et al. [2014] No Yes No Yes
Clements et al. [2020] Yes Yes No Yes
Clements et al. [2021] Yes Yes No Yes
This Paper Yes Yes Possible Possible

3 Framework
This work proposes an embedded C development framework
that covers modularization, reuse, portability, and standard-
ization to address the gaps in the literature in the context of
embedded software development, particularly applied to IoT.
The framework organizes the development process into mul-
tiple areas and layers to mitigate aspects such as hardware
coupling, monolithic development, complex maintainability,
and lack of development rules.
Initially, the framework is separated into two main regions

(Figure 1), the MCU Project (PROJECT) (the red area in the
diagram) is responsible for all the hardware-specific imple-
mentations. In contrast, Core Library (CORE) (the blue area)
contains all the system implementations in a generic form.
The main purpose of this structure is to ensure there is a com-
plete separation between the hardware and system, which can
enable CORE to be reused in virtually any other MCU that
supports the features required by its specifications.
As well as portability, the framework follows organiza-

tional procedures to improve the way the firmware code

Hardware-Independent Embedded Firmware Architecture Framework Farina et. al., 2024

Figure 1. Hierarchy of the Framework

is maintained. In addition, novice developers are often in-
cluded in projects with little (or even no) supervision by
other experienced developers. As a result, these develop-
ers may cause problems to the system or violate the design
choices of the system architecture. The proposed framework
addresses this matter by standardizing and ensuring the accu-
racy of the development process. It also makes definitions
called Novice Framework Choice (NFC), which are only de-
signed to guide these developers and prevent them frommak-
ing their most common mistakes.

3.1 MCU Project

Embedded projects are usually implemented following how
a particular MCU and its peripherals work, which may cause
some problems regarding portability and aspects of reuse.
Several embedded applications are constrained by limited
available MCU resources, which makes this strategy the
most efficient. For example, the cooperative development
of the hardware and software components can be used to
achieve the best performance of an embedded systemZheng
et al. [2021]. However, a considerable number of modern
embedded projects are not restricted by these limits, which
means their implementations can devote more resources to
other benefits.
In view of this, PROJECT includes a region where all of

the MCU-specific implementations can be freely developed
without having to interact with any system code. Moreover,
developers will given guidance on how to implement stan-
dardized functions provided by CORE, which will act as a
medium between the two framework regions. The interface
region will be discussed in Section 3.3.

3.1.1 MCU Project Specifications (SPECS)

The PROJECT region of framework was designed to support
different MCUs. For this reason, developers may need to re-
place the current PROJECT repository with a different ver-
sion created for another targetMCU. When creating this new
version, the system architect must define the required domain
where his CORE should exist. Since the PROJECT region is
replaceable, this information must be carried out by CORE
and should be the starting point for every new PROJECT.
The SPECS documentation must include all the informa-

tion regarding the portability domain that is foreseen by the

system architect. In our experience, the most common do-
main specifications are as follows:

• MCU Specifications
– Bit depth (8-bits, 32-bits, etc.)
– Architecture (ARM, RISC-V, AVR, PIC, etc.)
– Endianness
– Minimum memory size
– Minimum operating frequency
– Required peripherals

• Bare-Metal or RTOS
• Third-Party library support
• Compiler
• Peripheral configurations
• Driver design path (blocking, Interrupt request (IRQ),
Direct Memory Access (DMA), etc.)

However, these requirements are not limited to this list.
They are essential and must coexist in every project. Instead,
the system architect can define its domain as it sees fit. In this
process, the architect may find it necessary to reduce the com-
plexity of development by restricting the domain too much
or defining a broad portable domain that may result in a con-
siderable increase in this kind of complexity. Thus, there is
a need to balance these two factors to provide a reasonable
domain that is realistic for the product under development.

3.1.2 Layer 0 - Drivers and HAL Layer

As well as dealing with portability factors, another goal of
the framework is to assist novice developers in improving
the firmware under development. The first NFC in this area
is to allow developers to choose between developing drivers
and Hardware Abstraction Layer (HAL) implementations by
starting from scratch or using either the code generators or ab-
straction frameworks provided by the vendors. In this way,
novice programmers can benefit from those tools and man-
age without a deep understanding of more complex driver
implementations. In contrast, experienced programmers can
maintain their freedom to design more sophisticated code.
As a result, Drivers and HAL Layers may get mixed into
single or multiple layers. For this reason, this framework
can assume all these implementations are a part of the same
layer and thus allow developers more flexibility.
Since Layer 0 is expected to contain hardware-specific im-

plementations, no other layer need directly access or refer-
ence the hardware. As a means of providing a medium be-
tween PROJECT and CORE, a set of interface functions is
operated by Layer 1 (Section 3.3). These functions must
be implemented in Layer 0 so that abstracted access can be
given to theMCU resources, and ensure CORE is entirely de-
coupled from the hardware. The framework only establishes
a single rule for this layer: Layer 0 can only include head-
ers from Layer 1. In addition, developers can structure the
implementation in a way that best fits their needs.

3.2 Core Library
The CORE region was designed to have its hardware entirely
decoupled and, thus be, portable to any MCU in the specifi-
cation domain. In addition, this also allows CORE to be run

Hardware-Independent Embedded Firmware Architecture Framework Farina et. al., 2024

by the developers’ computer or continuous development ap-
plications without any hardware. As a result, there can be
a reduction in the development time since time-consuming
processes, such as programming the MCU, can be avoided.
Firmware developers can also rely on tools that were previ-
ously only used by software developers. Finally, the whole
system can be tested through unit testing without any hard-
ware emulation.

