
 

Journal of Software Engineering Research and Development, 2023, 11:1, doi: 10.5753/jserd.2023.2417  

  This work is licensed under a Creative Commons Attribution 4.0 International License.  

 

Technical Debt Guild: managing technical debt from 

code up to build 

Thober Detofeno  [Pontifícia Universidade Católica do Paraná | thober@gmail.com ] 

Andreia Malucelli  [Pontifícia Universidade Católica do Paraná | malu@ppgia.pucpr.br ] 

Sheila Reinehr  [Pontifícia Universidade Católica do Paraná | sheila.reinehr@pucpr.br ] 

 

Abstract 

Efficient Technical Debt Management (TDM) requires specialized guidance so that decisions taken are 

oriented to add value to the business. Because it is a complex problem that involves several variables, TDM 

requires a systemic look that considers professionals' experiences from different specialties. Guilds have been a 

means technology companies have united specialized professionals around a common interest, especially those 

using the Spotify methodology. This paper presents the experience of implementing a guild to support TDM's 

activities in a software development organization using the action research method. The project lasted three years, 

and approximately 120 developers were involved in updating about 63,300 source-code files, 2,314 test cases, 

2,097 automated test scripts, and the build pipeline. The actions resulting from the TDM guild's efforts impacted 

the company's culture by introducing new software development practices and standards. Besides, they positively 

influenced the quality of the artifacts delivered by the developers. This study shows that, as the company acquires 

maturity in TDM, it increases the need for professionals dedicated to TDM's activities. 

Keywords: Technical Debt, Technical Debt Management, Community of Practice, Technical Debt Guild 

 

1  Introduction 

Technical Debt (TD) is a metaphor that expresses software 

artifacts' immaturity and their impacts on software 

maintenance and evolution activities. According to Brown et 

al. (2010), this metaphor characterizes the difference 

between a software system's current state and its 

hypothetical ideal state. A theoretical ideal state is 

understood as the one established by the context in which the 

software is inserted (Brown et al., 2010). TD negatively 

affects productivity and feasibility in software development. 

In many cases, developers are forced to introduce more TD 

because of prior debts (Besker et al., 2019). 

It is estimated that between 25% and 37% of all 

development time is wasted due to TD. Most of the time is 

wasted understanding or managing TD (Ampatzoglou et al., 

2017; Besker et al., 2017; Martini et al., 2018). If 

unmanaged, TD can result in significant cost overruns, 

serious quality problems, reduced developer morale 

(Ghanbari et al., 2017), and limited ability to add new 

features (Seaman et al., 2012). It can even reach a crisis 

point when a vast and expensive refactoring or complete 

system replacement is needed (Martini et al., 2014). 

The efficient management of TD is a little explored area, 

although it seems to help in quality and productivity during 

software development (Guo et al., 2016; Rios et al., 2018). 

Works investigating aspects of TD management in the 

software development process are isolated initiatives (Rios 

et al., 2018). 

Decision-making in TD management is hard to 

standardize because, in most cases, it depends on the 

organization's context (Guo et al., 2016). One way to face 

this problem is to build a team focused on solving problems. 

This approach can be a practical way of solving a wide range 

of issues and offering suggestions on processes and working 

methods that need improvement (Connolly, 1992). Such 

groups can be implemented using the concepts of 

Communities of Practice (CoP) (Smite et al., 2019). 

A Community of Practice (CoP) is a group of individuals 

who periodically meet due to a common interest in learning 

and applying what has been learned, sharing knowledge, 

exchanging experiences, taking their problems, and finding 

solutions. One of the best-known examples of CoP is the 

concept used by the music streaming technology company 

Spotify, named guild (Kniberg, 2014). 

In a context where the TDM should be incorporated into 

the software development process, bringing together people 

who have knowledge and interest in the subject can 

contribute to finding solutions and generating value for the 

business. 

This article presents an experience report on establishing 

and using a TD guild in a software development 

organization throughout an action research process. The 

paper describes the experiences, results, success factors, and 

challenges. The actions promoted by the TD guild 

contributed to the Identification, Monitoring, Prevention, 

Prioritization, and Payment activities in TDM. The guild 

helped align TD's payout efforts with the organization's 

goals. 

Due to the several strategies that can be adopted and 

difficulties in measuring the results, implementing a TDM 

process is not a trivial task. This work is expected to support 

other companies in the challenge of TDM using a guild 

approach. 

This study is structured as follows: section 2 presents a 

literature review; section 3 presents the research method; 

section 4 describes the context and overview of the company 

in which the study was conducted; section 5 describes the 

three cycles of action research; section 6 presents the results, 

lessons learned, challenges, related work and threats to 

validity. Finally, section 7 concludes the paper. 

https://orcid.org/0000-0003-2479-5904
https://orcid.org/0000-0002-0929-1874
https://orcid.org/0000-0001-9430-7713


Technical Debt Guild: managing technical debt from code up to build Detofeno et al. 2023 

¹ https://www.sonarqube.org/  

² https://github.com/SonarSource/sonar-php  

2  Background  

2.1 Guild or Communities of Practice (CoP) 

In the middle age, guilds played an essential role in 

economic sustainability. A guild was formed hierarchically 

by masters, officers, and apprentices and had experienced 

and renowned specialists in its field of craftsmanship. These 

specialists were called master artisans. There was an 

exchange of knowledge in these guilds to make the work 

more efficient and productive (Wolek, 1999). 

Using these older phenomena as a reference, Leave and 

Wenger (1991) coined the term Community of Practice 

(CoP). In the most current concept, approached by Wenger 

and Wenger-Trayner (2015), CoPs are formed by people 

who share a concern or passion for something and engage in 

collective learning in a shared domain of human effort to do 

it interacting better regularly. 

For Wenger, McDermott, and Snyder (2002), domain, 

community, and practice are the three essential elements 

that characterize a CoP. The domain builds the community 

and identity and corresponds to the interest area that attracts 

and keeps the members. On the other hand, the community 

is the central element, composed of individuals and their 

interactions based on joint learning. 

CoPs stand out for managing knowledge assets in 

organizations, creating value for members and the 

organization, as a competitiveness tool. It can develop new 

skills and generate strategic opportunities through 

innovations (Wenger et al., 2002). It is believed that CoPs 

are used in organizations of different natures, with other 

terminologies, such as learning networks, thematic groups, 

technology clubs, and guilds. 

The professional literature on how to scale up agile 

software development suggests CoPs as a possible solution 

for learning and knowledge sharing among individuals with 

similar functions, such as Testers or Scrum Masters 

(Larman and Vodde, 2010). 

Experience from four CoPs at Ericsson shows that success 

factors include a good topic, a passionate leader, a proper 

schedule, decision-making authority, openness, tool 

support, a suitable rhythm, and cross-site participation when 

needed. The CoPs in Ericsson had three leading roles: to 

support the agile transformation, be part of the large-scale 

Scrum implementation, and support continuous 

improvement. CoPs became a central mechanism behind the 

success of the large-scale agile implementation in the case 

organization that helped mitigate some of the most pressing 

problems of the agile transformation (Paasivaara and 

Lassenius, 2014). 

For Smite et al. (2019), implementing well-functioning 

communities is not easy. Experiences from Oracle 

Corporation, UK National Health Service, Hewlett-Packard, 

Wipro Technologies, Alcatel, and DaimlerChrysler suggest 

that the cultivation of knowledge culture requires 

organizational attention, support, and sponsorship for CoPs. 

Inspired by CoPs, the guilds in Spotify are designed 

beyond formal structures and unite members with common 

interests, whether related to leisure (cycling, photography, 

or coffee consumption) or engineering (web development, 

back-end development, C++ engineering, or agile 

coaching). 

Figure 1 presents the five types of members identified by 

Smite et al. (2020) in the guilds of Spotify, based on the 

numbers of members registered in the communication 

channels and engaged in the activities. Similar to Wenger et 

al. (2002), Smite et al. (2020) identified a group of core 

members (sponsors and coordinators), active members, and 

peripheral members (passive members and subscribers). 

The latter group forms most community members (Smite et 

al., 2020). 

Smite et al. (2020) noticed that individual members' 

activity levels change over time for several reasons: the 

coordinator role rotates, some active members become 

passive and vice versa, and those who change specialization 

turn into inactive users who merely subscribe the latest 

news. 

 
Figure 1. Different types of members in a guild (Smite et al., 2020). 

Some guilds arise from shared interests, while others are 

structured or sponsored and can even have a specific budget. 

