
Journal of Software Engineering Research and Development, 2023, 11:14, doi: 10.5753/jserd.2023.3186
 This work is licensed under a Creative Commons Attribution 4.0 International License..

Modeling software processes from different domains using
SPEM and BPMN notations: An experience report of teaching
software processes
Carla Bezerra [Federal University of Ceará | carlailane@ufc.br]
Emanuel Coutinho [Federal University of Ceará | emanuel.coutinho@ufc.br]

Abstract
In a current application development scenario in different environments, technologies and contexts, such as IoT,

Blockchain, Machine Learning and Cloud Computing, there is a need for particular solutions for domain-specific
software development processes. The proper definition of software processes requires the understanding for the
involved teams and organization’s particularities and specialized technical knowledge in Software Engineering. Al-
though it is an essential part of Software Engineering, many university curricula do not dedicate as much effort
to teaching software processes, focusing more on the basic principles of Software Engineering, such as require-
ments, architecture and programming languages. Another important aspect of software processes is modeling. The
modeling of a software process provides a basis for managing, automating and supporting the software process im-
provement. In this context, teaching software process modeling becomes challenging, mainly due to the great em-
phasis on theory and few practices. This work presents an experience report teaching the definition and modeling of
software processes in different domains. In the discipline of software processes, we applied a practice for defining
and modeling processes in various application domains, such as: IoT, cloud, mobile, critical systems, self-adaptive
systems, machine learning, blockchain and games. The processes were modeled in the Software Systems Process
Engineering Metamodel (SPEM) and Business Process Model and Notation (BPMN) notations based on references
from the literature for each domain. We evaluated the process modeling practice with the SPEM and BPMN in two
classes of the software processes discipline, and we had discussions about the use of the two notations applied to
the different domains. In general, students reported good experiences in defining processes, highlighting the impor-
tance of practical modeling applications for professional life. As the main results of the study in teaching process
modeling, we have that: (i) students accepted HEFLO tool better than EPF Composer tool; (ii) most students are
not aware of specific domains and that anticipating the study of these domains in the discipline is a good strategy;
and, (iii) the students also highlighted the need for more support for the two notation tools.

Keywords: Software Process, Systems Domain, Education

1 Introduction

With the rapid advancement of technologies and computing,
the importance of Software Engineering in everyday life is
increasing, affecting all aspects of our lives today, including
work, learning and education (Aleem et al., 2016). Software
development activity is generally supported by international
standards that provide a set of software processes to cover the
entire software life cycle and define the activities necessary
to design, develop, deploy and maintain a software system,
product or service (Calderón et al., 2018).
The need for particular solutions arises in this applica-

tion development scenario in different environments, tech-
nologies and contexts, together with different paradigms. Ex-
amples of situations are application development for games
(Patel and Cassou, 2015), machine learning (Giray, 2021),
blockchain (Yilmaz et al., 2019), Internet of Things (IoT)
(Motta et al., 2023), startups (Pizzini et al., 2021) and self-
adaptive systems (Andersson et al., 2013). However, each
domain has activities specific to its development process, of-
ten requiring a different process than traditional software de-
velopment.
A software process can be seen as the set of activities,

methods, practices and transformations that guide people in
the production of software (Moura and Santos, 2018). The

proper definition of software processes requires understand-
ing the particularities of the teams and organizations that
will use them and specialized technical knowledge in Soft-
ware Engineering (Moura and Santos, 2018). The software
process is related to defining the software life cycle, evaluat-
ing and improving the software process, and measuring soft-
ware and software engineering process tools. The software
process is inherent in the software practice (Johansen et al.,
2016). Thus, software development teams use, formally or in-
formally, a process to perform the tasks that will culminate
in the final software product (Moura and Santos, 2018).
Most university curricula consider software processes to

be on the fringes of Software Engineering (SE) (Kuhrmann
et al., 2013). Since building software processes from scratch
involves considerable effort, process tailoring should be prac-
ticed to adapt existing processes deriving new alternate ones
that fit specific needs (Pillat and Oliveira, 2016). Courses re-
lated to systems modeling, such as Requirements, Systems
Design Analysis, and Software Engineering, use diagrams
to represent information (Pinheiro et al., 2022). And many
times, sequences of activities, their relationships and gener-
ated products need to be specified.
Software process models are a way to keep organizations,

projects and people together (Kuhrmann et al., 2013). There-
fore, developing, maintaining and improving a software pro-

https://orcid.org/0000-0002-5879-5067
mailto:carla
https://orcid.org/0000-0003-2233-7109
mailto:seuemail

Bezerra and Coutinho 2023

cess model are challenging tasks requiring well-trained and
experienced process engineers. Although it is an essential
part of Software Engineering, most university curricula con-
sider that software processes are on the sidelines of Software
Engineering (Kuhrmann et al., 2013). Typically, these curric-
ula contain classes and labs covering software engineering’s
basic principles, such as requirements, architecture, and pro-
gramming languages.
Another important aspect of Software Engineering is the

models. Models are built better to understand systems or en-
vironments (Coutinho et al., 2017). Also, models are impor-
tant because they allow the representation of ideas, allowing
analysis and comparison (Alencar et al., 2020). However, no
model is sufficient and can be analyzed from different per-
spectives. Process models also become necessary in this con-
text to assist the software process.
The modeling of software processes is an important area

of Software Engineering because it provides a basis for man-
aging, automating and supporting the improvement of soft-
ware processes (Chaves et al., 2015). Both in academia and
industry, SPEM (Software & Systems Process Engineering
Metamodel) and BPMN (Business Process Model and Nota-
tion) notations are the most used for modeling software pro-
cesses (Castellanos Ardila et al., 2022). SPEM notation has
been widely used by several studies in the academy because
it has a language standardized by the Object Management
Group (OMG) (de la Vara et al., 2020; Pazin et al., 2022), in
addition to defining a generic framework for process model-
ing. EPF Composer tool supports SPEM notation facilitating
process modeling. As for the BPMN notation, it is also the
OMG standard for specifying process models and it has been
adopted frequently as the industry standard (Moyón et al.,
2020;Marin et al., 2023). Furthermore, the BPMNnotation is
supported by several tools. Teaching software process model-
ing is challenging, mainly because it emphasizes theory and
offers few practical exercises (Chaves et al., 2015).
Software process education is an important software en-

gineering field requiring a more practical and realistic ap-
proach to learning and teaching (Calderón et al., 2018;
De Sena Quaresma and Oliveira, 2021). Several studies re-
ported their experiences in learning and teaching software
process models and described recommendations and encoun-
tered challenges (Kuhrmann et al., 2013; Calderón et al.,
2018; Calderón et al., 2018, 2019; De Sena Quaresma and
Oliveira, 2021).
Considering the described context, professors and students

have faced great difficulty concerning the teaching-learning
approach to the use of processes in the discipline of Software
Engineering, since most of the adopted methodologies today
are based on expository classes with little efficiency (Tiwari
and Singh Rathore, 2019). Also, the modeling of software
processes is often complicated to be applied in the disciplines
in an applied manner.
In our previous work Bezerra and Coutinho (2022), we

presented an experience report on the application of process
modeling with SPEM for different domains in two classes of
software processes. In the current work, we present other ex-
perience report teaching the definition and modeling of soft-
ware processes in different domains, by extending the previ-
ous study Bezerra and Coutinho (2022) by changing the pro-

cess modeling methodology to use BPMN for new process
domains. Thus, this work consists of presenting two reports
of experience in the classroom.
We applied the new methodology in a software processes

class with 46 students. We assessed students in modeling
with SPEM and BPMN quantitatively and qualitatively. In
general, students reported good experiences in defining pro-
cesses, highlighting the importance of practical modeling ap-
plications for professional life. As the main results of the
study in teaching process modeling, we have that: (i) stu-
dents accepted HEFLO tool better than EPF Composer tool;
(ii) most students are not aware of specific domains and that
anticipating the study of these domains in the discipline is
a good strategy; and, (iii) the students also highlighted the
need for more support for the two notation tools.
The rest of the paper is structured as follows. In Section

2, the fundamental concepts used in this work are presented.
Section 3 presents the related work. Section 4 presents the
work methodology for SPEM notation, with planning, exe-
cution and results discussions. Section 5 presents the work
methodology for BPMN notation, with planning, execution
and results discussions. In Section 6, some discussions are
presented and the work’s limitations are described. Finally,
Section 7 shows the conclusions and future work.

2 Background
This section describes some theoretical aspects of SPEM and
BPMN notations, used in this work.

2.1 SPEM Notation
Software process modeling is a well-known topic in Soft-
ware Engineering research studied for the past twenty-five
years. Several process modeling languages have been pro-
posed over the years (García-Borgoñon et al., 2014). Among
them, themost evolved was SPEM (Software & Systems Pro-
cess EngineeringMetamodel), which is the standard notation
of OMG (Object Management Group) for modeling software
development processes (OMG, 2008).
Figure 1 presents the elements of the SPEM notation. The

content of the method is expressed mainly using work prod-
uct definitions, role definitions, task definitions and guid-
ance. Guidance, such as guidelines, checklists, examples or
roadmaps, is defined at the intersection of themethod content
and the process. On the right side of the diagram, elements
used to represent processes in SPEM 2.0 are highlighted. The
main element is the activity that can be nested to define divi-
sion structures and related to each other to define a workflow.
Activities are used to define processes (OMG, 2008).
One tool that supports SPEM 2.0 notation is Eclipse Pro-

cess Framework Composer (EPF Composer)1. It is an open-
source tool aiming to support customizable software pro-
cesses’ modeling. An advantage of this tool, in addition to
following a standardized notation, is the modeling of more
robust processes that can be made available from a publica-
tion of the process. In this work, we used the EPF Composer

1EPF Composer - https://www.eclipse.org/epf/composer_architecture/

Bezerra and Coutinho 2023

tool for teaching software process modeling, based on sev-
eral models and frameworks to support the definition of pro-
cesses in several application domains.

