Journal of Software Engineering Research and Development, 2022, 10:8, doi: 10.5753/jserd.2022.2133

© This work is licensed under a Creative Commons Attribution 4.0 International License..

Accessibility Mutation Testing of Android Applications

Henrique Neves da Silva ® [Federal University of Parana | henrigueneves@ufpr.br

Silvia Regina Vergilio @ [Federal University of Parana

silvia@inf.ufpr.br|

André Takeshi Endo ® [Federal University of Sdo Carlos | andreendo@ufscar.bi]

Abstract

Smart devices and their apps are present in many everyday activities and play an important role for people with
some disabilities. However, making apps more accessible is still a challenge for developers. Automatically acces-
sibility testing tools can help in this task but present some limitations. They produce reports on accessibility faults,
which usually cover only a subset of the app because they are dependent on the test set available. In order to help in
the improvement and/or assessment of test suites generated, as well as contribute to increasing the performance of
accessibility testing tools, this work introduces a mutation testing approach. The approach includes a set of mutant
operators derived from faults corresponding to the negation of the WCAG standard’s principles and success criteria.
It also includes a process to analyse the mutants regarding the original app. Evaluation results with 7 open-source
apps show the approach is applicable in practice and contributes to significantly improving the number of faults

revealed by the test suites accompanying the apps.

Keywords: Mobile Apps, Mutation Testing, Accessibility

1 Introduction

In the last decade, we have observed a growing number of
smartphones and studies show this number is expected to
increase even more in the next years (Cisco, 2017). Smart
devices and their apps have become a key component in peo-
ple’s daily lives. This is not different for people with some
disabilities. For instance, people with some visual impair-
ment have relied on smartphones as a vital means to foster
independence in carrying out various tasks, such as under-
standing text document structure, communicating through so-
cial media apps, identifying products on supermarket shelves,
and moving between obstacles (Acosta-Vargas et al), 2020).

World Health Organization (WHO) estimated that more
than one billion people, which is around 15% of the world’s
population, are affected by some form of disability (Hart-
ley,, 2011). Then, it is fundamental to engineer software so
that all the advantages of technology are accessible to every
individual. Mobile accessibility refers to making websites
and apps more accessible to people with disabilities when
using smartphones and other mobile devices (W3C, 2019).
Progress has been made with accessibility because of man-
dates from government regulations (e.g., U.S. Section 508 of
Rehabilitation Act), standards (such as the British Broadcast
Corporation Standards, Brazilian Accessibility Model, and
Web Content Accessibility Guidelines), widespread indus-
trial awareness, technological advances, and accessibility-
related lawsuits (Yan and Ramachandran, 2019). However,
developers still have the challenge of providing more acces-
sible software on mobile devices. According to Ballantyne
et al) (2018), much of the research on software accessibility
is dedicated to the Web and its sites (Grechanik et al., 2009;
Wille et all, 2016; Abuaddous et al/, 2016); even though there
is a recurring effort on the accessibility of mobile apps (Ven-
dome et al., 2019). Moreover, studies point to the lack of ad-
equate tools, guides and policies to design, evaluate, and test
the accessibility in mobile apps (Acosta-Vargas et al., 2020).

Automated accessibility testing tools are usually based on
existing guidelines. One of the most popular standards is the
WCAG (W3C’s Web Content Accessibility Guideline) (Kirk-
patrick et all, 2018) guide. The WCAG guide covers recom-
mendations for people with blindness and low vision, deaf-
ness and hearing loss, limited movement, cognitive limita-
tions, speech and learning disabilities. WCAG encompasses
several guidelines, each one related to different success crite-
ria, grouped into four accessibility principles. Some tools pro-
duce, given a set of executed test cases, a report of accessibil-
ity violations for the app. Examples of these tools are Acces-
sibility Google Scanner (Google, 2020), Espresso (Google,
2018), Ally Ally ([Toff, 2018), and MATE (Eler et al., 2018).
They can perform static or dynamic analysis (Silva et all,
2018).

A limited number of violations can be checked by static
tools, but dynamic analysis tends to be more costly. Another
limitation is that the accessibility faults checked by tools are
limited by the test cases used. They cover only a subset of
the app due to weak test scripts or limited input test data
generation algorithms (Silva et al), 2018). Tools generally
used for test data generation such as Monkey (Mobher et all,
2009), Sapienz (Mao et al., 2016), Stoat (Su et al., 2017) and
APE (Gu et all, 2019), are focused on functional behavior,
code coverage or crashes. In this sense, this work hypothe-
sizes that a mutation approach specific to accessibility testing
can help in the improvement and/or assessment of test suites
generated and contribute to increasing the performance of ac-
cessibility testing tools.

The idea behind mutation testing is to derive versions of
the program under test P, called mutants. Each mutant de-
scribes a possible fault, and is produced by a mutation opera-
tor (Jia and Harman, 2011]). The objective is to generate test
cases capable of distinguishing P from its mutants, that is,
that when executed with each mutant m produces a different
output from the output of P. If the P’s result is correct, it
is free from the fault described by m. If the output is differ-

https://orcid.org/0000-0002-2417-3374
mailto:henriqueneves@ufpr.br
https://orcid.org/0000-0003-3139-6266
mailto:silvia@inf.ufpr.br
https://orcid.org/0000-0002-8737-1749
mailto:andreendo@ufscar.br

ent, m is said killed. At the end, a measure called mutation
score is calculated, related to the number of mutants killed.
This measure can be used to design test cases, or to evaluate
the quality of an existing test suite, and consider whether a
program has been tested enough.

Mutation testing has been proved to be effective in differ-
ent domains and contexts (Jia and Harman, 2011)). More re-
cently, it has been used in the test of non-functional prop-
erties such as performance regarding execution time (Lispe
etall,2017) and energy consumption (Jabbarvand and Malek,
2017). There are some initiatives exploring mutation test-
ing of Android apps (Wei, 2015; Deng et al), 2015; Jabbar
vand and Malek, 2017; Luna and El Ariss, 2018; Escobar-
Velasquez et al), 2019). But these works are not focused on
accessibility testing.

Given the context and motivation described above, this pa-
per introduces a mutation approach for the accessibility test
of Android apps. The underlying fault model is related to
the non-compliance with WCAG principles and success cri-
teria. We propose a set of 6 operators that remove some se-
lected code elements, the most commonly used in the apps,
and whose absence may imply accessibility violations. We
also define a mutant analysis process that uses tools’ acces-
sibility reports to distinguish killed mutants. The process is
implemented using the reports produced by Espresso Google
(2018), and evaluated with 7 open-source apps. The results
show our approach is applicable in practice and contributes to
improving the quality of the test suites accompanying the se-
lected apps. We observe a significant improvement regarding
the number of faults revealed by using the mutant-adequate
test suites.

In this way, the present work introduces a mutation ap-
proach that encompasses a set of mutant operators and a mu-
tation process implemented by a tool. The approach (i) can be
used as a criterion for test data generation and/or assessment,
helping developers measure the quality of their test suites or
to generate tests from an accessibility perspective; (ii) can
be explored to evaluate the accessibility tools available in the
market and in academia; and (7ii) contributes to the emergent
area of mutation testing for non-functional properties, and
represents the first step to allow accessibility mutation test-
ing, serving as basis to direct future research and encourage
the academic community to create tools that further explore
this field of research.

The remainder of this paper is organized as follows. Sec-
tion P gives an overview of related work. Section P in-
troduces our mutation testing approach. Section { details
the evaluation and its main results. Section [discusses the
threats to validity, and Section [concludes the paper.