The maintenance and generation of value for the 

organization of a guild is a challenge. 

2.2 Technical Debt Management (TDM) 

As previously stated, TD represents the effects of immature 

artifacts in the software evolution that bring short-term 

benefits but have to be adjusted later. The concept, whose 

scope was initially limited to source code and related 

artifacts, was expanded to consider different software 

development stages and work products (Alves et al., 2016). 

Rios, Mendonça, and Spínola (2018) provide a taxonomy 

with 15 types of TD, as described below: 

• Architecture Debt – "Refers to the problems found in 

product architecture, which can affect architectural 

requirements. Usually, architectural debt could result 

from sub-optimal upfront solutions or sub-optimal 

solutions as technologies and patterns become 

superseded, compromising some internal quality 

aspects, such as maintainability." 

• Automation Test Debt – "Refers to the work involved in 

automating tests of previously developed functionality 

to support continuous integration and faster 

development cycles." 

• Build Debt – "Refers to issues that make the build task 

harder and unnecessarily time-consuming." 

• Code Debt – "Refers to the problems found in the source 

code (poorly written code that violates best coding 

practices or coding rules) that can negatively affect the 

https://www.sonarqube.org/
https://github.com/SonarSource/sonar-php


Technical Debt Guild: managing technical debt from code up to build Detofeno et al. 2023 

¹ https://www.sonarqube.org/  

² https://github.com/SonarSource/sonar-php  

legibility of the code, making it more challenging to 

maintain". 

• Defect Debt – "Refers to known defects, usually 

identified by testing activities or by the user and reported 

on bug tracking systems, that the development team 

agrees that should be fixed but, due to competing 

priorities and limited resources, have to be deferred to a 

later time". 

• Design Debt – "Refers to debt discovered by analyzing 

the source code and identifying sound object-oriented 

design principles violations." 

• Documentation Debt – "Refers to the problems found in 

the software project documentation." 

• Infrastructure Debt – "Refers to infrastructure issues that 

can delay or hinder some development activities if 

present in the software organization. Such issues 

negatively affect the team's ability to produce a quality 

product." 

• People Debt – "Refers to issues that can delay or hinder 

some development activities if present in the software 

organization". This is represented for late hire, for 

example. 

• Process Debt – "Refers to inefficient processes, e.g., 

what the process was designed to handle may be no 

longer appropriate." 

• Requirements Debt – "Refers to tradeoffs made 

concerning what requirements the development team 

needs to implement or how to implement them. In other 

words, it refers to the distance between the optimal 

requirements specification and the actual system 

implementation." 

• Service Debt – "Refers to the inappropriate selection and 

substitution of web services that lead to a mismatch of 

the service features and applications' requirements. This 

kind of debt is relevant for systems with service-oriented 

architectures." 

• Test Debt – "Refers to issues found in testing activities 

that can affect the quality of those activities." 

• Usability Debt – "Refers to inappropriate usability 

decisions that must be adjusted later." 

• Versioning Debt – "Refers to problems in source code 

versioning, such as unnecessary code forks." 

Design, code, and architecture debts are the most studied 

TD types. This is probably because several source code 

analysis tools help identify problems such as complex code, 

code smells, duplicate code, and others, which often serve 

as indicators of technical debt. The authors also define debt 

types and a list of situations in which TD items can be found 

in the software (Rios et al., 2018). 

A TD item represents an instance of TD and has several 

causes - factors that lead to the occurrence of the TD item - 

and consequences to the project. A TD item can be caused 

by inappropriate processes, decisions, schedule pressure, 

etc. On the other hand, TD items can cause several 

consequences that affect software features and are usually 

related to cost value, schedule, and quality. A TD item can 

be associated with one or more artifacts of the software 

development process (Rios et al., 2018). 

If TD items are not managed, they can cause financial and 

technical problems, increase software maintenance and 

evolution costs, and lead to a crisis point where the entire 

future of the software can be compromised (Martini and 

Bosch, 2016; Spínola et al., 2013; Nord et al., 2012). It is 

not enough that teams are only aware of what constitutes 

TD. They must be aligned to manage TD to add value to the 

business. Simply knowing about TD does not necessarily 

result in value for the software (Bavani, 2012). 

TD metaphor allows thinking about software quality 

regarding the organization's business (Tom et al., 2013). 

However, the decision criteria used for the payment of TD 

can be different according to the different scenarios and 

objectives of an organization (Rios et al., 2018). A challenge 

for development teams is to quantify the maintenance 

problems of their projects to justify the investment in 

refactoring the TD (Mo et al., 2018; Sharma et al., 2015). 

Convincing arguments are needed about when and why the 

TD should be removed. 

A model for TDM should foresee the contexts in which 

TD is identified and evaluated so that decisions can help 

companies and organizations to take advantage of 

opportunities and anticipate market needs (Kruchten et al., 

2012). 

Although TD affects everyone involved in the project, 

regardless of the cause, the level of communication 

regarding the TD varies. Team members generally discuss 

TD among themselves but understand that there are 

difficulties presenting evidence of TDM to upper-level 

management (Codabux, 2013). 

TDM includes identifying, monitoring, and paying TD 

items incurred in a system (Griffith et al., 2014). Rios, 

Mendonça, and Spínola (2018) describe Prevention, 

Identification, Monitoring, and Payment as macro activities 

and Documentation and Communication as activities 

performed during TDM. 

Some activities such as identification (e.g., TD detection 

by static source code analysis), measurement (TD 

quantification using estimates), and payment (TD resolution 

by techniques such as re-engineering or refactoring) receive 

more attention with the support of appropriate tools and 

approaches (Li et al., 2015). 

The payment activity refers to the activities carried out to 

support decision-making about the most appropriate time to 

eliminate TD items. At this point, the prioritization of which 

TD item should be eliminated is made (Rios et al., 2018). 

The TDM turns it possible to make decisions about 

eliminating the TD and the most appropriate moment to do 

so (Guo et al., 2016). 

Decision-making criteria are the basis for generating 

prioritization in the payment of TD items. TDM should be 

based on a rational approach to decision-making, 

considering planned and potential future development 

(Schmid, 2013). 

https://www.sonarqube.org/
https://github.com/SonarSource/sonar-php


Technical Debt Guild: managing technical debt from code up to build Detofeno et al. 2023 

¹ https://www.sonarqube.org/  

² https://github.com/SonarSource/sonar-php  

Guo et al. (2016) mentioned that aspects of managing TD 

in a software development process were little explored. 

Until the literature search for this work development, no 

studies reporting experiences of applying CoPs or guilds to 

TDM support were found. 

3 Research Method 

Considering the characteristics of this study, the research 

method selected was action research. Action research aims 

to provide research subjects, participants, and researchers to 

respond to the problems they experience with greater 

efficiency and based on a transformative action. The 

characterization of action research varies from one author to 

another. However, there is a set of common characteristics 

(Dick, 2000): 

• Act in an existing situation to improve and expand 

knowledge on the subject. 

• To have a cyclical nature, to repeatedly execute a series 

of steps. The cycle varies according to the author, but it 

must include the stages of Planning, Action, and 

Reflection. 

• Possess a reflexive nature and a critical reflection on the 

research process and obtained results. 

• It is primarily qualitative, although quantifications are 

possible in some situations. 

In Coughlan and Coghlan (2002), the action research 

cycle comprises three steps, as illustrated in Figure 2: 

1. a pre-step: to understand context and purpose. 

2. six main steps that relate first to the data and then to the 

action, as follows: 

• Data Gathering: This can occur through 

observations, interviews, surveys, and reports, 

collecting qualitative or quantitative data. 

• Data Feedback: the collected data is submitted to the 

organization for analysis through reports or 

feedback meetings. 

• Data Analysis: seeks for each party to contribute 

with a critical view of the data collected, internal 

company issues, the conduct of the research, or 

interaction with the researcher's knowledge. 

• Action Planning: what will be done and the 

deadline. 

• Implementation: the actions are implemented to 

promote the planned changes in collaboration with 

the stakeholders.  

• Evaluation: a reflection of the results expected or 

not, coming from executing the action, aiming to 

improve the next cycle. 

3. A meta-step to monitor that occurs through all the 

cycles. 

Each cycle leads to another, so continuous planning, 

implementation, and evaluation occur over time, as 

illustrated in Figure 2. 

 
Figure 2. Action research cycle (Coughlan and Coghlan, 2002). 

Our study was structured based on this approach, as 

illustrated in Figure 3. It began with a stage of understanding 

the Context and proceeded with three cycles of the Driving 

Phase, composed of the following steps: 

• Planning: data analysis was performed with those 

involved to establish what would be done and when. 

