Towards Automating the Integration of Legacy IEDs into Edge-Supported Internet of Smart Grid Things

Authors

DOI:

https://doi.org/10.5753/jisa.2022.2374

Abstract

The prominence of the SG-to­Cloud continuum will pave the way towards advanced Smart Grid (SG) ecosystems and will enable cutting Edge applications and servers into the power energy vertical at unprecedented innovation levels. During the design of future Smart Grid ecosystems, legacy Intelligent Eletronic Device (IED) cannot be left behind, whereby their full integration into the Internet of Smart Grid Things(IoSGT) reveals itself as a continuous issue. In an attempt to tackle this challenge, we are introducing the Legacy Smart Grid to IoT Integration Approach(SG2IoT), which automates the integration of multiple legacy IEDs in a scalable and flexible environment made possible by the IoSGT. Aside from that, the SG2IoT establishes an SG­to­Cloud continuum for provisioning architectural modular components for running in a distributed approach at Cloud facilities spread in Edge and central datacenters. Finally, the SG2IoT impact estimation was made up of harnessing a prototype running atop a lab­premised testbed that features real­world technologies. Outcome analysis proves the viability of the SG2IoT lightweight approach by establishing an SG­to­Cloud continuum to afford low times responses and affordable IoSGT scalability.

Downloads

Download data is not yet available.

References

Araújo, P. R. C., Filho, R. H., Rodrigues, J. J., Oliveira, J. P., and Braga, S. A. (2018). Middleware for integration of legacy electrical equipment into smart grid infrastructure using wireless sensor networks. International Journal of Communication Systems, 31(1):e3380.DOI: 10.1002/dac.3380 https://doi.org/10.1002/dac.3380

Araujo, V., Mitra, K., Saguna, S., and Åhlund, C. (2019). Performance evaluation of fiware: A cloud¬based iot platform for smart cities. Journal of Parallel and Distributed Computing, 132:250–261. DOI: 10.1016/j.jpdc.2018.12.010 https://doi.org/10.1016/j.jpdc.2018.12.010

Barja-Martinez, S., Aragüés-Peñalba, M., Munné-Collado, Í., Lloret-Gallego, P., Bullich¬Massagué, E., and Villafafila-Robles, R. (2021). Artificial intelligence techniques for enabling big data services in distribution networks: A review. Renewable and Sustainable Energy Reviews, 150:111459.DOI: 10.16/j.rser.2021.111459 https://doi.org/10.1016/j.rser.2021.111459

Boakye-Boateng, K., Siahaan, I. S., Al Muktadir, A. H., Xu, D., and Ghorbani, A. A. (2021). Sniffing serial-based substation devices: A complement to security-centric data collection. In IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), pages 1–6. IEEE.DOI: 10.1109/ISGTEurope52324.2021.9640212. Available online at [link]

Cheruvu, S., Kumar, A., Smith, N., and Wheeler, D. M. (2020). Iot frameworks and complexity. Demystifying Internet of Things Security, pages 23–148.DOI: 10.1007/9781484228968 2.https://doi.org/10.1007/978-1-4842-2896-8_2

Farri, E. and Ayubi, P. (2022). A robust digital video watermarking based on ct-svd domain and chaotic dna sequences for copyright protection. Journal of Ambient Intelligence and Humanized Computing, pages 1–25.DOI: 10.1007/s12652022037717 . https://doi.org/10.1007/s12652-022-03771-7

FIWARE-CATALOGUE (2019). Fiware catalogue. Available at: https://www.fiware.org/catalogue/ Available online at [link]

FIWARE-CYGNUS (2019). Cygnus. Available at: ://fiwarecygnus.readthedocs.io/en/latest/.

FIWARE-IoTAgent (2019). Fiware iot agent. Available at: https://iot-platform-docs.readthedocs.io/ en/latest/device_gateway/index.html. Available online at [link]

FIWARE-NGSI (2018). Fiware-ngsi v2 specification. Available at: http://fiware.github.io/ specifications/ngsiv2/stable/. Available online at [link]

FIWARE-ORION (2019). Orion context broker. Available at: https://fiware-orion.readthedocs.io/ en/master/. Available online at [link]

fiware.org (2022). About fiware. Available at: https:// www.fiware.org/about-us/. Available online at [link]

IEC61850 (2020). International electrotechnical commission standard - iec61850. Available at: https://www. iec.ch/smartgrid/standards/. Available online at [link]

IEEE (2012). 1815-2012 - ieee standard for electric power systems communications¬distributed network protocol (dnp3). Available at: https: //standards.ieee.org/content/ieee-standards/ en/standard/1815-2012.html. Available online at [link]

Kuzlu, M. and Manisa, P. (2013). Assessment of communication technologies and network requirements for different smart grid applications. In IEEE PES Innovative Smart Grid Technologies Conference (ISGT), pages 1–6.DOI: 10.1109/ISGT.2013.6497873 Available online at [link]

Modesto, W., Neto, A. V., Rosário, D., and Cerqueira, E. (2021). SG2IoT ¬ An Architecture for Integration of Intelligent Electrical Devices with Legacy Approach in IoTBased Smart Grid Systems. In 13th Brazilian Symposium on Ubiquitous and Pervasive Computing (SBCUP), pages 31–40, Porto Alegre, RS, Brasil. SBC. https://doi.org/10.5753/sbcup.2021.16001.