2 Related Work

Related work can be classified into two main categories: mu-
tation testing of apps (Section R.1)) and accessibility testing
(Section R.2).

Silva et al. 2022

2.1 Mutation testing of Android Apps

In the literature, there are some mutation approaches for An-
droid apps. Deng et al! (2015) define 4 classes of mutation op-
erators specific to the Android context. The proposed work-
flow differs from the traditional mutation test process. Once
the mutants are generated, it is necessary to install each mu-
tant m on the Android emulator. The test cases are imple-
mented through frameworks Robotium (Reda, 2019) or JUnit
(Gamma and Beck, 2019). While Deng’s approach requires
the app source code, Wei (2015) proposes muDroid, a tool
that requires only the APK file of the app.

Linares-Vasquez et al, (2017) define a list of 38 mutation
operators, implemented by the tool MDroid+ (Moran et all,
2018). First, a static analysis of Java code using Abstract Syn-
tactic Trees (AST) is performed to find a Potential Fault Pro-
file (PFP) that describes a source code location that can be
changed by an operator. PFPs are used to apply the transfor-
mation corresponding to each operator in the Java code or
XML file. MDroid+ creates a clone of the Android project
and applies a single mutation to a PFP specified in the cloned
project, resulting in a mutant. Finally, a report is generated
associating the name of the created clone with the applied op-
erator. The tool does not offer a way to compile and execute
the mutants, nor does it calculate the mutation score.

In a follow-up study, Escobar-Velasquez et all (2019)
introduce MutAPK that requires as input the APK of
the Android app and implements the same operators of
MDroid+ (Linares-Vésquez et al!, 2017; Moran et al), 2018)).
The corresponding implementation considers SMALI repre-
sentation. Like MDroid+, MutAPK does not include a mu-
tant analysis strategy. Both allow the creation of customized
mutation operators.

Some works have explored aspects of a specific nature
within the Android platform. The Edroid tool (Luna and
El Arisg, 2018) implements 10 mutation operators oriented
to vary configuration files and GUI elements. The analysis of
the mutants is done manually. If the mutant’s Ul components
are distinguished from the original, the mutant is classified
as dead.

uDroid is a mutation tool to identify energy-related prob-
lems (Jabbarvand and Malek, 2017). The tool implements a
total of 50 mutation operators corresponding to 28 classes
defined as energy consumption anti-patterns. uDroid has a
fully automated mutation testing process. While the test is
performed in the original app, energy consumption is mon-
itored. When the test is executed on the mutant, the energy
consumption of the original app is compared to that of the
mutant. If the screening is different enough, the mutant is
considered dead.

Most tools may be extended to have integrated support for
the mutation testing process, mainly automatic mutant execu-
tion and analysis. Most of them generate mutants and do not
offer automatic support for the analysis of the mutant output,
which is mainly conducted manually. In addition, there are
some initiatives exploring mutation testing of apps for non-
functional properties, such as energy consumption, but they
do not address accessibility faults. Based on elicited results
about mutation testing of mobile apps (Silva et al., 2021)), and
as far we are concerned, there is not a mutation approach for

mobile accessibility testing and evaluation.

2.2 Accessibility evaluation of Android Apps

There are few studies on the accessibility assessment of mo-
bile apps. This small amount of studies is due to the lack of
adequate tools, guides, and policies to evaluate apps (Acosta-
Vargas et all, 2020; Eler et al), 2018). Such guides are gener-
ally used as oracles to check whether the app meets accessi-
bility requirements during accessibility evaluation that can
be conducted manually or by automated tools. Below, we
present some works that analyse those guides and report the
main accessibility problems, as well as automated tools that
take them into consideration.

Ballantyne et al! (2018) compile a super-set of guides
and normalize them to eliminate redundancy. The result lists
11 categories of testable accessibility elements: Text, Au-
dio, Video, GUI Elements, User Control, Flexibility and Ef-
ficiency, Recognition instead of Recalling, Gestures, System
Visibility, Error Prevention, and Tangible Interaction. Dama-
ceno et al} (2018) perform a similar mapping that identifies
68 problems associated with different aspects of the interac-
tion of people with visual impairments on mobile devices.
These problems are mapped into 7 groups: Buttons, Data En-
try, Gesture-based interaction, Screen size, User feedback,
and Voice command. The group with more problems is re-
lated to the interaction made of formal gestures.

Vendome et al) (2019) elaborate taxonomy of accessibil-
ity problems by mining 13,817 Android apps from GitHub.
The authors observe that 36.96% of the projects did not have
elements with descriptive label attributes, and only 2.08%
imported at least one accessibility API. The main categories
listed in the fault model are: support for visual limitation,
support for motor limitation, hearing limitation, and other as-
pects of accessibility.

Alshayban et al| (2020) present the results of a large-
scale study to understand the accessibility from three com-
plementary perspectives: app, developers, and users. First,
they analyze the prevalence of accessibility violations in over
1,000 Android apps. Then they investigate the developer sen-
timents through a survey. In the end, they investigate user
ratings and app popularity. Their analysis revealed that in-
accessibility rates for apps developed by big companies are
relatively similar to inaccessibility rates for other apps.

The works of Acosta-Vargas et al. (2019, 2020) evaluate
the use of WCAG 2.1 and the Accessibility Google Scanner,
a tool that suggests accessibility improvements for Android
apps. The authors conclude that the WCAG guide achieves
digital inclusion on mobile platforms. However, the accessi-
bility problems must be fixed before the application goes into
production and they recommend the use of WCAG through-
out the development cycle.

The most recent version of WCAG 2.1 includes sugges-
tions for web access via a mobile device (Kirkpatrick et al.,
2018). WCAG principles are grouped into 4 categories: (i)
Perceivable, that is, “the information must be presentable to
users in ways they can perceive”; (ii) Operable, “User in-
terface components and navigation must be operable.”; (iii)
Understandable, “Information and the operation of user in-
terface must be understandable.”; and (iv) Robust, “Content

Silva et al. 2022

must be robust enough that it can be interpreted by a wide va-
riety of user agents, including assistive technologies”. These
principles are the core tenets of accessibility. To follow the
accessibility principles, we must achieve the success criteria
defined within their respective guideline and principle.

Automated tools commonly use the WCAG success crite-
ria as testable statements to check for guideline violations.
They can perform static or dynamic analysis (Silva et al.,
2018). Static analysis can quickly analyze all assets of an
app (Google, 2018), but they cannot find violations that can
only be detected during runtime (e.g., low color contrast). In
contrast, dynamic analysis tends to be time consuming. In
this sense, Eler et al} (2018) define a set of accessibility crite-
ria and implemented MATE (Mobile Accessibility TEsting),
a tool that automatically explores and verifies the accessibil-
ity of mobile apps.

Developers can also manually assess accessibility proper-
ties using the Google Scanner (Google, 2020). It allows test-
ing apps and gets suggestions on how to improve accessibil-
ity (to help those who have limited vision, speech, or move-
ment). First, the app is activated, then it displays the main
handling instructions. Finally, with the mobile app running,
Google Scanner highlights the GUI element on the screen
and what accessibility property it has not fulfilled.

The Ally Ally app (Toff, 2018) checks the accessibility
of the running app. From its integration via the command
line, ally generates a JSON file at the end of its execution.
This file contains the list of GUI elements and which acces-
sibility criteria have been violated. The framework Espresso
(Google, 2018) allows the recording of automated tests that
assess the accessibility of the mobile app. The accessibility
of the GUI element, or only widget, will be checked if the
test action triggers/interacts with the widget in question.