Figure 1. Key terminology defined in this specification mapped to Method
Content versus Process (based on OMG (2008))

2.2 BPMN Notation
Business Process Model and Notation (BPMN) is a standard
for business process modeling that provides graphical no-
tation for specifying business processes maintained by the
OMG (Omg et al., 2011). The objective of BPMN is to sup-
port business process modeling for both technical users and
business users, by providing notation that is intuitive to busi-
ness users, yet able to represent complex process semantics
(von Rosing et al., 2015).
BPMN is constrained to support only the concepts of mod-

eling that are applicable to Business Processes. This means
that other types of modeling done by organizations for busi-
ness purposes are out of scope for BPMN. Therefore, the fol-
lowing are aspects that are out of the scope of this Interna-
tional Standard: (i) Definition of organizational models and
resources, (ii) Modeling of functional breakdowns, (iii) Data
and information models, (iv) Modeling of strategy and (v)
Business rules models (Omg et al., 2011).
The five basic categories of BPMN elements are: (1) Flow

Objects, (2) Data, (3) Connecting Objects, (4) Swimlanes
and (5) Artifacts. (1) FlowObjects are the main graphical ele-
ments to define the behavior of a Business Process. There are
three Flow Objects: events, activities and gateways. (2) Data
is represented with the four elements: data objects, data in-
puts, data outputs and data stores. There are four ways of con-
necting the Flow Objects to each other or other information.
There are four Connecting Objects (3): sequence flows, mes-
sage flows, associations and data associations. There are two
ways of grouping the primary modeling elements through (4)
Swimlanes: pools and lanes. (5) Artifacts are used to provide
additional information about the Process. There are two stan-
dardized Artifacts, but modelers or modeling tools are free
to add as many Artifacts as necessary. There could be addi-
tional BPMN efforts to standardize a larger set of Artifacts
for general use or for vertical markets. The current set of Ar-
tifacts includes: group and text annotation (Omg et al., 2011).
Figure 2.2 presents some elements of BPMN notation, in ver-
sion 2.0.
Currently, there are several tools for modeling processes

in BPMN (Medoh and Telukdarie, 2017). We chose the

Figure 2. Examples of some BPMN notation elements, in version 2.0.

HEFLO2 tool to use in our experience report on teaching
BPMN modeling. The tool has a Portuguese version and a
free academic license. In addition, the tool is web and allows
the construction of processes collaboratively. It is also possi-
ble to download the entire process in a pdf file generated by
the tool itself and detail the steps of each activity, in addition
to the attachment of artifacts.

3 Related Work
This section describes some works related to this research. A
brief discussion on Software Domain Processes is conducted,
followed by reports on Teaching Software Processes with
SPEM and BPMN.

3.1 Software Domain Processes
The development environment and method play a vital role
in the success of software development (Younas et al., 2020).
Software development processes have evolved over time to
meet the changing needs of users and the industry. The adop-
tion of new technologies (such as the advent of big data,
cloud computing and IoT) is another reason for the evolution
of software development processes.
In the literature, there are several processes proposed for

different domains, such as: games (Osborne O’Hagan et al.,
2014; Aleem et al., 2016), Internet of Things (Younas et al.,
2020), mobile applications (Fontão et al., 2016; Jabangwe
et al., 2018), self-adaptive systems (Andersson et al., 2013),
machine learning systems (Liu et al., 2020), among others.
However, there is a need to adapt the processes to the char-
acteristics of these domains. For some types of systems, the
delay inherent in traditional change processes is unsatisfac-
tory (Andersson et al., 2013), as they are often critical sys-
tems that need to operate continuously. In traditional change

2https://www.heflo.com/pt-br/

Bezerra and Coutinho 2023

processes, changes are implemented during scheduled down-
time and, as a consequence, continuous operation is not pos-
sible.
Osborne O’Hagan et al. (2014) described a systematic re-

view of the literature on software processes used in game
development. Various process models used in industry and
academia and research were presented, with discussions on
software process improvement initiatives for game develop-
ment. Factors that promote or prevent the adoption of process
models and their implementation were highlighted. The re-
sults indicated that no single model serves as a model for the
process of best practices for the development of games, de-
ciding which model is more suitable for a specific game. Ag-
ile models like Scrum and XP are suitable for the domain of
game development, where innovation and speed to the mar-
ket are vital. Hybrid approaches, such as reuse, may also be
suitable for game development. The initial investment risk in
terms of time and cost is mitigated with a game with stable
requirements and a longer lifespan.
The multidisciplinary nature of game development pro-

cesses that combine sound, art, control systems, artificial in-
telligence (AI) and human factors make the development of
software games different from traditional software develop-
ment. Software engineering techniques help game develop-
ment to achieve maintainability, flexibility, less effort and
cost, and better design. Aleem et al. (2016) assessed the state
of the art of research on the game development software en-
gineering process, highlighting areas that need to be consid-
ered by researchers through a systematic literature review.
The largest number of studies were reported in the produc-
tion phase of the game development software engineering
process, followed by the pre-production phase. In contrast,
the post-production phase received far less research activity
than the pre-production and production phases. This study
suggests that the game development software engineering
process has many aspects that require more attention, espe-
cially the post-production phase.
Cloud computing helps to reduce costs, allows scalability

and improves communication through its services. Younas
et al. (2020) evaluated a generic framework combining agile
development and cloud computing with a case study. Before
conducting the case study, participants were trained in the
framework. The case study results show that the performance
of agile methods is improved using the framework. The im-
provement is measured in terms of local and distributed agile
development environments. Also highlighted was the range
of tools to support agile development activities in the context
of cloud computing and its compatibility.
Fontão et al. (2016) presented MSECO-DEV, a process

to support external developers in achieving central organiza-
tion goals by developing mobile applications. MSECO-DEV
comprises 8 activities, 7 artifacts, 8 recommendations and
17 practices. Activities, recommendations and practices were
evaluated by 65 Brazilian developers who worked with sev-
eral MSECOs (Mobile Software Ecosystem) to assess their
benefits for the routine of developingmobile applications. As
a result, it was found that developers have difficulty carrying
out marketing activities and finding support materials for de-
velopment. Practices, activities and recommendations were
also evolved and adjusted to define the MSECO-DEV.

Andersson et al. (2013) discussed for self-adaptive sys-
tems how some activities that traditionally occur at develop-
ment time are moved to runtime. Responsibilities for these
activities shift from software engineers to the system itself,
blurring the traditional boundary between development and
runtime. Consequently, they argued how the traditional soft-
ware engineering process needs to be redesigned to distin-
guish between runtime and runtime activities and support de-
signers in making decisions about designing these systems
properly. Several challenges related to this necessary recon-
ceptualization were identified and initial ideas based on pro-
cess modeling were proposed. The SPEM notation was used
to specify which activities should be performed offline and
online and their dependencies.
Liu et al. (2020) performed a qualitative interview study

to uncover emerging tasks in development processes when
machine learning components are used within software sys-
tems. The study identified 25 software development tasks for
these systems. However, the process for mastering machine
learning systems was not developed at work.
We emphasize that different domains have specific needs.

Regardless of using a specific notation for defining software
development processes, it is important to emphasize that
each domain needs to be understood so that the modeling
is adequate and useful for users. The previously mentioned
articles served to identify some domains, such as games Os-
borne O’Hagan et al. (2014); Aleem et al. (2016), cloud com-
puting Younas et al. (2020), mobile applications Fontão et al.
(2016), self-adaptive systems Andersson et al. (2013), and
machine learning Liu et al. (2020). Some of these articles
were used in the course as a basis for knowledge in the do-
main to be studied, helping students in terms of knowledge.

3.2 Teaching Software Processes with SPEM
The teaching of software processes using SPEM has been
discussed in some works identified in the literature in re-
cent years (Kuhrmann et al., 2013; Fernandes et al., 2016;
Calderón et al., 2018; Chaves et al., 2015; Moura and San-
tos, 2018).
Kuhrmann et al. (2013) proposed the inclusion of software

processes more explicitly in Software Engineering curricula.
For this, a course at the master’s level was designed and im-
plemented in which students learn why software processes
are needed and how they can be analyzed, designed, imple-
mented and improved. The course structure, objectives and
corresponding teaching methods were also presented. The
lack of problems to effectively prepare students for the in-
dustry was discussed, and the lack of education in software
and modeling processes was identified as a major deficiency.
Fernandes et al. (2016) presented an empirical study to as-

sess how online resources support the software learning pro-
cess in an online Software Engineering course with video
lessons, online questionnaires and discussion forums. The
results showed that videos and online questionnaires con-
tribute to the improvement of up to 15% of students’ grades
in software process questions compared to students who do
not watch videos or answer online questionnaires. However,
based on two exam questions that were repeated over the
three years, it was found that the improvement in grade seems

Bezerra and Coutinho 2023

to be related mainly to the video classes attended, instead of
questionnaires answered online.
Calderón et al. (2018) described state of art related to se-

rious games for education in software process patterns to
identify current games in terms of scope, main features and
perceived benefits of integrating them in education software
processes, in addition to identifying research opportunities.
The study was conducted as a multivocal literature review
that follows a pre-defined procedure in which scientific and
gray literature studies are analyzed. The results revealed that
serious games have the potential as support tools for teach-
ing software process patterns. Still, more research and exper-
imental results are needed to see the full potential as learning
resources.
Chaves et al. (2015) described a formal experiment car-

ried out to assess the learning effectiveness of a serious game
(DesigMPS), designed to support the teaching of software
process modeling and to compare game-based learning with
a method of project-based learning. In the game, the stu-
dent models a software process from the perspective of soft-
ware process improvement, based on the Brazilian model
(MPS.Br). The results indicate that playing the game can
have a positive learning effect and results in a greater degree
of learning effectiveness than the project-based instructional
learning method.
Moura and Santos (2018) presented an educational game

(ProcSoft) with the objective of teaching concepts, definition,
structure and content of a software process, and good soft-
ware engineering practices in an informal and relaxed way.
Students learn to compose a process more completely in the
game about the software development life cycle phases. The
basis of the game was the ISO/IEC 29110 standard, which
describes a software process composed of activities from the
basic development and project management cycle at a high
level. The results showed the involvement of the participants
in the classroom, the contribution to learning and the positive
influence in the search for additional knowledge.
In general, these works seek to highlight the importance of

software development processes, with experiences in differ-
ent approaches, applied in the classroom with students. We
highlighted the use of serious games (Fernandes et al., 2016;
Calderón et al., 2018; Moura and Santos, 2018) for teaching
software development processes. The proposed work also
sought to promote software development processes in teach-
ing, with the additional feature of defining and modeling a
process based on SPEM notation.