3.3 Layer 1 - Interfaces

The role of interfaces is to provide the necessary prototype
functions that may be requiredDouglass [2010] by CORE to
access all peripheral devices and MCU-specific functional-
ities and information. Another NFC is that interface func-
tions must be the only interaction between the two firmware
regions, and this border should never be crossed. This en-
sures that the functions can be independent and the CORE
modules do not require hardware-specific knowledge.
In addition accessing peripherals and functionalities, all

of the hardware-specific information should be provided to
CORE by middleware functions as well. For example, an ap-
plication jumping address or non-volatile data may be stored
in different memory regions for different MCUs. Thus, this
information should be abstracted to CORE, so that it is made
independent. Finally, Interfaces should only be displayed in
the form of header files.

3.4 Layer 2 - Components

The components layer is designed to allow code modulariza-
tion and reuse. The primary purpose of components is to sep-
arate codes and break down their implementation into small,
easily understood units. Components can be divided into two
types:

External Components: these are implementations that
can be reused in multiple projects. They can be seen as inde-
pendent modules that can be imported into the project. These
components must be self-contained and separate from other
project-specific components. In addition, they must have
their software versioning of the system, and only released
versions should be used by CORE. The decoupling system
enables a code to be tested, debugged, and reused more sim-
ply since implementations are not interdependent and contain
a good deal of unrelated content.

Project Components: these are only designed for the
firmware under development and, for the time being, only
exist in it. They do not have to be reusable and may depend
on other components. This flexibility is intended to reduce
the developer’s overhead for features that should only exist in
a single project. At the same time, these components should
still be designed as modular parts of the system. As a result,
they create an abstraction level between generic and system-
specific patterns of behavior. Finally, Project Components
are the only components that can directly import interfaces
from Layer 1.

As well as types, components are separated into three cat-
egories , each of which is responsible for a different modu-
larization and, is thus designed to meet other requirements.

3.4.1 Devices

Devices are components representing Integrated Circuit (IC)
peripherals that from a part of the product. These compo-
nents must be separate from the project so that an IC devices
library can be formed. The device implementation process is
also expected to be bare-metal and allow multiple instances
so that the use domain can be expanded.

i f n d e f __LED_DRIVE_H__
d e f i n e __LED_DRIVE_H__
i n c l u d e < s t d i n t . h>

/** @brief Device P i n s * /
t y p e d e f enum {

LED_DRIVE_PIN_0 = 0 , /** Pin 0 * /
LED_DRIVE_PIN_1 , /** Pin 1 * /
LED_DRIVE_PIN_2 , /** Pin 2 * /
LED_DRIVE_MAX_PIN , /** Max Number o f P i n s
* /

} l e d _ d r i v e _ p i n _ t ;

/** @brief Device Hand le r * /
t y p e d e f s t r u c t {

l e d _ d r i v e _ p i n _ t p i n ; /** Pin * /
u i n t 3 2 _ t f r e qu en cy ; /** Frequency (Hz) * /
u i n t 8 _ t d u t y _ c y c l e ; /** Duty Cycle (%) * /
u i n t 8 _ t a d d r e s s ; /** Device I2C Address
* /
vo id (* i 2 c _w r i t e) (u i n t 8 _ t add r e s s , u i n t 8 _ t *
da t a , u i n t 3 2 _ t s i z e) ; /** I2C Data Wr i t e
Func t i o n * /

} l e d _ d r i v e _ t ;

/** @brief I n i t Device
* @param hand l e r [i n / ou t] Device Hand le r
* /

vo id d e v _ l e d _ d r i v e _ i n i t (l e d _ d r i v e _ t *c o n s t
h a n d l e r) ;

/** @brief Se t P in Duty Cycle
* @param hand l e r [i n] Device Hand le r
* @param du t y _ c y c l e [i n] Duty Cycle (%)
* /

vo id d e v _ l e d _ d r i v e _ s e t _ d u t y _ c y c l e (l e d _ d r i v e _ t *
c o n s t h and l e r , u i n t 8 _ t d u t y _ c y c l e) ;

/** @brief Se t P in Frequency
* @param hand l e r [i n] Device Hand le r
* @param f r e qu en cy [i n] Frequency (Hz)
* /

vo id d e v _ l e d _ d r i v e _ s e t _ f r e q u e n c y (l e d _ d r i v e _ t *
c o n s t h and l e r , u i n t 3 2 _ t f r e qu en cy) ;

e n d i f

Listing 1: Device Header

Every device should include a type of handler variable contain-
ing all the information regarding a single instance. This handler
is expected to be passed on as the first function argument to access
device functionalities, and thus dispenses with the need for instance-
specific implementations inside the functions. Code listing 1 pro-
vides a simple example of this structure.

3.4.2 Classes

One advantage of modern programming languages is their built-in
support for OOP. Unfortunately, C is a procedural language that

Hardware-Independent Embedded Firmware Architecture Framework Farina et. al., 2024

does not include these features. Luckily, it is possible to replicate
some of the core features of OOP in C by following design guide-
lines that are often called OOC in the literature. In this framework,
the implementation was inspired by and based on the work of Quan-
tum Leaps, LLC [2020].
OOC classes inherit the following OOP features:

• Encapsulation
• Inheritance
• Interface
• Polymorphism

and can be displayed in two ways:

Interface Classes: these are responsible for enforcing a re-
quired signature based on the methods of the classes that implement
it.