The tools for accessibility testing and evaluation present
some limitations. The most noticeable one is that the kind and
number of accessibility violations determined by the tools are
dependent on the test set used to execute the app and produce
the reports. In this sense, the use of mutants describing poten-
tial accessibility faults can guide the test data generation and
help in the improvement or assessment of an existing test set
regarding this non-functional property.

3 A Mutation Approach for Accessi-
bility Testing

This section introduces our approach, and describes its main
elements, which are usually required for any mutation ap-
proach: (i) the underlying fault model, related to accessibility
faults; (ii) the mutation operators; (7ii) the mutation testing
process, adopted to analyze the mutants; and (iv) automation
aspects, essential to allow the use of the approach in practice.

3.1 Fault Model

In this stage, we searched the literature for different acces-
sibility guides that establish good practices and experiments
that used them (see Section R.1]). In general, a guide summa-
rizes the main recommendations for making the presented
content of the mobile app more accessible. As a result of

our search, we observe that the WCAG guide was adopted
as a reference to build mobile accessibility guides such as
eMAG (Brazilian Government, 2007), List of Accessibility
Guidelines for Mobile Applications (Ballantyne et al), 2018),
BBC Mobile Accessibility Guideline (BBC, 2017), and SiDi
Accessibility Guideline (SejaSidier, 2015). In this way, the
WCAG guide was chosen due to the following reasons: i)
as mentioned before, it encompasses success criteria writ-
ten as testable statements; ii) it is constantly updated and a
new version of the guide maintains compliance with its pre-
vious one; and iii) it has been considered by many authors
as the most popular guide (Acosta-Vargas et al), 2019, 2020).
Once the success criteria are known, we can start building a
fault model by negating these criteria. An unsatisfied crite-
rion may imply one or more accessibility faults, as exempli-
fied in Table [I.

Table 1. Negating WCAG success criteria

.. o . Success criterion
Principle Success criterion .
denial
. Content description Absence of content
Perceivable ..
for non-text elements | descriptions
Recommended touch | Not recommended
Operable . .
area size touch area size
Understan- | Labels or Absence of labels
dable instructions or instructions
Absence of
Robust Status messages
status messages

As observed in Table [ll, the denial of the criterion “Labels
or instructions” causes one or more faults related to the ab-
sence of a label. Within Android’s mobile development, dif-
ferent code elements characterize the use of a label for a GUI
element. These code elements can be either XML attributes
or Java methods. For instance, one way to satisfy the suc-
cess criterion “Labels or instructions” is setting the XML at-
tributes :hint and :labelFor, or using the Java methods
setHint and setLabelFor. Such elements are the key to
the generation of mutants, in order to capture the faults of
our model. In this way, more than one mutation operator can
be derived from the negation of a criterion, such as “Labels
or instructions”. Each mutation operator, in its turn, can be
applied to more than one element in the code, generating dis-
tinct mutants.

To select the code elements and propose the mutation op-
erators of our approach, we refer to the work of Silva et al.
(2020). This work maps the WCAG principles and success
criteria to code elements of native Android API, and ana-
lyzes the prevalence of the mapped elements in 111 open
source mobile apps. The study identifies code elements that
impact accessibility, and shows that apps which adopt dif-
ferent types of code elements tend to have a smaller density
of accessibility faults. This means that code elements associ-
ated with WCAG are related to accessibility faults and justify
mutation operators based on these code elements.

3.2 Mutation Operators

The main objective in defining the accessibility mutation op-
erators is to make sure that the test suite created by the tester
exploits all, or at least most, of the app GUI elements, as

Silva et al. 2022

well as check the correct use of the code elements related to
the accessibility success criterion. In this way, the operators
can be used to guide the generation of test cases or to assess
the quality of existing ones. To this end, and following the
work of Silva et al! (2020), we selected a set E of code el-
ements, the most adopted in the apps, to propose an initial
set of operators. These operators are defined considering as-
pects of Android apps’ accessibility and can be improved in
the future, by adding other code elements and success cri-
teria. The selected code elements are presented in Table [;
they correspond to the most used ones in the apps for each
principle (Silva et al!, 2020). The table also shows the corre-
sponding mutation operator.

The labelFor element is a label that accompanies the
View object. It can be defined via the XML file or the Java
language. In general, it provides a description and explo-
ration labels for some screen elements. The hint element
is a temporary label assigned to editable fields only. It is
necessary for TalkBack, or any other screen reader, to cor-
rectly report what information the app needs. We can set
or change TextView font size with the element textSize.
Recommended dimension type for text is “sp” for scaled-
pixels (e.g., 15sp). The element inputType specifies the in-
put type for each text field in order for the system to dis-
play the appropriate soft input method (e.g., an on-screen
keyboard). The app, by default, looks for the closest ele-
ment to receive the next focus. The next element is not al-
ways the most logical. In these cases, we need to give the
app custom navigation. We can define the next view to fo-
cus on using the code element nextFocusDownId. The ele-
ment importantForAccessibility describes whether or
not this view is important for accessibility. If the value is
set with “yes”, the view fires accessibility events and is re-
ported to accessibility services (e.g., TalkBack) that query
the screen.

The idea of the operators is to remove the corresponding
code element e € F when present. We opted for statement
deletion operators, as previous studies gave evidence that
such operators produce fewer yet effective mutants (Dela
maro et alJ, 2014). For each code element removed, we have
a unique generated mutant. Table 3 presents examples of ap-
plying the operators. Snippets of code are presented and the
ones to be removed are preceded by “—. It is important to em-
phasize that if a mutation operator can not be applied to the
app source code, this may indicate that the project/developer
team has low priority on accessibility. Now, imagine that the
developer has taken care to define the accessibility code ele-
ments in the app. Even if they are defined, it is very important
to ensure that the test set includes a test that performs an ac-
tion and interacts with the corresponding GUI element and
check they are defined properly.

3.3 Mutation Process

The testing process for the application of the proposed oper-
ators is depicted in Figure [[. It encompasses three steps. The
first one is the mutant generation using the accessibility mu-
tation operators defined. This step produces a set of mutant
apps M. In the second step, the original app and the mutants
in M are executed with test set T', which can be designed

Silva et al. 2022

Table 2. Selected code elements and corresponding WCAG principles and success criteria.

- - Code Elements .
Principle Success criteria XML Attributes Java Methods Mutation Operator
. Resize Text 1textSize setTextSize Missing textSize
Perceivable . . R
Identify Input Purpose :inputType setInputType Missing inputType
Operable Keyboard; Focus Order | :nextFocusDownId setNextFocusDowndId Missing nextFocusDownld
Unders- Label or Instructions :labelFor setLabelFor Missing labelFor
tandable Label or Instructions :hint setHint Missing hint
. s s Missing
Robust Status Messages :importantForAccessibility setImportantForAccessibility importantForAccessibility

Table 3. Mutation Operator Description

Mutation operator

Code context example

MIA - Missing importantForAccessibility

/>

XML Attribute Java Method
<TextView
MTS - Missing textSize —android:textSize="10sp" — textView.setTextSize(size);
/>
<EdiText
MIT - Missing inputType —android:inputType="numberPassword" —edl.setlnputType(.TYPE_CLASS);
/>
<TextView
MNFD - Missing nextFocusDownld —android:nextFocusDown="@jid.ed2" — edit.setNextFocusDownld(R.id.ed2);
/>
<TextView
MLF - Missing labelFor —android:labelFor="EditText1" — textView.setLabelFor(editText);
/>
<EditText
MH - Missing hint —android:hint="foo" — myEditText.setHint("foo");
/>
<EditText

—android:importantForAccessibility="yes"

— view.setImportantForAccessibility(...);

with the tester’s preferred strategy. However, for the mutant
analysis our process requires that 7" is implemented and exe-
cuted by using an accessibility checker tool, such as the ones
reported in Section .. The third step, mutant analysis, al-
lows calculating the mutation score by comparing the acces-
sibility reports produced by an accessibility checker for the
original and mutant apps. If the accessibility logs differ, that
is, different accessibility faults are encountered the mutant
can be considered dead. The accessibility report generated by
Espresso contains some temporal information that may cause
a non-deterministic output. To correct this, we post-process
the output so that only the essential information is taken into
account, namely the code element ID and its reported acces-
sibility issue.