3.3 Teaching Software Processes with BPMN

The teaching of software processes with BPMN has been dis-
cussed in some works identified in the literature in recent
years (Pillat and Oliveira, 2016; Hasić et al., 2020; Enríquez
et al., 2019).
Pillat and Oliveira (2016) presented a new representation

structure for software process tailoring that is based on high-
level operations defined as BPMN extension concepts and as-
sociated support mechanisms. Such structure intents to con-
tribute allowing the specification, record, and traceability of
detailed control-flow variations required in the context of

software process tailoring as well as facilitating the specifi-
cation of such variations and improving their understanding.
Hasić et al. (2020) studied the modeling of IoT processes

by comparing the standard BPMN approach and the combi-
nation of BPMN and Decision Model and Notation (DMN).
Three cases with increasing need for context aggregation are
modeled according to both techniques, leading to an analy-
sis of the capability of the approaches to support IoT pro-
cesses in terms of high-level context-awareness, scalability
and complexity, flexibility, and decision logic reusability.
They demonstrated that in cases where a need for complex
context aggregation decision logic is present, the combina-
tion of BPMN and DMN provides the required support, even
for the complex cases, and performs better than BPMN on its
own.
Enríquez et al. (2019) performed an empirical analysis to

evaluate the advantages of applying BPM in the implemen-
tation of innovative and dynamic teaching activities. Using
this methodology, they designed RubricaSoft, a BPM system
focused on providing dynamic educational processes. It auto-
mates multiple tasks, including peer evaluation, information
integration and the management of deadlines. The results
have been very promising from the viewpoint of the three
axes upon which the evaluation has been carried out: satis-
faction of students, improvement in academic results and in-
crease in the productivity of teachers. In one of the processes,
the time spent by the teacher has been reduced by 80% and
student participation increased by 41%.
All these works reported experiences with the use of

BPMN for teaching software processes, as well as our pro-
posal. Pillat and Oliveira (2016) reinforced the use of nota-
tion for process specification, Hasić et al. (2020) applied it to
the IoT domain, and Enríquez et al. (2019) highlighted pro-
ductivity and reduction of time spent by the teacher on ac-
tivities. In our proposal we want to present the experiences
of using BPMN for the elaboration of software development
processes, and analyze the benefits of its use.

4 Modeling different domains with
SPEM

This section presents an experience report on modeling pro-
cesses from different domains using the SPEM notation with
the EPF Composer tool. We present the methodology that
was applied in two classes of software processes. The cho-
sen domains for process modeling were: self-adaptive sys-
tems, mobile, cloud, IoT, games and critical systems. The
processes were elaborated using the specificities of each do-
main and also based on agile methodologies selected by the
teams, and later the processes were modeled in EPF Com-
poser. In the end, we evaluated the proposed methodology
by analyzing the modeling of the domains.

4.1 Methodology
This section describes the planned and applied methodology
for the Software Processes discipline for teaching the defini-
tion andmodeling of software processes in different domains.
The discipline in question belongs to the fifth semester of

Bezerra and Coutinho 2023

the undergraduate course in Software Engineering. The main
goal of this methodology is the application of the concepts
learned in the discipline, adapting the process to the specific
characteristics of a particular software domain.
This work will follow three steps to meet the proposed

goal: planning, execution and analysis. Figure 3 illustrates
the three steps and the sequence of activities. The details of
each step are described below.

Figure 3. Representation of the work methodology

In Figure 3, the first phase involves planning the discipline.
The planning is divided into the following 6 steps: (1) presen-
tation of the theoretical content of processes; (2) practice of
modeling software processes; (3) presentation of software do-
mains; (4) defining the domain-based software process; (5)
elaboration of process artifacts based on the domain; and (6)
domain-based process modeling.
The second phase of the methodology consists of execut-

ing the discipline’s planning. At this time, all activities that
make up the planning step are carried out with the students.
The third phase consists of evaluating the results, and in-

cludes three steps: (1) application of the online questionnaire;
(2) qualitative analysis with Grounded Theory; and (3) anal-
ysis and discussion.
For qualitative analysis, this work used procedures from

the Grounded Theory (Corbin and Strauss, 2014) methodol-
ogy, inspired by the analysis approach presented in Ferreira
et al. (2018). The Grounded Theory aims to create a theory
from the data collected and analyzed systematically, consist-
ing of three steps: (1) open coding, (2) axial coding and (3) se-
lective coding. In open coding, data is broken, analyzed, com-
pared, conceptualized and categorized (Corbin and Strauss,
2014). In axial coding, categories are associated with subcat-
egories, forming more related and dense categories. Finally,
in selective coding, the central category or idea of the study
is identified, corresponding to the theory in which all cate-
gories are related. Strauss and Corbin also point out that the
researcher can use only a few steps to achieve his research
objective (Corbin and Strauss, 2014). Therefore, in this re-
search, only steps 1 and 2 of Grounded Theory were used to
identify the categories and their relationships. Additionally,
as a way to avoid trends in the analysis, another researcher
reviewed the result.

4.2 Discipline Planning
Step 1 - Presentation of the theoretical content of Software
Processes: Initially, the idea is to present the content covered

in the discipline of Software Processes. The content consists
of process definitions, life cycle, traditional process method-
ologies, maturity models, agile methodologies and process
modeling languages. Table 1 presents the theoretical content
taught for teaching processes. It is worth mentioning that the
basic bibliography for teaching software processes is limited.
There is no base book with all the content of processes. The
base books used in this discipline are the Software Engineer-
ing books of Sommerville (Sommerville, 2011) and the Soft-
ware Quality book of Koscianski (Koscianski and dos San-
tos Soares, 2007). However, not all the course content is pre-
sented in these books, requiring additional materials avail-
able on the web.

Table 1. Theoretical content of the Software Processes discipline
ID Content
1 Introduction to software processes
2 Process framework: RUP
3 Agile methodology: Scrum
4 Agile methodology: Extreme Programming (XP)
5 ISO standards: ISO 12207
6 ISO standards: ISO 15504
7 Process maturity model: MPS.Br
8 Process maturity model: CMMI
9 Software process modeling

Step 2 - Software process modeling practice: After the pre-
sentation of the content, practical classes on the modeling of
software processes are held. The notation used for the course
was the SPEM (OMG, 2008), supported by the EPF Com-
poser tool. Other notations could also be used, such as BPMN
notation. The choice for modeling using the SPEM notation
and the EPF Composer tool was because it was used widely
in other disciplines of Software Processes already taught by
the teacher and also to support the more robust modeling of
the domains.
The practice consists of a practical example of modeling a

fictional process following all the steps of the EPF Composer
tool until the publication of the process. EPF Composer tutor-
ing is also available so that students can proceed to practical
work.
Step 3 - Presentation of software domains: Six different ap-
plication domains are presented to the class: self-adaptive
systems, mobile applications, applications in the cloud, in-
ternet of things (IoT), applications for games and critical
systems. Articles referring to the domain were made avail-
able for all these domains. Table 2 presents the main con-
tents made available to teams with the main characteristics
of the selected domains. All selected articles have Software
Engineering activities focused on the specific domain. Some
articles present a defined process for the domain and others
a systematic review of the literature.
Step 4 -Defining the domain-based software process: In this
step, students must define the process based on the domain
using some models of processes presented in the discipline.
Table 3 structure is used for definition. In the structure of Ta-
ble 3, a process comprises two or more subprocesses. Each
sub-process has a set of related activities. The defined pro-
cess must contain the subprocesses of Requirements, Analy-
sis and Design, Implementation, Tests and Project Manage-

Bezerra and Coutinho 2023

Table 2. Theoretical reference for domains
Domain Theoretical Reference

Self-Adaptive Systems (Andersson et al., 2013;
De Lemos et al., 2013)

Mobile Applications (Fontão et al., 2016; Jabangwe
et al., 2018)

Cloud Applications (Kratzke and Quint, 2017; Cito
et al., 2015)

Internet of Things (Patel and Cassou, 2015; Lar-
rucea et al., 2017)

Games Applications (Osborne O’Hagan et al., 2014;
Aleem et al., 2016)

Critical Systems (Abdelaziz et al., 2015; Car-
rozza et al., 2018)

ment.

