Journal of Software Engineering Research and Development, 2024, 12:1, doi: 10.5753/jserd.2024.3086

© This work is licensed under a Creative Commons Attribution 4.0 International License..

Using Third-Party Components’ Metadata to Analyze
Cross-cutting Concerns

Luis Paulo da Silva Carvalho [Instituto Federal da Bahia | luiscarvalho@ifba.edu.br]

Thiago Souto Mendes [Instituto Federal da Bahia | thiagosouto@ifba.edu.br |

Felipe Gustavo de Souza Gomes [Universidade Federal da Bahia | felipegustavo@dcc.ufba.br |
Savio Freire [Instituto Federal do Ceara | savio.freire@ifce.edu.br |

Renato Lima Novais [Instituto Federal da Bahia | renato@ifba.edu.br |

Manoel Gomes Mendonca [Universidade Federal da Bahia | manoel.mendonca@ufba.br |

Abstract Context: Modularity is a key concept in software development. Well-modularized systems are easier to
maintain and evolve, but achieving good modularity is difficult. Concerns that are important, but not central to
a systems’ main business rules, frequently end up scattered and entangled throughout several software modules.
Those so called cross-cutting concerns are a major source of loss of modularity and code decay in software systems.
Motivation: Studies on cross-cutting concerns often resort to manual identification of concerns, but manual iden-
tification is effort demanding, does not scale, and tends to be imprecise. Automatic approaches are therefore very
attractive when the codebase is extensive. In modern systems, developers implement modules to address central
business rules, but they tend to add third-party components in the codebase to materialize concerns related to other
secondary aspects. Logging, database access, and tests automation are examples of concerns that are usually imple-
mented with the help of imported components and are prone to scatter and tangle throughout the codebase. Aims:
This paper proposes a method to track this type of cross-cutting concern. Our work takes advantage of the addition
of metadata about components to track them. The method scales by automating the identification and analysis of
concerns scattered throughout the software codebase. We define a new metric, Dedication to Concern (DtC), to
measure how much source code modules focus on implementing the identified concerns. Working Method: We
describe our method to mine cross-cutting concerns from the metadata related to the use of components. The method
is instantiated as a tool, architectural knowledge suite (AKS). The tool is used to analyze concerns in a set of large
Java projects. The results are used to feed an action research study, during which software development specialists
analyze the AKS outputs to evaluate and evolve the method. Conclusion: The semi-automated approach is feasible
and scalable, and can be used to analyze secondary concerns that are currently being imported into modern software

systems via third-party components.

Keywords: Mining, Concerns, Components, Static Analysis

1 Introduction

Software development approaches depend on modularity as
a critical concept to create, maintain, and evolve systems. Ide-
ally, a software module should encapsulate the behavior of
a single concern, i.e., anything that stakeholders consider as
a conceptual unit (Robillard and Murphy, 2002; Sant’Anna
et al., 2007). Logging of systems’ routines, database access,
and test automation are examples of concerns. Specializing
software modules to implement specific responsibilities can
ensure that the maintenance and evolution of each concern
require the modification of a few parts of a software system.
However, the concerns can be tangled or scattered making it
difficult the software evolution activities.

The tangling and scattering of concerns through source
code are phenomena that affect the modularity of systems.
While tangling is a state where lines associated with different
concerns are interwoven (Hannemann and Kiczales, 2001),
scattering is related to situations in which the code of a sin-
gle concern spreads throughout multiple units of a system’s
codebase (Juhar and Vokorokos, 2015). Concerns that tend to
scatter and tangle are known as cross-cutting concerns. Code
fragments that implement cross-cutting concerns are hard to
maintain because developers usually need to locate the con-

cerns through multiple modules (He and Ye, 2015), impact-
ing essential tasks in software development, e.g., require-
ments analysis that involves refining and separating concerns
to understand their interrelationships (Bellomo et al., 2014).

Keeping track of concerns through development is a time
and effort-consuming task. Depending on the size of the
codebase and how impacting the scattering and tangling of
concerns are, executing this task can be counter-productive.
Hence, it is important to define methods to identify and an-
alyze concerns. Available methods have comprised the use
of: (i) manual identification/mapping of concerns; (ii) infor-
mation stored in software documents, e.g., software require-
ments documents (SRDs) (Rosenhainer, 2004) and software
architecture documents (SADs) (Diaz-Pace et al., 2016) can
be used to find concerns; and (iii) automation based on static
and dynamic analyses of software projects (Dit et al., 2013;
Bernardi et al., 2016). Static analysis refers to the analysis of
syntactic models extracted from the source code, e.g. abstract
syntax trees and symbol tables. Dynamic analysis refers to
approaches that trace the execution of software programs to
find concerns.

The aforementioned methods are relevant and can help to
locate and evaluate concerns, but they often fall short of be-
ing precise and adequate under unfavorable circumstances.

mailto:luiscarvalho@ifba.edu.br
mailto:thiagosouto@ifba.edu.br
mailto:felipegustavo@dcc.ufba.br
mailto:savio.freire@ifce.edu.br
mailto:renato@ifba.edu.br
mailto:manoel.mendonca@ufba.br

Using Third-Party Components’ Metadata to Analyze Cross-cutting Concerns

For example, developers frequently fail to create and update
documents because (Robillard et al., 2017): (i) it is costly
to write and maintain them, and (ii) considering that they
are non-executable artifacts, their presence and correctness
are not critical to the construction of software systems. Auto-
mated analysis can yield promising approaches to concerns
identification.

In related literature, studies have proposed automatic and
semi-automatic ways of identifying and visualizing concerns
(Robillard and Murphy, 2002; Porubdn and Nosal, 2014;
Juhar and Vokorokos, 2015; He and Ye, 2015; Shaikh and
Lee, 2016; Nunez-Varela et al., 2017; Carvalho et al., 2018,
2020). For example, Juhar and Vokorokos (2015) investi-
gated what level of granularity is useful for most developers
when dealing with concerns and Nunez-Varela et al. (2017)
proposed a technique for finding relevant information from
documents containing unstructured text. Despite current ef-
forts, none of these studies investigated how third-party com-
ponents’ metadata can be used to identify concerns.

Third-party components are external modules that devel-
opment communities make available for reuse. Developers
usually implement modules to address core business rules,
but they often import components in the source code to ma-
terialize concerns related to many secondary aspects (e.g.,
logging, database access, security, and encryption). The use
of third-party components has become common practice in
modern software systems because importing components is a
way to reduce development and maintenance effort (Agiiero
and Ballejos, 2017; Palyart et al., 2017).

The goal of this work is to take advantage of the meta-
data related to the use of components in software projects.
We want to provide a way to extract and analyze informa-
tion about cross-cutting concerns through the historical data
of software systems. To achieve this goal, we performed the
following activities:

1. We developed a method to identify cross-cutting con-
cerns. The method comprises a set of activities that
use metadata for the identification of third-party com-
ponents contained in (public) software repositories and
the use of those in the analyzed codebase (details in Sec-
tion 2).

2. We automated our method as a tool, named architectural
knowledge suite (AKS), to instantiate and automatize
the activities of our method (described in Section 3).

3. We mined software repositories using AKS to produce a
data set to allow the evaluation of our method (presented
in Section 4).

4. We improved our method and tool by conducting an ac-
tion research with the help of software development spe-
cialists (discussed in Section 6).

Although we have already used our method to conduct pre-
vious investigations (Carvalho et al., 2018, 2020), we have
not center-pointed any study to evaluate it. In other words,
we already applied our method as a part of other studies’
strategy to extract concern-related information, but we have
not dedicated any effort to pass it through the scrutiny of de-
velopment specialists yet. Thus, we focus on hearing their
opinions in this new study. After evaluating our method, our

Carvalho et al. 2024

identification and classification of concerns were considered
acceptable.

We have made AKS available for reuse, as it can help prac-
titioners and researchers to perform further studies, together
with the comprehensive data set produced for this study. The
data set comprises: (i) a classification of concerns which we
extracted from software projects; and (ii) a categorization of
concerns regarding their relationship with systems’ source
code artifacts, as a metric which we call Dedication to Con-
cern (DtC).

This paper is organized as follows: Section 2 presents our
method. Section 3 shows how we created a tool, AKS, based
on the method. Section 4 describes how we used AKS to fill
concern-related information into a data set. In Section 6, we
discuss the results of our action research study. We identify
the threats to the validity of this work in Section 7. In Section
8, we elicit some related work. Our final remarks and future
work can be found in Section 9.

2 Our Method

We developed a method to identify and analyze concerns in
a semi-automatic manner. The method is composed of the
activities, as shown in Figure 1.

We were able to automate all activities that Figure 1 iden-
tifies as “Automatic Activity”. Few others, identified in the
figure as “Manual Activity”, are dependent on manual pro-
cessing and data analysis. Activities 1 and 2 are dedicated to
the mining of the concerns and the ones we now aim at to au-
tomate as much as possible. Activities 3 and 4 are dependent
on the manual exploration of the data, but we consider them
as part of the method as well, because the results of their anal-
ysis can be automated and incorporated to our method later
on.

Although we focus on Java projects’ throughout this work,
the figure exhibits two possible ways to instantiate our
method depending on the adopted development technology,
e.g., Javaand JavaScript. We aim this study at Java because it
was the first programming language that made us believe that
it was possible to mine third-party components’ concerns.
This came from observing the preponderance of source code
artifacts that could enable the extraction of such information,
as we further explain while enumerating our method’s activ-
ities:

1. Identify concerns: the method takes advantage of Java
projects” POM and Gradle files and JavaScript systems’
package files. Considering Java, mining components’ meta-
data from POM/Gradle files' enables the recovering of de-
velopers’ decisions related to the implementation of Java
projects’ concerns (activity 1.1). Depending on the cho-
sen programming language, we complement the mining of
the metadata by retrieving information about Java compo-
nents from either MVNRepository? or JavaScript compo-
nents from NPMRepository>. MVNRepository is a web por-
tal responsible for indexing useful metadata concerning third-
party Java components. Our method uses MVNRepository to

I'Section 4 provides more details about POM/Gradle files
Zhttps://mvnrepository.com/
3https://www.npmjs.com/

Using Third-Party Components’ Metadata to Analyze Cross-cutting Concerns

Carvalho et al. 2024

2. Associate concerns
with source code
artifacts

1. Identify Concerns

4, Perform
specialized analysis

3. Export dataset for
specialized analysis

Third-party Components' Metadata

Categorized

Dataset Database

3.1. Define export 4.1. Write analysis

4.3. Perform

Specialized N
analysis

dataset

H 1
' '
' '
: :
' '
' '
' '
' '
1 T
' ' '
' ' '
' ' '
' ' '
' ' H
' ' '
' . ! strategy ' script
E Commits H H Automatic Activity
' '
' ' '
POM/GRADLE ' ' '
FILES gackaasiie: : : : o
' ' '
E i . Manual Activity
i . :
' ' '
- - - ¢
' ' '
' '
1.1. Mine the ' 2.1. Mine source ! E
metadata ! code historical data ' '
' '
! E H Java Projects
l : l : : J
' ' '
' ' '
- H 2.2. Associate ' '
1.2. Retrieve extra data about components ' concerns with source ' H Javascript
H code artifacts H H Projects
'
1.2. Retrieve extra 1.2. Retrieve extra ' o ! E
data from data from ' l ! '
J MVNRepository Js NPMRegistry ' P E E
' 2. Laledlate ' : 4.2. Load
! concem-related ! 2 Sl i specialized dataset
' metrics . B
e e
'
:
'
1.3. Reach !
consensus about :
concems '
f :
'
'
'
- i
'
'
'
'
'
'
'
'
'

Figure 1. Our method’s activities (Adapted from Carvalho et al. (2020))

mine categories for components found in POM/Gradle files
(activity 1.2). As MVNRepository does not provide a cate-
gory for all components*, a manual classification of concerns
is required (activity 1.3). The execution of this task generates
a comprehensive data set of categorized concerns;

2. Associate concerns with source code artifacts: the main
goal here is to determine which source code artifacts are af-
fected by the concerns. For instance, in Java projects, this ac-
tivity can associate the component, dbunit, with the “.java”
files that import it (import org.dbunit) to automate tests. In
addition, we calculate some important metrics related to the
association between concerns and artifacts (more details in
Section 4);

3. Export data set for specialized analysis: by mining con-
cerns through the evolution of applications, our method has
the potential to generate a large data set. We believe that it is
advantageous to split the data into subsets to support specific
studies. We achieve this goal by externalizing the informa-
tion mined from software projects in a more concise reusable
way: as a comma-separated-value (CSV) data set. We believe
that exporting the data set as CSV files maximizes reusability
because this type of file can be processed by different tools
to automate varied investigations (e.g., spreadsheet editors).
This task requires the configuration of exporting strategies
(activity 3.1) to select data from the mined information and

4More information about why some components are not categorized by
MVNRepository can be found in Raemaekers et al. (2017) and Velazquez-
Rodriguez and De Roover (2020).

to generate and export a specialized data set (activity 3.2);

4. Perform specialized analysis: we think that scripts are
the best way to deal with the data mined from software
projects. So, we have added activities to our method ded-
icated to write analysis scripts. We count on the use of R-
language-based scripts to load (activity 4.2) and run the anal-
ysis (activity 4.3) on the data set generated by the previous ac-
tivity (export data set for specialized analysis). Writing anal-
ysis routines as scripts (activity 4.1) favors the expansion of
our approach to consider investigations other than the ones
we have conducted (Carvalho et al., 2018, 2020).