• Action: the planned activities were implemented to 

promote the planned changes in collaboration with those 

involved and responsible for the organization. 

• Evaluation: a reflection was performed to analyze the 

outcomes, aiming to improve the following cycle. 

Each cycle of this research was conducted as presented 

below: 

• 1st cycle: In the first cycle, the guild was created, and the 

guidelines for the scheduled and unscheduled social 

interactions were established. The first steps were taken 

to TD identification, and the teams were guided in the 

TDs payment and monitoring. 

• 2nd cycle: This cycle was a review of the previous one, 

where the tools and management activities of TD were 

revised. The guild promoted the standardization of the 

source code's development and documentation and 

guided the teams in prioritizing the TD. 

• 3rd cycle: In the third cycle, the review of the tools and 

the TD identified in the source code was maintained, and 

the TD guild sought to identify and propose actions to 

pay for the TD in the Continuous Integration Test 

artifacts. 

The duration of each cycle is linked to the company's 

annual management cycle, which foresees periods of 

planning and execution of actions that impact the software 

development process or the teams' goals. 

https://www.sonarqube.org/
https://github.com/SonarSource/sonar-php


Technical Debt Guild: managing technical debt from code up to build Detofeno et al. 2023 

¹ https://www.sonarqube.org/  

² https://github.com/SonarSource/sonar-php  

 
Figure 3. Timeline of the research. 

4 Context 

This article describes the experience of a TD guild's 

implementation and evolution in a Brazilian Software 

Development company founded in 1995. It currently has 

more than 2,000 customers and 300,000 users worldwide, 

providing process improvement and compliance 

management solutions. Corporations use its solutions in all 

kinds of industries: manufacturing, automotive, food and 

beverage, mining and metals, oil and gas, high-tech and IT, 

energy and utilities, government and public sector, financial 

services, transportation and logistics, and healthcare. 

Technically the product is entirely on the WEB, with 

documentation and localization for more than ten languages, 

and compatible with three database management systems. 

The Software Development area brings together some 

benefits of the agile philosophy with project management. 

The project management and planning use the SCRUM 

method defined by Schwaber and Sutherland (2020), 

dividing it into two-week development cycles and a 

quarterly release to the market. Thus, the company does not 

have automated Continuous Delivery or Continuous 

Deployment. However, it has Continuous Integration with a 

standardized and automated development flow/process for 

all teams for software development. 

During the period that lasted for three years, the area had, 

on average, 96 professionals split into 12 teams composed of 

professionals with the following roles: Product Owners 

(PO), Scrum Masters (SM), Developers (Dev), Testers, and 

DevOps. The teams vary in terms of the number of members, 

the amount of source code they are responsible for, and the 

programming languages used. The source code repository is 

composed by 61% PHP, 30% JavaScript, 3% Java, 2% 

HTML, 2% CSS, 1% JSON and 1% XML. The development 

area is responsible for approximately 63,300 source-code 

files. In the second and third years of the study, the monthly 

average was 1,850 change packages effective in the 

repository (commits). 

TD concepts and TDM activities (as an approach to 

contribute to quality and productivity during software 

development) were presented to the Product Owners and 

Scrum Masters in an internal meeting. The area's director 

proposed sponsoring and supporting creating a TD guild to 

discuss and offer TDM solutions for the company.  

The invitation for TD Guild was to all professionals 

involved in the product's maintenance and evolution 

activities. Per year, three or four experienced professionals 

were invited to become active members because they had a 

deep knowledge of the product's architecture. 

In the three years that the TD guild was implemented and 

evolved, the sponsor and the coordinator were the same 

professional, but there were changes in the active members. 

Figure 4 shows the number and type of members per year. In 

the first year, the active members were composed of a Tester, 

a Product Owner (PO), a Scrum Master (SM), and three 

Developers (Devs). In the second year, the members were 

two Testers, three SM, and two Devs. In the third year, the 

members were three Testers, an SM, and two Devs. The 

guild was composed of representatives with technical and 

business knowledge of the product. 

 

 
Figure 4. TD guild members. 

Most members of the TD guild are peripheral members 

that do not represent the key practitioners. Peripheral 

members are those with low involvement in the guild's 

interactions or the members impacted by the guild's actions. 

They provided kind suggestions, criticisms or encouraged 

the initiatives. In the 2nd cycle, these comments were 

analyzed through a survey. 

The TD guild emerged within an organizational context, 

aligned with strategic objectives, and sponsored by the 

https://www.sonarqube.org/
https://github.com/SonarSource/sonar-php


Technical Debt Guild: managing technical debt from code up to build Detofeno et al. 2023 

  

board. Besides the exchange of experiences, learning, and 

best practices on TDM, the TD guild was challenged to 

generate value for the product and add knowledge to the 

software development teams. 

The TD guild formation was based on the guidelines for 

CoPs building and the characteristics of autonomy and 

alignment with the strategic objectives given by the Spotify 

approach presented by Kniberg (2014). The guild meetings 

were monthly and face-to-face, but the members met more 

frequently to deliberate actions that required more speed in 

specific cases. 

The primary responsibilities of the TD guild coordinator 

were to organize the subjects and meetings, monitor the 

execution of tasks, support guild members, and align the 

needs with the sponsor. The sponsor was responsible for 

evaluating the proposed actions and approving and providing 

the necessary resources to execute the tasks. 

During guild meetings, each group member presented the 

ideas and problems to which the guild should pay attention. 

For each action approved by the guild members and the 

sponsor, a task list was created with a guild member as 

responsible. The person in charge had the objective of 

continuing the theme, carrying out in-depth studies and 

practical tests to evaluate the proposal's feasibility. The 

sponsor approved the tasks so the responsible in charge 

could prioritize this task and the other demands of the team. 

The subjects or actions in progress were discussed at the 

beginning of the guild meetings. The specific issues were 

often discussed in an internal communication channel or by 

e-mail. 

5 Research cycles 

The TD guild beginning was marked by discussions and 

alignments about the purposes, objectives, guidelines to 

conduct the activities, and interest subjects to the 

organization and its members. At the beginning of each 

research cycle, guild members reviewed goals and 

procedures. 

The TD guild's purpose was to study and help implement 

and monitor the TDM, with proposals and actions to improve 

internal quality and reduce maintenance costs and software 

evolution. To carry out its duty, the TD guild developed 

some directives to conduct the meetings and activities 

aligned with the organization's expectations, as follows: 

• Be aligned with the company's strategy. 

• Have a well-defined purpose or objective. 

• Have autonomy to implement solutions. 

• Clearly communicate the problems and opportunities to 

the interested parties. 

• The member must be a promoter for TD's payment 

actions within the teams. 

• Allow members of different teams to participate, 

considering that the member should have knowledge 

about the work context. 

 
1 https://www.sonarqube.org/ 

• The member influences the teams to help direct and 

prioritize the tasks of refactoring the TD. 

• Maintain the focus on quality and productivity in 

software development, helping to define the actions of 

prioritization and payment of the TD. 

• Guide the teams on best practices and standards of 

internal development. 

• Have periodic meetings to monitor the actions and 

propose changes. 

5.1 First cycle 

In the first year of this study, the actions of the TD guild 

focused on two initiatives related to the PHP source code: 

(1) Identify, measure, and monitor the primary Technical 

Debts identified in the PHP source code; (2) Identify and 

propose actions to improve the PHP source code. 

Based on the guidelines and the deployment of the 

initiatives, the TD guild defined the following actions: 

• Deploy tools to support TDM. 

• Identify TD in the context. 

• Guide teams on TD payment. 

• Monitor TD payment. 

The guild contributed to disseminating the TDM within 

the company, identifying the most appropriate TD for the 

company's objectives, and selecting the most appropriate TD 

identification and monitoring tools. According to the 

company's goals and resources, the guild members' quality 

rules priority classification guided the TD payment. 

5.1.1 Deploy tools to support TDM 

To manage the TD, it is necessary to have tools for 

implementing and continuing actions. Tools provide support 

and enable the automation of TDM activities. SonarQube1 

and the SonarPHP 2  plugin were selected to identify and 

monitor the PHP source code's TD. The choice of 

SonarQube and the SonarPHP plugin was mainly to the: 

amount of quality rules available for the PHP source code; 

options for configuring the quality rules; and, the possibility 

to develop specific quality rules. 

The quality rules provided by SonarQube were reviewed 

and updated according to the organization's context. The 

SonarQube identified the source code that was not within the 

TD guild's coding standard. 