Classes: these are any other class type. They may inherit inter-
face classes or other classes that can lead to a specialized pattern of
behavior.
Every class should always ensure the structure initialization (in-

put argument) and instance (output argument) used by the class con-
structor method. If another class is inherited, these structures must
contain the respective parent structures, called sper, as their ini-
tial elements. The inherited class structures must be the first ele-
ment that determines subtyping behavior in the child. Finally, only
a single inheritance is allowed.
Project classes can be bare-metal or RTOS, while external classes

must always be bare-metal. If external classes require RTOS func-
tionalities, they should be provided in an abstracted format as argu-
ments of the initialization structure.
Being a NFC, classes should only contain private elements. This

means that, only the class can directly access variables from the
instance handler. Any other external access should always be done
by “getter and setter” methods.

3.4.3 Libraries

Libraries are single instance components that may cluster a group
of other components to implement a system functionality. Besides
that, libraries can also abstract third-party libraries or provide multi-
thread implementations. Library components are presented into
three types:

Libraries: these are components that provide higher-level func-
tionalities. To illustrate this, Figure 2 shows a simplified design of
a robot arm firmware.
In this example, which is depicted in Figure 2, Inter-Integrated

Circuit (I2C) motor driver IC device instances are responsible for
controlling the arm motors. Each of the Joint and Claw classes in-
stantiates a single instance of the motor device. The 3 Joint Arm
Robot Class inherits the Arm Robot Interface class and instantiates
three Joint classes and one Claw class object. Next, the Robot li-
brary instantiates one 3 Joint Arm Robot class Object and operates
the necessary I2C functions. Finally, the library offers thread-safe
access functions so that all the tasks (applications) can control the
robot in a participatory way.

Third-Party Libraries: these are libraries that are not main-
tained or developed in-house. Open-source or purchased libraries
are examples of this type of library. Since one of the main objec-
tives of this framework is code reuse, it is highly recommended that
developers make use of good-quality libraries instead of starting ev-
erything from scratch.

Figure 2. Example of Robot Modules

It is essential that these libraries are not considered to be a part
of the component layer. Third-party libraries are often found to be
provided with vendor code-generator tools. This means they are an
exception layer that can exist in both PROJECT and CORE.
The main disadvantage of third-party libraries is that they may

be limited to a particular domain. For example, a Liquid Crystal
Display (LCD) library may apply to only a specific list of display
devices. However, for several reasons, replacing the display device
with a different unsupported model may be necessary. Having third-
party-specific calls inside the product code would cause problems
since a whole revised implementation would be required. For this
reason, an Interface library should abstract every third party.

Interface Libraries: these are responsible for combining and
standardizing other libraries or third-party libraries into a process
flow. If the previous LCD example is followed, every display li-
brary could be added to the generic interface display library, which
would carry out abstracted display functions (Figure 3). The in-
terface library can select the corresponding library by means of a
run-time implementation or compile time through a macro compiler
preprocessor.

Figure 3. Display Interface Library

The kernel itself should be seen as a third-party library for RTOS
projects and, thus, be abstracted by an interface library. Some
vendors already possess kernel abstraction libraries. For exam-
ple, ARM has an Application Programming Interface (API) called
CMSIS-RTOS that already abstracts several RTOSs. Unfortunately,
these libraries are usually architecture-specific and to avoid this
problem, the RTOS kernel should always be abstracted by an in-
house library.

3.5 Layer 3 - Applications
The applications layer is the last framework layer. It is responsible
for deploying every system flowchart. The application can be de-
signed in the form of RTOS threads or bare-metal state machines.
In both cases, applications should only include modules from Layer
2.

Hardware-Independent Embedded Firmware Architecture Framework Farina et. al., 2024

A typical problem that novice developers face is encountering un-
expected patterns of behavior which are caused by a failure to see
the implications of running a code outside the context of the RTOS.
This means that, every CORE should contain a System application
(even for bare-metal projects). It is a unique application that should
be seen as the “main function” of the project. All the systems ini-
tialization process and starting -points for other activities should be
carried out inside this task. This application is a NFC that is de-
signed to ensure that every developer executes all the CORE code
in an RTOS environment. Finally, starting the System task should
be done by PROJECT and is, strictly, the only framework , without
exception.

3.6 Conventions
Another common mistake many firmware projects make is the fail-
ure to include developer conventions. However, these play a crucial
role in a well-organized environment andmake it easy to understand
the developed system. For this reason, the framework establishes
a few conventions. It is also advisable for the system architect to
define his conventions.

3.6.1 Module Prefixes

Architects are free to choose module prefixes as they see fit. How-
ever, the framework recommends the list provided in Table 3. The
modules not listed in this table do not need to have prefixes. The
prefixes should be used in module files and every public function.
Moreover, the framework advises that they should be used by other
code elements (typedeƒ s and macros, for example), although this
is not a essential requirement. The use of prefixes allows develop-
ers to locate and understand the dependencies of the code they are
working on while also ensuring the project is better organized.