As aforementioned we now focus on Java-based projects,
but our method is generalized enough to embrace other pro-
gramming technologies, e.g., Javascript (as seen in Figure 1).
We provide more information about the generalization of our
method in Section 9.1.

3 Our tool: Architectural Knowledge
Suite (AKS)

In this section, we describe our tool, named Architectural
Knowledge Suite (AKS), that semi-automates our method.
AKS allows us to mine concerns from software projects and
determine how they are associated with source code artifacts.
Figure 2 shows the main components of AKS’ architecture.
We grouped AKS features into four main modules: miners,
model, persistence, and exporters.

https://www.r-project.org/
https://www.r-project.org/

Using Third-Party Components’ Metadata to Analyze Cross-cutting Concerns

/org/archknowledge

/miners

MavenMiner PackageMiner

ArchKnowledgeMiner

)

Repository Miner

3
MongoDB

H mines information about

ﬁ depends on

Carvalho et al. 2024

/model
ThirdPartyComponent
/exporters Dgtgsvet I

L

/persistence

R-language
scripts

H stores information in

Figure 2. The Architecture of AKS

The miners module contains the mining strategies used by
AKS to extract information about concerns from the source
code of software projects. The module relies on the min-
ing strategies made available by Repository Miner (RM)
(Mendes et al., 2017).

Developed as an open source project using Java, RM en-
ables the analysis of software repositories through the ex-
traction and combination of data related to software evolu-
tion. RM has been mentioned and used by studies that seek
to perform static analysis of source code and to investigate
design problems (Mendes et al., 2015; Ibiapina et al., 2018;
Gomes et al., 2019; Dias et al., 2019; Khomyakov et al.,
2019; Mendes et al., 2019; de Freitas Farias et al., 2020).
RM is distributed in the form of a JAR (Java ARchive) file
and provides an API (Application Programming Interface),
so that its features can be easily accessed through Java appli-
cations Mendes et al. (2015). Consequently, as an extension
of RM, AKS is also Java-based. It can run independently to
analyze the source code of software projects as command-
line tool. We have not empowered it with a graphical inter-
face yet, because, firstly, we want to stabilize its concerns
mining and analysis strategies.

AKS encapsulates a set of generic routines to mine and pro-
cess concerns-related information from third-party compo-
nents. It relies on two sub-miners: (i) MavenMiner to mine
concerns from Java-based projects, and (ii) PackageMiner
when it is necessary to mine concerns from JavaScript sys-
tems.

Via RM, the miners store useful information about the
static analysis software projects and their artifacts: a set of
metrics related to components injection (more details in Ta-
ble 1), our metric DtC (described in Section 4.1), and the as-

sociation between DtC and software projects’ artifacts. How-
ever, AKS counts on its own persistence module to store spe-
cific data about third-party components and concerns (rep-
resented by ThirdPartyComponent in the model module).
In other words, AKS complements the information mined by
RM with other ones related to the association between source
code artifacts, components and concerns (more details in Sec-
tion 4).

We have added custom routines to AKS exporters mod-
ule to export the mined information to CVS data sets. As
mentioned in Section 2 we trust that CSV files are a portable
way to share data about the impact of concerns on software
projects.

4 Mining Information about cross-
cutting Concerns

Figure 3 contains an example that shows how AKS auto-
mates the mining of concerns from third-party components
metadata (the first activity of our method).

Developers often depend on metadata to store important
information about varied aspects of their software projects
(e.g., classpaths, integration with other projects) or to auto-
mate the execution of important tasks (e.g., tests, deploy-
ment). We have focused on the metadata that developers
use to inform which components they embed in their sys-
tems. Common advantages achieved by reusing components
are related to the addition of previously implemented and
previously tested functionalities. Consequently, they can re-
duce effort and improve quality during software develop-
ment Shatnawi et al. (2017).

1
2
3
4
5
6
7
8
9

Using Third-Party Components’ Metadata to Analyze Cross-cutting Concerns

POM/.GRADLE * POM/*.GRADLE
<dependency>
<groupld>org.dbunit</groupld>
<artifact/d>dbunit</artifactid>
<version>2,6,0</version>
</dependency>

<dependency>
<groupld>org.springframework</groupld>
<artifactld>spring-test</artifactid>
<version>5,1.3.RELEASE</version>
</dependency>

Mine
MVNRepository

Categorize dependencies as...
Y

| Testing Frameworks

Y

~*ul pajoalu]
“ul pajoalu]

Researcher
defines the
concemn

b.java

—®| import org.dbunit*

import org.springframework.*

Figure 3. Mining of Concerns (Carvalho et al., 2020)

We are interested in Project Object Model (POM) and Gra-
dle files that developers use to inject components in Java-
based software projects Agiiero and Ballejos (2017); Palyart
et al. (2017). This comes the fact that such files have became
plentiful because many Java developers have adopted them
to encapsulate information about components used in their
projects.

Suppose that developers added the components, dbunit
and spring-test, to the POM file of a software project as ex-
hibited in Listing 1. AKS is capable of processing the POM
files to mine the components’ IDs: groupld and artifactld.
As the IDs ensure that each component is uniquely and un-
ambiguously identified, AKS uses them to retrieve metadata
from MVNRepository. The tool navigates to two distinct
MVNRepository’s pages obtained from the combination of
components’ group and artifact IDs: dbunit’s metadata and
spring-test’s metadata.

Listing 1: Example of a POM file

<project>

<dependencies >
<dependency >
<groupld>org.dbunit </groupld>
<artifactld >dbunit </artifactld >
<version >2.6.0</version>
</dependency >
<dependency >
<groupld>org.springframework </groupld>
<artifactld >spring —test </artifactld >
<version >5.1.3.RELEASE</version >
</dependency >
</dependencies >
</project>

By parsing the response from MVNRepository, AKS finds

Carvalho et al. 2024

out that “Testing Frameworks” is how the repository has cate-
gorized the components. Then, we manually fill the most ad-
equate concern to represent “Testing Frameworks™: “Test”.

AKS associates source code artifacts with concerns by ex-
amining the list of import declarations in “.java” files. In Fig-
ure 3, file “a.java” imports dbunit (or we can say that dbunit
is imported in “a.java”) and “b.java” imports spring-test (de-
velopers imported spring-test in “b.java”). In this case, AKS
associates the “Test” concern with both artifacts.

4.1 Measuring Dedication to Concern

Using import declarations to associate concerns with code
units does not suffice for a deeper analysis of how concerns
impact information systems. The main problem is: importing
a component does not guarantee that it is extensively used by
an artifact. Developers may avoid analyzing such situations
or rank them down to a low-priority category of impact. To
address this issue, we needed a set of metrics to measure how
much the imported components are used by the source code’s
artifacts.

First, we consulted related literature to reuse metrics, but
not all available ones suited us. At first glance, the metrics
Number of Components (NOC) (Abilio et al., 2015; Nuiiez-
Varela et al., 2017), Program Element Contribution (CONT)
(Eaddy et al., 2008), Concern Diffusion over Components
(CDC) (Sant’Anna et al., 2003), and Concern Diffusion over
Operations (CDO) (Sant’Anna et al., 2003) looked reusable,
but further analyzing them, we realized that they did not en-
tirely match our needs.

NOC, for instance, counts how many components (con-
stants/refinements) are necessary to implement a feature
(Abilio et al., 2016). We are not sure if we can apply both con-
cepts, “concern” and “feature”, interchangeably. The CONT
metric counts a program’s number of lines of code associated
with concerns, but its definition (Eaddy et al., 2008) does
not include lines outside classes, e.g., package declarations
and imports. However, import declarations are vital for our
method as they are used to find artifacts that use/implement
concerns. Additionally, considering the import declarations
is a more direct reference to how much a software artifact is
dedicated to either few concerns (via few imports or imports
of components related to few concerns) or many concerns
(by importing too many components associated with a var-
ied plethora of concerns).

CDC metric counts the number of primary components
whose main purpose is to contribute to the implementation
of a concern (Sant’Anna et al., 2003), and CDO counts the
number of primary operations whose main purpose is to con-
tribute to implementing a concern (Sant’Anna et al., 2003).
According to the definitions, respectively, the metrics accu-
mulate the total number of components (classes or aspects)
and operations (e.g., constructors, methods) related to a con-
cern throughout a codebase. The problem is: we need to deter-
mine the dedication of one source code artifact to a concern
during each measurement. In other words, our measurement
strategy must take an artifact “A” and a concern “C” as inputs
and determine the strength of the association between them.
CDC and CDO take a concern “C” as input and return to the
total number of components and operations that refer to “C”.

https://mvnrepository.com/artifact/org.dbunit/dbunit
https://mvnrepository.com/artifact/org.springframework/spring-test

Using Third-Party Components’ Metadata to Analyze Cross-cutting Concerns

So, CDC and CDO do not entirely fit in what we needed to
measure and how to measure it.

As we could not find an adequate set of metrics to take
full advantage of the source code elements that we wanted to
measure, we defined/selected the metrics described in Table
1.

With the purpose of measuring the relationship between
artifacts and concerns, we defined the metric Dedication to
Concern (DtC), as “the degree to which a source code artifact
(e.g., a java file of a Java-based project) is dedicated to im-
plementing a given concern”. We applied our set of metrics
and developed measurement strategies to make the catego-
rization of DtC possible. We based the metrics on the ele-
ments that we can extract from object-oriented source code
artifacts: import declarations, the use of parameters and vari-
ables by classes’ methods, and their relationship with con-
cerns extracted from third-party components’ metadata. We
defined the metrics, their thresholds and measurement ap-
proach, based on our observations of source code snippets.
Also, we propose measuring DtC against a three-factor qual-
itative scale because, by manually analyzing the source code
of software projects, we noticed that we could group source
code artifacts under three distinct categories of DtC regard-
ing their relationships with concerns: SLIGHT, MODER-
ATE, and HIGH.

We applied a simple percentage ratio (Dawson and
O’neill, 2003) to calculate the metrics Imported Compo-
nents’ Dedication (ICD) and Methods’ Dedication (MD).
This enabled us to fit both metrics’ numeric values into
the three categories of DtC that our method can measure
(slightly/moderately/highly ~dedicated). We embedded
functionalities in our tool to automate the execution of the
following rule, which represents our rationale regarding the
measurement of DtC:

SLIGHT ICD(A,C) = SLIGHT vV (ICD(A, C)
€ (MODERATE, HIGH)
AMD(A,C) = SLIGHT)
DtC(A,C)= { MODERATE ICD(A,C) € (MODERATE, HIGH)
AMD(A,C) = MODERATE
HIGH ICD(A,C) € (MODERATE, HIGH)

AMD(A,C) = HIGH,

where the DtC of an artifact A as it implements a con-
cern C can be categorized as: (i) SLIGHT if the imported
components’ dedication ICD is SLIGHT; (ii) SLIGHT if
ICD is either MODERATE or HIGH, and the methods’
dedication MD is SLIGHT; (iii) MODERATE if ICD is
either MODERATE or HIGH, and MD is MODERATE; and
(iv) HIGH if ICD is either MODERATE or HIGH, and MD
is HIGH.

We adopted the following as the values for SLIGHT,
MODERATE, and HIGH: (i) SLIGHT is any value equal or
below 0.3; (i) MODERATE is any value greater than 0.3 and
equal or below 0.6; and (iii) HIGH is any value from 0.6 to
1.0. We obtained the mentioned values from a principle re-
lated to the definition of interval scales where the distance
between adjacent elements (of a scale) must be constant and
equidistant (Hensler and Stipak, 1979; Bohme and Freiling,

21

22

23
24

25
26
27

Carvalho et al. 2024

2008; Philippi, 2021). Additionally, interval scales can be
converted to nominal scales by being cut at breakpoints and
assigning the resulting slices of data to categories (Bohme
and Freiling, 2008), such as the ones that we associated with
DtC (SLIGHT, MODERATE, and HIGH).

5 Applying our DtC Metric - A
Worked Example

Now, we exemplify how to measure DtC. We base our expla-
nations on examples taken from real software projects’ POM
and source code files. We selected the projects from a spe-
cific domain of software: non-relational databases. Table 2
describes the databases.

5.1 Measuring a High DtC

The first category of DtC, high, includes cases as the one ex-
emplified in Listing 2. By adding junit’s import declarations
(line 3 to 7, highlighted in yellow), developers connected
the artifact to a test component. Consequently, the imports
tie the artifact with a concern: “Test”. Additionally, we con-
sider that the artifact is extensively dedicated to the imple-
mentation of this concern because the DataCacheTest class
encapsulates 2 methods (in cyan), test_isCached (line 13)
and test_uniqueCache (line 29), and each method encloses
references to classes imported from junit (Test, TestCase,
Assert). Therefore, we consider that the artifact is highly
dedicated to implement the “Test” concern.