5.1.2 Identify TD  

In this action, the TD guild's objective was to know in detail 

and select the quality rules provided by SonarQube 

considering the company's goals.  

Table 1 presents the list of options to select and classify 

the quality rules. The classification and selection of quality 

rules were made based on priority definition. The description 

of priorities was defined by the TD guild, taking into account 

the organization's context, and were used to guide the 

classification of the quality rules. The rationale for using this 

2 https://github.com/SonarSource/sonar-php 



Technical Debt Guild: managing technical debt from code up to build Detofeno et al. 2023 

  

scale is to allow easy mapping to the five-point scale used in 

SonarQube: Blocker, Critical, Major, Minor, and Info. 

 

Table 1. List by priority. 

Priority Description 

Blocker Rule considered as a bug, system vulnerability, or 

command that should not be used. 

Critical An important rule with a high impact on product 

quality and source code standardization. 

Major A minor rule with a low impact on product quality 

Minor Good practice rules that should be monitored. 

 

This action resulted in the approval of 93 quality rules 

that were activated in SonarQube, classified by priority and 

TD type, as shown in Table 2. 

 

Table 2. First cycle: Rules classified by priority and TD type. 

Priority 

Blocker 25 

Critical 27 

Major 14 

Minor 27 

TD type 

Code Debt 39 

Defect Debt 18 

Design Debt 36 

5.1.3 Guide the teams in TD payment 

The quality rules were classified by their priority, 

complexity, and impact to support the teams prioritizing and 

paying the TD. The priority analysis ranked the quality rules 

considering the research context's available objectives and 

resources. This analysis was used to prioritize TD payment 

actions. 

The quality rules' analysis on complexity and impact 

helped the teams select the TD payment source files. 

Complexity was understood as the technical difficulty to 

solve a quality rule. The impact of a change was classified 

by the extent of the change within the system, that is, the 

change's potential to affect other modules or classes. Some 

members ranked the quality rules separately, following the 

guild's guidelines. The results of the classification were 

reviewed and aligned during the guild meetings. 

5.1.4 Monitor TD payment 

The TD monitoring was intended to expose the reality and 

motivate the teams to pay the TD. To support the teams in 

the periodic monitoring of TD, the SonarQube was 

configured per team, and a web portal with the values of the 

TD classifications was made available. This action 

facilitated the management's follow-up on the teams' 

initiatives in TD payment. 

5.2 Second cycle 

At the beginning of the second cycle, the guild members 

discussed and decided to maintain the objectives and 

guidelines defined in the first cycle. However, they added 

the initiative to identify and propose improvement actions in 

the PHP source code most relevant to the project. Thus, the 

TD guild defined the following steps: 

• Deploy tools to support TDM. 

• Define a coding standard in PHP. 

• Define a documentation standard in PHP. 

• Identify TD in the context. 

• Train the teams on the standards and best practices. 

• Evaluate guild actions by the developers. 

The actions to monitor and guide the teams were 

incorporated into the software development process, so the 

teams have guidance on how to track and pay the TD. 

To execute the definition of coding standards and 

documentation from samples of the PHP source code, the 

guild members evaluated the impacts of the product's 

modifications. In this way, besides assessing the impacts, it 

was possible to estimate the necessary efforts and create 

practical procedures to adapt and maintain the standards. 

5.2.1 Deploy tools to support TDM 

To support decision-making on TD prioritization and 

payment actions, guild members developed two internal 

systems, one to calculate the effort needed to eliminate TD 

items from a team and the other to analyze the dependencies 

of each source file in PHP. 

Several tools were evaluated to facilitate large-scale 

changes, format the source code, and eliminate code smells. 

Although the guild did not approve tools to automatically 

make the changes without going through the developers' 

manual supervision, it was recommended to use two free 

tools (Visual Studio Code, SciTE) that presented the best 

results. One tendency is that this subject will be discussed 

again by the guild. 

5.2.2 Define a coding standard in PHP 

Setting a coding standard for PHP development aimed to 

define rules and development standards to improve 

developers' communication capacity. The ultimate goal is to 

have less disruption when the source code is maintained by 

a developer who has not created it. 

The option was to use PHP Standards Recommendation 

(PSR), which are project specifications proposed by the PHP 

Framework Interop Group (PHP-FIG). PHP-FIG is currently 

the primary standard used in PHP development and has 

source code verification tools that help in automatic 

adaptation and source code monitoring. This project 

followed the recommendations of the PSR-1 and PSR-2 

standards. 

SonarQube was used for monitoring TD, which has the 

formatting rules according to the PSR standard. 

The knowledge transfer was done through standard 

documentation and internal training for developers. 

5.2.3 Define a PHP documentation standard 

After implementing agile practices in the company, the 

developers questioned the source code's documentation, 

especially regarding its value to the product and the teams. 



Technical Debt Guild: managing technical debt from code up to build Detofeno et al. 2023 

  

According to the developers' reports, especially from 

recently hired developers, it was evident that the current 

source code did not have a standard terminology that allowed 

a quick understanding. Another situation identified by the 

team was the difficulty of finding the routines already 

implemented in the system. 

PHP Docblock standards were implemented as a 

reference for this action regarding functions, source code 

elements, classes, and methods documentation. 

PhpDocumentor (a tool that generates documentation from 

PHP source code) was used to create the documentation. 

After defining the documentation standard, a custom rule in 

SonarQube helped teams monitor and identify the source 

code that did not meet the standard. 

Similar to the previous action, the knowledge transfer 

was done by documenting the standard and delivering 

developers' internal training. 

5.2.4 Identify TD  

After defining the coding and documentation standards, it 

was necessary to review the approved rules in the first cycle. 

Guild members understood an improved knowledge of 

quality rules in this cycle.  

The 125 rules were approved and classified by priority 

and TD type, as shown in Table 3. 

 

Table 3. Second cycle: Rules classified by priority and TD type. 

Priority 

Blocker 33 

Critical 19 

Major 34 

Minor 39 

TD type 

Code Debt 44 

Defect Debt 41 

Design Debt 37 

Documentation Debt 3 

5.2.5 Train the teams 

The training was conducted to qualify and guide developers 

on changes in programming procedures and source code 

releases in PHP. The TD guild promoted three courses for 

eight groups in these first two years. Each training session 

lasted 4 hours, with one developer from each team per group 

and groups composed of 12 to 14 participants. In total, the 

guild delivered 96 training hours to almost 90 participants. 

The first training covered the use of SonarQube, and 

procedures to monitor the team's source code. The other two 

courses were about coding standards and documentation of 

the PHP source code. 

The developers who attended the training were 

responsible for passing the knowledge to the other 

developers. The training was documented and published in 

the company's internal knowledge base tools. 

5.2.6 Evaluate the actions by the developers 

At the end of the second year, a survey was applied to the 

development team to assess the impact generated by the 

TDM guild actions. The objective of the survey was to 

extract the developers' perceptions of the actions taken by 

the guild. We had 83 responses out of 89 total peripheral 

members.  

The survey had two questions. First, a closed question in 

the Likert scale format and, second, an open-ended question: 

1. Actions of the TD guild to improve the source code 

contributed to the developer's productivity or quality.  

2. In your opinion, what were the impacts of the actions 

promoted by the TD guild on projects and teams? 

Because the open-ended question was not mandatory, 52 

responses were obtained from 83 respondents. The survey 

indicated that approximately 94% agree that the TD guild's 

actions have helped improve the product quality and team 

productivity. 

A thematic analysis approach was used to analyze the 52 

responses to the open-ended question once written in natural 

language. Thematic analysis is an effective method for 

identifying, analyzing, and reporting patterns and themes 

within a searched data scope (Braun and Clarke, 2006). 

Analyzing and coding the answers, we identified patterns 

among them, and five themes emerged: compliance (31 

quotes), maintainability (16 quotes), refactoring (11 quotes), 

understandability (8 quotes), and reusability (3 quotes). 

The most cited characteristic was that the actions 

improved the standardization of the source code and the use 

of best programming practices. These actions helped 

improve the source code's understanding, refactoring, and 

maintenance (35 responses). Three developers quoted source 

code reuse as a side benefit. The standardization of the 

source code documentation helped developers locate 

existing source code in other projects. 

As reported in the open-ended question, the teams' 

significant impacts were the change in developers' behavior 

in development activities and code review. Developers were 

motivated to develop a cleaner and standards-compliant 

code. The developers sought to interact to improve the 

source code in the code review activity. 