Mota, R., Riker, A., and Rosário, D. (2019). Adjusting group communication in dense internet of things networks with heterogeneous energy sources. In 11th Brazilian Symposium on Ubiquitous and Pervasive Computing (SBCUP), Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/sbcup.2019.6594. https://doi.org/10.5753/sbcup.2019.6594

Negash, B., Rahmani, A. M., Liljeberg, P., and Jantsch, A. (2018). Fog Computing Fundamentals in the Internet of ¬Things, pages 3–13. Springer International Publishing. DOI: 10.1007/978-3-319-57639-81. https://doi.org/10.1007/978-3-319-57639-8_1

Njova, D., Ogudo, K., and Umenne, P. (2020). Packet analysis of dnp3 protocol over tcp/ip at an electrical substation grid modelled in opnet. In IEEE PES/IAS PowerAfrica, pages 1–5. IEEE. DOI: 10.1109/PowerAfrica49420.2020.9219968. Available online at [link]

Nugur, A., Pipattanasomporn, M., Kuzlu, M., and Rahman, S. (2019). Design and development of an iot gateway for smart building applications. IEEE Internet of Things Journal, 6(5):9020–9029. DOI: 10.1109/JIOT.2018.2885652. Available online at [link]

opendnp3 (2020). dnp3/opendnp3. Available at: https:// github.com/dnp3/opendnp3. Available online at [link]

Pfeiff, G., Araújo, F., Oliveira, H., Rosário, D., and Cerqueira, E. (2020). Modelo de detecção de fraudes elétricas baseado em aprendizado de máquina. In Brazilian Symposium on Ubiquitous and Pervasive Computing (SBCUP), pages 51–60. SBC. DOI: 10.5753/sbcup.2020.11211 https://doi.org/10.5753/sbcup.2020.11211

Ramalho, F. and Neto, A. (2016). Virtualization at the network edge: A performance comparison. In IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), pages 1–6. DOI: 10.1109/WoWMoM.2016.7523584. Available online at [link]

Rouhani, R., Sadeghkhani, I., and Guerrero, J. M. (2020). Directional element for faulty feeder identification of high-resistance fault in high-surety power supply systems. IET Generation, Transmission & Distribution. DOI: 10.1049/gtd2.12006 https://doi.org/10.1049/gtd2.12006

Saleem, Y., Crespi, N., Rehmani, M. H., and Copeland, R. (2019). Internet of things-aided smart grid: technologies, architectures, applications, prototypes, and future research directions. IEEE Access, 7:62962–63003. DOI: 10.1109/ACCESS.2019.2913984. Available online at [link]

Saxena, N., Roy, A., and Kim, H. (2017). Efficient 5g small cell planning with embms for optimal demand response in smart grids. IEEE Transactions on Industrial Informatics, 13(3):1471–1481. DOI: 10.1109/TII.2017.26811051. Available online at [link]

Shin, I.-J., Song, B.-K., and Eom, D.-S. (2017). International electronical committee (iec) 61850 mapping with constrained application protocol (coap) in smart grids based european telecommunications standard institute machineto-machine (m2m) environment. Energies, 10(3):393. DOI: 10.3390/en10030393. https://doi.org/10.3390/en10030393

Silva, H., Neto, A., Cerqueira, E., Dantas, F., Barros, H., and Almeida, E. (2013). Advanced communication system for rich and green smart grid networking. In IEEE PES Conference on Innovative Smart Grid Technologies (ISGT Latin America), pages 1–4. DOI: 10.1109/ISGTLA.2013.6554413. Available online at [link]

Tightiz, L. and Yang, H. (2020). A comprehensive review on iot protocols’ features in smart grid communication. Energies, 13(11):2762. DOI: 10.3390/en13112762. https://doi.org/10.3390/en13112762

Downloads

Published

2022-11-01

How to Cite

Modesto, W., Bastos, L., Venâncio Neto, A., Rosário, D., & Cerqueira, E. (2022). Towards Automating the Integration of Legacy IEDs into Edge-Supported Internet of Smart Grid Things. Journal of Internet Services and Applications, 13(1), 33–45. https://doi.org/10.5753/jisa.2022.2374

Issue

Section

Research article