Listing 2: Highly Dedicated Artifact

package org.kairosdb.datastore.cassandra;

import static import org.junit.Test;

import static junit.framework. TestCase.assertTrue;
import static org junit. Assert.assertNotNull;

import static org.junit.Assert.assertNull;

public class DataCacheTest {
@Test

DataCache<String > cache =
DataCache<String >(3);

\textbf {new}

assertNull (cache.cacheltem (”one”));
assertNull (cache.cacheltem (”two”));
assertNull (cache.cacheltem (”three”));

assertNotNull (cache.cacheltem (”one”)); //

This puts ’one’ as the newest

assertNull (cache.cacheltem (”four”)); // This
should boot out ’two’

assertNull (cache.cacheltem (”two”)); // Should

have booted ’three’

assertNotNull (cache.cacheltem (”one”));
assertNull (cache.cacheltem (”three”));
Should have booted ’four’
assertNotNull (cache.cacheltem (”one”));

}

@Test

/1

Using Third-Party Components’ Metadata to Analyze Cross-cutting Concerns Carvalho et al. 2024

Table 1. Dedication to Concern’s Metrics

Metric Description Purpose

NOI Number of Imports NOI counts a source code artifact’s total number of imports

NOIC Number of Imported Concerns NOIC counts the total number of imported components that are associated with a concern
NOM® Number of Methods Total number of methods of a source code artifact

NOR? Number of References NOR counts the total number of references to a component/concern found in methods
ICD Imported Components” Dedication ~ ICD is an indirect metric obtained from simple percentage ratio between NOI and

NOIC (NOIC/NOI) and has the purpose of measuring how strong/weak is the
relationship between an artifact and a concern regarding imported components

MD Methods’ Dedication MD measures methods’ dedication regarding a specific concern. We calculate MD as a
simple percentage ratio between NOM and NOR (NOR/NOM)

DtC* Dedication to Concern DtC outputs the dedication of a source code artifact from values obtained from ICD
and MD

@ from Oliveira et al. (2014); Nunez-Varela et al. (2017)
b similar to Concern Diffusion over Operations (CDO) (Sant’ Anna et al., 2003), except that our metric applies to methods of only one class per measurement
¢ similar to Concern Diffusion over Components (CDC) (Sant’Anna et al., 2003), except that our metric applies to only one class per measurement

Table 2. Non-relational Databases

Database Description

JanusGraph® Highly scalable graph database

Neo4l? High-performance graph store with the features expected from a
robust database

KairosDb“ Fast distributed scalable time series database written on top
of Cassandra

@ https://github.com/JanusGraph/janusgraph
b https://github.com/neo4j/neod;
¢ https://github.com/kairosdb/kairosdb

29
1 package org.janusgraph.testutil;

30 TestObject tdl = new TestObject(”tdl”);

31 TestObject td2 = new TestObject(”td2”); . —

2 TestObject td3 = new TestObject(”td3”); 3 import org junit.Test;

33 4+ import static org.junit. Assert.assertEquals;
34 DataCache<TestObject> cache = new DataCache<

TestObject >(10); s import static org.junit. Assert.assertTrue;

35

36 cache.cacheltem(tdl); 7 import org.slf4j.Logger;
37 cache.cacheltem (td2); s import org.slf4j.LoggerFactory;
38 cache.cacheltem (td3); ,
39 .
40 TestObject ret = cache.cacheltem (new]1? public class RandomGenerator {
:sessetrOtPfjrecet((tdt;“::))r;et)' 12 private static final Logger log = LoggerFactory
z; u ? .getLogger(RandomGenerator. class);
— : 5 5 . 13
“ zzze;t;:‘sgi{g;czihre:tlgr-lew TestObject(7td27)); 14 private static final int standardLower = 7;
j: ’ 15 private static final int standardUpper = 21;
. 16
46 ret = cache.cacheltem(new TestObject(”td3”));
o assertTrue (td3 = ret): 17 pu;)ll{c static String[] randomStrings(int number
*) } 18 return randomStrings (number, standardLower,
49 standardUpper) ;
}

. . 19
Table 3 describes how AKS calculates the metrics for the
artifact exhibited in Listing 2 and determine its DtC consid- 2 public static String[] randomStrings(int number

ering the “Test” concern. , int lowerLen, int upperLen) {

2 String [] ret = new String[number];

23 for (int 1 = 0; i < number; i++) ret[i] =
5.2 Measuring a Moderate DtC randomString (lowerLen , upperLen);

24 return ret;

Other artifacts do not focus on the implementation of a single }
26

concern. Th§y tend to comprise import declarations which , , \p1ic static String randomString () {
insert a relatively small set of components. For example, the return randomString (standardLower ,
source code in Listing 3 reveals that two different concerns standardUpper) ;

are in play: “Test”, as it imports junit (line 3 to 5) and “Log- * '

: L) . 3 . . . 30
ging”, from the importing of slf4j (lines 7 and 8). Regarding public static String randomString(int lowerLen,

the “Test” concern, developers associated 3 out of 9 artifact’s int upperLen) {
methods with the implementation of testing routines (lines ?Sselﬂ IOE/GYLCH Z 0 && ;lpperLe“ >= lowerLen;
64, 77, and 90). We categorize the artifact as being moder- * int length = randomlnt(lowerlen. upperLen);
. . o - 34 StringBuilder s = new StringBuilder();
ately dedicated to implement “Test”. i for (int i = 0; i < length; i++) {
36 s.append ((char) randomInt(97, 120));

Listing 3: Moderately Dedicated Artifact £l

42
43
44
45

64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90

Using Third-Party Components’ Metadata to Analyze Cross-cutting Concerns

}

Carvalho et al. 2024

Table 3. Measuring a Highly Dedicated Artifact

Metric Value = Measurement Strategy

NOI 4 Extracted from the artifact’s list of imports

NOIC 4 Calculated from the imports that implement the “Test”
concern

NOM 2 As the total number of methods

NOR 2 Because two methods refer to classes imported from the
“Test” component

ICD 1.0 We obtain 100% of dedication, as all imported classes
are associated with the ‘Test” concern

MD 1.0 Another 100% of dedication because all methods declare
at least one class associated with the ‘Test” concern

DtC High Processing ICD and MD through the rule reveals that the

artifact is highly dedicated to implement ‘Test”

return s.toString();

public static int randomInt(int lower, int

}

public static long randomLong(long lower, long

!

upper) {
assert upper > lower;
int interval = upper — lower;

// Generate a random int on [lower, upper)
double rand = Math. floor (Math.random () x*
interval) + lower;

// Shouldn’t happen

if (rand >= upper) rand = upper — 1;

// Cast and return

return (int) rand;

upper) {
assert upper > lower;
long interval = upper — lower;

// Generate a random int on [lower, upper)
double rand = Math. floor (Math.random () =
interval) + lower;

// Shouldn’t happen

if (rand >= upper) rand = upper — 1;

// Cast and return

return (long) rand;

@Test

}

long sum = 0;
int trials = 100000;
for (int i = 0; 1 < trials; i++) {
sum += randomlInt(l, 101);
}
double avg = sum % 1.0 / trials;
double error = (5 / Math.pow(trials , 0.3));
// log.debug(error);
assertTrue (Math.abs(avg — 50.5) < error);

@Test

}

long sum = 0;
int trials = 100000;
for (int i = 0; i < trials; i++) {
sum += randomLong(1, 101);
}
double avg = sum % 1.0 / trials;
double error = (5 / Math.pow(trials , 0.3));
// log.debug(error);
assertEquals (50.5, avg, error);

@Test

for (int i = 0; i < 20; i++) log.debug(
randomString (5, 20));

93

)

28

}

Table 4 demonstrates how AKS calculates the metrics to
classify the source code artifact in Listing 3 as moderately
dedicated to implement the “Test” concern.

5.3 Measuring a Slight DtC

Listing 4 shows lines of code extracted from an artifact which
imports too many different components. Considering the im-
port declarations, only junit is associated with the “Test” con-
cern (line 3 to 7), and 4 out of its 23 methods contain refer-
ences to test classes imported from junit® (lines 65, 74, 81,
and 93). Consequently, regarding the “Test” concern, we de-
termine that the artifact is slightly dedicate to implement it.

Listing 4: slightly Dedicated Artifact

package org.neo4j.index.population;

import org.junit.After;

import org junit.Before;

import org. junit. Test;

import static org. junit.Assert.assertEquals;

import static org.junit. Assert.assertNotNull;

import java.io.File;

import java.io.IOException;

import java.nio. file.Path;

import java.nio. file.Paths;

import java.util.ArrayList;

import java.util.List;

import java.util.concurrent.Callable;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

import java.util.concurrent. Future;

import java.util.concurrent.TimeUnit;

import java.util.concurrent.atomic.AtomicLong;
import java.util.function.LongSupplier;

import java.util.function. Supplier;

import org.neo4j.graphdb.GraphDatabaseService;

import org.neo4j.graphdb.Label;

import org.neo4j.graphdb.Node;

import org.neo4j.graphdb. Transaction;

import org.neo4j.graphdb.schema.
ConstraintDefinition ;

import org.neo4j.graphdb.schema.IndexDefinition;

import org.neo4j.graphdb.schema.Schema;

SWe omitted the source code of all methods which are not related to
the “Test” concern because the class is a large one and its exhibition was
spreading over too many pages.

32
33
34
35

36

37
38

39
40

41

42
43

44
45
46
47
48

49

50
51

52
53
54

55
56

57

58

59
60
61
62
63
64
65

66
67

68
69

70

Using Third-Party Components’ Metadata to Analyze Cross-cutting Concerns

Carvalho et al. 2024

Table 4. Measuring a Moderately Dedicated Artifact

Measurement Strategy

Extracted from the artifact’s list of imports

Calculated from the imports that implement
the “Test” concern

As the total number of methods

Because three methods refer use classes imported from

the “Test” component

A ratio between NOIC and NOI

A ration between NOR and NOM

Metric Value
NOI 5

NOIC 3

NOM 9

NOR 3

ICD 0.6

MD 0.38

DtC Moderate

Processing ICD and MD through the rule indicates

that the artifact is moderately dedicated

to implement ‘Test”

import org.neo4j.io.fs.FileUtils;
import org.neo4j.test.TestGraphDatabaseFactory;

import static org.apache.commons.lang3.
SystemUtils .JAVA 10 TMPDIR;

import static org.neo4j.helper.
StressTestingHelper . fromEnv;

public class

{
private static final String LABEL = ”label”;
private static final String PROPERTY PREFIX =
property”;
private static final String

UNIQUE PROPERTY_ PREFIX = “”uniqueProperty”;

private static final

2

s

int NUMBER _OF PROPERTIES

private static final
Integer.valueOf/(
fromEnv (

int NUMBER OF POPULATORS

LucenePartitionedIndexStressTesting

”»

”LUCENE_INDEX NUMBER_OF POPULATORS”

s

String . valueOf(Runtime. getRuntime ()

.availableProcessors() — 1)));
private static final int BATCH_SIZE =
Integer.valueOf(fromEnv (”
LUCENE_INDEX_POPULATION BATCH SIZE” ,
valueOf(10000)));

String

private static final long NUMBER OF NODES =
Long. valueOf(fromEnv (”
LUCENE_PARTITIONED INDEX NUMBER_OF NODES” ,
String . valueOf(100000)));
private static final String WORK DIRECTORY =
fromEnv (”
LUCENE_PARTITIONED INDEX WORKING DIRECTORY”
JAVA 10 TMPDIR) ;
private static final

Integer.valueOf(fromEnv (”
LUCENE_PARTITIONED INDEX WAIT TILL ONLINE”,
String . valueOf(30)));

private ExecutorService populators;
private GraphDatabaseService db;

private File storeDir;
@Before
storeDir = prepareStoreDir();

System . out. println (String.format(” Starting
database at: %s”, storeDir));

populators = Executors.newFixedThreadPool(
NUMBER_OF POPULATORS) ;

db = new TestGraphDatabaseFactory ().
newEmbeddedDatabaseBuilder (storeDir).
newGraphDatabase () ;

int WAIT DURATION_MINUTES

71
72
73

74

81
82
83
84

85

86
87
88
89
90

92

93

94

95
96
97
98

99
100

101

102
103

104
105
106
107
108

109

110

111

112
113

}

@After

db.shutdown () ;
populators.shutdown () ;
FileUtils . deleteRecursively (storeDir);

}

@Test

createlndexes () ;

createUniquelndexes ();

PopulationResult populationResult =
populateDatabase () ;
findLastTrackedNodesByLabelAndProperties (db,
populationResult);

dropAlllndexes () ;

createUniquelndexes () ;

createlndexes () ;
findLastTrackedNodesByLabelAndProperties (db,
populationResult);

|

try (Transaction ignored = db.beginTx()) ¢{
Node nodeByUniqueStringProperty =
db. findNode (

Label.label (LABEL),
getUniqueStringProperty (), populationResult.
maxPropertyld + ””);

Node nodeByStringProperty =
db. findNode(Label.label (LABEL) ,
getStringProperty (), populationResult.
maxPropertyld + ”7);
assertNotNull (”Should find
node”, nodeByStringProperty);
assertEquals (
”Both nodes should be the same
inserted node”,
nodeByStringProperty ,
nodeByUniqueStringProperty);

last inserted

last

Node nodeByUniqueLongProperty =
db. findNode (Label.label (LABEL) ,
getUniqueLongProperty (), populationResult.
maxPropertyld);
Node nodeByLongProperty =
db. findNode (Label.label (LABEL) ,
getLongProperty (), populationResult.
maxPropertyld);
assertNotNull (”Should find
node”, nodeByLongProperty);
assertEquals (
”Both nodes should be the same last
inserted node”,

last inserted

114
115
116
117
118
119
120
121

Using Third-Party Components’ Metadata to Analyze Cross-cutting Concerns

nodeByLongProperty ,
nodeByUniqueLongProperty);

—

In Table 5 we show how our method calculates the met-
rics to determine the dedication of the source code artifact
exhibited in Listing 4. Considering the “Test” concern, AKS
determines that the artifact is slightly dedicated.