Therefore, if the original app’s accessibility log is the same
as that of the mutant app, resulting in a live mutant, the test
suite probably needs to be revised and improved. If the score
is not satisfactory, the tester can add new test cases or modify
existing ones in 7" so that more mutants are killed.

o @ =
Android App F= Mutant = SEtMof
o Generation mutant Apps
g
Set of tests T @
[Execution of T
in M and A
Tester decides to improve pp
score by modifying T
i 3 T o
Méléilrlgﬂ Me(:h(an?sm of (== AC(?e.SSIbIlIty log
analysis of mutants of visited screens

Figure 1. Testing process of the proposed approach

3.4 Implementation

To evaluate and use our approach, we implemented a proto-
type tool named AccessibilityMDroid. It receives as input
the source code of the Android app under test. Accessibili-
tyMDroid implements the proposed operators by extending
MDroid+ (Moran et al), 2018), which are used for mutant
generation (Step 1). To build and execute the test, as well as
to produce the accessibility log (Step 2), the Espresso frame-
work is used. We chose tests implemented with Espresso be-
cause it is the default framework for GUI testing in Android
Studio and includes embedded accessibility checking. As T’
is executed, the AccessibilityCheck class allows us to check
for accessibility faults. In the end of the run, Espresso gener-
ates a log of the accessibility problems used in Step 3. The
tool compares the log automatically, and a list of mutants
killed is produced.

To illustrate our approach we use a sample app built with
Android Studio. A piece of code for this app is presented in
Figure B. With the application of operator MH (Missing hint),
which removes from the GUI element the hint code element,
Line 22 (in red) disappears in the mutant m.

14 <EditText

15 android:id="@+id/nickname"

16 android:layout_width="0dp"

17 android:layout_height="wrap_content"

18 android:layout_marginStart="24dp"

19 android:layout_marginTop="96dp"

20 android:layout_marginEnd="24dp"

21 android:inputType="text"

22 - android:hint="Nickname"

23 android:selectAllOnFocus="true"

24 app:layout_constraintEnd_toEndOf="parent"

25 app:layout_constraintStart_toStart0f="parent"
26 app:layout_constraintTop_toTopOf="parent" />

Figure 2. A mutant generated by operator MH

27 @Test

28 public void loginTest() {

29 var appCompatEditText = onView(allOf (

30 withId(R.id.username),

31 childAtPosition(all0f (withId(R.id.container),

32 childAtPosition(withId(android.R.id.content), 0)),
v,

33 isDisplayed()));

34

35 appCompatEditText.perform(replaceText("email"),

closeSoftKeyboard());

36

37 var appCompatEditText2 = onView(allOf(

38 withId(R.id.password),

39 childAtPosition(all0f (withId(R.id.container),

40 childAtPosition(withId(android.R.id.content), 0)),
2),

41 isDisplayed()));

42

43 appCompatEditText2.perform(replaceText ("123456"),

closeSoftKeyboard());

44

45 var appCompatEditText3 = onView(allOf(

46 withId(R.id.password), withText("123456"),

47 childAtPosition(all0f (withId(R.id.container),

48 childAtPosition(withId(android.R.id.content), 0)),
2),

49 isDisplayed()));

50

51 appCompatEditText3.perform(pressImeActionButton());

52}

Figure 3. Test case using Espresso

1 AppCompatEditText{id=2131230902,res-name=nickname}: View
falls below the minimum recommended size for touch
targets. Minimum touch target size is 48x48dp.
Actual size is 331.4x45.0dp (screen density is 2.6).

2 AppCompatEditText{id=2131230902,res-name=nickname}: View
falls below the minimum recommended size for touch
targets. Minimum touch target size is 48x48dp.
Actual size is 331.4x45.0dp (screen density is 2.6).

3 AppCompatEditText{id=2131230917,res-name=password}: View
falls below the minimum recommended size for touch
targets. Minimum touch target size is 48x48dp.
Actual size is 331.4x45.0dp (screen density is 2.6).

4 AppCompatEditText{id=2131230917,res-name=password}: View
falls below the minimum recommended size for touch
targets. Minimum touch target size is 48x48dp.
Actual size is 331.4x45.0dp (screen density is 2.6).

5 AppCompatEditText{id=2131230917,res-name=password}: View
falls below the minimum recommended size for touch
targets. Minimum touch target size is 48x48dp.
Actual size is 331.4x45.0dp (screen density is 2.6).

Figure 4. Accessibility log for the original app

QTest
public void loginTest() {
+ onView(withId(R.id.nickname)).perform(typeText("nick"),
+ closeSoftKeyboard());
var appCompatEditText = ...

AN B W N~

Figure 5. Changed test

Suppose that for this app, a test, as depicted in Figure [3,
is available. When T' is executed with Espresso on mutant
m (Step 2), a log is generated. This log is compared to the

log generated by executing 7" in the original app (Step 3).

From the difference between the two accessibility logs, it is
possible to determine the mutant’s death. In this case, 7" was
not enough to show the difference between the original app
and the mutant. As both produce the same log in Figure f,
the mutant is still alive. The tester now tries to improve T’
and realizes that existing tests do not interact with one of the

Silva et al. 2022

1 + AppCompatEditTextid=2131230902,res-name=nickname: View
is missing speakable text needed for a screen
reader

2 AppCompatEditText{id=2131230902,res-name=nickname}: View
falls below the minimum recommended size for touch
targets. Minimum touch target size is 48x48dp.
Actual size is 331.4x45.0dp (screen density is 2.6).

3 AppCompatEditText{id=2131230902,res-name=nickname}: View
falls below the minimum recommended size for touch
targets. Minimum touch target size is 48x48dp.
Actual size is 331.4x45.0dp (screen density is 2.6).

4 AppCompatEditText{id=2131230917,res-name=password}: View
falls below the minimum recommended size for touch
targets. Minimum touch target size is 48x48dp.
Actual size is 331.4x45.0dp (screen density is 2.6).

5 AppCompatEditText{id=2131230917,res-name=password}: View
falls below the minimum recommended size for touch
targets. Minimum touch target size is 48x48dp.
Actual size is 331.4x45.0dp (screen density is 2.6).

6 AppCompatEditText{id=2131230917,res-name=password}: View
falls below the minimum recommended size for touch
targets. Minimum touch target size is 48x48dp.
Actual size is 331.4x45.0dp (screen density is 2.6).