Table 3. Process definition template
Subprocess 1: Subprocess name
The purpose of this subprocess is ...
Activity: Activity name
Description: Activity description
Pre-activity: What was the activity before this activity?
Responsible: Roles responsible for carrying out the activ-

ity
Required Arti-
facts:

Activity Entry Artifacts

Generated Ar-
tifacts:

Activity Output Artifacts

Post-activity: What is the activity after this activity?
Steps: What are the necessary steps to perform this

activity?

Step 5 - Elaboration of the process artifacts based on the do-
main: After defining the process, the main process artifacts
generated in the activities are identified. A template is given
to students to standardize these artifacts. Students must de-
velop these artifacts based on what is requested in the activ-
ities. In addition, artifacts must be adapted to meet the char-
acteristics of the domain.
Step 6 - Domain-based process modeling: Two weeks of
classes were dedicated to teaching process modeling using
the EPF Composer tool. Students should model the entire
defined process and attach the generated artifacts to the pro-
cess. In this step, students will better define the process flows.
Thus, depending on the refinement of the process flow, there
may be changes in the definition of the process and in the ar-
tifacts. As a delivery, the final published process is expected
and also customized according to the domain.

4.2.1 Execution

The teaching methodology was applied to the Software Pro-
cess discipline of the Software Engineering course in the
first semester of 2019. The class had 30 students, most of
them from the fifth semester. This discipline is mandatory
in the Software Engineering course and it has as a prereq-
uisite an initial discipline of Introduction to Software Pro-
cesses and Requirements. In addition, students have already
taken courses in software development, Analysis and Design
and Systems Development Project. In parallel, the students
cursed the disciplines of Requirements, Verification and Val-

idation, Web Development andMobile Application Develop-
ment. Thus, students already have some general maturity for
Software Engineering activities and also have knowledge of
some domains.
The definition and modeling of the domain-specific soft-

ware process correspond to the discipline’s final work. How-
ever, due to the complexity of the work, more time is needed
in the discipline to develop the work. In this way, the work
is developed in about two months with partial deliveries for
evolution and feedback on the process by the teacher for the
teams.
The work was carried out in teams of 5 to 6 students. The

process domains were suggested by the discipline teacher.
The team that had more affinity with the theme applied to
define the respective process. When more than one team
showed interest in the same domain, a division draw was
carried out. In addition to the domains suggested in Table
2, the domains of Systems with User-Oriented Development
and Embedded Systems were also suggested. There were no
teams interested in these domains.
The first delivery of the work consisted of the initial defi-

nition of the process based on the template presented in Table
3. The students’ teams presented a high-level process, with-
out details of the steps of each activity and without the ar-
tifacts. This feedback was important for students to define
the process correctly. In this delivery, it was noticed that the
students defined many activities. Some activities were unre-
lated to each other and other activities important to the do-
main were not included. The low level of experience of most
teams in the domain was also noticed.
The second delivery was made with the definition of the

process evolved with the steps and the artifacts. At this stage,
the students left the steps poorly detailed, and the artifacts of-
ten did not reflect the activities or were not specific to the do-
main. Feedback was also given on the necessary corrections
for each process.
After the process was defined and corrected, the third de-

livery consisted of the process modeled in EPF Composer.
Although the tool is complete and meets more robust pro-
cess modeling, there were problems with the tool reported
by students, such as: it only works on theWindows operating
system, the configuration management in the tool is compli-
cated, and some features are difficult to understand and the
flows visually break frequently. Despite the tool’s problems,
all the teams were able to model and publish the process.
The fourth delivery consisted of the final presentation of

the process by the team reporting the weaknesses, strengths
and lessons learned from the work. The score for each partial
delivery (the first three deliveries) has a weight of 1 and the
final delivery (fourth delivery) has a weight of 2.
The main characteristics of each process defined for the

domains are described below:

• Process for Self-Adaptive Systems: one of the main
adaptations for building systems for the domain was the
use of the KAOSmodel Knowledge Acquisition in auto-
mated specification or Keep All Objectives Satisfied) to
specify the objectives of the system, requirements and
uncertainties (Cheng et al., 2009). The MAPE-K model
was used in the design phase to build the architecture.

Bezerra and Coutinho 2023

In the tests, the process adapts the test case spreadsheet
proposed in Fredericks et al. (2014). In addition, the
project management in the process used the Scrum agile
methodology.

• Process forMobile Applications: The project manage-
ment of the process adopts some Scrum practices. The
project focuses on the design of the user interface and
experience and uses prototyping. Configuration man-
agement activities are also used. Testing activities are
based on user experience testing across multiple de-
vices. The distribution process is the great differential
of the process, based on marketing activities and deploy
on app stores.

• Process for Cloud Applications: The process for de-
veloping cloud applications is based on the Microsoft
Azure cloud environment. The process is also based on
some practices of eXtreme Programming (XP), such as:
refactoring, continuous integration, coding standards
and pair programming. Project management is based on
some Scrum practices. The configuration management
process is entirely adapted to the Azure environment so
that applications can be developed in that environment.

• Process for IoT Applications: Project management is
based on some Scrum practices. The requirements are
raised from a specification of the vocabulary of the ap-
plication domain. The choice of architecture is based on
the characteristics of the domain.Mapping is carried out
between the architecture specifications and the domain
vocabulary. Automated tests are also provided accord-
ing to the vocabulary of the domain.

• Process forGames:The process defined for gameswas
based on the agile Scrum methodology. The definition
of the game is built from the document of Game Design,
which is the main artifact of the process. The tests per-
formed are on gameplay and usability of the game per-
formed with end users from beta versions of the game.

• Process for Critical Systems: Project management is
focused on risk management. The project activity devel-
oped in the process has an architectural model output.
The testing activity was based on the characteristics of
critical systems, determining each unsafe state and crit-
icality factors of the system. Agile methodologies were
not used to define the process, only the literature on crit-
ical systems.

The developed processes are available at the link3.

4.3 Evaluation
For the evaluation of the process modeling methodology for
the domains applied in the discipline, an online questionnaire
was answered by 15 students of the discipline Software Pro-
cesses. The questionnaire presented in Table 4was composed
of three types of questions: demographic (1 to 6), about soft-
ware and tool processes (7 and 8), and opinion (9 to 11). The
number of respondents corresponded to only half of the class.
We applied the questionnaire at the end of the course; there-
fore, not all students responded. However, we got answers
from all the students representing the 6 teams that developed

3https://doi.org/10.5281/zenodo.7068357

the processes. We made it very clear that student answers
and processes would be used for academic and scientific pur-
poses, with student agreement.

Table 4. Questionnaire applied to students
ID Question
1 What is your entry semester?
2 What was your team?
3 What is your level of experience in applying your

teams?
4 What materials did your team rely on to go deeper into

the process domain?
5 How much time did you spend on the process?
6 How much do you think your process can be applied in

the real world/market?
7 What methodologies were used to build the process?

(you can check more than one option)
8 Was the tool used for modeling the process adequate?

What are the positive and negative points of using the
tool?

9 What are the strengths of the discipline?
10 What are the weaknesses of the discipline?
11 How could your team’s process be improved?

The first part of the questionnaire was made up of demo-
graphic questions, to find out the profile of the students who
answered the survey and about the effort and dedication to
the activities.
As for the semester of entry of students, it was identified

that 13 (86.7%) belonged to 2017.1, and the rest, 2 (13.3%),
to the 2016.1 semesters. This information is interesting be-
cause it highlights that most students are in regular semesters.
Regarding the team, the distribution of students in the six

teams was as follows: Processes for self-adaptive systems 2
(13.3%), Processes for mobile applications 3 (20.0%), Pro-
cesses for IoT applications 4 (26.7%), Processes for critical
systems 2 (13.3%), Processes for Games 3 (20.0%), and Pro-
cesses for development in the cloud 1 (6.7%).
The level of experience in the field of application of the stu-

dents’ team varied, focusing on little and no experience: Very
experienced 1 (6.7%), Intermediate experience 2 (13.3%),
Little experience 7 (46.7%), and No experience 5 (33.3%).
The materials used by the teams to deepen the domain

were diversified. Many reports from searches in scientific
articles indicate a certain academic maturity. However, as
many subjects have very technical characteristics, websites
and blogs were also consulted. Searches for similar applica-
tions and processes and process adaptations were cited. Fi-
nally, information was also sought in manuals and expert re-
ports.
The time of dedication in the activities varied from 12h

to more than 40h. Most teams spent approximately 16 hours.
The time divisions were: 16h - 7 (46.7%),14h - 1 (6.7%),12h
- 4 (26.7%),more than 20h - 2 (13.2%), and more than 40h -
1 (6.7%).
Regarding the applicability of the process in the market,

among the options students reported that yes, they are appli-
cable, but with reservations: Applicable with few adaptations
5 (33.3%) and Applicable with many adaptations 10 (66.7%).
The second part of the questionnaire consisted of questions

about the application of methodologies in activities and the

https://doi.org/10.5281/zenodo.7068357

Bezerra and Coutinho 2023

used process modeling tool, in this case, EPF Composer.
Figure 4 shows the methodologies, process models and

frameworks used by students in constructing their processes.
The student could select more than one option. The highlight
was for Scrum, the most mentioned, but it was not used in all
processes.