In summary, our method and AKS have the ability to clas-
sify the DtC between concerns and source code artifacts in
one of the following categories: highly dedicated, moderately
dedicated, and slightly dedicated.

6 An Action Research Study to Evalu-
ate and Refine our Method

In the previous sections, we provided details about how our
method supports the identification and analysis of concerns.
We now describe an action research study that we conducted
to validate and enhance our method and tool. Action research
studies stem from the principle of cyclical field intervention,
which allows the testing and refinement of theories in prac-
tice (Baskerville, 1999; Puhakainen and Siponen, 2010). We
consider that action research studies are a good practical way
of acquiring knowledge from software development special-
ists on how to adequately identify concerns and measure
DtC.

Dos Santos and Travassos (2011) defined a template to re-
port action research studies. Their template comprises a set
of activities: Diagnosis, Planning, Actions, Evaluation and
Analysis and Reflections and Learning. The next sections
describe the activities and how we instantiated them.

6.1 Diagnosis

Diagnosis is composed of three sub-phases: problem
description (PD), research theme (RT), and project context
(PC). PD describes the problem faced, and RT summarizes
the study to limit its scope. In turn, PC informs where the
problem happens. We summarize our PD as:

Software Documents, e.g., software requirements documents
(SRDs) and software architecture documents (SADs), and
available manual/automated approaches do not suffice for
identifying and analyzing concerns

We outline the following about our action research study’s
RT:

We want to identify concerns with the help of metadata, which
developers add to software projects when they need to embed
third-party components in their applications

We highlight the following as our study’s PC:

Carvalho et al. 2024

We focus on Open Source Systems (OSS) as our main source
of information about concerns. As the open source commu-
nity has made many open source projects available in public
repositories, we find it easier to base our studies on OSS. As
any other type of software, OSS also lack adequate ways to

spot concerns in their codebase

6.2 Planning

Planning (P) must include information about: the technical
aspects and literature surveys to ground the study (P1), con-
trolled/pilot studies to determine the risks of using software
technologies (P2), and the operational elements that are nec-
essary to execute the research (P3). Our research benefits
from the theoretical and technical topics and resources about
concerns mining and analysis found in previous work (Can-
fora and Cerulo, 2005; Sant’ Anna et al., 2007; Bernardi et al.,
2016; Margal et al., 2016) (P1). Specifically, we focus on
static analysis of source code artifacts which are retrieved
from the development history of software systems (Can-
fora and Cerulo, 2005). We already applied our method and
tool in two previous studies (Carvalho et al., 2018, 2020), so
we are confident AKS is robust enough to support new in-
vestigations (P2) and can provide us with a precise data set
to interact with software development specialists (P3).

6.3 Actions

Actions are concerned with putting the study’s tasks and in-
terventions in chronological order. Figure 4 shows how we
organized our study’s actions.

Analyzing the figure, the first action comprises all activi-
ties that we performed to prepare the study (1), e.g., produc-
ing an agreement data set (more details about our agreement
data set in Section 6.3.1 ahead). We sent the data set to the
specialists after instructing them about how to manipulate it.
After they returned their tagged data sets (2), we processed
them through Kappa’s Coefficient to calculate the strength of
agreement/disagreement (3). The Cohen’s Kappa Coefficient
(hereafter, Kappa) applies to situations in which it is neces-
sary to use descriptive statistics to summarize the agreement
between two assigners (or judges, or raters) across several
objects (e.g., things, statements, calculations) (Cohen, 1960;
Brennan and Prediger, 1981). Kappa can calculate the propor-
tion of the agreement while correcting it for chance (Cohen,
1960). In case we reached no agreement, we took the opportu-
nity to collect specialists’ opinions about why they disagreed.
We then used the opinions to enhance our method and tool
(4). After this, we restarted the study. Otherwise, reaching an
adequate strength of agreement finalized our evaluation and
we conducted a semi-structured interview with the raters (5).
The interview had the purpose of discussing the results of the
study and clarifying certain questions.

By measuring Kappa, we can reach any of the strengths of
the agreement listed in Table 6. Advancing through the cate-
gories exhibited in the Table (from <0.00 up to 1.00) means
that raters agree about the same items. We consider that a
poor or slight agreement is undesirable because it means that
the raters disagree about the majority of the information in

Using Third-Party Components’ Metadata to Analyze Cross-cutting Concerns

Carvalho et al. 2024

Table 5. Measuring a Slightly Dedicated Artifact

Metric Value Measurement Strategy

NOI 16 Extracted from the artifact’s list of imports

NOIC 5 Calculated from the imports that implement the “Test” concern

NOM 23 As the total number of methods

NOR 4 As four methods refer to at least one class imported from the
“Test” component

ICD 0.31 A ratio between NOIC and NOI

MD 0.17 A ration between NOR and NOM

DtC Slight a result obtained from the processing of ICD and MD

through the rule

2. Raters' Tagging —

1. Preparation

Produces

Tagged
Dataset

/

3. Cohen's Kappa
Agreement Evaluation

Reached
a good
agreement?

No Yes

4. Enhance Method 5. Conduct Interview

Figure 4. Actions of our Action Research Study

the data set. We aimed at reaching a strength beyond “Fair”
to end the evaluation of our method.

Table 6. Strength of Agreement (Landis and Koch, 1977)

Kappa Strength of Agreement
<0.00 Poor

0.00-0.20 Slight

0.21-0.40 Fair

0.41-0.60 Moderate

0.61-0.80 Substantial

0.81-1.00 Almost Perfect

6.3.1 Generating the Study’s Agreement Data Set

As aforementioned, the preparation of our study (Action 1
in Figure 4) has the purpose of creating an agreement data
set so that software development specialists could help us
to evaluate our method. Therefore, we configured and ran
AKS to mine concerns from projects of a particular domain
of software: non-relational databases. Choosing “domain of
software” as a strategy to select software projects is a con-
sequence of one of our previous studies’ findings (Carvalho
etal., 2020). We concluded that grouping projects of the same
domain favors the analysis of concerns: (i) we can find more
concerns being shared by the projects as they usually have to
deal with the same requirements, and (ii) the data tends to be
more uniform through time as the shared concerns are usually
implemented following the same steps. Table 7 describes the
database projects that AKS mined concerns from.

After mining the aforementioned software projects, AKS
filled a database with historical information about concerns.

Table 8 shows the complete list of concerns. The Concern
column contains the name of the concerns mined from the
database projects. Purpose describes each concern’s applica-
tion. The third column, Average Number of Artifacts, shows
the average number of source code artifacts (.java files of the
projects described in Table 7) that contain each concern.

The relationships between concerns and software projects,
as seen in Table 8, reveal cases in which not all concerns
crosscut, e.g., only one occurrence of “Data Processing” was
found in the Heroic database. However, the majority of the
associations points to a tendency of concerns originated from
third-party components to crosscut, which is shown in the ta-
ble as cases of concerns that are associated with an average
number of artifacts superior to 1, e.g., “Logging” that cross-
cuts through the analyzed versions of all databases.

We developed an exporter to generate an agreement data
set from the information AKS filled in the database. During
each round of the study, the raters tagged a data set in the
format illustrated in Table 9. The Project columns inform the
name of the software project. The Concern column indicates
one particular concern to be analyzed. The list of imports that
implement the concern is shown in the /mports column. The
File column allows the raters to verify the source code asso-
ciated with the concern. The DtC column encapsulates the
categorization of our Dedication to Concern metric. Raters
could use the Confirm? column to either agree or disagree
about our identification and categorization of concerns. We
encouraged the raters to add their comments to the Comment
column to inform us why they disagreed.

We ensured that the resulting agreement data set:

* Contained a variety of concerns mined from all the
aforementioned databases: the data set should include
concerns found in each database. We wanted the raters
to have a broad view of all possible combinations be-
tween source code artifacts and concerns.

¢ Included randomly selected samples from the variety
of concerns-related information: this step is important
to increase the confidence of our findings while avoid-
ing the bias of manual selection of the data.

* Granted a way to verify the relationship between con-
cerns and source code artifacts: the exporting strategy
linked the data set with samples of source code. This
means: at any moment, raters could check the projects’
original source code files, from which the concerns
were mined.

Using Third-Party Components’ Metadata to Analyze Cross-cutting Concerns Carvalho et al. 2024

Table 7. Non-relational Databases (Carvalho et al., 2020)

Domain Project Description Period Files
Graph JanusGraph ~ Highly scalable graph database 2017-04/2018-10 5657
Neo4J High-performance graph store with all the features expected 2018-09/2018-12 26497
from a robust database
Titan Database optimized for storing and querying graphs 2012-06/2015-09 3570
Time series ~ OpenTSDB Distributed, scalable TS database 2015-11/2018-12 1440
KairosDb Fast distributed scalable TS database written on top of Cassandra ~ 2015-11/2018-11 1884
Heroic A scalable time series database based on Bigtable, Cassandra 2016-06/2017-08 4258
and Elasticsearch
Table 8. Non-relational Databases” Concerns
Concern Purpose Average Number of
Artifacts(*)
J N T H K (0]
Parsing enables the parsing of source code 1
Data Processing enables processing of data set formats, e.g., CSV 1
Tracing allows processing of tracing stacks 1
Directory Management supports processing of directory structures, e.g., LDAP 4
Compression supports data compression 2
Authentication enables authentication of users 2
Cloud Computing allows communication with cloud services 9.5
Caching supports caching strategies 10
Security supports security, e.g., authentication 10.2
Encryption enables data encryption 1.7
Validation supports validation of data 21.8
Samples/Examples lessons about how to use APIs 4.5
Monitoring enables monitoring of programs’ execution 55.6
RPC Support adds support to remote procedure calls 5.8
Mathematical Processing provides support for complex mathematical calculations 4 13.5
Geospatial Processing processes geospatial data 5.3 3
Dependency Injection makes injection of components possible 111.2 61.8
Visualization enables visualization of data 16 2
Benchmark enables benchmark tests 19.2 13.8
Process Execution executes external processes, e.g., OS programs 109.7 85.8
Command-line Parsing automates interpretation of command lines 1 452 1
ElasticSearch Processing supports processing of document-based information 3.5 3 12.8
Distributed Computing adds distributed-computing features 55.2 37 2.7
Web Server Support allows embedding of web servers 17.2 7.4 1.8
Graph Computing supports processing of graphs 168.8 93 1
Text Processing processes data in form of text 65.8 3 2
Web App Support embeds service-client protocols 6.3 105 35 33 6
Service-Orientation enables service-oriented architectures 4 42.8 23 2
Serialization supports serialization of data 4.5 7.8 51.2 4
Metrics and Measurement ~ measures metrical/quality attributes 4 3 151 6.7
Test automates self-tests of programs 167.7 1302.5 99.8 80.5 62.8 96.8
Programming Utilities provides data structures, e.g., lists 119 93 1 37.8 5.5 2.5
Data Format Processing manages data formats, e.g., xml 5.7 24.7 3 148.3 19.8 24.7
Database enables communication between clients and databases 597.7 10.5 522 10 16.2 80.5
Logging logs the execution of routines 131.7 9.8 87.8 1.8 41.7 47

(*) J — JanusGraph, N — Neo4j, T — Titan, H — Heroic, K — KairosDb, O — OpenTSDB

Table 9. Format of our Agreement Data Set

Project Concern Imports File DtC Confirm? Comment
Titan Logging org.apache... LINK SLIGHT YES/NO
Neo4j Test org.junit... LINK SLIGHT YES/NO
Kairos Database com.spotify... LINK HIGH YES/NO
Heroic Web App Support ~ com.google... LINK HIGH YES/NO

6.3.2 Data Set Analysis Process

We recommended the following evaluation workflow to the
raters: (i) the rater should check which concern he/she must
evaluate, as informed in the Concern column; (ii) he/she
should visualize the content of the source code as supplied by
the File column; (iii) he/she should verify the list of imported
components that implement the concern (in the Imports col-
umn); (iv) by locating the concern’s imported classes in the
source code, he/she could either agree or disagree and enter
YES (agree) or NO (disagree) in the Confirm? column after
checking the categorization in the D¢C column.