In this context, many legacy source code was developed 

under an architecture with several anomalies, such as 

difficulties of reuse, strong coupling, and lack of separation 

of the responsibilities among software architecture layers.  

It was realized that developers understood TD's impacts 

and were concerned with refactoring the source code. Still, 

the pressure to deliver new features, lack of resources, and 

the source code's architecture hindered TD's payment. 

5.3 Third cycle 

In the first two research cycles, guild actions focused on 

source code artifacts. However, the guild understood that 

efforts to manage TD should expand to identify other types 

of immature, incomplete, or inadequate artifacts in the 

software development lifecycle that cause higher costs and 

lower quality in the long term. 

     In this cycle, the guild kept the actions for improving the 

PHP source code and created measures to manage Tests, 



Technical Debt Guild: managing technical debt from code up to build Detofeno et al. 2023 

  

Automated tests, and Build technical debts. Those were the 

most significant TDs after source code. 

The issues discussed by the TD guild for this cycle were 

around two main questions:  

i Is the current state of the functional test planning, 

documentation, and execution optimal for this context?  

ii Are build issues affecting the productivity of the teams? 

Thus, the TD guild defined the following actions: 

• Identify TD in the context. 

• Review test case documentation. 

• Define an automated test development standard. 

• Monitor automation test execution. 

• Identify Build Debt. 

5.3.1 Identify TD 

The guild members understand that annually one should 

update the version of SonarQube and review the priority of 

quality rules to the source code. 

In this cycle, 189 quality rules were reviewed, divided 

into 181 rules provided by SonarQube and eight rules 

tailored by the guild members. These 149 rules were 

approved and classified by priority and TD type, as shown 

in  

Table 4. 

 

Table 4. Third cycle: Rules classified by priority and TD type. 

Priority 

Blocker 69 

Critical 29 

Major 32 

Minor 19 

TD type 

Code Debt 46 

Defect Debt 26 

Design Debt 45 

Documentation Debt 3 

Vulnerability Debt 29 

5.3.2 Review test case documentation 

This action aims to review the description of the test cases 

executed manually or automatically. This action was 

performed by 12 POs and 13 Testers, where 2,314 test cases 

were reviewed, in which 2,097 steps are performed 

automatically daily, and 4,295 steps are performed manually 

on each new product release. 

The TestLink1 tool was used to register and review the 

test cases. The company already used Testlink to record the 

test cases, and the tool adhered to this action. 

As per the guidance of the TD guild, reviewers were to 

answer the following checklist questions about their project's 

test cases: 

• Are documented test cases suitable for the project? 

 
1 https://testlink.org/  

• Do the most critical project requirements have planned 

test cases? 

• Are the test cases updated in the software test 

management tool (TestLink)? 

• Do all test cases have a title, objective, action, steps, and 

the expected results? 

• Do test cases have the desired results that can be 

validated? 

• Do the test cases have a well-defined objective? 

5.3.3 Define an automated test standard 

The need to define a standard for developing automated test 

scripts was identified from developers' demotivation in 

creating automated tests. The guild discussed this issue along 

with some developers and team leaders, and they identified 

the following causes: 

• Automated test scripts with too many lines. 

• Outdated and redundant code. 

• Many failures due to outdated test execution 

environments, databases, and test scripts. 

• Lack of visibility into test automation results. 

     We emphasize that the use of tools to develop and execute 

automated tests and the integration with the product are 

compliant with the company's needs. 

     From the identified causes, the TD guild developed a pilot 

project with a development team, this project developed 96 

automated tests as a standard for developing new automated 

tests. 

     The guild proposed and implemented the practice of Code 

Review for the automated tests. The guild developed a 

checklist to support automated tests Code Review with the 

following questions: 

• Is the automated test documented, and does it have the 

test case and step references? 

• Does the script contain outdated code? (e. g.: Xpath, 

Sleep, non-standard selectors) 

• In image comparison tests, is it correctly referencing the 

model image? 

• Is the automated test independent? 

• Is the data kept in the test base as evidence in case of 

failure? 

• Is an evidence image generated of the correctly executed 

test at the end of the test run? 

5.3.4 Monitor automation test execution 

The teams highlighted the lack of a tool to control the 

execution of the automated tests. The proposal implemented 

by the TD guild was the development of a data analytics 

dashboard to monitor the status of the automated tests by the 

teams. Monitoring automated tests provide all developers 

and stakeholders with a view of test cycles' progress, results 

achieved, identified failures, and test execution metrics. 

https://testlink.org/


Technical Debt Guild: managing technical debt from code up to build Detofeno et al. 2023 

  

The TD Guild made available two metrics to monitor the 

test execution. The first metric presents the test execution 

status, grouping the data by day. From this metric, the teams 

can monitor the execution of automated tests. The second 

metric represents the number of documented test cases with 

automatic or manual execution. This metric helps the teams 

plan to make resources available to develop new automated 

tests. 

5.3.5 Identify Build Debt 

The company has tens of millions of lines of source code at 

a change rate of 1,850 commits per month. We highlight that 

the main advantages are that the company has a guide for 

standardizing development, a single source code repository, 

a single build system for all projects, and a single testing 

infrastructure. 

In this action, we sought to identify build times, builds' 

success rate, and which services fail most in the build 

system. 

The data was extracted from the version control system, 

where we highlight the following information, grouped by 

month: 

• Average of 1,010 merge requests. 

• Average of 3,100 requested builds. 

• Build success rate, which is the percentage of 

successfully executed builds, decreased from ~60% to 

~30% (it will be presented in Figure 7). 

• The average build time increased from ~10 to ~35 

minutes (it will be presented in Figure 8). 

• Of the 43 services performed in the compilation, the five 

services that failed the most were identified. 

• In the last month of the cycle, the compilation failures 

consumed 107,036 minutes of processing. 

6 Discussion 

In this section, we discuss the results obtained in the payment 

of TD, the main success factors, and the challenges faced. 

We also describe a guideline to support the creation of a TD 

Guild, related work, and the main threats to our work 

validity. 

6.1 Results 

The guild was present in all TDM activities. Its involvement 

in TD's categorization and prioritization provided 

confidence and reliability to the teams in TD payment. 

Classifying the quality rules by priority was performed in all 

three research cycles, so it was possible to evaluate the 

results obtained in the payment of the TD items during all 

cycles. 

TD Guild meetings were held monthly with a pre-defined 

duration of at least one to two hours. When necessary, for 

example, the guild had extra meetings to anticipate decision-

making in the planning phase. It is estimated that each active 

member spent 8 hours per month participating in the 

meetings, contributing to decision-making, participating in 

the communication group, and supporting the 

implementation of actions. 

6.1.1 Source Code Debt 

Table 5 shows the number of TD items at the beginning and 

end of each cycle, summarized by priority. The column TD 

Items Reduction means the amount of paid TD. The focus of 

this table is on showing the source code debts. 

In the first cycle, there was a reduction of approximately 

62% of the total TDs: 64% with Blocker priority, 34% with 

Critical, 70% with Major, and 11% with Minor. The 

developers' primary explanation for not paying 100% of the 

TDs with Blocker priority was their difficulty prioritizing 

refactoring source code with low importance for the project. 

By this time, these criteria were not being taken into 

consideration. 

In the second cycle, there was a decrease of 

approximately 48% of the total TDs: 67% with Blocker 

priority, 15% with Critical, 53% with Major, and 13% with 

Minor. In this cycle, the teams prioritized the TD's payment 

in the files with more defects, increasing the value of product 

quality. 

In the third cycle, the reduction percentages were lower 

than in the previous cycles. The same guidelines for 

prioritizing TD were followed in this cycle as in the previous 

ones. However, the paid TD items quantity with Blocker and 

Critical priority was higher than in the second cycle: 20% 

with Blocker priority, 46% with Critical, 28% with Major, 

and 6% with Minor. 

 

Table 5. TD items payment results by cycle. 