Figure 6. Accessibility log for the mutant m

app’s input fields. After changes in T (illustrated in Figure),
Step 2 is executed again and the log for m is now the one in
Figure [d; it differs from the original one in the first line. By
employing a similar procedure to kill accessibility mutants,
T achieves a higher mutation score, covers more GUI ele-
ments, and potentially reveals other accessibility faults.

4 Evaluation

The main goal of the proposed operators is to serve as a guide
for the evaluation and improvement of test suites regarding
accessibility faults. To evaluate these aspects properly, as
well as our implementation using Espresso, we formulated
three research questions as follows.

RQ1: How is the applicability of the accessibility muta-
tion operators? This question aims to investigate if the pro-
posed operators and processes are applicable in practice. To
answer this question, we evaluate the approach’s application
cost by analysing the number of mutants generated by each
operator, as well as the number of required test cases.

RQ2: How adequate are existing test suites with respect
to the accessibility mutation testing? This question evalu-
ates the use of the proposed operators as an evaluation crite-
rion. They are used for quality assessment of the test suites
accompanying the selected open source apps with respect to
accessibility. To this end, we analyse the ability of existing
tests to kill the mutants generated by our approach.

RQ3: How much do the mutation operators contribute
to revealing new accessibility faults? This question looks
at the effectiveness of mutant-adequate test suites when re-
vealing accessibility violations.

4.1 Study Setup

We sampled open source apps from F—droid, last updated in
2019/2020, containing Espresso test suites. We refer to the
test suite accompanying the project as 7. We removed apps
that failed to build and whose tests were not compatible with
the accessibility checking feature. The replication package is
available at: https://osf.io/vEfs2d/.

The seven apps are: AlarmClock, an alarm clock for An-
droid smartphones and tablets that brings a pure alarm ex-
perience; AnyMemo, a spaced repetition flashcard learning
software; Authorizer, a password manager for Android;
Equate, a unit converting calculator; KolabNotes, a note
taking app; Piwigo, a photo gallery app for the web; and
PleesTracker, a sleep tracker.

For each app, we used AccessibilityMDroid to generate
mutants, run 7', produce the accessibility logs to each mu-
tant, and compare those with the original log. In this way, we
obtained the set of mutants killed by 7. After this, we manu-
ally inspected the alive mutants and realized that many times,
some of the test cases in 1" exercised the mutated code, but
they produced no difference in the log due to some Espresso
limitations (e.g., a limited set of accessibility criteria that will
be detected and printed in the accessibility log). In this case,
we marked the corresponding mutant as covered. Other mu-
tants were marked as “unreachable” since their mutations are
related to widgets that are not reachable in the app (e.g., dead
code). So, we counted the number of generated, killed, cov-
ered, and unreachable mutants by 7.

Then, we extended T so that all mutants were killed or
at least covered. We refer to this extended test suite as x7'.
The inclusion of a test case was conducted in the following
way: (i) pick an alive mutant (not covered, not killed by T);
(i) manually record a test that exercises the mutation using
Espresso Test Recorder in Android Studio, and if needed,
refactor the test code to make it repeatableg; (iii) analyze if
the mutant is killed by the new test, if not mark it as covered.
The mutants information was collected again for 7.

As cost indicators, we collected the number of tests of a
test suite T’C'(T'), and its size, given by the number of lines
of test code LoC(T). As for effectiveness, we counted per
test suite the number of accessibility faults reported by the
Espresso accessibility check.

Table § shows the information on the seven selected
apps. Authorizer is the app with the greatest value of
LoC (28,286), while AnyMemo has 30 activities (#Act.).
AlarmClock is the app with the smallest number of LoC:
1,349, and Equate has only 2 activities. The table also shows
the number of test cases (#TC) and LoC for the original set
T and the extended one 2T". Notice that AlarmClock has 41
tests and 1,068 lines of test code (LoC(T')). Kolabnotes
has only one test, yet AnyMemo has the smallest LoC(T')
(76). Concerning z1', AlarmClock and Authorizer require
more tests (both 43) and more LoC'(«T') (1,341 and 1,700, re-
spectively). PleesTracker has the smallest number of test
cases (5) and LoC(xT) (345). However, Authorizer re-
quired more additional test cases, 32, while Piwigo only one.

Thttps://www.f-droid.org
2The code generated by Espresso Test Recorder may be too specific and
fails in re-runs.

Silva et al. 2022

Table 4. Selected apps

App* LoC | #Act. | #TC(T) | LoC(T) | #TC(zT) | LoC(zT)
AlarmClock 1,349 5 41 1,068 43 1,341
AnyMemo 19,751 30 3 76 13 932
Authorizer 28,286 7 11 652 43 1,700
Equate 5,826 2 6 511 9 709
Kolabnotes 11,025 9 1 494 6 884
Piwigo 4,744 7 8 408 9 579
PleesTracker 1,868 5 2 89 5 345

+ The app’s name is a clickable link to the GitHub project.

4.2 Analysis of Results

Table § summarizes the main results of the evaluation and is
used in this section to answer our RQs. This table shows the
number of mutants that were generated (columns G), killed
by some test (columns K), covered but alive (columns C),
and unreachable (columns U).

Notice that the results are shown for 4 out of 6 operators
described in Table B; operators MLF and MNFD did not gen-
erate any mutant for the selected apps. For each app, two
rows are presented, one for the results obtained by 7" and the
other for 7. The last four columns list the total for all oper-
ators, while the last rows bring the total for all apps.

For instance, for the app AnyMemo the operator MTS gener-
ated 64 mutants, 11 unreachable. The test set 7" was not capa-
ble of killing any mutant but covered 14. The set 7" covered
52; that is, 38 additional mutants could be covered. Consider-
ing all operators, only one mutant could be killed by 27", and
70 mutants were covered out of 84 generated mutants. For
this app, four mutants change a screen that is reached only
when integrated with a third-party app. As exercising these
mutants would require other tools beyond Espresso, we were
not able to cover them. However, they can not be classified
as unreachable. Because of this, the sum of killed, covered
but alive, and unreachable mutants are not equal to the num-
ber of generated mutants for this app, as it happens for all of
the other ones.

RQ1 - Approach applicability. To answer RQ1, we eval-
uate the number of mutants generated by each operator. We
observe in Table [that operator MTS generated more mu-
tants (145 in total), followed by MIT (68), MH (34), and
MIA (9). MTS generated mutants for all apps, MIT for 6,
and MH for 5 apps. Operator MIA generated mutants only
for Authorizer. In total, 256 mutants were generated, with
AnyMemo with more mutants (86) and Piwigo with 5. This
means that the apps selected contain more code elements as-
sociated with the principle Perceivable (operators MTS and
MIT), which may indicate: (i) developers are worried about
content descriptions for non-text elements more than the prin-
ciple Robust (operator MIA that generated mutants for only
one app) or Operable (operator MNFD that did not generate
any mutant); (ii) User Experience (UX) and User Interface
(UI) documents include a more significant amount of code
elements of the Perceivable principle in their guidelines.
Operators MIT and MIA generated mutants that were not
killed; only one mutant of MTS was killed, and 17 out
of 34 mutants generated by MH were killed. The process
using Espresso was capable of distinguishing mutants in
the great majority generated by removing the code element
:hint. Analysing alive mutants, we identified 222 as cov-
ered, and 12 as unreachable. Unreachable mutants were gen-

https://osf.io/vfs2d/?view_only=6c3af7cdbb7f4132a9367e196735c68f
https://www.f-droid.org
https://github.com/yuriykulikov/AlarmClock
https://github.com/helloworld1/AnyMemo
https://github.com/tejado/Authorizer
https://github.com/EvanRespaut/Equate
https://github.com/konradrenner/kolabnotes-android
https://github.com/Piwigo/Piwigo-Android
https://github.com/vmiklos/plees-tracker