Figure 4.Methodologies, process models and frameworks used to build pro-
cesses

One of the questions focused on the tool used in the dis-
cipline for modeling processes. The students reported on the
positive and negative aspects of its use.
In general, in the opinion of the students, the tool fulfills

its role, which is to enable the modeling of software devel-
opment processes. It was considered with many features and
details. This avoids much manual work, as the tool registers
the process. In addition, it provides different views of the
process.
However, many reports of defects have been identified in

the tool, in addition to the lack or little documentation and
support. There were reports of difficulties with the installa-
tion. Also from the point of view of usability, it was consid-
ered bad, being confused in several items. Finally, difficul-
ties in its use in teams, cause rework.
Finally, the third and last part of the questionnaire was

composed of open questions, with opinions on strengths,
weaknesses and improvements in the process. In this anal-
ysis of the answers, we used procedures from the Grounded
Theory (GT) (Corbin and Strauss, 2014) methodology using
the Atlas.ti tool4. GT aims to create a theory from the data
collected and analyzed systematically, consisting of three
phases: (1) open coding, (2) axial coding and (3) selective
coding.
In open coding, a break, analysis, comparison, conceptu-

alization and data categorization is performed (Corbin and
Strauss, 2014). In axial coding, categories are associatedwith
their subcategories, forming more related and dense cate-
gories. Finally, in selective coding, the central category or
the study’s idea is identified, corresponding to the theory
in which all categories are related. Strauss and Corbin ex-
plain that the researcher can use only a few steps to achieve
his research goal (Corbin and Strauss, 2014). So, in this re-
search, we used only the GT’s phases 1 and 2 to identify the
categories and their relationships. Additionally, another re-
searcher reviewed the analysis to avoid biases.
In this research, 14 categories (codes) were identified,

listed in order of decreasing frequency: Standards and Mod-
els (9), Process Definition (7), Theory (7), Practice (6), Com-
pany (5), Methodology (5), Opinion (5), Modeling (4), Time

4https://atlasti.com/

(4), Development (3), Inexperience (3), Didactic (3), Process
Evaluation (2) and Support (2). Table 5 displays the descrip-
tion of each category. Not all were identified in the strengths,
weaknesses and improvements simultaneously.
Additionally, 9 relationships between codes were identi-

fied: Process definition is associated with Development, Pro-
cess definition is associated with Standards and Models, Pro-
cess definition is associated with Time, Inexperience is a
cause of Time, Standards andModels is associatedwith Com-
pany, Standards andModels is associated with Development,
Practice is associated with Didactics, Time is the cause of
Methodology, and Theory is associated with Didactics.

Figure 5. Strong points

Figure 5 shows the strengths identified in the research, and
their codes and relationships. The relationship Standards and
Models is associated with Company described that the rela-
tionship between company/software development processes
was somewhat recognized by some students, highlighted in
P1’s response with “Understanding the processes helps to
understand how companies are engaged with software devel-
opment. This knowledge contributes not only to the develop-
ment itself, but to a better understanding of how companies
and developers are contributing to improving software and
the entire development environment.”. This is important be-
cause given the theoretical nature of the discipline, a view
of importance for companies is a benefit. In the relationship
Standards and Models are associated with Development it
was noticed by some answers that standards, guides andmod-
els have an important role in the development of applications,
reported by P2 in “In the discipline it is possible to explore
the in-depth knowledge about different processes, moreover,
it is necessary to have a defined process, so that software
production will be more effective and with less risk of future
problems”. In the relationship Process Definition is associ-
ated with Standards and Models, in some responses the rela-
tionship between standards and the development of software
development processes as a basis was verified, enabling a
better result, highlighted by P3 with “The course allowed to
learn a general overview about the content of software pro-
cesses. It was possible to know how a software process is
conceived and created”. Likewise, the relationship Process
Definition is associated with Development showed a good
relationship between process definition and development, re-

https://atlasti.com/

Bezerra and Coutinho 2023

Table 5. Description of the categories identified in the qualitative analysis
Category Description
Development Application development (requirements, analysis, design, implementation, testing)
Didactics Teacher’s actions in the classroom, teaching strategies, ways to approach content
Company Mentions on the business environment, professions, impacts outside the classroom
Inexperience Lack of experience in software processes and prerequisites
Methodology Methodology of the discipline, as planned, forms of evaluation, activities
Modeling The process model itself, images, representations, how to develop a process model
Process Definition Structure, sequence, dependencies, the project itself, activities
Process Evaluation Elements of using the process, testing and evaluating the results
Standards and Models Documents, guides, standards
Opinion Opinions and feelings of students about the discipline
Practice Practical activities or practice in the development process
Support Support in the discipline in the development process and in the tool adopted for modeling
Time Duration of activities in the discipline
Theory Theory behind the subjects covered, theoretical components of the discipline

ported by P15 in “Helps to better understand the structure of
a process and its importance in development”.

Figure 6.Weak points

Figure 6 shows the weaknesses identified in the research,
with their codes and relationships. The relationship Theory is
associated with Didactics emerged as an observation in rela-
tion to the theoretical load of the discipline, which can harm
the didactics of the teacher, as reported by P1 in “Quite the-
oretical in some periods and not very dynamic concerning
the transmission of content”. The Time is cause of Method-
ology relationship, on the other hand, was the highlight on
the duration of activities that could be shorter, thus the time
better distributed with other tasks of the discipline, reported
by P7 in “In my point of view, an exaggerated time was spent
to present the individual articles, time that could be used to
monitor the construction of the process better”. In the rela-
tionship Practice is associated with Didactics, it was real-
ized the need to carry out more practical activities in the dis-
cipline, and to be more dynamic or with more appropriate
didactics, according to the observation of P13 with “A more
practical approach was lacking, for example, use of games
to use in explaining some processes”.
Figure 7 shows the codes and relationships identified in

relation to the improvements. The relationship Process Defi-
nition is associated with Time highlighted the level of detail
that the process developed in the discipline could have, but
theworkloadwould not be enough, besides the effort. This as-
pect was highlighted by P6 in “It could be more in-depth and
rich in details with a longer research that would not fit the

Figure 7. Improvements

scope of the discipline”. The relationship Inexperience is a
cause of Time highlighted the issue of the importance of expe-
rience in the development of a software development process.
The inexperience in the domain in which the process will be
addressed was commented by some students. The inexperi-
ence in software development processes also contributes to
the rework, as reported by P8 in “We were unable to finish
the whole process due to lack of time, we lost our work about
3 or 4 times and we had to redo it. And I think there are still
many things to improve, our research source was not specific
enough to do everything that a robust process needs, in addi-
tion to not having experience”.

4.4 Discussion

Figure 4 shows the methodologies, process models and
frameworks used by students in constructing their processes
(Scrum, XP, RUP, MPS.Br, and CMMI). They can be used in
teaching software development processes, with the necessary
adaptations. An important factor highlighted in the question
about the tool for teaching software development processes,
and the qualitative analysis was the correct tool selection. It
must be adequate and have good usability and documenta-
tion. Thus, it is possible to avoid rework with modeling.
As great results of the qualitative analysis we obtained: (i)

the importance highlighted by students of standards andmod-
els for professional life and the development of applications;
(ii) didactics in software processes have a great influence on
students in teaching software development processes, and

Bezerra and Coutinho 2023

if theory and practice are well balanced, learning also im-
proves; and (iii) the definition of the process (structure and
modeling) requires effort and dedication.
The entrance semester of students reveals that they are in

the correct period of the course, the correct semester of the
discipline, and they have passed the prerequisites. It is worth
reflecting on their performance in this process discipline as
a consequence of the prerequisites. In general, disciplines of
analysis and design, requirements and development have al-
ready been taken, and such knowledge is very useful for the
discipline of the software development process. However,
the maturity in development did not reflect so much in the
experience in the domain, where most responses (12 out of
15) respondedwith little or no experience in the domain. This
directly impacts the elaboration of the process.
Regarding the applicability of the process in the market,

everyone responded that it exists with adaptations. This is
corroborated by the qualitative analysis, which highlighted
the relationship of standards and models with companies
as strengths. This relationship can be evidenced by the P7
speech with “Can give general visibility about the processes,
and shows the importance and facilities that a high level of
process in a certified organization can bring to the develop-
ment team, business, among other departments of an orga-
nization. Another point is the placement of the practice of
building a process”.
Regarding the processes elaborated in the discipline, other

disciplines can benefit from the processes or experiments,
such as Cloud Computing, Game Development, and Mo-
bile Application Development. However, the processes need
adaptations according to the methodology applied in the dis-
ciplines.

5 Modeling different domains with
BPMN

Based on our previous experience modeling processes with
SPEM notation, we had several reports of difficulties faced
in modeling, mainly related to using the EPF Composer tool.
Another difficulty faced was the students’ lack of maturity
with the different software domains. In this way, we changed
the discipline’s final work of software processes to explore
the use of BPMN notation, which is widely used in industry.
Moreover, we also changed the methodology for the early
study of new domains, and introduce other domains to stu-
dents.
This section presents the second experience report for

modeling processes from different software domains using
the BPMN notation. In addition to using the BPMN notation,
we changed some parts of the teaching methodology and we
used new domains, such as: machine learning, blockchain
and big data. We used a larger class of software processes,
with different software processes, to apply the newmethodol-
ogy and evaluate the new teaching approach.We also contem-
plated further questions for evaluating the teaching method-
ology and process modeling.

5.1 Methodology
For modeling domain processes with BPMN, we changed
the methodology presented in Section 4.1 of the previous re-
port. Some difficulties identified in the previous application
with the software process groups were related to the process
modeling tool and the difficulty understanding the domain.
In the same way as the previous methodology, the methodol-
ogy was divided into planning, execution and analysis (see
Figure 3). We changed only the planning part of the disci-
pline, anticipating the investigation and presentation of the
selected domains for modeling the processes. The discipline
planning steps were: (1) presentation of the theoretical con-
tent of processes; (2) investigation and presentation of con-
cepts about domains; (3) software process modeling practice;
(4) defining the domain-based software process; (5) elabora-
tion of process artifacts based on the domain; and (6) domain-
based process modeling. There are also some changes in the
execution of these steps, as described in the next section.