We instructed the raters about the three categories of DtC
and asked them to fit their opinions within our scale of
SLIGHT, MODERATE, and HIGH. In other words, they

were not free to fill their own categorization of DtC in the
DtC column, but they could add comments (in the Comments
column) to inform how they would categorize the concerns
in case they disagreed.

We did not impose a deadline for raters to tag and return
the data set. We saw this as a way to give them all the time
they needed to evaluate the data set with precision.

6.3.3 The Raters

As a way to count on precise technical opinions from soft-
ware development specialists, we limited the selection of
raters to consider that:

* The specialists should have experience in the devel-

https://github.com/JanusGraph/janusgraph
https://github.com/neo4j/neo4j
https://github.com/thinkaurelius/titan
https://github.com/OpenTSDB/opentsdb
https://github.com/kairosdb/kairosdb
https://github.com/spotify/heroic

Using Third-Party Components’ Metadata to Analyze Cross-cutting Concerns

opment of software systems: this was important be-
cause we wanted to collect their opinions regarding our
method in general and not only about the identified con-
cerns. They could empower us with reliable opinions
about different aspects of our method and help us to
identify new ways to locate and analyze concerns.

* Although we needed the specialists to have experience
in software development, we did not limit the choice of
candidates to ones with professional experience only:
in other words, we also regarded having academic ex-
perience as a valuable aspect to select raters. Mixing
professional and academic experience is vital for the rel-
evance of scientific results. Ideally, the results must be
useful and applicable in both industrial and academic
environments (Dos Santos and Travassos, 2011).

In total, three specialists participated as raters in the study.
One of the raters has been working as a software developer
for 14 years and he/she has a specialization in software en-
gineering (/ato sensu) and is currently enrolled in a master’s
degree program (computer science).

The second rater worked for 10 years as a system analyst
and has been teaching software engineering and development

in a Brazilian public educational institute. He/she has a spe- 1
cialization in information systems engineering (lato sensu)

and is also engaged in a master’s degree program.
We needed an extra rater during the third round of data set

tagging (more details in Section 6.4.3). The rater has a mas- s
ter’s degree in computer science and has professional expe- ¢

rience too. For the last 8 years, he/she has been participating
in software projects as a programmer and software architec-
t/engineer.

All raters have experience in developing Java-based appli- "

cations. This is important because all projects we analyzed

are written in Java. »

6.4 Evaluation and Analysis

The goal of evaluation and analysis is to describe the data
analysis process and its findings (Dos Santos and Travassos,
2011). Accordingly, we designed our study to evolve through
rounds of interaction with the raters. With each round, we
took the opportunity to enhance our method and tool accord-
ing to raters’ opinions and suggestions. The next sections
bring detailed information about each round of our study.

6.4.1 Round1

Each rater received an agreement evaluation package which
contained: (i) a spreadsheet written in the format exhibited
in Table 9; (ii) source code files from which we extracted
concerns; and (iii) a copy of one of our papers (Carvalho
et al., 2018), to help them to understand some concepts
about our concerns mining and analysis strategy.

Results
After both raters sent us the tagged data sets, we ran them

through the Cohen’s Kappa Agreement Coefficient. We ob-
tained a “fair” agreement between the raters: 0.28 (Strength

Carvalho et al. 2024

of Agreement = “Fair””). We then consulted the information
they inserted in the Comment column of the data set to
enhance our method.

Feedback

Skipping the analysis of annotations was one of the first prob-
lems that raters identified. Annotations are constructs for
declaratively associating additional metadata information to
program elements. The extra metadata can be used for dif-
ferent purposes, such as guidance for the compiler, compile-
time or deployment-time processing, and runtime processing
(Yu et al., 2018). For instance, the source code in Listing 5°
shows one of the classes that the raters analyzed.

Listing 5: Annotated Source Code

package org.kairosdb.core. http;

import org.junit.After;
import org.junit. Test;

public class WebServerTest
{

private WebServer server;
private Client client;

@After
public void tearDown ()

{

server.stop();

}

@Test(expected =

public void
test_setSSLSettings _nullKeyStorePath_invalid
O

NullPointerException.class)

{

server = new WebServer(0, ”.”);
server.setSSLSettings (443, null, ”password”);

}

Developers added test-related annotations throughout the
source code of the WebServerTest class: @After (line 11)
and @Test (line 17). They also added import declarations
to import junit and use its annotations (lines 3 and 4). Ac-
cording to raters, this class’ DtC should be categorized as
HIGH regarding the “Test” concern. However, AKS classi-
fied it as SLIGHT because it did not process the annotations.
We found several other examples of annotations being used
to implement concerns in the source code of the analyzed
projects.

As a way to help the raters to analyze source code samples,
we took the opportunity to expand AKS’ concerns manipula-
tion capabilities. To help raters easily identify the implemen-
tation of concerns, we added annotating routines to AKS. We
made it possible for AKS to add annotations to locate pieces
of the source code that implement a concern. In Listing 67,
the import of “javax.validation.Valid” is associated with the
“Validation” concern (line 4). AKS adds the @Concern an-
notation to indicate the elements of the source code that are
used to implement this concern (lines 3 and 11).

9The complete source code of Listing 5 can be found here
"The complete source code of Listing 6 can be found here

https://gitlab.com/luispscarvalho/datasets/-/blob/JSERD2023_ConcernsFromThirdPartyComponents/snippets/WebServerTest.java
https://gitlab.com/luispscarvalho/datasets/-/blob/JSERD2023_ConcernsFromThirdPartyComponents/snippets/MetricRequestList.java

Using Third-Party Components’ Metadata to Analyze Cross-cutting Concerns

Listing 6: Concern Annotations

package org.kairosdb.core. http.rest.json;

@Concern (name ”Validation”)
import javax.validation. Valid;

public class MetricRequestList
{
@Valid
List<NewMetricRequest> metricsRequest;

@Concern (name ”Validation™)
@JsonCreator

public MetricRequestList(List<
NewMetricRequest> metricsRequest)

{
}

this.metricsRequest = metricsRequest;

Arguably, embedding annotations in the source code sam-
ples could introduce a bias in our action research study. For
example, they could persuade the raters to focus only on the
annotated parts during the tagging. Being aware of this threat,
we instructed them to consider the annotations merely as in-
dicators of the items that AKS processes to identify concerns
and their opinions should always prevail above this. In other
words, we pointed out to raters that they could use the an-
notations to track the elements which AKS analyzes while it
evaluates the association between source code artifacts and
concerns. They should keep on criticizing our categorization
of concerns according to their own point of view.

One of the raters did not agree with categorizing Java
interfaces’ DtC. This means: he/she agreed about the fact
that the interfaces were linked to some concerns through
imported components, but he/she could not determine the
value of DtC without the methods’ bodies of code. This
could compromise the study, as we did not filter inferfaces
out of the agreement data set. We had two options to manage
this situation: (i) to perform the evaluation only on artifacts
whose classes have methods with a body of code (and
exclude interfaces); or (ii) to try to persuade the rater to
evaluate the DtC of interfaces. We opted for the second and
confronted him with the following rationale:

Although the lack of methods’ body of code can make the
categorization of DtC difficult, there is still a possibility if’
the interface s methods’ declarations are taken into account.
For instance, someone can categorize DtC by considering
the types of the parameters and the types of return declara-
tions. The resulting relationship between the interface and
such types reflects the actual desire of developers to deter-
mine which concerns the interface’s children classes must
implement. At this moment, a relationship is conceptually es-
tablished between the interface and the concerns.

6.4.2 Round 2

We carried out the aforementioned improvements and
adaptations. We also asked the rater who refused to an-
alyze interfaces to reconsider his opinion. We randomly
(re)selected new source code samples and generated a
new agreement spreadsheet. This means: the source code
snippets that raters analyzed in the second round differed

w

Carvalho et al. 2024

'— heroic-parser
— e
|—(pom, xml)
S
— src

'— heroic-shell

\EO]’H . XIH‘EI

src

— herc:i/cles{
om. xml
I

src

— heroic-test-it
pom.xml

— src

(pom.xml)

Figure 5. Heroic’s POM Files Tree

from those that we sent to them in the first round. Before
sending the new evaluation package, we checked it to see
if it contained examples/samples related to the problems
that the raters identified in the first round. Doing this is
important because we wanted them to re-evaluate the same
cases and provide new opinions about them.

Results

This time, the processing of Kappa Coefficient gave us
0.26 (Strength of Agreement = “Fair”). So, once again, we
counted on the raters’ comments to refine our method and
AKS.

Feedback

Unfortunately, the rater who did not want to evaluate inter-
faces did not agree with our argument. His decision impacted
our action research study. We decided to: (i) not remove the
processing of interfaces from our method and tool. As the
other rater did not complain about tagging interfaces, we
want to make our method available to anyone interested in
analyzing this type of class®; (ii) exclude interfaces from the
agreement data set. The raters would not agree about the cate-
gorization of concerns because one of them would never give
his opinion about interfaces.

One of the raters warned us that we were missing some
concerns. He/she noticed that we were not parsing all POM/-
Gradle files of the projects. Some developers scatter the infor-
mation about third-party components. Figure 5 exemplifies
this situation. Developers of Heroic embedded many POM
files in its source code. First versions of AKS were capable
of parsing only the main POM file stored in the root folder
of projects, which is the usual location of POMs (highlighted
in red). We then enabled AKS to mine concerns from several
scattered POM/Gradle files (in blue).

Our method classified the source code in Listing 7° as
moderately dedicated to implementing the “Database” con-
cern (a moderate DtC), but one of the raters did not agree.

Listing 7: Empty Methods of Classes

package com.spotify.heroic.statistics.noop;

public class NoopSuggestBackendReporter
implements SuggestBackendReporter {

8The processing or exclusion of interfaces can be parameterized during
the execution of AKS.
9The complete source code of Listing 7 can be found here

https://gitlab.com/luispscarvalho/datasets/-/blob/JSERD2023_ConcernsFromThirdPartyComponents/snippets/NoopSuggestBackendReporter.java

IS

v O

=N

3

Using Third-Party Components’ Metadata to Analyze Cross-cutting Concerns

private NoopSuggestBackendReporter () {

}

He/She pointed out that DtC should be categorized as
HIGH because all non-empty methods of the class focus on
the implementation of the concern. Then, we modified AKS
to skip processing empty methods like NoopSuggestBack-
endReporter and reportWriteDroppedByRateLimit (line
4 to 5). The inclusion of empty methods dilutes DtC, as the
MD metric calculates a ratio between the number of meth-
ods that reference a concern (NOR) and the total number of
artifacts’ methods (NOM). As the rater pointed out that it is
not possible to determine the DtC of methods that have no
body of code, they should not take part in the measurement.

The raters mentioned cases in which our method failed to
associate components with concerns. In Listing 8'°, we illus-
trate this situation.

Listing 8: Failed Association

package com.spotify.heroic. http.tracing;

@Concern(name = ”Service—Orientation”)
import javax.ws.rs.container.
ContainerRequestFilter;
@Concern(name = ”Service—Orientation”)
import javax.ws.rs.container.
ContainerResponseFilter;

class OpenCensusApplicationEventListener
implements ApplicationEventListener {

private final Tracer globalTracer = Tracing.
getTracer () ;

private final OpenCensusFeature. Verbosity
verbosity ;

The artifact imports several components to implement the
“Web App Support” concern, but one of the raters argued
that the “javax.ws.rs.*” (lines 4 and 5) should also be as-
sociated with this concern. AKS associated all components
identified as “javax.ws.rs.*” with the “Service-Orientation”
concern only because they are often used to implement rest-
ful web services. The rater noticed that the DtC would be
different if we also associated the component with the “Web
App Support” concern. According to his opinion: implement-
ing restful web services is a way to add “web app support”
to a system. We accepted this observation and modified our
method (and AKS) to allow the overlapping of associations
between concerns and imported components, e.g., associat-
ing both “Service-Orientation” and “Web App Support” with
the import of the “javax.ws.rs.*”” component.

The following are other concerns whose categories we
overlapped, following the same suggestion: (i) “Encryption”
and “Security”: as encryption is often used to implement se-
curity; (ii) “Tracing” and “Monitoring”: a tracing operation
can serve as a way to monitor a system, and; (iii) “Graph

Computing” and “Mathematical Processing”: we noticed that n

routines used to support graph computing are often based on
mathematical processing of data.

We embedded the association between source code arti- s

facts and multiple concerns in the activity 2.2 of our method
(Figure 1 of Section 2). Figure 6 illustrates how AKS stores

10The complete source code of Listing 8 can be found here

o u A W D —

o -

©

Carvalho et al. 2024

occurrences of overlapped concerns in the database. In the ex-
ample, AKS associates the source code artifact, “class.java”,
with two concerns, “Service-Orientation” and “Web App
Support” (one artifact to many concerns). Later on, when it
is necessary to generate an agreement dataset, AKS encapsu-
lates each concern’s specific annotation into the source code.