Table 3. Module Prefixes

Module Prefix
Interfaces mid
Devices dev
Classes cls
Libraries lib

Applications app

3.6.2 Module Files

The framework stipulates that the modules can only be imported
by their respective public headers. This allows developers to im-
plement their modules safely without an extensive documentation
overhead of what should or should not be used outside a module.
As well as this, a set of standard files (Table 4) is defined to ensure
an improved module organization. This was carried out as a NFC to
allow developers to get used to the OOP access modifier. Finally,
the public type header was added as another NFC as a simple so-
lution to major recursive inclusion problems. With the aid of this
typedeƒ s can be separated from prototype functions, and allow
the modules to share types without experiencing conflicts.

3.6.3 Documentation

Every module must contain a documentation file. Since most ver-
sion control systems support this, the framework recommends using
redme.md files written in markdown. These should be used by
developers to provide essential information regardingmodule speci-
fications, design choices, how-to-use tutorials, examples, reference

Table 4. Module Files Requirements

File Interfaces Devices Classes Libraries Applications
source No Yes Yes Yes Yes

public header Yes Yes Yes Yes Yes
public types header Optional Optional Optional Optional Optional
private header No Optional Optional Optional Optional
internal header No Optional Optional Optional Optional
override header No No Yes, If Overrides Methods No No
override source No No Yes, If Overrides Methods No No
readme document Yes Yes Yes Yes Yes

links and files, stateflow diagrams, and any other key areas. Archi-
tects should also define an in-code documentation standard. Even
though this is not a requirement, the framework recommends using
the Doxygen format since it is well-known by the embedded sys-
tems community.

3.6.4 Module Implementation

As outlined in previous sections, Table 5 summarizes some key def-
initions of implementation for the framework modules. Each layer
may contain one or more types of modules with restricted access
to other modules. Modules should respect the access permissions
of each class so that they can maintain the correct level of abstrac-
tion. Each module type may require a different path design code.
This must also be able to support the standardization framework.
Finally, modules may be used for other implementation domains,
which means that, multi-threading must always be taken into ac-
count if dependencies are not thread-safe.

Table 5. Summary of the Framework

Layer Module Implementation Access Layers Design
0 Drivers Bare-Metal 0 and 1 None
0 HAL Bare-Metal 0 and 1 None
1 Interfaces Bare-Metal None Prototyping
2 Devices Bare-Metal None Instance Handlers
2 Classes Bare-Metal/RTOS 1 and 2 Object Oriented C
2 Libraries Bare-Metal/RTOS 1 and 2 Procedural
3 Applications Bare-Metal/RTOS 2 and 3 Procedural

3.7 Final Considerations
A comprehensive description of the framework would be too exten-
sive for a single paper, and for this reason, only its key features
were described in this article. In addition, the framework is un-
der constant development. Readers can access the current state of
the framework and the complete documentation in the public frame-
work repository 1.

4 Case Study
To validate the proposed framework, a case study based on an IoT
system was used. The system supports an application that collects
environmental data and provides fused data to end-users. An im-
portant feature of this system is the ability to autonomously cali-
brate new sensor nodes that are added into the network [Farina et al.,
2023]. This self-calibration sensor firmware was refactored into the
framework format and compared with the original one, demonstrat-
ing the proposed framework’s value.
The deployment was implemented using an ESP32-WROOM-32

Module [Systems, 2017]. The official Espressif IoT Development
Framework (ESP-IDF) was used to develop the hardware-specific
implementations. Each firmware region was implemented in a dif-
ferent repository. First, PROJECT 2 was created, and then the initial
project files were added. Next, CORE 3 was built and included as
a submodule of PROJECT.

Hardware-Independent Embedded Firmware Architecture Framework Farina et. al., 2024

Table 6. Framework of the Dependency Map

Dependency Module Dependency
of Totalmid_gpio mid_wifi cls_sensor cls_sensor_demo lib_mqtt lib_rtos lib_status_led lib_wifi app_calibration app_system

mid_gpio X 1
mid_wifi X 1
cls_sensor X 1

cls_sensor_demo X 1
lib_mqtt X 1
lib_rtos X X X X X X 6

lib_status_led X 1
lib_wifi X X 2

app_calibration X 1
app_system 0
esp-mqtt X 1
FreeRTOS X 1
Total

Dependencies 0 0 1 1 2 1 2 2 4 4

The system was separated into two applications. As expected,
System (Figure 4), the first one, was responsible for creating the
required initialization and starting the Calibration task (Figure 5).
Two interface libraries were created for this project ensure abstrac-
tion of Third-Party libraries. Even though these modules are project
components, theywere structured as external components to demon-
strate that they were examples of reusable libraries. In both cases,
developers can include other Third-Party libraries in these inter-
faces without affecting other modules.

Figure 4. System Application Dependencies

Figure 5. Calibration Application Dependencies

The Status LED and WiFi libraries are responsible for the cus-
tom project implementations of the middleware peripheral inter-
faces and ensuring these resources had thread-safe access to the
applications. Different IoT sensors can be implemented through
sensor interface class child classes. By doing this, developers can
override the implementation of the method responsible for collect-
ing raw sensor sample data. All the other implementations are in-
herited from the parent class, and do not require modifications.

4.1 Evaluation
A comparison between the framework and the legacy project was
made to assess the framework’s benefits. First, the statistics for
both projects were extracted with the help of code metric analyzer
software [Arnold, 2022]. The initial analysis (Table 7) compares the
outlines of both projects, and the results show a significant increase
in all four items. This was expected since the framework enhances
the system modularization; thus, more Lines of Code (LOC) and
files are required to encapsulate these modules.