5.2 Discipline Planning
Step 1 - Presentation of the theoretical content of Software
Processes: The theoretical concepts presented in the disci-
pline of software processes had some changes compared to
the planning presented in the previous report in Section 4.2.
Initially, a new bibliography of the Book of Modern Soft-
ware Engineering by Valente (2020) was added, considering
the previous bibliography, the Software Quality book of Kos-
cianski and dos Santos Soares (2007). Regarding the content
shown in Table 1, the agile Shape Up methodology (Singer,
2019) was added, process modeling with BPMN was added,
and the CMMI maturity model was removed.
Step 2 - Investigation and presentation of concepts about
domains:We anticipated this step in relation to the planning
of the previous discipline. Initially, teams must select an ap-
plication domain to investigate the concepts and character-
istics of that domain. We also added new more current do-
mains to Table 2 to include more students in the class where
the methodology will be implemented. Table 6 illustrates the
new domains and references. After investigating the charac-
teristics of the domains, students must present the main char-
acteristics and activities that could be incorporated into the
process. In this way, students can expand their knowledge of
the selected domain.

Table 6. Theoretical reference for new domains
Domain Theoretical Reference
Embedded Systems (Oshana and Kraeling, 2019;

Üstünel, 2020)
Blockchain Applications (Chakraborty et al., 2018; Vacca

et al., 2021)
Machine Learning Applica-
tions

(Amershi et al., 2019; Nasci-
mento et al., 2019)

Big Data Applications (Laigner et al., 2018; Biesialska
et al., 2021)

Multi-agent Systems (Mascardi et al., 2019; Weyns
et al., 2019)

Startups (Kemell et al., 2020a,b)

Step 3 - Software process modeling practice: In the previ-

Bezerra and Coutinho 2023

ous application of the methodology, we felt the students’ dif-
ficulty with the EPF Composer tool. In this way, we changed
the methodology to contemplate the BPMN notation that is
well-used in the software industry for process modeling. We
used the academic version of HEFLO tool5 to teach BPMN
notation. HEFLO tool was chosen because it is online and
collaborative, incorporating details of the process with the
steps of the activities and attaching the input and output ar-
tifacts of the activities. In this step, we taught the concepts
of BPMN notation and perform a practice for teaching the
HEFLO tool.
Step 4 - Defining the domain-based software process: This
step was equivalent to the one presented in Section 4.2 for
defining the process. The same structure shown in Table 3
was used to define the entire domain development process
with at least the following subprocesses: Requirements, Anal-
ysis and Design, Implementation, Tests and Project Manage-
ment.
Step 5 - Elaboration of the process artifacts based on the
domain: This step is similar to the one described in Section
4.2. Students will identify the main artifacts generated by the
activities of the process defined in the previous step. A tem-
plate for standardizing artifacts is also provided. In the same
way as the process activities, the artifacts must also adapt to
the characteristics of each domain.
Step 6 - Domain-based process modeling: In this step, stu-
dents will model the process defined in the previous step
in the HEFLO tool in BPMN notation. The tool is online
and collaborative, facilitating students to work as a team. It
also allows detailing the steps of the macro activities and at-
taching the artifacts produced in the previous step. In this
step, students will better define the process flows. Thus, de-
pending on the refinement of the process flow, there may be
changes in the definition of the process and the artifacts. As
a delivery, the final published process is expected and cus-
tomized according to the domain.

5.2.1 Execution

The teaching methodology was applied to the Software En-
gineering course’s Software Process discipline in the second
semester of 2021. The class had 46 students, most of them
from the third semester. As in the previous experience report,
the definition and modeling of the domain-specific software
process correspond to the discipline’s final work. All method-
ology presented in the previous section was applied remotely
due to the COVID-19 pandemic. However, this did not affect
the transfer of the discipline’s concepts and tools. The work
was carried out in teams of up to five students. The teamwith
more affinity with the theme applied to define the respective
process. A division drawwas carried out whenmore than one
team showed interest in the same domain.
In parallel with the presentation of the discipline’s con-

cepts, described in Table 1, the students began studying the
concepts of the domains. This step was anticipated since
many students did not have experience with the selected soft-
ware domains, as mentioned in the report of previous disci-
plines. The teams had four weeks to study the domains and

5https://www.heflo.com/pt-br/

prepare a presentation with the domain’s main characteris-
tics and with which software development steps should be
changed to adapt the process to the specific domain. This part
consists of the first delivery of the final work of the processes
discipline. The fact that the study of domains was anticipated
for the beginning of the discipline was very positive for the
teams, who could better understand the possible adaptations
of the software development process for each domain. The
selected domains are described in Tables 2 and 6, excluding
the domains of Self-Adaptive Systems and Critical Systems
domains.
The second delivery consisted of the initial definition of

the process based on the template presented in Table 3. At
this stage, the students based themselves on the characteris-
tics of the domain and on the agile scrum and XP methodolo-
gies to define the macro activities of the process. For this de-
livery, it was estimated to take two weeks. Students received
high-level process feedback to proceedwith detailing the pro-
cess for domain. As in the previous report, it was also noticed
that the students defined many activities and had few adapta-
tions for the domain. It was also noticed that there needed to
be more adaptations to incorporate activities related to agile
scrum and XP methodologies.
In the third delivery, the students delivered the detailed

process with the steps defined for each activity and the arti-
facts. Corrections from the previous delivery were also de-
livered, further adapting the process to mastery and agile
methodologies. For this delivery was expected three weeks.
As with the previous delivery, feedback was also given on the
detailed processes. In general, students should detail more
the activities of the processes and the templates were not ad-
herent to the activities.
The fourth delivery consisted of modeling the corrected

process of the previous delivery in BMPN notation in the
HEFLO tool. The execution of the delivery was foreseen in
two weeks. A notation and tool training was previously car-
ried out with the students. The tool’s academic license en-
abled collaborative modeling with the teams and generated
a pdf for the entire detailed process. It was also possible to
detail the steps of each activity and attach the artifacts asso-
ciated with the activities. A negative point of the tool is that
it needed to generate the website of the process.
The last delivery consisted of the team’s final presenta-

tion of the process reporting the weaknesses, strengths and
lessons learned from the work. The presentation consisted of
going through the activities and artifacts of the defined pro-
cess and focusing on what was adapted for each domain. The
developed processes are available at the link6.

5.3 Evaluation
For the evaluation of the process modeling methodology for
the domains applied in the discipline, an online questionnaire
was answered by 34 students of the discipline Software Pro-
cesses. Not all students in the class answered the question-
naire. However, the sample of 34 students includes the 10
processes defined by the teams. After a review of the sub-
ject’s content and methodology, the questions previously ap-

6https://doi.org/10.5281/zenodo.7674965

https://www.heflo.com/pt-br/
https://doi.org/10.5281/zenodo.7674965

Bezerra and Coutinho 2023

plied underwent some changes in relation to the previous ap-
plication. The questionnaire presented in Table 7 was com-
posed of three types of questions: demographic (1 to 8), about
software and tool processes (9 and 10), and opinion (11 to 15).
We applied the questionnaire at the end of the course; there-
fore, not all students responded. However, we got answers
from all 10 teams that developed processes. We made it very
clear that student answers and processes would be used for
academic and scientific purposes, with student agreement.

Table 7. Questionnaire applied to students
ID Question
1 What is your entry semester?
2 What was your team?
3 Have you ever worked with software processes in the

real world (professionally)?
4 What is your level of experience in applying your

teams?
5 What is your teams application domain experience

level?
6 What materials did your team rely on to go deeper into

the process domain?
7 How much time did you spend on the process?
8 How much do you think your process can be applied in

the real world/market?
9 What methodologies were used to build the process?

(you can check more than one option)
10 Was the tool used for modeling the process adequate?

What are the positive and negative points of using the
tool?

11 What are the strengths of the discipline?
12 What are the weaknesses of the discipline?
13 How could your team’s process be improved?
14 What were the biggest difficulties you encountered in

defining a process for a specific domain?
15 What were your insights in defining a process for a spe-

cific domain?

The first part of the questionnaire was made up of demo-
graphic questions, to find out the profile of the students who
answered the survey and about the effort and dedication to
the activities.
As for the semester of entry of students, the following dis-

tribution occurred: 2 (5.9%) for 2017.1, 2 (5.9%) for 2019.1,
1 (2.9%) for 2019.2, 4 (11.8%) for 2020.1, 19 (55.9%) for
2021.1, and 6 (17.6%) for 2021.2. This information reveals
the diversity of entry semesters of students who took the dis-
cipline.
Regarding the team, the distribution of students in the ten

teams was as follows: Processes for Applications Based on
Blockchain 5 (14.7%), Processes for Applications Based on
Machine Learning 1 (2.9%), Processes for Big Data Appli-
cations 5 (14.7%), Processes for Applications for Multia-
gent Systems 2 (5.9%), Processes for Cloud Computing 5
(14.7%), Processes for Internet of Things (IoT) 4 (11.8%),
Processes for Digital Games 4 (11.8%), Processes for Pro-
cesses for startups 3 (8.8%), Processes for Safety Critical
Systems 1 (2.9%), and Processes for Embedded Systems 4
(11.8%)
When asked about the student’s professional experience in

defining processes, the majority (28 - 82.4%) answered no,
and only 6 (17.6%) answered yes.