6.4.3 Round3

We restarted the study after implementing the aforemen-
tioned modifications and additions. We sent a new agreement
data set to raters after selecting new random samples of code
snippets. Unfortunately, one of the raters stopped replying to
our requests to participate in the third round of evaluation.
So, we had to replace him.

It is debatable that replacing one of the raters could
break the succession of contributions to our study as, with
each round, the raters grew more knowledgeable about our
method and could keep on raising insightful questions and
suggestions. However, we replaced only one of them while
keeping the other, and we emphasize that the new rater had
enough academic and professional experience to help us
concluding our study.

Results

We obtained 0.55 from Kappa (Strength of Agreement =
“Moderate”) after the raters tagged the data set.

Feedback

Our method applies static analysis on source code artifacts
to find concerns and categorize the DtC between them. It is
restrained to what we can achieve from the Abstract Syntac-
tic Trees (AST) extracted from the artifacts. This can cause
our method to lack the precision that semantically-enriched
approaches can accomplish. For instance, we categorized as
slightly dedicated the relationship between the source code
exhibited in Listing 9'! and the “Geospatial Processing”.

Listing 9: Semantic Processing of Imports

package org.janusgraph.diskstorage.lucene;

index .x;
search .x;

.lucene.
.lucene.

import
import

org.apache
org.apache
import org.apache.lucene.spatial.SpatialStrategy;
import org.apache.lucene.spatial.prefix.
RecursivePrefixTreeStrategy ;
import org.apache.lucene.spatial.
GeohashPrefixTree;
import org.apache.lucene.
SpatialPrefixTree ;

prefix.tree.

spatial . prefix . tree.

import org.apache.lucene.spatial.query.
SpatialArgs;

import org.apache.lucene.spatial.query.
SpatialOperation;

import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;

public abstract class LuceneExample {

The complete source code of Listing 9 can be found here

https://gitlab.com/luispscarvalho/datasets/-/blob/JSERD2023_ConcernsFromThirdPartyComponents/snippets/OpenCensusApplicationEventListener.java
https://gitlab.com/luispscarvalho/datasets/-/blob/JSERD2023_ConcernsFromThirdPartyComponents/snippets/LuceneExample.java

Using Third-Party Components’ Metadata to Analyze Cross-cutting Concerns

Service-

class.java

IMpOrt javax ws.rs.*;

Support

Orientation

Web App

Carvalho et al. 2024

class.java

@concern("Service-Orientation™)
import javax.ws.rs.*;

class.java

@concern("Web App Support”)
import javax.ws.rs.*;

5

Figure 6. Concerns Overlapping

One of the raters disagreed because he/she took other as-
pects into account: many occurrences of the word “spatial”
(from line 5 to 10) suggest that the artifact focuses on demon-
strating how a spatial search is performed. AKS did not pro-
cess such pieces of information because MVNRepository cat-
egorizes “lucene” as a “Full-Text Indexing Library”'? and,
accordingly, we chose the “Text Processing” concern to rep-
resent it. If we had enabled AKS to process keywords and

1
associate them with concerns via semantic processing mech- *
anisms, our method and tool would have an additional re- 4
source to refine the categorization of DtC. s
AKS determined that the artifact shown in Listing 10'% is s
highly dedicated to implementing the “Validation” concern
(lines 4, 7, 10, and 17). ;
Listing 10: Semantic Processing of Annotations 9

package org.kairosdb.core.groupby;

@Concern(name="Validation”)
import org.apache.bval.constraints.NotEmpty;

@Concern(name="Validation”)
import javax.validation.constraints.NotNull;

@Concern(name="Validation”)
import static com.google.common. base.
Preconditions .checkNotNull;
@GroupByName (name = “tag”, description = ”Groups
data points by tag names.”)
public class TagGroupBy implements GroupBy {
@NotNull @NotEmpty private List<String> tags;

21
22
23

@Concern(name = ”Validation”)
public TagGroupBy(List<String> tagNames) {

There is a strong relationship between the artifact and “Val-
idation” throughout the lines of code, but we could refine our
method and AKS if we considered some of its semantic ele-
ments. For instance, the description provided in line 12 is a
clear statement about the purpose of the class: “groups data
points by tag names”. The statement convinced one of the

12 Apache describes it as a “full-featured text search engine library writ-
ten entirely in Java” (https://lucene.apache.org/core/)
13The complete source code of Listing 10 can be found here

raters to disagree with the categorization of DtC because it
points to a purpose other than “Validation”. He/she catego-
rized it as MODERATE.

AKS determined that the artifact in Listing 11'* is highly
associated with the “Database” concern.

Listing 11: Semantic Processing of Classes’ Names

package org.janusgraph.graphdb.embedded;

@Concern (name="Database”)

import org.janusgraph.CassandraStorageSetup;

@Concern(name="Database”)

import org.janusgraph.diskstorage.configuration.
WriteConfiguration;

@Concern(name="Database”)

import org.janusgraph.graphdb.
JanusGraphPerformanceMemoryTest;

public class EmbeddedGraphMemoryPerformanceTest
extends JanusGraphPerformanceMemoryTest {

@Concern(name = ”Database”)
@BeforeClass
public static void startCassandra() {

CassandraStorageSetup .startCleanEmbedded () ;

!

@Concern(name = ”Database”)

@Override

public WriteConfiguration getConfiguration () {
return CassandraStorageSetup.
getEmbeddedCassandraPartitionGraphConfiguration

(
getClass () . getSimpleName ());

AKS processed the imports in lines 4, 6 and 8 and methods
from lines 13 to 15 and 19 to 22 and ended up with a HIGH
DtC. One of the raters disagreed and was positive that devel-
opers designed the artifact to perform tests. He/She pointed
out that the name of the class (in line 10) is more related
to “Test” than to the “Database” concern. According to him,
DtC should be SLIGHT regarding “Database”.

We decided to end our action research study after its third
round because: (i) reaching a strength of agreement beyond
0.40 (strength of agreement = “Moderate”) is considered a

14The complete source code of Listing 11 can be found here

https://gitlab.com/luispscarvalho/datasets/-/blob/JSERD2023_ConcernsFromThirdPartyComponents/snippets/TagGroupBy.java
https://gitlab.com/luispscarvalho/datasets/-/blob/JSERD2023_ConcernsFromThirdPartyComponents/snippets/EmbeddedGraphMemoryPerformanceTest.java

Using Third-Party Components’ Metadata to Analyze Cross-cutting Concerns

good agreement (Donker et al., 1993; Munoz and Bangdi-
wala, 1997), and (ii) we must evolve our method to con-
sider the processing of source code’s semantic elements. This
is a complex new aspect of our research, and it deserves a
deeper study with its own scope of goals and investigation
approaches.

We do not associate obtaining a good strength of agree-
ment to the substitution of one of the raters. In other words,
we trust that the new rater fitted our requirements to partici-
pate in the study. Additionally, throughout the rounds of in-
teraction, we constantly reinforced to raters that their impar-
tial opinions would be very important to enhance our method
and tool. They should stick to their beliefs regarding the iden-
tification and analysis of concerns.

6.5 A Semi-Structured Interview with the
Raters

After finishing the evaluation, we conducted an interview
with the raters. We opted for a semi-structured interview be-
cause, although the interviewer prepares a list of predeter-
mined questions, semi-structured interviews are also conver-
sational, and they offer to participants the chance to explore
issues they feel are important (Longhurst, 2003). We believe
that this aspect had potential to gather more knowledge from
the raters, as it allows them to elaborate more about their con-
siderations and provide suggestions regarding our method.
We also took the opportunity to elucidate some controversial
questions that emerged during the rounds of evaluation.

One important result that we discussed with the raters was
the fact one of them refused to evaluate the DtC of inferfaces
and methods of abstract classes. We must point out that the
rater who refused to evaluate the DtC under the mentioned
circumstances did not participate in the interview. He/She
was the one who stopped responding to our invitations to take
part in the third round of evaluation. The raters agreed that
methods’ declarations and their list of parameters and result
types are good indicators of which concerns are being imple-
mented, but this is subject to the impact that the inferfaces
have on the development of systems. If a particular system
relies on the definition of many abstract modules (e.g., in-
terfaces and abstract classes), it might be insightful to pro-
cess these types of artifacts. The raters see an advantage in
perceiving how concerns are firstly introduced in software
projects at an abstract level before their realization (as con-
crete classes).

One of the raters mentioned examples of concerns that are
implemented exclusively with the help of interfaces. For in-
stance, Java Persistence API (JPA)'’ is a standard for con-
necting applications to databases. Some of its extensions'®
relies on annotated interfaces and developers rarely need to
add extra lines of code. According to him, it is important to
associate the “Database” concern with JPA-annotated inter-
faces.

We revealed to raters that we would like to enable our
method and AKS to process semantic aspects of software
projects. They both agreed that on many occasions they could

3https://www.oracle.com/java/technologies/persistence-jsp.html
16The rater mentioned the Spring Data JPA (https://spring.io/
projects/spring-data-jpa)

Carvalho et al. 2024

not agree with the results listed in the agreement data set be-
cause of the non-processing of artifacts’ semantic elements.
They also questioned whether the definition of a “glossary”
(or a taxonomy, or an ontology) would have to precede the
semantic analysis of source code. For example, the “Test”
concern can be implemented under different names. Devel-
opers may call “Test” as “Verification/*Verity”, “Evalu-
ation”/“Evaluate”, “AssertThat”, and other similar expres-
sions. In other words, providing our method and tool with
semantic-oriented processing mechanisms depends on know-
ing the different ways how developers refer to concerns.

Although the raters recognized that the semantic process-
ing of concerns is valuable, one of them stressed that the
static analysis is more important. According to him, the
source code elements that AKS processes to identify con-
cerns (import declarations, attributes/parameters types, vari-
able declarations) tend to be “constant” assets in software
making. They are intrinsic parts of many programming lan-
guages and programs cannot be easily made without them.
Moreover, developers may fail to adequately add/describe/-
comment/annotate source code’s semantic information. So,
the processing of software projects’ semantic elements must
be seen as a complementary step to refine the static analysis,
not the other way around.

6.6 Reflections and Learning

Reflections and learning is responsible for (Dos Santos
and Travassos, 2011): (1) exploring the results of the study
in comparison to the state-of-the-art, and (2) depicting the
learning experience of the participants. It is important to re-
mark that we also learned as researchers, while we gradu-
ally became aware of the problems and suggestions reported
by the specialists. As stated by Staron (2020), through co-
development, researchers and practitioners learn from each
other, and thus they develop research results that contribute
to both the industrial practice and academic theories, tools,
methods, and knowledge development.

Table 10 summarizes raters’ opinions and how they im-
pacted our action research study. It took us three rounds
of evaluation to reach a good strength of agreement. We
achieved a moderate agreement (0.55). We believe that our
findings can guide other future studies in determining re-
quirements for dealing with the association between con-
cerns and source code artifacts. For instance, fatiguing the
raters seems a natural consequence of investigating concerns
because the manual identification of concerns in large data
sets/databases can be tiresome. Therefore, we consider that
developers should be helped whenever they need to perform
this kind of activity.

Although our method is practical, it has limitations. For
instance, not all concerns which developers implement de-
pend on the use of components. Consequently, our method
can grant only a partial view of the collection of concerns
that systems encapsulate.

It is important to mention that some of the comments that
the raters filled in the agreement spreadsheets are not par-
ticular to a specific round of evaluation. For instance, the
non-processing of semantic elements that we discussed in
the third round (Section 6.4.3) was already being notified by

https://spring.io/projects/spring-data-jpa
https://spring.io/projects/spring-data-jpa

Using Third-Party Components’ Metadata to Analyze Cross-cutting Concerns

Carvalho et al. 2024

Table 10. Impact of Raters” Opinions and Reactions

Round/Agreement

Opinion/Reaction

Rationale

Impact

1/0.28 (Fair)

Processing of Annotations

Annotated code is also an indication of associations
between concerns and source code

Parsing and Processing of annotations

Analysis of interfaces

Interfaces lack methods’ body of code. This hinders
the identification/verification of concerns and
measurement of DtC

Filtering of interfaces out of the data set
when they are not regarded as valuable
for concerns analysis

Fatigue

As performing the analysis tend to produce a large
data set, verification becomes tiresome
if done manually

Addition of annotations (@concern) as visual
clues to locate concerns and reducing the
size of the agreement data set

2/0.26 (Fair)

Processing of multiple
POM and Gradle files

Some developers split the information about
components through sub-projects and modules

Identification and processing of scattered
POM and Gradle files

Analysis of empty
methods

Lacking methods’ body of code disables the
identification/verification of concerns and
measurement of DtC

Skipping the processing of empty methods
when they are not regarded as valuable
for concerns analysis

Overlapping of Concerns

Some components can refer to more than just one
concern

Enabling the configuration of overlapped
concerns

2/0.55 (Moderate)

Processing of source code’s

Reaching higher strengths of agreement may

Running future studies to advance our

semantic elements
semantic elements

require combining the processing of AST with

method and tool into combining
static and semantic analyses

raters since the first rounds (Sections 6.4.1 and 6.4.2). How-
ever, during rounds 1 and 2, raters’ suggestions about the
processing of static aspects of the source code overwhelmed
us. As soon as we adapted our study to address such aspects,
we began to perceive the semantic facets of concerns mining
and analysis.