Priority 
TD items 

cycle start 

TD items 

cycle end 

TD items 

reduction 

%  

reduction 

1st cycle 

Blocker 8,992 3,189 5,803 64,54% 

Critical 37,441 24,574 12,867 34,37% 

Major 476,572 139,057 337,515 70,82% 

Minor 64,341 56,696 7,645 11,88% 

Total 587,346 223,516 363,830 61,94% 

2nd cycle 

Blocker 2,066 666 1,400 67,76% 

Critical 9,026 7,640 1,386 15,36% 

Major 650,533 299,642 350,891 53,94% 

Minor 98,664 85,712 12,952 13,13% 

Total 760,289 393,660 366,629 48,22% 

3rd cycle  

Blocker 12,089 9,597 2,492 20,61% 

Critical 22,517 12,017 10,500 46,63% 

Major 211,440 150,305 61,135 28,91% 

Minor 48,037 44,984 3,053 6,35% 

Total 294,083 216,903 77,180 26,24% 

 

This phenomenon was observed because the decrease in 

the first two cycles was possible once these TD items were 

mainly related to the source code formatting. The TD guild 

suggested using automated source code editor tools to 

support the payment of TD items of this nature, accelerating 

their payment. In the third cycle, it was unnecessary to use 

the tools for source code formatting, and no other tool was 



Technical Debt Guild: managing technical debt from code up to build Detofeno et al. 2023 

  

identified that could have accelerated the payment of the TD 

placed in the source code. 

In the second and third cycles, guild members reviewed 

and reclassified the priorities to be more precise in paying 

the most relevant TD for the team. Thus, it is recommended 

to analyze the results of Table 5 per research cycle. 

Due to most PHP source code analysis, an unexpected 

effect for the guild showed up: discovering dead code - 

source code that is not executed by any product's routine. 

This subject will be dealt with in the next improvement 

cycle. The guild recommendation was to record a task of the 

possible dead code identified to be evaluated by the teams at 

the beginning of each product release. 

The payment of TD items, identified in the source code, 

improved with each research cycle. Thus, Table 5 shows that 

teams have incorporated TD prevention and payment into 

their development activities. 

6.1.2 Test Debt 

In the third cycle, the TD guild went beyond the source code 

boundary to seek solutions to improve the internal quality of 

the product and reduce maintenance costs in other product 

artifacts, such as test cases, automated test scripts, and the 

build pipeline. 

The test cases were reviewed according to the guidelines 

passed on by the TD guild. As previously stated, this action 

involved 12 POs and 13 Testers who reviewed 2,314 test 

cases and 6,342 test steps. Ten professionals defined a 

standard for developing the automated tests, rewriting 

~1,160 test scripts compliant with the new standard. 

A dashboard with automated test execution metrics was 

developed to help the teams monitor the results. Figure 5 

shows all teams' test execution status, but the dashboard also 

presents the data per team. This dashboard reflects the 

moment after defining the standard for developing 

automated tests (action 5.3.3). The chart illustrates the test 

scripts executed daily for nine days. For example, on Day 1, 

1,070 test cases passed, and 78 failed. The chart shows that 

~6.5% of the performed tests have flaws that the responsible 

teams should analyze. 

 
Figure 5. Tests execution status per day. 

Figure 6 shows the percentage of the automated test for 

all teams, but the organizational dashboard also presents data 

per team. After reviewing the test cases, this data was 

obtained to track the number of test steps that have 

automated and manual execution. During the 3rd cycle, the 

automated test scripts corresponded to 2,106 (33.21%) test 

steps, and there are still 4,236 (66.79 %) automated test steps 

to be created. 

 
Figure 6. Percentage of automated tests. 

6.1.3 Build Debt 

In the build procedure, the TD guild identified the existence 

of Build Debt because the build time, the success rate of the 

builds, the failures in the build systems are not meeting the 

needs of the context, and they are causing rework for Testers 

and Developers. In this action, the guild's goal was to present 

quantitative evidence of the existence of Build Debt. 

The data from the charts presented in Figure 7 and Figure 

8 were extracted from the last 22 months and grouped by 

month. This period was chosen because the number of builds 

requested per month was not less than 10% of the previous 

six months' average, 1,037 builds. The months were selected 

until the monthly build quantity was higher than 933 builds. 

This procedure was chosen to mitigate the risk of the number 

of builds influencing the results. 

Each time a build is not successfully executed, the 

developer needs to request the build again, thus causing a 

waste of resources. Figure 7 presents the percentage of 

requested builds completed successfully (e.g., having 200 

requested builds, 125 builds were executed successfully, 

resulting in a 62,5% Build Success Rate). 

It can be seen in Figure 7 that the percentage of builds 

successfully executed had fluctuations until month 17, with 

ups and downs. The last five months dropped below the 

previous periods, and the rate stays at ~30% of the total 

builds requested. 

 
Figure 7. Percentage of build success rate. 

Figure 8 shows the average build times per month (in 

minutes) over 22 months. Visually it is possible to see that 

the average time to execute a build has increased. In the first 

five months, the average was ~10 minutes. In the last five 

months, the average was over 35 minutes. 



Technical Debt Guild: managing technical debt from code up to build Detofeno et al. 2023 

  

 

 
Figure 8. Average build time per month. 

By analyzing the graphs in Figure 7 and Figure 8, it is 

possible to observe the presence of Build Debt, as they 

present evidence that developer rework is increasing, even 

without increasing build demand. The build results are below 

the goal desired by the company. Those responsible agreed 

that the optimal value for the company should be a Build 

success rate higher than 60% and the average build time per 

month lower than 15 minutes. The DevOps team will be 

responsible for implementing measures to improve the Build 

Debt. 

6.2 Success Factors 

This section highlights the main elements that contributed to 

successfully implementing TD guild's actions and 

continuity. They were analyzed during retrospective 

meetings performed by the guild team: 

• Sponsorship of top management: the sponsorship of the 

area director positively contributed to the engagement of 

members and teams. The members felt motivated to 

participate, knowing that the suggested actions had 

organizational support. The teams adhered to the 

changes because they knew that the activities were 

aligned with the top executive view. 

• Support tools: The tools used were fundamental to 

giving TD visibility and transparency. For example, we 

used the data provided by SonarQube in Data Analytics 

tools for monitoring and tracking actions of TD 

payments. 

• Objectives and guidance well defined: the goals and 

directions established in the guild's first meetings 

delimited the scope of subjects and tasks aligned to the 

organization's needs. 

• Qualified team: the TD guild was trustworthy to the 

teams and stakeholders once the team was composed of 

technical experienced and reference professionals. 

• Alignment with the board of directors: all decisions were 

aligned with the company's board of directors. 

• Visible results: the guild engagement was mainly due to 

seeing the suggested actions generating value for the 

organization and knowledge for the members. 

6.3 Main Challenges 

During this study period, the TD guild was created and 

obtained recognition from the organization but, at the same 

time, faced several challenges: 

• Aligning the members' issues with the organization's 

needs to generate value for both is a constant challenge 

in the guild. This challenge was mitigated with the early 

alignment of the guild's objectives and guidelines with 

the sponsor and members. 

• In suggesting the change actions, guild members found 

a complex context in which the size of the source code 

base and the rate at which it changes were significant. 

The guild had technical skills to analyze the environment 

in detail and propose viable solutions to overcome this 

challenge. The guild also sought to communicate the 

purposes and expected results of the changes clearly and 

permanently to achieve engagement. 

• The standards suggested by the guild affected the 

individual characteristics related to software 

development. The developers had their coding habits 

and standards before the guild started. With the guild, 

changes happened and required a development culture 

shift. 

• In an organizational environment where the 

professionals have several activities and commitments, 

finding time to devote to the guild's tasks was another 

challenge. This challenge was mitigated by having the 

area director sponsor the guild. Thus, the guild tasks 

were prioritized and executed during regular working 

hours. 

• The actions that involved data analysis were necessary 

to obtain data viewing permission from teams in other 

areas of the organization. These accesses were granted 

only to a guild member responsible for extracting and 

disseminating the data. 

• The sponsor and the teams empirically recognized that 

the actions promoted by the guild contributed to 

software development. However, it was impossible to 

quantitatively evaluate the results in the software's 

maintenance and evolution. 

6.4 Resulting guidelines 

After analyzing the results obtained in the three research 

cycles, Table 6 presents some guidelines to support the 

creation of a TD Guild. 

     We have splited it into three sections: general 

recommendations, guild meetings and guild actions. In the 

first part we present guild planning and setup. The second 

presents the guidelines for the meetings. The third shows the 

recommendations upon the guild actions. 

 

Table 6. Guidelines for building a TD Guild 

PART I - GENERAL RECOMMENDATIONS 

Context: The TD guild should emerge within an organizational 

context, aligned with strategic objectives and the needs of the 

software development teams. 

 

Purpose: To improve internal quality and reduce maintenance 

costs and software evolution. 

 



Technical Debt Guild: managing technical debt from code up to build Detofeno et al. 2023 

  

Challenge: To generate value for the product and add knowledge 

to software development teams. 