The level of experience in the field of application of the
students’ team varied, focusing on intermediate, little and no
experience: Intermediate experience 10 (29.4%), No experi-
ence 10 (29.4%), and Little experience 4 (41.2%).
The materials used by the teams to deepen the domain

were diversified. There was a great mention of scientific ar-
ticles, induced by the discipline. Also a lot of searches on
websites, and technical blogs. Books and videos were also
mentioned.
The time of dedication in the activities varied from 12h to

more than 40h. However, most answered around 4h. The time
divisions were: more than 20h - 2 (5.9%), 20h - 7 (20.6%),
18h - 2 (5.9%), 14h - 6 (17.6%), 12h - 6 (17.6%), 10h - 4
(11.8%), less than 10h - 5 (14.7%), and 2 (5.9%) were unable
to determine.
Regarding the applicability of the process in the market,

many students reported they are applicable: Applicable with
few adaptations 15 (44.1%), Fully applicable 10 (29.4%), Ap-
plicable with many adaptations 8 (23.5%), and Not applica-
ble 1 (2,9%).
The second part of the questionnaire consisted of ques-

tions about the application of methodologies in activities and
the used process modeling tool, in this case, HEFLO. Only
Scrum (25) andXP (7) were explicitly mentioned by students
in constructing their processes. Only one person claimed to
have used both.
Using the same categories (Table 5), and proceeding with

the qualitative analysis with GT, it was also possible to cate-
gorize all the same items. Care was taken to verify whether
new categories would be added, but no need was perceived.
The 14 identified categories were, listed in order of de-

creasing frequency: Support (70), Theory (36), Process Def-
inition (29), Modeling (23), Company (16), Methodology
(15), Opinion (12), Development (13), Didactic (11), Inexpe-
rience (11), Practice (11), Time (6), Process Evaluation (4)
and Standards and Models (3).
Additionally, 12 relationships between codes were identi-

fied: Company is associated with Process Definition, Devel-
opment is associated with Process Definition, Didactics is
associated with Methodology, Modeling is associated with
Support, Inexperience is associated with Process Definition,
Inexperience is associated with Support, Opinion is associ-
ated with Inexperience, Opinion is associated with Practice,
Opinion is associated with Time, Practice is associated with
Theory, Process Definition is associated with Time, Support
is associated with Theory.
Figure 8 shows the strengths identified in the research, and

their codes and relationships. The relationship Practice is
associated with Theory highlighted the importance seen by
students in the relationship between theory and practice, as
highlighted by P18 with “The theory initially studied helped
a lot to have an overview of processes, the practice helped to
go deeper into processes and also the chance to know more
about a specific domain”. The relationship Company is asso-
ciated with Process Definition reports the importance of prac-
tical experiences in defining processes for professional life,
highlighted by P34 in “Learn more about agile methodolo-
gies that are widely used in the job market and about creating
software processes”. The relationshipDidactics is associated
with Methodology reveals the recognition of the importance

Bezerra and Coutinho 2023

of the defined methodology so that the didactics is adequate
for the students, as reported by P27 in “Broad learning and
well-defined structure”.

Figure 8. Strong points

Figure 9 shows the weaknesses identified in the research,
with their codes and relationships. The relationship Practice
is associated with Theory revealed that students considered
a lot of theory in the discipline, and sometimes not com-
patible with practice, as in the comment of P13 in “A load
of mostly theoretical content, without much practical exper-
imentation”. The relationship Didactics is associated with
Methodology highlighted aspects that could be included in
the methodology, and consequently adjusted for teaching in
the classroom, mentioned by P12 in “I think that referring
to the course there was no weak point, but some things in
the course were addressed, for example the works, I believe
that some things could have been better elaborated... maybe
if a class before, or in an asynchronous class, the class and
the teacher... that would be much more interesting, because
different themes could be addressed that were not addressed,
but just as interesting.”.

Figure 9.Weak points

Figure 10 shows the improvements identified in the re-
search, with their codes and relationships. The relationship
Development is associated with Process Definition showed
the need for more details between the development and the
definition of the process, and the addition of technical as-

pects when necessary, highlighted in P26’s comments in “De-
tail the process further of analysis and design” and P29 with
“Could be improved by adding a bit more about the cloud ar-
chitecture part and talking more in depth about development
environments”.

Figure 10. Improvements

Figure 11 shows the aspects related to the tool, identified
in the research, with their codes and relationships. Relation-
ships always had the Support category, denoting a need. The
relationship Modeling is associated with Support showed
some difference of opinion, with some contradictions. For ex-
ample the comment of P4 with “Easy to build the model” and
P31 “Difficulties in collaboration when making the model”.
The relationship Inexperience is associated with Support also
showed disagreements among students, as in the comments
of P14 with “Despite not having previous experience with the
tool, it was easy to adapt, since this tool uses the same short-
cuts and mechanics as other applications, but sometimes I
got disoriented with the simplicity of some features” and P23
with “The tool was adequate, but perhaps my team’s inexpe-
rience with this specific tool may have hindered the process”.

Figure 11. Tool

Figure 12 shows the difficulties identified in the research,
with their codes and relationships. Most of the difficulties
have some relation with the lack of support in the tool. The
relationship Inexperience is associated with Support showed
the relationship between the students’ inexperience with the
tool and the need for greater support, mentioned by P6 in
“The lack of real examples of well-detailed and documented
processes that is accessible, making the initial visualization
difficult, considering our inexperience in the area”. The re-
lationship Modeling is associated with Support showed the
same of the previous case, only related to modeling and sup-
port, highlighted by P14 in “I believe that finding materials
that would actually help the team to model the process, in ad-

Bezerra and Coutinho 2023

dition to my own inexperience in the area”. Support is often
related to a lack of documentation. The relationship Support
is associated with Theory pointed out that students under-
stand the importance of theory to better understand content
and use the tool, mentioned by P22 in “The content about
these processes is very scarce”.

Figure 12. Difficulties

Figure 13 shows the students’ perceptions identified in the
research, with their codes and relationships. The students’
perceptions weremany in relation to learning, effort and com-
plexity in carrying out the tasks of defining the process. The
relationship Opinion is associated with Practice pointed out
that, in general, the students had no experience in the prac-
tice of process modeling, mentioned by P2 in “I think this is
the first time using and putting it into practice, so it was very
complicated, but then it was easier to understand”. The re-
lationship Opinion is associated with Inexperience also indi-
cated inexperience, mainly due to the complexity of the tasks,
as highlighted by P6 with “Depending on the domain this
can be quite complex, especially considering the difficulties
related to the inexperience of students in certain areas”. The
relationship Inexperience is associated with Process Defini-
tion pointed out that, in general, students had no experience
in defining processes, often due to a lack of theory, as high-
lighted by P14 in “For not having any in-depth experience in
the area of processes for the development of domains, many
things were new tome, I believe that I did not have enough ab-
straction capacity to develop a process in all the molds that
were given, so both me and the team had to break our heads
in a few moments and research a lot to find materials that
converged with our ideas”. The relationship Process Defini-
tion is associated with Time reinforced that the students felt
a high load of effort for modeling the process, requiring ded-
ication, reported by P27 with “Defining a process requires a
lot of attention and hours of dedication , plus you understand
the basics of this domain, but it’s very interesting and reward-
ing”. The relationship Opinion is associated with Time rein-
forced the time spent on process modeling activities, as well

as the necessary dedication, highlighted by P8 in “It is a com-
plex activity that demands a lot of dedication and study”.

Figure 13. Students’ perceptions

5.4 Discussion
In general, students reported good experiences in defining
processes. A highlight was the observation about the impor-
tance of knowing the theory to be able to apply it in practice,
and its importance for professional life.
The theory load could be less to explore more the practice.

Despite the recognition of the need for theory, it was felt that
there was too much. This is due to the inexperience of the
teams in the selected domains and in learning the modeling
tool, which was considered as theory for the students.
One of the questions investigatedwaswhether the students

already had professional experience in companies. Despite
few “yes” answers (6 out of 34), this may have shown a cer-
tain maturity on the part of the students, mainly due to com-
ments on the importance of modeling and defining processes
in companies. However, in several responses it was noticed
that even students who answered “no” also showed a certain
degree of maturity.
Inexperience in software processes was pointed out in sev-

eral responses. This inexperience is in the activity itself of
defining and modeling the process, sometimes due to the
lack of knowledge of the domain chosen by the team. It was
also pointed out that this inexperience was in relation to the
adopted tool and notation, several times also related to the
lack of support.
Support in the tool was a perceived need both in the com-

ments regarding the tool and in the students’ perception of
defining a process for a specific domain. The lack of support
in the tool is a highlight because, despite being indicated by
several students, the tool has a lot of documentation and sup-
port. There is a need to further investigate this lack of support,
but an indication is that students did not dedicate themselves
adequately to learning the tool and notation. This can also be
an improvement for the next edition of the discipline.
Finally, the complexity and effort for modeling stood out

in some responses. Complexity in defining the process and
modeling was sometimes mentioned as a difficulty for stu-
dents in the activities, along with the time or effort devoted to

Bezerra and Coutinho 2023

execution, reinforced by 9 of the 34 responses with 20 hours
or more spent.

6 General Discussions

This section presents general discussions comparing the
two reports. Additionally, some research limitations are pre-
sented.