7 Threats to Validity

Now, we discuss the threats to the validity of our work:

Construct validity: we based our method on information
about third-party components which developers add to POM
and Gradle files. When MVNRepository failed to categorize
components, we manually filled in the information. Although
the raters who participated in our action research study (Sec-
tion 6) have expertise in software development, they did not
have any previous contact with the source code samples they
analyzed. Imprecision may reside in raters failing to under-
stand how some concerns were implemented.

Internal validity: we determined the thresholds that we
embedded in AKS and used to produce our studies’ data set.
By the time we evaluated our method (in Section 6), we did
not take advantage of the raters’ expertise to fine-tune our
DtC measurement rule. We must conduct new studies to ob-
serve how changing the rule’s thresholds values impacts our
method.

Although reviewing the thresholds of the metrics would
be a valuable addition, we do not consider it a major threat.
The set of opinions and remarks we obtained from the raters
through the rounds of our study (concisely described in Ta-
ble 10) are still reliable and valuable regardless any potential
refinement of the metrics and thresholds. For instance, one
of the raters outlined that “Processing of Annotations” is a
good source of information about concerns. That would still
occur even if we conducted the study under a different met-
rics/thresholds settings.

External validity: our findings are restrained to the collec-
tion of concerns that we extracted from the projects listed in
Table 7. We examined real software projects, but we did not
cover software domains other than the one that we adopted:
non-relational databases. It is desirable to consider a broader
context of domains.

Conclusion validity: having two raters per round of eval-

uation granted us with some advantages: (i) two raters suf-
fice for achieving a high evaluation precision via kappa, and
(i) it helped to reduce our workload as it provided us with
a more controlled flow of insights and suggestions. How-
ever, we must rely on more specialists to refine our conclu-
sions. In this case, applying Cohen’s Kappa to deal with mul-
tiple raters (Conger, 1980; Berry and Mielke Jr, 1988) might
mitigate such a threat. Alternatively, although it was not a
planned move, replacing one of the raters to run our study’s
third round is one step toward the diversification of our con-
clusions.

8 Related Work

In this section, we present and analyze related work that pro-
poses techniques related to automatic/semi-automatic identi-
fication concerns.

Robillard and Murphy (2002) proposed a way to generate
graphs from key abstract structures used to implement con-
cerns. They created a tool to support their method: Feature
Exploration and Analysis Tool (FEAT). FEAT has the pur-
pose of supporting maintenance tasks by visualizing concern-
based graphs and querying some metrics, e.g., fan-in, fan-
out.

Porubén and Nosal (2014) introduced the possibility of
projecting multiple concerns over the same pieces of source
code. Projections can help developers to perceive which con-
cerns overlap with each other regarding a specific system’s
module (e.g., a class in an object-oriented system). The Sieve
Source Code Editor (SSCE) is the tool that the authors of the
study developed to support the visualization of overlapped
concerns.

Juhar and Vokorokos (2015) devised a way to determine
which level of granularity most developers consider useful
when dealing with concerns. With the help of their tool, Code
Tagger (CT), they enabled software specialists to tag/mark
source code fragments as concerns.

He and Ye (2015) investigated if it is possible to identify
concerns during requirements definition phases. They con-
ceived a method based on goal models and a two-state al-
gorithm. The goal model is responsible for extracting rela-
tionships between different requirements’ goals, and the al-
gorithm is used to automate the analysis of the relationships.

Using Third-Party Components’ Metadata to Analyze Cross-cutting Concerns

The study focuses on applying the method to identify con-
cerns from modeled aspects of systems.

Shaikh and Lee (2016) applied Aspect-Oriented ReEngi-
neering (AORE) to mine concerns from legacy systems to
transform them into Aspect-Oriented applications. AORE re-
quires the identification of concerns before refactoring sys-
tems’ source code. Specifically, the author’s targeted code
smells (Fowler and Beck, 1999) as elements to be turned into
aspects. To achieve this, they applied a set of tools to find in-
stances of code smells and to exploit Formal Concept Anal-
ysis (FCA) to group smelly modules that belong to the same
concerns.

Nunez-Varela et al. (2017) based a concern identification
method on specialized information retrieval techniques. The
techniques allow finding relevant information from a col-
lection of documents containing unstructured text, i.e., the
source code is seen as unstructured text and the method can
identify classes that contain core concerns by finding a Con-
tent Similarity Score (CSS) between modules.

Considering the aforementioned studies, to the best of our
knowledge, we are the first ones to have ever addressed the
possibility of extracting concerns from third-party compo-
nents’ metadata.

9 Final Remarks

This paper describes our effort in automating the mining and
processing of concerns with the help of third-party compo-
nents’ metadata. We believe that we have been able to cir-
cumvent some limitations that we initially identified: (i) the
lacking and inadequacies of software documents regarding
the representation of concerns, and (ii) error-proneness of ap-
proaches that focus on their manual identification. As a result,
we created a new method.

Customarily, developers add metadata files to software
projects as a way to automate the addition of components.
As this has turned into widespread good practice, projects
that contain metadata about components became abundant
and we saw this as an opportunity to locate and process in-
formation about concerns. Developers often synchronize the
metadata files (POM and Gradle files) with VCS, ensuring
that they are updated frequently and evolve together with
other source code artifacts and enable the investigation of
historical data about how developers integrate components
in systems’ source code to implement concerns.

To enhance our method, we evaluate it with the help of
software development specialists (in Section 6). We meet
their opinions regarding how to identify concerns and mea-
suring the Dedication to Concern (DtC) to a moderate degree.
To the best of our knowledge, we took one step ahead in us-
ing static analysis of source code to emulate how developers
perceive the relationship between software systems and con-
cerns.

We believe that our research can support developers to
carry important software-related activities, such as: (i) un-
derstanding the causes and effects of cross-cutting con-
cerns as their presence can hinder the modularization of sys-
tems (Kiczales, 1996; He and Ye, 2015); (ii) refactoring of
systems regarding the occurrence of concerns, which has

Carvalho et al. 2024

been deemed as an important task in software maintenance
(da Silva et al., 2009; Nunez-Varela et al., 2017); and (iii) ad-
dressing software architecture issues that are associated with
the definition of concerns, e.g., mapping the currently imple-
mented concerns to the reference architecture to verify con-
formance while avoiding architecture erosion (Adams et al.,
2010).

9.1 Future Work

Future work includes improvements and new evaluations
concerning proposed enhancements and the threats to valid-
ity that we discussed in Sections 6 and 7. The next paragraphs
highlight some of them.

As our method is dependant on the manual association be-
tween concerns and third-party components, it is important
to reduce the effort required by reaching a consensus about
how to name concerns. We did our best to automate the clas-
sification of concerns with the help of MVNRepository, as
described in Section 2, but our method still lacks proper ways
to prevent this task from becoming overly dependent on hu-
man assistance.

We empowered our tool with ways to associate source
code artifacts with concerns via annotations. We did that with
the solo intention of helping the raters to identify the imple-
mentation of concerns. However, we did not create an actual
concern annotation library/engine to assist developers to de-
fine and describe concerns while coding. In other words, cur-
rently, AKS can only position the concerns annotations as
texts into the source code of software projects. A valuable
addition to AKS could include mechanisms to add informa-
tion about concerns as real annotations.

We did our best to approximate the static analysis of source
code to software specialists’ points of view. However, we
believe that we can advance our approach by extracting con-
ceptual/semantic information from elements that our method
(and AKS) currently discard: keywords from the name of
packages, classes, methods, and comments that developers
add to the source code.

Although extracting the agreement data sets from the his-
torical data of projects did not affect our action research study
(Section 6), we could have relied on a single snapshot of
the projects’ history. However, we took the opportunity to
prepare our method and AKS to calculate DtC through the
evolution of systems to support future studies. For instance,
we want to see how different development approaches af-
fect DtC through time. How does the DtC of artifacts of
projects that follow Test-Driven Development (TDD) prin-
ciples evolve? Is a HIGH dedication of artifacts to the “Test”
concern expected right from the beginning of the develop-
ment process?

Adding third-party components and metadata about them
into systems’ codebase is not particular to Java-oriented soft-
ware projects. It has become a widespread practice and it can
enable us to advance our research. In Table 11, we highlight
some other programming languages (first column) that usu-
ally benefit from metadata files (second column) and online
repositories (third column) to embed third-party components
in the source code.

Using Third-Party Components’ Metadata to Analyze Cross-cutting Concerns

Table 11. Metadata and Repositories X Programming Languages

Programming Language Metadata File Repository
Javascript package.json NPM
Python requirements.txt ~ PyPi

PHP composer.json Packagist
Ruby gemfile Rubygems

Static Processing

\‘. .’/ Dedication To \\

'\\\‘ Data //:‘ ‘\\“ Metadata '/:' '\\\‘ Concern //;‘

Ve Projects’ History N Components'

Scope of this Work

Action Research Study

Semantic Processing

Commits'
Messages

7 ~
Source Code \Y4
) {

"/; \\“ Comments //1 \\\ "/r

Ve " Software N
Architecture

\ /

“._ Documents .~

Action Research Study

Future Studies

Unified Concermns Identification Heuristic (UCIH)

.’/ Static \\ ./ Semantic \‘.

"\\‘\ Processing Processing) /,"

J\
.)'/ \‘-.

Figure 7. Toward a Generalization

We see potential in all the mentioned examples. It is nec-
essary to generalize our method to deal with other compo-
nents’ metadata files and repositories, as the ones shown in
Table 11. Figure 7 illustrates the scope of this work and some
future studies that we believe can advance our method and
tool. We propose a sequence of studies toward the definition
of a Unified Concerns Identification Heuristic (UCIH). We
conjecture that we can better reflect the way how developers
manage concerns if we merge static and semantic analyses to
create a heuristic.

In Section 8, we evaluated some related studies. Some of
them mentioned the use of tools to detect concerns and mea-
sure their effect on software projects. However, we did not
run any of the tools to compare them with AKS. Ideally, we
should apply the related tools to extract and analyze concerns
from the software projects we based our study on (the ones
described in 7). Such a future study must include comparing
DtC with the metrics that the related studies’ tools are able
to extract.

As a result of the interview that we described in Section
6.5, we collected some ideas for future practical applications
of our method from raters. Raters suggested that DtC can be
used to validate layered software architectures. For instance,
layers of projects that follow the Model-View-Controller
(MVC) pattern have distinct purposes (Deacon, 2009). It is
undesirable to perceive that the “Database” concern has a
HIGH DtC in the “View” layer. Oppositely, concerns that
deal with user interface features (e.g., “UI”, “Visualization™)
are welcomed.

It is not always possible to eliminate unexpected concerns

Carvalho et al. 2024

from a particular layer. This comes from developers having
to deal with tight schedules and aggressive deadlines, but
they may decide to not release a new version of their soft-
ware if some key concerns appear in the wrong layer. The
presence of the “Database” concern in the “View” fits in this
category. This can be seen as a security problem, because it
may enable hacking via SQL injection. This goes against one
ofthe MVC’s advantages (Nystrom, 2007): applying process-
ing rules to data received from users to ensure it is normal-
ized and safe, which can guard applications from malicious
inputs.

We believe that analyzing the relationship between con-
cerns and layered software architecture (like MVC) demands
incorporating technical debt (TD) concepts into our method.
As TD refers to delayed tasks that may require extra effort in
the future (de Freitas Farias et al., 2020), releasing systems
with misplaced concerns can be seen as developers postpon-
ing tasks to correctly place concerns in adequate layers. Fig-
ure 8 depicts DtC’s potential to spot and calculate TD.

Our method would have to consider one extra parameter to
process TD: layers of layered systems. Associating a HIGH
DtC to the relationship between the “Database” concern and
artifacts of the “View” layer would cause AKS to report a sig-
nificant case of TD. On the other hand, detecting a HIGH DtC
in the artifacts that implement “Database” in the “Model”
layer would indicate a LOW (or a nonexistent) TD.

Contraoller

‘ Layered System ‘
<
o
H

1 —{ DtC(Database, View) H DtC(Database, Cantroller) H

HIGH(Dtc) >> HIGH(DT)

Figure 8. From DtC to Technical Debt

AKS

([HIGH(Dte) >> LOW(ET) |
)

HIGH(Dte) >> HIGH(DT) ’

‘ Report DT from DtC |

9.2 Replication Package

We encourage the replication and refinement of our studies.
So, we have made a replication package available. For AKS’
latest updates, visit its public repository. We have made tuto-
rial videos available on the repository to showcase the use of
the tool.

References

Abilio, R., Padilha, J., Figueiredo, E., and Costa, H. (2015).
Detecting code smells in software product lines — an ex-
ploratory study. In 2015 12th International Conference
on Information Technology, pages 433—438.