 

Guidelines: To develop purpose, objectives, and guidelines to 

conduct the meetings and the actions aligned with the 

organization's expectations. 

 

Invitation:  The invitation for TD Guild should be to all 

professionals involved in the product's maintenance and 

evolution activities. The invitation should be sent by the guild 

sponsor. 

 

Sponsor: Responsible for evaluating the proposed actions and 

approving and providing the necessary resources to execute the 

tasks. 

 

Coordinator: The coordinator is responsible for organizing the 

subjects and meetings, monitoring the execution of tasks, 

supporting guild members, and aligning the needs with the 

sponsor. 

 

Active member: An active member is a motivated person who 

participates in the meetings and leads the actions proposed by 

the TD guild. 

 

Review: The objectives and guild needs may change over time. 

Thus,  guild members should review goals and procedures 

periodically. We recommend the yearly TD guild review. 

 

PART II - GUILD MEETINGS 

Meeting schedule: Guild meetings can be monthly with a 

duration of two hours or biweekly with a duration of one hour. 

 

Ideas discussion: Each member presents the ideas and problems 

to which the TD guild should pay attention. 

 

Actions selection: Actions are selected. For each action a guild 

member is assigned to be responsible for approving and 

implementing the action. 

 

Action goal definition: the goal of the action must be aligned in 

the meetings. 

 

Monitoring: The progress is presented and discussed during 

guild meetings. 

 

PART III - GUILD ACTIONS 

Approval: The sponsor approves the actions so the person in 

charge can prioritize this task with the other demands of the 

team. 

 

Build/Execution actions: Lists the action steps needed to achieve 

the established goals. Desjardins (2011) suggests that for the 

execution of the action, consider: ownership, action steps, 

responsibility, support, informed, metrics and budget, milestone 

date, and completion date. 

 

Monitoring: The actions in progress are discussed during guild 

meetings. 

 

Communication: The specific issues about the actions can be 

discussed in an internal communication channel or by e-mail 

after de meeting. 

6.5 Related Work 

The TD guild has the essential elements of the domain, 

community, and practice that characterize a CoP, as Wenger, 

McDermott, and Snyder (2002) described. The guild 

implemented by our research project has different types of 

members, as identified by Smite et al. (2019), as previously 

presented in Figure 4. 

The TD guild followed Smite et al. (2019) 

recommendations, establishing a straightforward practice 

and a well-defined scope, having regular interactions with 

tasks and responsibilities that showed signs of member 

engagement with the results. We confirmed the statement of 

Smite et al. (2019) that the sponsor's authority and attention 

contribute to helping achieve the guild's objectives. Our 

study confirmed the relevance of the sponsor role. As 

already pointed out, the director played an essential role in 

sponsoring the guild. 

The guild's formation followed the guidelines of several 

studies in the area. Still, the TD guild differentiates itself by 

supporting the deployment and continuity of the TDM in 

software development. 

Despite the lack of studies on strategies to implement and 

monitor TDM in a business context, several studies present 

suggestions and challenges that a TD guild can contribute: 

• It considers the context in identifying and evaluating TD, 

as Kruchten et al. (2012) suggested. 

• To help the teams to quantify, prioritize and justify the 

payment of TD, challenges cited in the studies by 

Sharma et al. (2015), Fernández-Sánchez et al. (2017), 

and Cai and Kazman (2018) were also observed in our 

study. 

• It is applicable to provide transparent communication 

about the expected returns on TD payments (Fernández-

Sánchez et al., 2017). 

• It involves all stakeholders in decision-making for TDM, 

as suggested in (Fernández-Sánchez et al., 2017; Rios et 

al., 2018). 

The studies that were part of the tertiary study by Rios et 

al. (2018) did not point out strategies that collaborate to 

prevent TD. Our study obtained it through source code 

standardization, teams training, test scripts development 

standardization, and code review for automated tests. Thus, 

a TD guild can also be used as a strategy to prevent TD. 

6.6 Generalization and threats to validity 

It was observed that the sponsor or the guild coordinator 

invited the guild participants. It may be that inviting the 

people to join may have created some embarrassment to 

deny the invitation and may have intimidated peripheral 

members into participating more actively in the guild. This 

can also be seen as a positive factor (once the director 

sponsored the project). 



Technical Debt Guild: managing technical debt from code up to build Detofeno et al. 2023 

  

For the actions proposed by the TD guild that were 

aligned with the company's goals and were approved by the 

sponsor, the TD guild obtained the necessary resources to 

continue the actions. Because of this, the TD guild can be 

interpreted as a working group at some point. 

This study aimed to present the results and challenges of 

a TD guild obtained throughout three action research cycles. 

This paper does not detail the calculations, resources, 

strategies, and tools adopted to support TDM activities. 

7 Conclusion 

With the results obtained, it is possible to conclude that the 

guild can contribute to technical debt management in an 

organization. 

The TD guild was present in all TDM activities identified 

in the source code and was responsible for preventing TD 

from creating standards and guidelines for the teams. The 

guild also contributed to determining the TDs that were most 

aligned with the company's objectives. TD is often incurred 

because people do not know it. The guild disseminated 

knowledge about TD and guided developers in best practices 

and development standards. Besides, it helped deploy tools 

to verify and monitor the source code, making incorrect 

development difficult. 

In the first two years, the TD guild focused on the TD 

identified in the PHP source code, but in the third year, the 

actions promoted by the TD guild reached other software 

artifacts, such as test cases, automated test scripts, and the 

build pipeline. The TD Guild promoted actions in different 

TD types: Automation Test Debt, Build Debt, Code Debt, 

Defect Debt, Design Debt, Documentation Debt, and Test 

Debt. 

These experiences can be helpful for other professionals 

and provide practical knowledge to help with the guild, 

CoPs, and TDM research. Setting up a guild with periodic 

meetings was the most adherent proposal to the company's 

context. The continuity and maintenance of TDM tools were 

passed on to two company professionals. As the company 

evolves in TDM, the need for a professional or an allocated 

team responsible for TDM also increases. This work raises 

the question about the lack of a professional trained and 

dedicated to the TDM in organizations: the TD Manager. 

We are now working to define and implement an 

incremental and evolutionary TDM process aligned with 

empirical evidence of use in the software industry. 

Acknowledgments 

The authors would like to thank the company and the 

professionals who participated in this research. 

References 

Alves, N., Mendes, T., de Mendonça, M., Spínola, R., Shull, 

F., & Seaman, C. (2016). Identification and management 

of technical debt. Information and Software Technology, 

70(C). 

Ampatzoglou, A., Michailidis, A., Sarikyriakidis, C., 

Ampatzoglou, A., Chatzigeorgiou, A., & Avgeriou, P. 

(2018). A Framework for Managing Interest in Technical 

Debt: An Industrial Validation. 2018 IEEE/ACM 

International Conference on Technical Debt (TechDebt). 

Bavani, R. (2012). Distributed Agile, Agile Testing, and 

Technical Debt. IEEE Software, 29(6), pp. 28-33. 

doi:10.1109/MS.2012.155 

Besker, T., Martini, A., & Bosch, J. (2017). The Pricey Bill 

of Technical Debt - When and by whom will it be paid? 

2017 IEEE International Conference on Software 

Maintenance and Evolution (ICSME). 

doi:10.1109/ICSME.2017.42 

Besker, T., Martini, A., & Bosch, J. (2019). Software 

developer productivity loss due to technical debt - A 

replication and extension study examining developers' 

development work. The Journal of Systems and Software, 

pp. 41–61. doi:https://doi.org/10.1016/j.jss.2019.06.004 

Braun, V., & Clarke, V. (2006). Using thematic analysis in 

psychology. Qual. Res. Psychol. 3, pp. 77–101. 

Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., 

Kruchten, P., . . . Zazworka, N. (2010). Managing technical 

debt in software-reliant systems. FoSER '10 Proceedings 

of the FSE/SDP workshop on Future of software 

engineering research, pp. 47-52. 

Codabux, Z., Williams, B., Bradshaw, G., & Cantor, M. 

(2017). An empirical assessment of technical debt 

practices in industry. Journal of Software: Evolution and 

Process 2017. doi:DOI:10.1002/smr.1894 

Connolly, C. (1992). Team-oriented problem solving. IEE 

Seminar on Team Based Techniques Design to 

Manufacture. 

Coughlan, P., & Coghlan, D. (2002). Action Research for 

Operations Management. January 2002 International 

Journal of Operations & Production Management, 22, pp. 

220-240. doi:10.1108/01443570210417515 

Desjardins, M. (2011). How to execute corporate action plans 

effectively. Business In Vancouver. Archived from the 

original on 22 March 2014.  