Table 7. Comparative Overview of the Project

Legacy Framework
Lines Of Code 367 487

Files 9 33
Functions 15 44
Modules 4 10

In a second analysis, the number of Effective Lines of Code
(ELOC), represented by the LOC inside functions, were compared.
The framework advises developers to restrict functions to 40 LOC.
The reason for this is that most Integrated Development Environ-
ments (IDE) can display, at least, this number of lines (in their de-
fault configuration) without requiring any scroll. As a result, the
functions become more readable and less complex.
The ELOC comparison is displayed in Table 8. The results show

that the functional size of the framework was significantly reduced
while being kept in a better range. McCabe’s Cyclomatic Complex-
ity McCabe [1976] was used to evaluate the quality of the functions
and improve this analysis.

Table 8. Effective Lines of Code Comparison

Legacy Framework
Mean 21.33 8.70

Standard Deviation 22.73 5.42
Max 92 28
Min 3 3
Total 320 383

The results of the functional complexity (Table 9) show that
when compared with legacy functions, framework functions have
an average of 70% less complexity with an improved variation
range. These results demonstrate that as well as portability and
reuse, the framework can also improve the quality of the developed
code, and enable it to be more easily understood, changed, and de-
bugged.
In a final evaluation, a coupling analysis for both projects was

Hardware-Independent Embedded Firmware Architecture Framework Farina et. al., 2024

Table 9. Comparison of Cyclomatic Complexity

Legacy Framework
Mean 3.80 1.05

Standard Deviation 5.60 1.68
Max 21 9
Min 0 0
Total 57 46

conducted. In the legacy project, no abstraction was made to sep-
arate ESP-IDF from the system functions. For this reason, the re-
quired dependencies from the API vendor were added to this analy-
sis. In the case of the Framework version, implementations on the
PROJECT region do not directly interact with CORE modules. In
light of this, the Framework project only takes account of the depen-
dencies that are included inside the CORE region. The dependency
map for the legacy and framework projects is shown Table 10 and
Table 6 respectively.

Table 10. Legacy Dependency Map

Dependency Module Dependency
of Totalmqtt wifi model main

mqtt X X 2
wifi X X 2
model X X 2
main 0

esp-event X 1
esp-wifi X 1
esp-nvs X 1
esp-gpio X 1
esp-mqtt X 1
FreeRTOS X X X X 4
Total

Dependencies 5 3 1 6

Since both projects make use of a RTOS, it is natural that mul-
tiple modules depend on either FreeRTOS (legacy) or b_rtos
(framework). This dependency on framework modules could be
reduced by including kernel functions within the module initializa-
tion parameters. However, the RTOS can be regarded as a global
dependency for project modules.
Application modules are usually designed to be portable, but are

not reusable. Their main purpose is to use other modules to imple-
ment a particular system flow which means that they will probably
rely on multiple dependencies.
Finally, the quality of themodule encapsulation of the framework

is clear from the results obtained for the component and interface
modules. Each of these modules is completely decoupled from the
others , in contrast with the legacy version and, as a result, provides
several benefits. Moreover, in this way, the modules can be easily
changed without causing problems to the others. Other modules
can replace them with the same functionalities without requiring a
complete system implementation review.

5 Conclusion
This paper proposed an embedded firmware development frame-
work that simplifies IoT device portability. Despite its usefulness
for embedded firmware of devices used in other domains, it is par-
ticularly useful for IoT devices, such as explored in the validation
case study. It also lays down guidelines for developing less com-
plex and reusable modules. The study included a complete descrip-
tive overview of the framework and a practical example of an im-

plementation. Moreover, by evaluating the implemented system, it
was possible to demonstrate some of the key benefits of this frame-
work.

In summary, the proposed framework gives guidelines to devel-
opers on how to improve their design, and deploy less complex,
portable, and reusable firmware architectures that are flexible and
simple. Novice software developers can also benefit from NFCs
by learning how to increase their collaboration on projects and im-
prove their skills. Finally, discontinued MCUs and other acICs can
be easily replaced with minimal effects on the firmware.
There are still many open areas which can benefit from this

framework. For example, future studies could include unit testing,
continuous integration and deployment (CI/CD), automation tools,
and module management.

Acknowledgements
This study was in part funded by the Coordination for the Improve-
ment of Higher Education Personnel - Brazil (CAPES) - Finance
Code 001 and in part by National Council for Scientific and Techno-
logical Development - Brazil (CNPq) Project 309505/2020-8. We
are also grateful for the assistance provided by the CEREIA Project
(# 2020/09706-7) São Paulo Research Foundation (FAPESP), as
well as FAPESP–MCTIC-CGI.BR in partnership with Hapvida
NotreDame Intermédica group.

Declarations

Authors’ Contributions
Mauricio D. O. Farina: Designed the solution; Developed the code;
Designed the Experiments; Executed the experiments; Analysed the
results; and wrote the first draft Daniel H. Pohren: Analysed the
data; Revised the text; Rewrote parts of the text. Alexandre dos S.
Roque: Analysed the data; Revised the text; Rewrote parts of the
text. Joao Paulo J. da Costa: Designed the Experiments; Revised
the text; Validate the final results. LisandraManzoni Fontoura: Pro-
vided theoretical support; Revised the text; Rewrote parts of the
text. Julio C. S. dos Anjos: Designed the Experiments; Analysed
the data; Revised the text; Rewrote parts of the text. Edison Pigna-
ton de Freitas: Supervised the whole work; Designed the research;
Designed the Experiments; Revised the manuscript and Validate the
final results.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Data can be made available upon request.