Abilio, R., Vale, G., Figueiredo, E., and Costa, H. (2016).
Metrics for feature-oriented programming. In 2076
IEEE/ACM 7th WETSoM, pages 36—42.

https://www.npmjs.com/
https://pypi.org/
https://packagist.org/
https://rubygems.org/
https://gitlab.com/luispscarvalho/datasets/-/tree/JSERD2023_ConcernsFromThirdPartyComponents/
https://gitlab.com/luispscarvalho/AKS

Using Third-Party Components’ Metadata to Analyze Cross-cutting Concerns

Adams, B., Jiang, Z. M., and Hassan, A. E. (2010). Identify-
ing crosscutting concerns using historical code changes. In
Proc. of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1, pages 305-314. ACM.

Agiiero, M. and Ballejos, L. (2017). Dependency manage-
ment in the cloud: An efficient proposal for java. In 2017
XLIII CLEI, pages 1-9.

Baskerville, R. L. (1999). Investigating information systems
with action research. Communications of the association
for information systems, 2(1):19.

Bellomo, S., Ernst, N., Nord, R. L., and Ozkaya, 1. (2014).
Evolutionary improvements of cross-cutting concerns:
Performance in practice. In 2014 IEEE International Con-
ference on Software Maintenance and Evolution, pages
545-548. IEEE.

Bernardi, M. L., Cimitile, M., and Di Lucca, G. (2016). Min-
ing static and dynamic crosscutting concerns: a role-based
approach. Journal of Software: Evolution and Process,
28(5):306-339.

Berry, K. J. and Mielke Jr, P. W. (1988). A generalization
of cohen’s kappa agreement measure to interval measure-
ment and multiple raters. Educational and Psychological
Measurement, 48(4):921-933.

Bohme, R. and Freiling, F. C. (2008). On metrics and mea-
surements. In Dependability metrics, pages 7—13.

Brennan, R. L. and Prediger, D. J. (1981). Coefficient kappa:
Some uses, misuses, and alternatives. FEducational and
psychological measurement, 41(3):687—-699.

Canfora, G. and Cerulo, L. (2005). How crosscutting con-
cerns evolve in jhotdraw. In /3th IEEE STEP 05, pages
65-73. IEEE.

Carvalho, L. P., Novais, R., and Mendonga, M. (2020). Re-
lationships between design problem agglomerations and
concerns having types and domains of software as trans-
verse dimensions. Under Review for Journal of the Brazil-
ian Computer Society.

Carvalho, L. P., Novais, R., and Mendonga, M. (2018). In-
vestigating the relationship between code smell agglom-
erations and architectural concerns: Similarities and dis-
similarities from distributed, service-oriented, and mobile
systems. In 2018 XII SBCARS.

Cohen, J. (1960). A coefficient of agreement for nomi-
nal scales. Educational and psychological measurement,
20(1):37-46.

Conger, A. J. (1980). Integration and generalization of kap-
pas for multiple raters. Psychological Bulletin, 88(2):322.

da Silva, B. C., Figueiredo, E., Garcia, A., and Nunes,
D. (2009). Refactoring of crosscutting concerns with
metaphor-based heuristics. Electronic Notes in Theoreti-
cal Computer Science, 233:105-125.

Dawson, R. and O’neill, B. (2003). Simple metrics for im-
proving software process performance and capability: a
case study. Software Quality Journal, 11(3):243-258.

de Freitas Farias, M. A., de Mendonga Neto, M. G., Kali-
nowski, M., and Spinola, R. O. (2020). Identifying self-
admitted technical debt through code comment analysis
with a contextualized vocabulary. Information and Soft-
ware Technology, 121:106270.

Carvalho et al. 2024

Deacon, J. (2009). Model-view-controller (mvc) archi-
tecture. Online][Citado em: 10 de margo de 2006.]

http://www. jdl. co. uk/briefings/MVC. pdf.

Dias, R. S., de Alcantara dos Santos Neto, P., de Sousa Ib-
iapina, I. M., Avelino, G. A., and da Costa Castro, O. C.
(2019). Effects of visualizing technical debts on a soft-
ware maintenance project. In Proc. of the XVIII Brazilian
Symposium on Software Quality, pages 39—48.

Diaz-Pace, J. A., Villavicencio, C., Schiaffino, S., Nicoletti,
M., and Vazquez, H. (2016). Producing just enough doc-
umentation: An optimization approach applied to the soft-
ware architecture domain. Journal on Data Semantics,
pages 37-53.

Dit, B., Revelle, M., Gethers, M., and Poshyvanyk, D. (2013).
Feature location in source code: a taxonomy and survey.
Journal of software: Evolution and Process, 25(1):53-95.

Donker, D., Hasman, A., and Van Geijn, H. (1993). Inter-
pretation of low kappa values. International journal of
bio-medical computing, 33(1):55-64.

Dos Santos, P. S. M. and Travassos, G. H. (2011). Action
research can swing the balance in experimental software
engineering. In Advances in computers, volume 83, pages
205-276. Elsevier.

Eaddy, M., Zimmermann, T., Sherwood, K. D., Garg, V.,
Murphy, G. C., Nagappan, N., and Aho, A. V. (2008). Do
crosscutting concerns cause defects? IEEE transactions
on Software Engineering, 34(4):497-515.

Fowler, M. and Beck, K. (1999). Refactoring: improving the
design of existing code.

Gomes, F., Mendes, T., Spinola, R., Mendonga, M., and
Farias, M. (2019). Uma andlise da relagdo entre code
smells e divida técnica auto-admitida. pages 37—44.

Hannemann, J. and Kiczales, G. (2001). Overcoming the
prevalent decomposition of legacy code. In Workshop on
Advanced Separation of Concerns, volume 167.

He, C. and Ye, S. (2015). A method for identification of
crosscutting concerns based on goal model and two-state
algorithm. In 2015 4th ICCSNT, volume 1, pages 431-435.
IEEE.

Hensler, C. and Stipak, B. (1979). Estimating interval scale
values for survey item response categories. American
Journal of Political Science, 23(3):627-649.

Ibiapina, 1., Castro, O., Moura, V., Dias, R., and Neto, P. S.
(2018). Tdvision: Um moédulo computacional para visual-
izagio de dividas técnicas. In Anais da IV Escola Regional
de Informatica do Piaut, pages 103—108. SBC.

Juhar, J. and Vokorokos, L. (2015). Separation of concerns
and concern granularity in source code. In 2015 IEEE 13th
International Scientific Conference on Informatics, pages
139-144. IEEE.

Khomyakov, 1., Makhmutov, Z., Mirgalimova, R., and Sil-
litti, A. (2019). An analysis of automated technical debt
measurement. In International Conference on Enterprise
Information Systems, pages 250-273. Springer.

Kiczales, G. (1996). Aspect-oriented programming. 4ACM
CSUR, 28(4es):154—¢s.

Landis, J. R. and Koch, G. G. (1977). The measurement of
observer agreement for categorical data. biometrics, pages
159-174.

Using Third-Party Components’ Metadata to Analyze Cross-cutting Concerns

Longhurst, R. (2003). Semi-structured interviews and focus
groups. Key methods in geography, 3(2):143—156.

Margal, I., Garcia, R. E., Eler, D. M., Junior, C. O., and
Correia, R. C. (2016). Techniques for the identification
of crosscutting concerns: A systematic literature review.
pages 569-579.

Mendes, T., Novais, R., Mendonca, M., Carvalho, L., and
Gomes, F. (2017). Repositoryminer - uma ferramenta
extensivel de minerac¢do de repositorios de software para
identificacao automatica de divida tecnica. In CBSoft 2017
- Sessao de Ferramentas.

Mendes, T. S., Gomes, F. G., Gongalves, D. P., Mendonga,
M. G., Novais, R. L., and Spinola, R. O. (2019). Vis-
minertd: a tool for automatic identification and interactive
monitoring of the evolution of technical debt items. Jour-
nal of the Brazilian Computer Society, 25(1):2.

Mendes, T. S., Gongalves, D. P., Gomes, F. G., Novais,
R., Spinola, R. O., Mendongca, M., and Salvador, B.
(2015). Visminertd: Uma ferramenta para identificag@o
automatica e monitoramento interativo de divida técnica.

Munoz, S. R. and Bangdiwala, S. I. (1997). Interpretation of
kappa and b statistics measures of agreement. Journal of
Applied Statistics, 24(1):105-112.

Nunez-Varela, A. S., Perez-Gonzalez, H. G., Flores-Puente,
Y. T., and Valdes-Souto, F. (2017). Finding core crosscut-
ting concerns from object oriented systems using informa-
tion retrieval. In 2017 5th CONISOFT, pages 18-24.

Nufiez-Varela, A. S., Pérez-Gonzalez, H. G., Martinez-Perez,
F. E., and Soubervielle-Montalvo, C. (2017). Source code
metrics: A systematic mapping study. Journal of Systems
and Software, 128:164—197.

Nystrom, M. (2007). SOL injection defenses. > O’Reilly
Media, Inc.”.

Oliveira, P., Valente, M. T., and Lima, F. P. (2014). Extract-
ing relative thresholds for source code metrics. In 2014
Software Evolution Week-IEEE CSMR-WCRE, pages 254—
263. IEEE.

Palyart, M., Murphy, G. C., and Masrani, V. (2017). A study
of social interactions in open source component use. [EEE
Transactions on Software Engineering.

Philippi, C. L. (2021). On measurement scales: Neither ordi-
nal nor interval? Philosophy of science, 88(5):929-939.
Porubin, J. and Nosal, M. (2014). Leveraging program com-
prehension with concern-oriented source code projections.
In 3rd Symposium on Languages, Applications and Tech-
nologies. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-

matik.

Carvalho et al. 2024

Puhakainen, P. and Siponen, M. (2010). Improving em-
ployees’ compliance through information systems security
training: an action research study. MIS quarterly, pages
757-178.

Raemaekers, S., van Deursen, A., and Visser, J. (2017).
Semantic versioning and impact of breaking changes in
the maven repository. Journal of Systems and Software,
129:140-158.

Robillard, M. P., Marcus, A., Treude, C., Bavota, G., Cha-
parro, O., Ernst, N., Gerosa, M. A., Godfrey, M., Lanza,
M., Linares-Vasquez, M., et al. (2017). On-demand devel-

oper documentation. In 2017 IEEE ICSME, pages 479—
483. IEEE.

Robillard, M. R. and Murphy, G. C. (2002). Concern graphs:
finding and describing concerns using structural program
dependencies. In Proc. of the 24th Internat. Conf. on Soft-
ware Engineering. ICSE 2002, pages 406—416.

Rosenhainer, L. (2004). Identifying crosscutting concerns in
requirements specifications. In Proc. of OOPSLA Early
Aspects. Citeseer.

Sant’Anna, C., Figueiredo, E., Garcia, A., and Lucena, C.
(2007). On the modularity assessment of software archi-
tectures: Do my architectural concerns count? In A4RCH.
07, AOSD, volume 7.

Sant’Anna, C., Garcia, A., Chavez, C., Lucena, C., and
Von Staa, A. (2003). On the reuse and maintenance of
aspect-oriented software: An assessment framework. In
Proc. XVII Brazilian Symposium on Software Engineer-
ing.

Shaikh, M. and Lee, C.-G. (2016). Aspect oriented re-
engineering of legacy software using cross-cutting con-
cern characterization and significant code smells detection.
International Journal of Software Engineering and Knowl-
edge Engineering, 26(03):513-536.

Shatnawi, A., Seriai, A.-D., Sahraoui, H., and Alshara, Z.
(2017). Reverse engineering reusable software compo-
nents from object-oriented apis. Journal of Systems and
Software, pages 442—460.

Staron, M. (2020). Reporting action research studies. In
Action Research in Software Engineering, pages 191-213.

Velazquez-Rodriguez, C. and De Roover, C. (2020). Mu-
tama: An automated multi-label tagging approach for soft-
ware libraries on maven. In 2020 IEEE 20th International
Working Conference on Source Code Analysis and Manip-
ulation (SCAM), pages 254-258.

Yu, Z., Bai, C., Seinturier, L., and Monperrus, M. (2018).
Characterizing the usage and impact of java annotations
over 1000+ projects. arXiv preprint arXiv:1805.01965.

	Introduction
	Our Method
	Our tool: Architectural Knowledge Suite (AKS)
	Mining Information about cross-cutting Concerns
	Measuring Dedication to Concern

	Applying our DtC Metric - A Worked Example
	Measuring a High DtC
	Measuring a Moderate DtC
	Measuring a Slight DtC

	An Action Research Study to Evaluate and Refine our Method
	Diagnosis
	Planning
	Actions
	Generating the Study's Agreement Data Set
	Data Set Analysis Process
	The Raters

	Evaluation and Analysis
	Round 1
	Round 2
	Round 3

	A Semi-Structured Interview with the Raters
	Reflections and Learning

	Threats to Validity
	Related Work
	Final Remarks
	Future Work
	Replication Package