Silva et al. 2022

Table 5. Summary of the results per operator

AIII;i;‘;id - - Mutation Op](\e/l[‘;tor _— Total

G K|C UG |K|C|U|G|K|C|U|G|IK|C|U|G K |C U
AlarmClock ::T 12 : ?2 - 1 : -1 - 1 -1 : - B : :) 14 -1 ?3)
AnyMemo ZIFT 64 -1 ;42‘ 11 22 : -1 g1 |l T I : T : : - | 86 -1 ;3 1
Authorizer ZT 18 : 18 - 27 : ;7 - 18 -6 ?2 - 9 : ;) 72 -6 26)
Equate ZT 3 : -3 - 2 : -2 -2 i : - : : 7 i -5 !
Kolabnotes :T 23 : 23 - 13 : ?3 - 12 é ;1 T : : ol I ;3 411(1))
Piwigo ZT I - |3 = g -t i — - - |l } 431)
PleesTracker fT 24 : §4 - - : : T : : T : : - : 24)
Total fT 145 | ‘1‘23 11 || 68 (— 2 1| 34 37 ? Rk - 3 - || 256 %8 ;‘2‘2 12
Number of mutants Generated, Killed, Covered but alive, Unreachable by the original test suite 7" and the extended one z7.
The Mutation Operators are: Missing textSize; Missing inputType; Missing Hint; and Missing importantForAccessibility.

Table 6. Efforts to build 27" 856 A-LoC); and Kolabnotes: 5 tests (390 A-LoC). These

#Mutants / app KLoC

App MTS | MIT | MH | MIA | Towl | A71C | ALeC
AlarmClock 8.9 0.7 0.7 | 0.0 1037 | 2 273
AnyMemo 3.2 1.1 0.0 | 0.0 435 10 856
Authorizer 0.6 0.9 06 |03 258 | 32 1048
Equate 0.5 0.3 03 | 0.0 1.20 |3 198
Kolabnotes 2.0 1.1 1.0 | 0.0 435 |5 390
Piwigo 0.2 0.6 02 | 0.0 1.05 1 171
PleesTracker | 12.8 | 0.0 | 0.0 | 0.0 128 |3 256
Average 4.0 0.67 | 0.4 | 0.043 | 542 8 456
A-TC stands for the number of test cases added to 7" to obtain 7.

A-LoC stands for the number of LoC added to 7 to obtain 7"

erated mainly for AnyMemo and are related to implementation
smells like dead code.

For a deeper analysis, Table [contains the number of mu-
tants generated by the operator divided by the KLoC of each
app. The last two columns present information regarding the
effort required to add new test cases so that an accessibility
mutant adequate test suite is obtained. The last rows contain
min, max and average values. We can see that the operators
generate a mean value of 5.42 mutants per KLoC, and, in the
worst case, 12.8 for PleesTracker.

Notice that a greater number of mutants is generated for
the largest apps in terms of LoC and number of activities:
AnyMemo, Authorizer and Kolabnotes. Given the fact that
the proposed operators only remove code elements, the num-
ber of mutants tends to be equal to the number of existing
elements associated to the accessibility WCAG success cri-
teria.

Due to this characteristic, it is unlikely that the operators
generate equivalent mutants. This is an advantage, because
the identification of such mutants is usually costly. Moreover,
we have not found either stillborn or trivial mutants. The first
ones are mutants that do not compile, and the second ones
are mutants that crash in the initialization. We also measured
the effort of adding new test cases, considering the values
in Table [. As Table [shows, Authorizer demanded more
effort required 32 additional tests (with 1,048 A-LoC), fol-
lowed by AnyMemo: which required 10 additional tests (with

apps are the greatest in terms of size.

Response to RQ1: The number of mutants is related to
the size of the app, mainly to the number of GUI ele-
ments, and code elements associated with the accessibil-
ity success criteria. Operators MTS and MIT, related to
the principle Perceivable, produce more mutants, while
no mutant is generated for operator MNFD, related to
the Operable principle. Moreover, we did not observe
any stillborn, trivial, or equivalent mutants.

Implications: The operators are deletion style and depend
on the use of accessibility-related code elements. The num-
ber of generated mutants grows proportionally to the num-
ber of accessibility code elements used in the app. Operators
MTS and MIT generated more mutants, which may indicate
that code elements related to the principle Perceivable are
the most used in the app selected. Our set of operators repre-
sents a first proposal, and we intend to improve the set with
other kinds of operators, that for instance adding or modi-
fying code elements, as well, and other code elements and
success criteria could be considered.

The proposed operators do not generate equivalent mu-
tants due to their conception characteristics. We did not ob-
serve any stillborn or trivial mutant. This is important, be-
cause they imply in cost. These kinds of mutants are very
common in the Android mutation testing (Linares-Vasquez
et all, 2017).

We observe Espresso’s limited ability to detect accessibil-
ity faults, and as a consequence, a reduced number of mutants
were killed. Because of this other accessibility testing tools
should be used in future versions of AccessibilityMDroid.
We also intend to implement mechanisms to automatically
determine covered mutants. The analysis of dead mutants is
a drawback of most mutation testing approaches for Android
apps. The great majority do not offer an automatic way to per-

form this task, they do not even provide a way to consider a
mutant killed.

RQ2 - Adequacy of existing test suites. RQ?2 evaluates
the adequacy of the test suites concerning the proposed oper-
ators. The answer can shed some light on the quality of the
test cases regarding accessibility faults and if the developers
are worried about the test of such a non-functional property.
To answer this question, Table [brings the percentage of mu-
tants killed and covered by 7', per app. Unreachable mutants
were not considered. On average, the original sets were capa-
ble of killing only 5.23% of the mutants. The killed percent-
age reaches 20% for Piwigo, the app with the fewest number
of mutants. But this percentage is equal to zero for five apps.
The percentage of covered mutants are better, 30.24% on av-
erage. The best percentages were achieved by AlarmClock
(64.3%) and Piwigo (60%). The other five apps achieved a
percentage lower than 35%.

Table 7. Adequacy results of original test suites

App Killed | Covered
AlarmClock 0.0% 64.3%
AnyMemo 0.0% 18.67%
Authorizer 0.0% 12.5%
Equate 16.67% 0%
Kolabnotes 0.0% 22.91%
Piwigo 20% 60%
PleesTracker 0.0% 33.33%
Average 5.23% 30.24%

Response to RQ2: The existing test suites of the stud-
ied apps killed or covered only a small fraction of the
accessibility-related mutants. In other words, they had a
low mutation score.

Implications: In general, there are opportunities to im-
prove the quality of GUI tests in mobile apps. While code
coverage and mutation testing have better support at the unit
test level, more tool support is required at GUI level. As
the accessibility mutants demand better test coverage at GUI
level, the results herein presented helped to expose those
weaknesses.

RQ3 — Accessibility faults. By answering RQ2, we ob-
serve that the existing tests obtained a small coverage of ac-
cessibility mutants, and new tests are required to obtain ad-
equate test suites. However, it is important to know if such
additional tests and efforts improve the test quality in terms
of accessibility faults revealed. RQ3 aims to answer this ques-
tion.