References
Anjos, J. C. S., Gross, J. L. G., Matteussi, K. J., González, G. V.,
Leithardt, V. R. Q., and Geyer, C. F. R. (2021). An Algorithm
to Minimize Energy Consumption and Elapsed Time for IoT
Workloads in a Hybrid Architecture. Sensors, 21(9):1–20. DOI:
10.3390/s21092914.

Arnold, S. (2022). Cccc. Available at: https://github.com/
sarnold/cccc .

https://doi.org/10.3390/s21092914
https://github.com/sarnold/cccc
https://github.com/sarnold/cccc

Hardware-Independent Embedded Firmware Architecture Framework Farina et. al., 2024

Beningo, J. (2017). Reusable Firmware Development: A Prac-
tical Approach to APIs, HALs and Drivers. Apress. DOI:
10.1007/978-1-4842-3297-2.

Brooks, F. P. and Bullet, N. S. (1987). Essence and accidents of
software engineering. IEEE computer, 20(4):10–19. Avail-
able at: https://www.researchgate.net/profile/
Frederick_Brooks_Jr/publication/30868224_
Essence_and_Accidents_of_Software_Engineering/
links/0fcfd50d5e8c4aaf8a000000.pdf.

Clements, A. A., Carpenter, L., Moeglein, W., and Wright, C. M.
(2021). Is your firmware real or re-hosted?. Technical report,
Sandia National Lab.(SNL-NM), Albuquerque, NM (United
States). Available:https://www.osti.gov/servlets/purl/
1855562.

Clements, A. A., Gustafson, E., Scharnowski, T., Grosen,
P., Fritz, D., Kruegel, C., Vigna, G., Bagchi, S., and
Payer, M. (2020). {HALucinator}: Firmware re-hosting
through abstraction layer emulation. In 29th USENIX
Security Symposium (USENIX Security 20), pages 1201–
1218. Available at:https://www.usenix.org/conference/
usenixsecurity20/presentation/clements.

Connectivity Standards Alliance (2024). Matter. Avail-
able at: https://csa-iot.org/all-solutions/matter/
Acessed in: 2024-02-12.

Dano, E. B. (2019). Importance of reuse and modular-
ity in system architecture. In 2019 International Sympo-
sium on Systems Engineering (ISSE), pages 1–8. IEEE. DOI:
10.1109/ISSE46696.2019.8984472.

Douglass, B. P. (2010). Design patterns for embedded systems in
C: an embedded software engineering toolkit. Elsevier. Book.

Fahmideh, M., Ahmad, A., Behnaz, A., Grundy, J., and Susilo, W.
(2022). Software engineering for internet of things: The practi-
tioners’ perspective. IEEE Transactions on Software Engineer-
ing, 48(8):2857–2878. DOI: 10.1109/TSE.2021.3070692.

Farina, M. D., dos Anjos, J. C., and de Freitas, E. P. (2023). Real-
time auto calibration for heterogeneous wireless sensor networks.
Journal of Internet Services and Applications, 14(1):1–9. DOI:
10.5753/jisa.2023.2739.

Feng, B., Mera, A., and Lu, L. (2020). {P2IM}: Scal-
able and hardware-independent firmware testing via auto-
matic peripheral interface modeling. In 29th USENIX
Security Symposium (USENIX Security 20), pages 1237–
1254. Available at:https://www.usenix.org/conference/
usenixsecurity20/presentation/feng.

Fowler, M. (2012). Patterns of Enterprise Application Architecture:
Pattern Enterpr Applica Arch. Addison-Wesley. Book.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design
patterns: elements of reusable object-oriented software. Pearson
Deutschland GmbH. DOI: 10.1007/3-540-47910-421.

Gustafson, E., Muench, M., Spensky, C., Redini, N., Machiry,
A., Fratantonio, Y., Balzarotti, D., Francillon, A., Choe,
Y. R., Kruegel, C., et al. (2019). Toward the analysis
of embedded firmware through automated re-hosting. In
22nd International Symposium on Research in Attacks, Intru-
sions and Defenses (RAID 2019), pages 135–150. Avail-
able at:https://www.usenix.org/conference/raid2019/
presentation/gustafson.

Hubalovsky, S. and Sedivy, J. (2010). Mistakes in object
oriented programming. In 2010 2nd International Con-
ference on Information Technology,(2010 ICIT), pages 113–
116. IEEE. Available at:https://ieeexplore.ieee.org/
abstract/document/5553377.

Jia, M., Sha, E. H.-M., Zhuge, Q., and Gu, S. (2022).
Transient computing for energy harvesting systems: A sur-

vey. Journal of Systems Architecture, 132:102743. DOI:
10.1016/j.sysarc.2022.102743.

Marcondes, H., Hoeller, A. S., Wanner, L. F., and Frohlich,
A. A. M. (2006). Operating systems portability: 8 bits
and beyond. In 2006 IEEE conference on emerging tech-
nologies and factory automation, pages 124–130. IEEE. DOI:
10.1109/ETFA.2006.355371.

Martin, R. C. (2017). Clean architecture: A craftsman’s guide
to. Available at:https://www.papiro-bookstore.com/wp-
content/uploads/2021/12/Clean-Architecture.pdf.

