Detecting Attacks and Locating Malicious Devices Using Unmanned Air Vehicles and Machine Learning

Authors

DOI:

https://doi.org/10.5753/jisa.2022.2327

Keywords:

Location, Detection, Machine Learning, Unmanned Aerial Vehicles

Abstract

Internet access in both private and public environments allows users to broadly access their data what makes possible the deployment of new services based on Internet of Things. This fact created Smart Environments (SEs) that are composed of a huge amount of heterogeneous devices, for example, personal devices (smartphones, notebooks, tablets, etc) and IoT devices (sensors, actuators, and others). However, these environments can facilitate the action of malicious agents interested in promoting Distributed Denial of Service (DDoS) attacks to the network, and, when they are public places, it is challenging to locate these attackers. In this way, it is necessary to deploy solutions that can detect DDoS in SEs and to determine the physical location of the attacker, which is essential to prevent future attacks. Within this context, this article presents an Intelligent System for detection of DDoS and physical location of devices in SEs, applying Machine Learning (ML) and trilateration techniques. The experiments performed, using real network traffic and simulation, suggest that the proposed system is capable of detecting attacks and finding malicious devices.

Downloads

Download data is not yet available.

References

Abhayawardhana, V., Wassell, I., Crosby, D., Sellars, M., and Brown, M. (2005). Comparison of empirical propagation path loss models for fixed wireless access systems. In 2005 IEEE 61st Vehicular Technology Conference, volume 1, pages 73–77. IEEE. DOI: 10.1109/VETECS.2005.1543252.

Acuna, V., Kumbhar, A., Vattapparamban, E., Rajabli, F., and Guvenc, I. (2017). Localization of wifi devices using probe requests captured at unmanned aerial vehicles. In 2017 IEEE Wireless Communications and Networking Conference (WCNC), pages 1–6. IEEE. DOI: 10.1109/WCNC.2017.7925654.

Al-­Hourani, A. and Gomez, K. (2017). Modeling cellular-­to-­uav path-loss for suburban environments. IEEE Wireless Communications Letters, 7(1):82–85. DOI: 10.1109/LWC.2017.2755643.

Alotaibi, B. and Elleithy, K. (2016). Rogue access point detection: Taxonomy, challenges, and future directions. Wireless Personal Communications, 90(3):1261– 1290. DOI: 10.1007/s11277-­016­3390­-x.

Andrea, I., Chrysostomou, C., and Hadjichristofi, G. (2015). Internet of things: Security vulnerabilities and challenges. In 2015 IEEE Symposium on Computers and Communication (ISCC), pages 180–187. DOI: 10.1109/ISCC.2015.7405513.

Betti Sorbelli, F., Das, S. K., Pinotti, C. M., and Silvestri, S. (2018). Range based algorithms for precise localization of terrestrial objects using a drone. Pervasive and Mobile Computing, 48:20–42. DOI: 10.1016/j.pmcj.2018.05.007.

Brun, O., Yin, Y., Augusto-­Gonzalez, J., Ramos, M., and Gelenbe, E. (2018). IOT attack detection with deep learning. In ISCIS Security Workshop.

Chamoso, P., González­-Briones, A., Rodríguez, S., and Corchado, J. M. (2018). Tendencies of technologies and platforms in smart cities: a state­-of­-the-­art review. Wireless Communications and Mobile Computing, 2018. DOI: 10.1155/2018/3086854.

Chang, C.­-C. and Lin, C.­-J. (2011). Libsvm: A library for support vector machines. ACM transactions on intelligent systems and technology (TIST), 2(3):1–27. DOI: 10.1145/1961189.1961199.

Courtay, A., Le Gentil, M., Berder, O., Scalart, P., Fontaine, S., and Carer, A. (2019). Anchor selection algorithm for mobile indoor positioning using wsn with uwb radio. In 2019 IEEE Sensors Applications Symposium (SAS), pages 1–5. IEEE. DOI: 10.1109/SAS.2019.8706113.

Diro, A. A. and Chilamkurti, N. (2018). Distributed attack detection scheme using deep learning approach for internet of things. Future Generation Computer Systems, 82:761– 768. DOI: 10.1016/j.future.2017.08.043.

Doshi, R., Apthorpe, N., and Feamster, N. (2018). Machine learning ddos detection for consumer internet of things devices. In 2018 IEEE Security and Privacy Workshops (SPW), pages 29–35. IEEE. DOI: 10.1109/SPW.2018.00013.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of statistical software, 33(1):1.

Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. Machine learning, 63(1):3–42. DOI: 10.1007/s10994­006­6226­1.

Halder, S. and Ghosal, A. (2016). A survey on mobile anchor assisted localization techniques in wireless sensor networks. Wireless Networks, 22(7):2317–2336. DOI: 10.1007/s11276­015­1101­2.

Kaushik, S. (2016). Introduction to feature selection methods with an example (or how to select the right variables?). [Link].

Koroniotis, N., Moustafa, N., Sitnikova, E., and Turnbull, B. (2018). Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot­iot dataset. CoRR, abs/1811.00701. DOI: 10.1016/j.future.2019.05.041.

Koutsonikolas, D., Das, S. M., and Hu, Y. C. (2007). Path planning of mobile landmarks for localization in wireless sensor networks. Computer Communications, 30(13). DOI: 10.1016/j.comcom.2007.05.048.

Mozaffari, M., Saad, W., Bennis, M., Nam, Y.­H., and Debbah, M. (2019). A tutorial on uavs for wireless networks: Applications, challenges, and open problems. IEEE Communications Surveys & Tutorials. DOI: 10.1109/COMST.2019.2902862.

Murphy, W. and Hereman, W. (1995). Determination of a position in three dimensions using trilateration and approximate distances. Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, Colorado, MCS­95, 7:19.

Nobles, P., Ali, S., and Chivers, H. (2011). Improved estimation of trilateration distances for indoor wireless intrusion detection. JoWUA, 2(1):93–102. DOI: 10.22667/JOWUA.2011.03.31.093.

Peng, H., Long, F., and Ding, C. (2005). Feature selection based on mutual information criteria of max­-dependency, max­-relevance, and min-­redundancy. IEEE Transactions on pattern analysis and machine intelligence, 27(8):1226– 1238. DOI: 10.1109/TPAMI.2005.159.

Riley, G. F. and Henderson, T. R. (2010). The ns­-3 network simulator. In Modeling and tools for network simulation, pages 15–34. Springer. DOI: 10.1007/978­-3­-642­-12331­-32.

Sharafaldin, I., Lashkari, A. H., Hakak, S., and Ghorbani, A. A. (2019). Developing realistic distributed denial of service (ddos) attack dataset and taxonomy. In 2019 International Carnahan Conference on Security Technology (ICCST), pages 1–8. IEEE. DOI: 10.1109/CCST.2019.8888419.

Sivanathan, A., Gharakheili, H. H., Loi, F., Radford, A., Wijenayake, C., Vishwanath, A., and Sivaraman, V. (2018). Classifying iot devices in smart environments using network traffic characteristics. IEEE Transactions on Mobile Computing, 18(8):1745–1759. DOI: 10.1109/TMC.2018.2866249.

Sun, Y., Wen, X., Lu, Z., Lei, T., and Jiang, S. (2018). Localization of wifi devices using unmanned aerial vehicles in search and rescue. In 2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops), pages 147–152. IEEE. DOI: 10.1109/ICCChinaW.2018.8674518.

Vinayakumar, R., Alazab, M., Srinivasan, S., Pham, Q.-­V., Padannayil, S. K., and Simran, K. (2020). A visualized botnet detection system based deep learning for the internet of things networks of smart cities. IEEE Transactions on Industry Applications. DOI: 10.1109/TIA.2020.2971952.

Vishwakarma, R. and Jain, A. K. (2020). A survey of ddos attacking techniques and defence mechanisms in the iot network. Telecommunication Systems, 73(1):3–25. DOI: 10.1007/s11235-­019­-00599­-z.

Yamauchi, M., Ohsita, Y., Murata, M., Ueda, K., and Kato, Y. (2019). Anomaly detection for smart home based on user behavior. In 2019 IEEE International Conference on Consumer Electronics (ICCE), pages 1–6. IEEE. DOI: 10.1109/ICCE.2019.8661976

Downloads

Published

2022-09-22

How to Cite

C. Júnior, E., L. Costa, W., L. C. Portela, A., S. Rocha, L., L. Gomes, R., & M. C. Andrade, R. (2022). Detecting Attacks and Locating Malicious Devices Using Unmanned Air Vehicles and Machine Learning. Journal of Internet Services and Applications, 13(1), 11–20. https://doi.org/10.5753/jisa.2022.2327

Issue

Section

Research article