Table § shows the number of accessibility faults pointed
by Espresso when the original (") and extended (x7") test
sets are used; the last column also shows the percentage of
improvement. For 7', AlarmClock has more accessibility
faults (126), while PleesTracker has only 2 faults. On av-
erage we have 45.28 accessibility faults per app. Concern-
ing the mutant-adequate test suite x7’, Piwigo has more

Silva et al. 2022

faults (447); PleesTracker presented the best percentage
of improvement (3,650%). But, the smallest percentage of
improvement was obtained for AlarmClock. On average T’
revealed 186.4 accessibility faults. The improvements varied
from 3.2 to 3,650%.

Table 8. Accessibility faults detected by 7" and =T

‘ App ‘ #faults(T) ‘ #faults(xT) ‘ Improv. ‘
AlarmClock 126 130 3.2%
AnyMemo 24 355 1,479%
Authorizer 65 201 209.2%
Equate 19 27 42.1%
Kolabnotes 43 70 62.8%
Piwigo 38 447 1,076.3%
PleesTracker 2 75 3,650%
Average 45.28 186.4 931.8%

Response to RQ3: Mutant-adequate test suites con-
tribute to meaningful improvements in the number of
accessibility faults detected. On average, the extended
test suites improved around 932% the number of acces-
sibility faults revealed in the original test suites.

Implications: The results gave evidence that the use of the
mutation operators contributed to an increase in the number
of revealed accessibility faults. We anticipate that the qual-
ity of the test suite is improved too, besides the accessibility
point of view.

5 Threats to Validity

There are some threats to the validity of our study.

Sample selection. It is not easy to guarantee the represen-
tativeness of the apps. In addition, the adopted sample has
only Android native apps with Espresso test suites. To mit-
igate this, we selected the apps from F-Droid a diverse set
of open-source apps with recent updates. F-Droid has been
used in other studies (Mao et al/, 2016; Zeng et al), 2016; Gu
et al), 2019).

Limited oracle. The mutant analysis strategy is linked to
the Espresso tool. However, the proposed approach is also
compatible with other tools that monitor the running app and
produce accessibility logs like MATE (Eler et al., 2018) and
Ally (Toff, 2018); we plan to integrate them in the future.

Manual determination of covered elements. This task
was performed manually and is subject to errors. To mini-
mize this threat, this analysis was carefully conducted and
double-checked.

Flaws in the implementation. There may be implementa-
tion errors in any of tools or routines used in our study, like
the MDroid+ extension, Android emulator management, and
Espresso.

The number of mutation operators. The set of accessi-
bility mutation operators proposed represents only a fraction
of all accessibility violations that can occur in a mobile app.
We created this initial deletion set to validate the proposed
tool. This set of deletion mutation operators is tested and val-
idated as effective in practice.

6 Concluding Remarks

This paper presented an approach for accessibility mutation
testing of Android apps. First, we defined a set of six acces-
sibility mutation operators for Android apps. Then, for an
Android app, we generated the mutants. Based on the orig-
inal test suite, we checked which mutants are killed or at
least covered. Following our approach, we extended the orig-
inal test suite to cover more mutants. The empirical results
show that the original test suites cover only a small part of the
accessibility-related mutants. Besides, mutant-adequate test
suites contribute to meaningful improvements in the number
of accessibility faults detected.

As future work, we plan to extend the tool support to han-
dle APK files and commercial apps (closed source). The mu-
tation operators may also be described more generically so
that the approach can be extended to include other mobile
development languages and frameworks (e.g., Swift, React-
Native, Kotlin).

Another direction is to experiment with different oracles
(e.g., MATE (Eler et al), 2018)), besides the accessibility
check of Espresso we used in this study. Finally, different
accessibility mutation operators can be defined, now focused
on including and changing code elements.

Acknowledgment

This work is partially supported by CNPq (Andre T. Endo
grant nr. 420363/2018-1 and Silvia Regina Vergilio grant nr.
305968/2018-1).

References

Abuaddous, H. Y., Jali, M. Z., and Basir, N. (2016). Web ac-
cessibility challenges. International Journal of Advanced
Computer Science and Applications (IJACSA).

Acosta-Vargas, P., Salvador-Ullauri, L., Jadan-Guerrero, J.,
Guevara, C., Sanchez-Gordon, S., Calle-Jimenez, T., Lara-
Alvarez, P., Medina, A., and Nunes, 1. L. (2020). Acces-
sibility assessment in mobile applications for android. In
Nunes, 1. L., editor, Advances in Human Factors and Sys-
tems Interaction, pages 279-288, Cham. Springer Interna-
tional Publishing.

Acosta-Vargas, P., Salvador-Ullauri, L., Perez Medina, J. L.,
Zalakeviciute, R., and Perdomo, W. (2019). Heuristic
method of evaluating accessibility of mobile in selected
applications for air quality monitoring. In International
Conference on Applied Human Factors and Ergonomics,
pages 485-495. Springer.

Alshayban, A., Ahmed, ., and Malek, S. (2020). Accessi-
bility issues in android apps: State of affairs, sentiments,
and ways forward. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, ICSE
’20, page 1323-1334, New York, NY, USA. Association
for Computing Machinery.

Ballantyne, M., Jha, A., Jacobsen, A., Hawker, J. S., and El-
Glaly, Y. N. (2018). Study of Accessibility Guidelines of
Mobile Applications. In Proceedings of the 17th Interna-

Silva et al. 2022

tional Conference on Mobile and Ubiquitous Multimedia,
pages 305-315. ACM.

BBC (2017). The BBC Standards and Guidelines
for Mobile Accessibility. https://www.bbc.co.uk/
accessibility/forproducts/guides/mobile.

Brazilian Government (2007). Accessi-
bility Model in Electronic Government.
https://www.gov.br/governodigital/
pt-br/acessibilidade-digital/
modelo-de—acessibilidade.

Cisco (2017). Cisco Visual Networking Index: Global
Mobile Data Traffic Forecast Update, 2017-2022 White
Paper - Cisco. https://www.cisco.com/c/en/
us/solutions/collateral/service-provider/
visual-networking-index-vni/
white-paper-c11-738429.html.

Damaceno, R. J. P., Braga, J. C., and Mena-Chalco, J. P.
(2018). Mobile device accessibility for the visually im-
paired: problems mapping and recommendations. Univer-
sal Access in the Information Society, 17(2):421-435.

Delamaro, M. E., Offutt, J., and Ammann, P. (2014). Design-
ing deletion mutation operators. In 2014 IEEE Seventh In-
ternational Conference on Software Testing, Verification
and Validation, pages 11-20.

Deng, L., Mirzaei, N., Ammann, P., and Offutt, J. (2015).
Towards mutation analysis of Android apps. In Proceed-
ings of the Eighth International Conference on Software
Testing, Verification and Validation Workshops, ICSTW,
pages 1-10. IEEE.

Eler, M. M., Rojas, J. M., Ge, Y., and Fraser, G. (2018). Au-
tomated Accessibility Testing of Mobile Apps. In 2018
IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST), pages 116—126.

Escobar-Velasquez, Camilo, O.-R., Michael, and Linares-
Vasquez, M. (2019). MutAPK: Source-Codeless Mutant
Generation for Android Apps. In 2019 IEEE/ACM Inter-
national Conference on Automated Software Engineering
(ASE).

Gamma, E. and Beck, K. (2019). The new major version
of the programmer-friendly testing framework for Java.
https://junit.org.

Google (2018). Espresso. https://developer.android.
com/training/testing/espressa.

Google (2018). Improve your code with lint checks. https:
//developer.android.com/studio/write/lint.