Dick, B. (2000). A beginner's guide to action research. 

Acesso em 03 de 09 de 2019, disponível em 

http://www.aral.com.au/resources/guide.html 

Fernández-Sánchez, C., Garbajosa, J., Yagüe, A., & Pereza, 

J. (2017). Identification and analysis of the elements 

required to manage technical debt by means of a systematic 

mapping study. Journal of Systems and Software, 124, pp. 

22-38. doi:https://doi.org/10.1016/j.jss.2016.10.018 

Ghanbari, H., Besker, T., Martini, A., & Bosch, J. (2017). 

Looking for Peace of Mind? Manage your (Technical) 

Debt. An Exploratory Field Study. Published in: 2017 

ACM/IEEE International Symposium on Empirical 

Software Engineering and Measurement (ESEM). 

doi:10.1109/ESEM.2017.53 

Griffith, I., Taffahi, H., Izurieta, C., & Claudio, D. (2015). A 

simulation study of practical methods for technical debt 

management in agile software development. Proceedings 

of the Winter Simulation Conference 2014. 

doi:10.1109/WSC.2014.7019961 



Technical Debt Guild: managing technical debt from code up to build Detofeno et al. 2023 

  

Guo, Y., Spínola, R., & Seaman, C. (2016). Exploring the 

costs of technical debt management - a case study. 

Empirical Software Engineering, 21(1), pp. 159–182. 

doi:https://doi.org/10.1007/s10664-014-9351-7 

Kniberg, H. (2014). Spotify engineering culture. (Spotify) 

Accessed on: Oct/30/2020, Available: 

https://engineering.atspotify.com/2014/03/27/spotify-

engineering-culture-part-

1/?fb_comment_id=278872278947916_36091417074372

6 

Kruchten, P., Nord, R., & Ozkaya, I. (2012). Technical Debt: 

From Metaphor to Theory and Practice. IEEE Software, 

29(6), pp. 18-21. doi:10.1109/MS.2012.167 

Larman, C., & Vodde, B. (2010). Practices for Scaling Lean 

& Agile Development: Large, Multisite, and Offshore 

Product Development with Large-Scale Scrum. Addison-

Wesley Professional. 

Lave, J., & Wenger, E. (1991). Situated Learning: Legitimate 

Peripheral Participation. 

Martini, A., & Bosch, J. (2016). An Empirically Developed 

Method to Aid Decisions on Architectural Technical Debt 

Refactoring: AnaConDebt. 2016 IEEE/ACM 38th 

International Conference on Software Engineering 

Companion (ICSE-C). 

Martini, A., Bosch, J., & Chaudron, M. (2014). Architecture 

Technical Debt: Understanding Causes and a Qualitative 

Model. 2014 40th EUROMICRO Conference on Software 

Engineering and Advanced Applications. 

Martini, A., Fontana, F. A., Biaggi, A., & Roveda, R. (2018). 

Identifying and Prioritizing Architectural Debt Through 

Architectural Smells: A Case Study in a Large Software 

Company. Springer International Publishing. 

doi:https://doi.org/10.1007/978-3-030-00761-4_21 

Mo, R., Snipes, W., Cai, Y., Ramaswamy, S., Kazman, R., & 

Naedele, M. (2018). Experiences applying automated 

architecture analysis tool suites. ACM/IEEE International 

Conference on Automated Software Engineering (ASE 

2018), pp. 779–789. doi:10.1145/3238147.3240467 

Nord, R., Ozkaya, I., Kruchten, P., & Gonzalez-Rojas, M. 

(2012). In Search of a Metric for Managing Architectural 

Technical Debt. 2012 Joint Working IEEE/IFIP 

Conference on Software Architecture and European 

Conference on Software Architecture, pp. 20-24. 

doi:10.1109/WICSA-ECSA.212.17 

Paasivaara, M., & Lassenius, C. (2014). Deepening Our 

Understanding of Communities of Practice in Large-Scale 

Agile Development. doi:10.1109/AGILE.2014.18 

Rios, N., Mendonça, M., & Spínola, R. (2018). A tertiary 

study on technical debt: Types, management strategies, 

research trends, and base information for practitioners. 

Information and Software Technology, 102, pp. 117-145. 

doi:https://doi.org/10.1016/j.infsof.2018.05.010 

Schmid, K. (2013). A Formal Approach to Technical Debt 

Decision Making. QoSA '13 Proceedings of the 9th 

international ACM Sigsoft conference on Quality of 

software architectures, pp. 153-162. 

doi:10.1145/2465478.2465492 

Seaman, C., Guo, Y., Zazworka, N., Shull, F., Izurieta, C., 

Cai, Y., & Vetrò, A. (2012). Using technical debt data in 

decision making: Potential decision approaches. 2012 

Third International Workshop on Managing Technical 

Debt (MTD). doi:10.1109/MTD.2012.6225999 

Sharma, T., Suryanarayana, G., & Samarthyam, G. (2015). 

Challenges to and Solutions for Refactoring Adoption. 

IEEE Software, 32(6), pp. 44-51. 

Smite, D., Moe, N. B., Floryan, M., Levinta, G., & 

Chatzipetrou, P. (2020). Spotify guilds. 63(3), pp. 56–61. 

doi:https://doi.org/10.1145/3343146 

Smite, D., Moe, N. B., Levinta, G., & Floryan, M. (2019). 

Spotify Guilds: How to Succeed With Knowledge Sharing 

in Large-Scale Agile Organizations. 32(2), pp. 51-57. 

doi:10.1109/MS.2018.2886178 

Spínola, R., Vetrò, A., Zazworka, N., Seaman, C., & Shull, 

F. (2013). Investigating technical debt folklore: Shedding 

some light on technical debt opinion. 2013 4th 

International Workshop on Managing Technical Debt 

(MTD). doi:10.1109/MTD.2013.6608671 

Tom, E., Aurum, A., & Vidgen, R. (2013). An exploration of 

technical debt. Journal of Systems and Software, 86(6), pp. 

1498-1516. doi:https://doi.org/10.1016/j.jss.2012.12.052 

Wenger, E., & Wenger-Trayner, B. (2015). Introduction to 

communities of practice. A brief overview of the concept 

and its uses. Accessed on: Oct/30/2020, 

Available:http://wenger-trayner.com/wp-

content/uploads/2015/04/07-Brief-introduction-to-

communities-of-practice.pdf 

Wenger, É., McDermott, R. A., & Snyder, W. (2002). 

Cultivating Communities of Practice: A Guide to 

Managing Knowledge. Harvard Business Press. 

Wolek, F. (1999). The managerial principles behind guild 

craftsmanship. 5(7). doi:10.1108/13552529910297460 

Yuanfang, C., & Kazman, R. (2019). DV8: Automated 

Architecture Analysis Tool Suites. IEEE/ACM 

International Conference on Technical Debt (TechDebt), 

pp. 53-54. doi:10.1109/TechDebt.2019.00015 

Zengyang, L., Avgeriou, P., & Liang, P. (2015). A systematic 

mapping study on technical debt and its management. 

Journal of Systems and Software, pp. 193–220. 

doi:10.1016/j.jss.2014.12.027 

 


	Technical Debt Guild: managing technical debt from code up to build
	1  Introduction
	2  Background
	2.1 Guild or Communities of Practice (CoP)
	2.2 Technical Debt Management (TDM)

	3 Research Method
	4 Context
	5 Research cycles
	5.1 First cycle
	5.1.1 Deploy tools to support TDM
	5.1.2 Identify TD
	5.1.3 Guide the teams in TD payment
	5.1.4 Monitor TD payment

	5.2 Second cycle
	5.2.1 Deploy tools to support TDM
	5.2.2 Define a coding standard in PHP
	5.2.3 Define a PHP documentation standard
	5.2.4 Identify TD
	5.2.5 Train the teams
	5.2.6 Evaluate the actions by the developers

	5.3 Third cycle
	5.3.1 Identify TD
	5.3.2 Review test case documentation
	5.3.3 Define an automated test standard
	5.3.4 Monitor automation test execution
	5.3.5 Identify Build Debt


	6 Discussion
	6.1 Results
	6.1.1 Source Code Debt
	6.1.2 Test Debt
	6.1.3 Build Debt

	6.2 Success Factors
	6.3 Main Challenges
	6.4 Resulting guidelines
	6.5 Related Work
	6.6 Generalization and threats to validity

	7 Conclusion
	Acknowledgments

	References