Martins Gomes, R. and Baunach, M. (2021). A study on the porta-
bility of iot operating systems. Tagungsband des FG-BS Früh-
jahrstreffens 2021. DOI: 10.18420/fgbs2021f-01.

McCabe, T. J. (1976). A complexity measure. IEEE
Transactions on software Engineering, (4):308–320. DOI:
10.1109/TSE.1976.233837.

Motogna, S., Vescan, A., and Şerban, C. (2023). Empirical in-
vestigation in embedded systems: Quality attributes in general,
maintainability in particular. Journal of Systems and Software,
201:111678. DOI: 10.1016/j.jss.2023.111678.

Neser, M. and van Schoor, G. (2009). Object-oriented embed-
ded c. SAIEE Africa Research Journal, 100(4):90–96. DOI:
10.23919/SAIEE.2009.8531856.

Quantum Leaps, LLC (2020). Object-oriented programming in
c. Available at:https://github.com/QuantumLeaps/OOP-
in-C Accessed in: 2022-09-26.

Schmidt, D. C., Gokhale, A., and Natarajan, B. (2004). Lever-
aging application frameworks: why frameworks are important
and how to apply them effectively. Queue, 2(5):66–75. DOI:
10.1145/1016998.1017005.

Sommerville, I. (2015). Software engineering. 10th. Book Software
Engineering. 10th, Series Software Engineering, 10. Book.

Spray, J. and Sinha, R. (2018). Abstraction layered architecture:
Writing maintainable embedded code. In European conference
on software architecture, pages 131–146. Springer. Book.

Stewart, D. B. (1999). Twenty-five most common mis-
takes with real-time software development. In Proceedings
of the 1999 Embedded Systems Conference (ESC’99), vol-
ume 141. Available at:https://webpages.charlotte.edu/
~jmconrad/ECGR4101-2005-08/Twenty-Five.pdf.

Sun, L., Li, Y., and Memon, R. A. (2017). An open iot frame-
work based on microservices architecture. China Communica-
tions, 14(2):154–162. DOI: 10.1109/CC.2017.7868163.

Systems, E. (2017). Esp-wroom-32 datasheet. Available
at:https://www.espressif.com/sites/default/files/
documentation/esp32-wroom-32_datasheet_en.pdf.

Tremaroli, N. J. (2023). Adaptive Firmware Framework for Micro-
controller Development. PhD thesis, Virginia Tech. Available
at:https://vtechworks.lib.vt.edu/items/fb7eeaaa-
f6c8-4a67-88d2-a20f0375a274.

Willocx, M., Bohé, I., Vossaert, J., and Naessens, V. (2018). Devel-
oping maintainable application-centric iot ecosystems. In 2018
IEEE International Congress on Internet of Things (ICIOT),
pages 25–32. IEEE. DOI: 10.1109/ICIOT.2018.00011.

Yuan, C., Liu, Z., Wang, X., and Yuan, F. (2021). A component de-
velopment framework for embedded software. In 2021 IEEE In-
ternational Conference on Information Communication and Soft-
ware Engineering (ICICSE), pages 71–75. IEEE.DOI: 10.1109/I-
CICSE52190.2021.9404109.

Zaddach, J., Bruno, L., Francillon, A., Balzarotti, D., et al.
(2014). Avatar: A framework to support dynamic security
analysis of embedded systems’ firmwares. In NDSS, volume 14,
pages 1–16. Available at:https://www.researchgate.net/
profile/Jonas-Zaddach/publication/269197057_