Google (2020). Accessibility Scanner. https://play.
google.com/store/apps/details?id=com.google.
android.apps.accessibility.auditor&hl=en_U.

Grechanik, M., Xie, Q., and Fu, C. (2009). Creating gui test-
ing tools using accessibility technologies. In 2009 Inter-
national Conference on Software Testing, Verification, and
Validation Workshops, pages 243-250.

Gu, T., Sun, C., Ma, X., Cao, C., Xu, C., Yao, Y., Zhang,
Q., Lu, J.,, and Su, Z. (2019). Practical GUI Testing of
Android Applications via Model Abstraction and Refine-
ment. In Proceedings of the 41st International Conference
on Software Engineering, ICSE ’19, page 269-280. IEEE
Press.

https://www.bbc.co.uk/accessibility/forproducts/guides/mobile
https://www.bbc.co.uk/accessibility/forproducts/guides/mobile
https://www.gov.br/governodigital/pt-br/acessibilidade-digital/modelo-de-acessibilidade
https://www.gov.br/governodigital/pt-br/acessibilidade-digital/modelo-de-acessibilidade
https://www.gov.br/governodigital/pt-br/acessibilidade-digital/modelo-de-acessibilidade
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://junit.org
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso
https://developer.android.com/studio/write/lint
https://developer.android.com/studio/write/lint
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_U
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_U
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_U

Hartley, S. D. (2011). World Report on Disability (WHO).
Technical report, WHO and World Bank.

Jabbarvand, R. and Malek, S. (2017). pDroid: an energy-
aware mutation testing framework for Android. In Pro-
ceedings of the 11th Joint Meeting on Foundations of Soft-
ware Engineering, ESEC/FSE, pages 208-219. ACM.

Jia, Y. and Harman, M. (2011). An analysis and survey of the
development of mutation testing. [EEE Trans. Software
Eng., 37(5):649-678.

Kirkpatrick, A., Connor, J. O., Campbell, A., and Cooper, M.
(2018). Web Content Accessibility Guidelines (WCAGQG)
2.1. https://www.w3.org/TR/WCAG21/.

Linares-Vasquez, M., Bavota, G., Tufano, M., Moran, K.,
Di Penta, M., Vendome, C., Bernal-Cardenas, C., and
Poshyvanyk, D. (2017). Enabling Mutation Testing for
Android Apps. In Proceedings of the 2017 11th Joint Meet-
ing on Foundations of Software Engineering, ESEC/FSE,
pages 233-244, New York, NY, USA. ACM.

Lisper, B., Lindstrom, B., Potena, P., Saadatmand, M., and
Bohlin, M. (2017). Targeted mutation: Efficient mutation
analysis for testing non-functional properties. In Proceed-
ings - 10th IEEE International Conference on Software
Testing, Verification and Validation Workshops, (ICSTW),
pages 65—68.

Luna, E. and El Ariss, O. (2018). Edroid: A Mutation Tool
for Android Apps. In Proceedings of the 6th International
Conference in Software Engineering Research and Inno-
vation, CONISOFT, pages 99-108. IEEE.

Mao, K., Harman, M., and Jia, Y. (2016). Sapienz: Multi-
objective automated testing for android applications. In
Proceedings of the 25th International Symposium on Soft-
ware Testing and Analysis, ISSTA 2016, page 94-105,
New York, NY, USA. Association for Computing Machin-
ery.

Moher, D., Liberati, A., Tetzlaff, J., and Altman, D. G. (2009).
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses: The PRISMA Statement. BMJ, 339.

Moran, K., Tufano, M., Bernal-Cardenas, C., Linares-
Vasquez, M., Bavota, G., Vendome, C., Di Penta, M., and
Poshyvanyk, D. (2018). Mdroid+: A mutation testing
framework for android. In Proceedings of the 40th Interna-
tional Conference on Software Engineering: Companion
Proceeedings, pages 33-36. ACM.

Reda, R. (2019). RobotiumTech: Android UI Testing.
https://github.com/RobotiumTech/robotium.

SejaSidier (2015). Guide to the Development of Accessi-
ble Mobile Applications. http://www.sidi.org.br/
guiadeacessibilidade/index.html.

Silva et al. 2022

Silva, C., Eler, M. M., and Fraser, G. (2018). A survey on the
tool support for the automatic evaluation of mobile acces-
sibility. In Proceedings of the 8th International Confer-
ence on Software Development and Technologies for En-
hancing Accessibility and Fighting Info-Exclusion, DSAI
2018, page 286-293. ACM.

Silva, H. N., Endo, A. T., Eler, M. M., Vergilio, S. R., and
Durelli, V. H. R. (2020). On the Relation between Code
Elements and Accessibility Issues in Android Apps. In
Proceedings of the V Brazilian Symposium on Systematic
and Automated Software Testing, SAST.

Silva, H. N., Prado Lima, J. A., Endo, A. T., and Vergilio,

S. R. (2021). A mapping study on mutation testing for
mobile applications. Software Testing, Verification Relia-
bility.

Su, T., Meng, G., Chen, Y., Wu, K., Yang, W., Yao, Y., Pu,
G., Liu, Y., and Su, Z. (2017). Guided, stochastic model-
based GUI testing of android apps. In Proceedings of
the 11th Joint Meeting on Foundations of Software Engi-
neering, ESEC/FSE, Paderborn, Germany, September 4-
8, pages 245-256.

Toff, D. (2018). Ally ally.
quittle/ally-ally.

Vendome, C., Solano, D., Linan, S., and Linares-Vasquez, M.
(2019). Can Everyone use my app? An Empirical Study
on Accessibility in Android Apps. In 2019 IEEE Inter-
national Conference on Software Maintenance and Evolu-
tion (ICSME), pages 41-52.

W3C (2019). W3C Accessibility Standards
Overview. https://www.w3.org/WAI/
standards-guidelines/.

Wei, Y. (2015). MuDroid: Mutation Testing for Android
Apps. Technical report, UCL-UK. Undergraduate Final
Year Individual Project.

Wille, K., Dumke, R. R., and Wille, C. (2016). Measuring
the accessability based on web content accessibility guide-
lines. In 2016 Joint Conference of the International Work-
shop on Software Measurement and the International Con-
ference on Software Process and Product Measurement
(IWSM-MENSURA), pages 164—169.

Yan, S. and Ramachandran, P. G. (2019). The current sta-
tus of accessibility in mobile apps. ACM Transactions on
Accessible Computing, 12.

Zeng, X., Li, D., Zheng, W., Xia, F., Deng, Y., Lam, W.,
Yang, W., and Xie, T. (2016). Automated test input gener-
ation for android: Are we really there yet in an industrial
case? In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software En-
gineering, FSE 2016, page 987-992.

https://github.com/

https://www.w3.org/TR/WCAG21/
https://github.com/RobotiumTech/robotium
http://www.sidi.org.br/guiadeacessibilidade/index.html
http://www.sidi.org.br/guiadeacessibilidade/index.html
https://github.com/quittle/a11y-ally
https://github.com/quittle/a11y-ally
https://www.w3.org/WAI/standards-guidelines/
https://www.w3.org/WAI/standards-guidelines/

	Introduction
	Related Work
	Mutation testing of Android Apps
	Accessibility evaluation of Android Apps

	A Mutation Approach for Accessibility Testing
	Fault Model
	Mutation Operators
	Mutation Process
	Implementation

	Evaluation
	Study Setup
	Analysis of Results

	Threats to Validity
	Concluding Remarks