https://doi.org/10.1007/978-1-4842-3297-2
https://www.researchgate.net/profile/Frederick_Brooks_Jr/publication/30868224_Essence_and_Accidents_of_Software_Engineering/links/0fcfd50d5e8c4aaf8a000000.pdf
https://www.researchgate.net/profile/Frederick_Brooks_Jr/publication/30868224_Essence_and_Accidents_of_Software_Engineering/links/0fcfd50d5e8c4aaf8a000000.pdf
https://www.researchgate.net/profile/Frederick_Brooks_Jr/publication/30868224_Essence_and_Accidents_of_Software_Engineering/links/0fcfd50d5e8c4aaf8a000000.pdf
https://www.researchgate.net/profile/Frederick_Brooks_Jr/publication/30868224_Essence_and_Accidents_of_Software_Engineering/links/0fcfd50d5e8c4aaf8a000000.pdf
https://www.osti.gov/servlets/purl/1855562
https://www.osti.gov/servlets/purl/1855562
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://csa-iot.org/all-solutions/matter/
https://ieeexplore.ieee.org/document/8984472
https://ieeexplore.ieee.org/document/9398558
https://doi.org/10.5753/jisa.2023.2739
https://www.usenix.org/conference/usenixsecurity20/presentation/feng
https://www.usenix.org/conference/usenixsecurity20/presentation/feng
https://doi.org/10.1007/3-540-47910-4_21
https://www.usenix.org/conference/raid2019/presentation/gustafson
https://www.usenix.org/conference/raid2019/presentation/gustafson
https://ieeexplore.ieee.org/abstract/document/5553377
https://ieeexplore.ieee.org/abstract/document/5553377
https://doi.org/10.1016/j.sysarc.2022.102743
https://ieeexplore.ieee.org/document/4178204/
https://www.papiro-bookstore.com/wp-content/uploads/2021/12/Clean-Architecture.pdf
https://www.papiro-bookstore.com/wp-content/uploads/2021/12/Clean-Architecture.pdf
https://dl.gi.de/items/5541ca50-ee96-4e79-9633-1b77ae32c657
https://ieeexplore.ieee.org/document/1702388
https://doi.org/10.1016/j.jss.2023.111678
https://ieeexplore.ieee.org/document/8531856
https://github.com/QuantumLeaps/OOP-in-C
https://github.com/QuantumLeaps/OOP-in-C
https://doi.org/10.1145/1016998.1017005
https://webpages.charlotte.edu/~jmconrad/ECGR4101-2005-08/Twenty-Five.pdf
https://webpages.charlotte.edu/~jmconrad/ECGR4101-2005-08/Twenty-Five.pdf
https://ieeexplore.ieee.org/document/7868163
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://vtechworks.lib.vt.edu/items/fb7eeaaa-f6c8-4a67-88d2-a20f0375a274
https://vtechworks.lib.vt.edu/items/fb7eeaaa-f6c8-4a67-88d2-a20f0375a274
https://ieeexplore.ieee.org/document/8473436
https://ieeexplore.ieee.org/document/9404109
https://ieeexplore.ieee.org/document/9404109
https://www.researchgate.net/profile/Jonas-Zaddach/publication/269197057_Avatar_A_Framework_to_Support_Dynamic_Security_Analysis_of_Embedded_Systems'_Firmwares/links/5e0b2725299bf10bc3852355/Avatar-A-Framework-to-Support-Dynamic-Security-Analysis-of-Embedded-Systems-Firmwares.pdf
https://www.researchgate.net/profile/Jonas-Zaddach/publication/269197057_Avatar_A_Framework_to_Support_Dynamic_Security_Analysis_of_Embedded_Systems'_Firmwares/links/5e0b2725299bf10bc3852355/Avatar-A-Framework-to-Support-Dynamic-Security-Analysis-of-Embedded-Systems-Firmwares.pdf

Hardware-Independent Embedded Firmware Architecture Framework Farina et. al., 2024

Avatar_A_Framework_to_Support_Dynamic_Security_
Analysis_of_Embedded_Systems'_Firmwares/links/
5e0b2725299bf10bc3852355/Avatar-A-Framework-to-
Support-Dynamic-Security-Analysis-of-Embedded-
Systems-Firmwares.pdf.

Zheng, X., Liang, S., and Xiong, X. (2021). A hardware/software
partitioning method based on graph convolution network. De-
sign Automation for Embedded Systems, 25(4):325–351. DOI:
10.1007/s10617-021-09255-9.

https://www.researchgate.net/profile/Jonas-Zaddach/publication/269197057_Avatar_A_Framework_to_Support_Dynamic_Security_Analysis_of_Embedded_Systems'_Firmwares/links/5e0b2725299bf10bc3852355/Avatar-A-Framework-to-Support-Dynamic-Security-Analysis-of-Embedded-Systems-Firmwares.pdf
https://www.researchgate.net/profile/Jonas-Zaddach/publication/269197057_Avatar_A_Framework_to_Support_Dynamic_Security_Analysis_of_Embedded_Systems'_Firmwares/links/5e0b2725299bf10bc3852355/Avatar-A-Framework-to-Support-Dynamic-Security-Analysis-of-Embedded-Systems-Firmwares.pdf
https://www.researchgate.net/profile/Jonas-Zaddach/publication/269197057_Avatar_A_Framework_to_Support_Dynamic_Security_Analysis_of_Embedded_Systems'_Firmwares/links/5e0b2725299bf10bc3852355/Avatar-A-Framework-to-Support-Dynamic-Security-Analysis-of-Embedded-Systems-Firmwares.pdf
https://www.researchgate.net/profile/Jonas-Zaddach/publication/269197057_Avatar_A_Framework_to_Support_Dynamic_Security_Analysis_of_Embedded_Systems'_Firmwares/links/5e0b2725299bf10bc3852355/Avatar-A-Framework-to-Support-Dynamic-Security-Analysis-of-Embedded-Systems-Firmwares.pdf
https://www.researchgate.net/profile/Jonas-Zaddach/publication/269197057_Avatar_A_Framework_to_Support_Dynamic_Security_Analysis_of_Embedded_Systems'_Firmwares/links/5e0b2725299bf10bc3852355/Avatar-A-Framework-to-Support-Dynamic-Security-Analysis-of-Embedded-Systems-Firmwares.pdf
https://www.researchgate.net/profile/Jonas-Zaddach/publication/269197057_Avatar_A_Framework_to_Support_Dynamic_Security_Analysis_of_Embedded_Systems'_Firmwares/links/5e0b2725299bf10bc3852355/Avatar-A-Framework-to-Support-Dynamic-Security-Analysis-of-Embedded-Systems-Firmwares.pdf
https://doi.org/10.1007/s10617-021-09255-9

	Introduction
	Related Works
	Framework
	MCU Project
	SPECS
	Layer 0 - Drivers and HAL Layer

	Core Library
	Layer 1 - Interfaces
	Layer 2 - Components
	Devices
	Classes
	Libraries

	Layer 3 - Applications
	Conventions
	Module Prefixes
	Module Files
	Documentation
	Module Implementation

	Final Considerations

	Case Study
	Evaluation

	Conclusion