6.1 Discussions between Reports

In addition to the difference in the modeling tool (SPEM and
BPMN), some other differences between the applications can
be highlighted. These differences were both in the methodol-
ogy adopted in the discipline and in the results.
Regarding the discipline’s methodology, in the second ex-

perience report we made the following changes: (i) anticipat-
ing the study of themain characteristics of each domain (Step
2) so that possible specific development activities for each
domain could be identified; (ii) change of notation for pro-
cess modeling to BPMN and consequently the tool; (iii) sug-
gestions for new domains to be modeled such as blockchain,
machine learning, big data and startups, and (iv) use only XP
and SCRUM.
In the first report, students highlighted the importance of

standards and models for professional life and application
development. In the second report, the same feeling was also
noticed, in addition to the need to know about the theory in
order to better apply it in practice.
Regarding development maturity, for the first report this

did not reflected much experience in the domain, with 12 re-
sponding out of 15 with little or no experience in the domain.
In the second report, this same behavior also occurred, with
an emphasis that the tool may have contributed to this inex-
perience.
Many defects were reported in the first report, in this case

the EPF Composer tool, in addition to the lack or little doc-
umentation. With the change of tool in the second report
(HEFLO), the need for more support was also noticed.
One difference was the addition of a question in the second

report about the student’s professional experience with soft-
ware processes. Even with few answers (6 out of 34), it was
understood that there was a certain maturity of these students
in modeling and importance for companies.
In the responses of some students there was mention of

the need for adaptations in the processes to be suitable for
the domains and the market. There is also this need for adap-
tation so that the processes can also be used in the classroom,
as each professor has their own methodology. This need was
also identified in some works in the literature, such as Pillat
and Oliveira (2016) and Moura and Santos (2018).
In both reports, students commented on a greater need for

training and support. Fontão et al. (2016) also reinforced this
aspect. As highlighted by Younas et al. (2020), there is a vast
amount of tools for process and development support, and
this requires training.

6.2 Threats to Validity and Research Limita-
tions

One of the limitations of the work was only half of the class
(15 students) answered the questionnaire, in the SPEM edi-
tion of the class. However, they were representatives from
all 6 defined processes. It is expected that the methodology
will be used in other classes of Software Processes. Because
few students answered the questionnaire, few responses were
obtained, both quantitative and qualitative. For qualitative
analysis, the results could have differed if there were more
answers with texts describing situations and opinions. Appli-
cation in more than one class is also necessary for greater
depth in the results. In the BPMN edition of the class, que
quantity of the awnwers was greater, with 34 answers.
Regarding the use of the EPF Composer process model-

ing tool, several students reported that its lack of support and
defects hindered the performance of the project and the mod-
eling itself. Tool training can minimize these losses or the
help of a monitor in the discipline for support. In the case
of the HEFLO tool, several students pointed out problems
with support and documentation. Again, a tool training can
minimize these problems.
Another limitation is that the subject teacher only rated

the quality process following the used methodologies. Ide-
ally, people experienced in the domains would evaluate each
process with the professor. Furthermore, the evaluation fo-
cused on the discipline, not the methodology to define pro-
cesses for different domains. We will apply the methodology
in other disciplines to cover the evaluation process definition
methodology for different domains.
Inexperience in programming and software development

processes also impairs performance and results in the disci-
pline. One way to improve performance in this aspect would
be in prerequisite disciplines if more software development
processes are discussed, eventually, design models to orga-
nize the development, inserting the importance of software
processes in programming disciplines. Thus, the culture of
processes would already be diluted in other disciplines, be-
ing deepened in software processes.
In general, the students did not have experience in the do-

mains used to define the processes, which implied an extra
effort in understanding the domains. A way to minimize this
problem would be to have a training strategy in the domains,
and not just indicate material and scientific articles.
The quality of the questionnaire’s open responses may

have influenced the conclusions, as some were superficial.
Although the number of students who answered the ques-
tionnaire was greater in the second edition of the course,
some responses were not of good quality, even with a rea-
sonable amount of text. In addition, some questions may not
have been well understood by the students, generating con-
fusing answers or not having much relation with what was
requested. In the continuity of the research (application with
BPMN), the questionnaire underwent a revision, in order to
try to minimize the misunderstanding of the questions.
Finally, another limitation was related to the acceptance

of the notation, that is, how much better one notation was
accepted by the students than the other. In fact, the notation
was not evaluated, and the questionnaire discussed more the

Bezerra and Coutinho 2023

use of the tools. For this, a deeper analysis and comparison
of students’ experiences and learning of notations would be
necessary. Therefore, we can not say with certainty that the
use of one notation was better than the other, but we can say
that there are indications that HEFLO was better accepted
than EPF Composer.

7 Conclusion
This paper describes an experience of teaching software de-
velopment processes. The proposed approach was applied in
the Software Process discipline of an undergraduate course,
in different classes. The contributions of this work were: (i)
an approach to teaching software processes for different do-
mains (self-adaptive systems, mobile applications, cloud ap-
plications, IoT systems, games applications, critical systems,
embedded systems, blockchain applications, machine learn-
ing applications, big data applications, multi-agent systems
and startups). (ii) discussions on the use of the EPF Com-
poser and HEFLO tools in process modeling; and (iii) a qual-
itative analysis with Grounded Theory on the results of an
online questionnaire.
As the main results of this study, we have that: (i) students

accepted HEFLO tool better than EPF Composer tool; (ii)
most students do not have knowledge in the specific domains
used as a basis for process modeling; and, (iii) students high-
lighted the need for support for both modeling tools.
This work benefits students and professors who work di-

rectly with software development processes, mainly for non-
traditional processes. Its application is directly associated
with classes and process modeling. For software quality re-
searchers, it is also possible to investigate the effects of
software development processes in non-traditional areas and
their effects in practice.
Future work intends to: (i) measure the performance of

the applied methodology from the viewpoint of learning soft-
ware development processes; (ii) use other tools for model-
ing BPMN notation; (iii) simulate a software process in a real
environment; (iv) include peer review of processes by differ-
ent teams in the methodology; (v) conduct an assessment of
student learning using SPEM and BPMN and, (vi) compare
which activities change in each domain in the software devel-
opment process.

References
Abdelaziz, A. A., El-Tahir, Y., and Osman, R. (2015). Adap-
tive software development for developing safety critical
software. In 2015 International Conference on Comput-
ing, Control, Networking, Electronics and Embedded Sys-
tems Engineering (ICCNEEE), pages 41–46.

Aleem, S., Capretz, L. F., and Ahmed, F. (2016). Game de-
velopment software engineering process life cycle: a sys-
tematic review. Journal of Software Engineering Research
and Development, 4(1):6.

Alencar, I. R., Coutinho, E. F., Moreira, L. O., and Bezerra,
C. I. M. (2020). A tool for software ecosystem models:
An analysis on their implications in education. In Pro-

ceedings of the XXXIV Brazilian Symposium on Software
Engineering, SBES ’20, page 405–414, New York, NY,
USA. Association for Computing Machinery.

Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Ka-
mar, E., Nagappan, N., Nushi, B., and Zimmermann, T.
(2019). Software engineering formachine learning: A case
study. In 2019 IEEE/ACM 41st International Conference
on Software Engineering: Software Engineering in Prac-
tice (ICSE-SEIP), pages 291–300.

Andersson, J., Baresi, L., Bencomo, N., de Lemos, R., Gorla,
A., Inverardi, P., and Vogel, T. (2013). Software Engi-
neering Processes for Self-Adaptive Systems, pages 51–75.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Bezerra, C. I. M. and Coutinho, E. F. (2022). Teaching soft-
ware processes from different application domains. In
Canedo, E. D., Viana, D., Garcia, V., Bezerra, C. I. M.,
de Sousa Santos, I., Gadelha, B., Machado, I., Soares, S.,
Kulesza, U., de França, B., Conte, T., Maldonado, J. C.,
Reinehr, S. S., Malucelli, A., Albuquerque, A. B., Santos,
G., Barcellos, M. P., dos Santos, R. P., Lima, C., Monteiro,
D., Damian, A., and Rocha, L., editors, Proceedings of
the XXI Brazilian Symposium on Software Quality, SBQS
2022, Curitiba, Brazil, November 7-10, 2022, pages 29:1–
29:10. ACM.

Biesialska, K., Franch, X., and Muntés-Mulero, V. (2021).
Big data analytics in agile software development: A sys-
tematic mapping study. Information and Software Tech-
nology, 132:106448.

Calderón, A., Trinidad, M., Ruiz, M., and O’Connor, R. V.
(2018). Teaching software processes and standards: a re-
view of serious games approaches. In International Con-
ference on Software Process Improvement and Capability
Determination, pages 154–166. Springer.

Calderón, A., Trinidad, M., Ruiz, M., and O’Connor, R. V.
(2019). An experience of use a serious game for teach-
ing software process improvement. In European Confer-
ence on Software Process Improvement, pages 249–259.
Springer.

Calderón, A., Ruiz, M., and O’Connor, R. V. (2018). Amulti-
vocal literature review on serious games for software pro-
cess standards education. Computer Standards & Inter-
faces, 57:36 – 48.

Carrozza, G., Pietrantuono, R., and Russo, S. (2018). A soft-
ware quality framework for large-scale mission-critical
systems engineering. Information and Software Technol-
ogy, 102:100–116.

Castellanos Ardila, J. P., Gallina, B., and Ul Muram, F.
(2022). Compliance checking of software processes: A
systematic literature review. Journal of Software: Evolu-
tion and Process, 34(5):e2440.

Chakraborty, P., Shahriyar, R., Iqbal, A., and Bosu, A.
(2018). Understanding the software development prac-
tices of blockchain projects: A survey. In Proceedings of
the 12th ACM/IEEE International Symposium on Empir-
ical Software Engineering and Measurement, ESEM ’18,
New York, NY, USA. Association for Computing Machin-
ery.

Chaves, R. O., von Wangenheim, C. G., Furtado, J. C. C.,
Oliveira, S. R. B., Santos, A., and Favero, E. L. (2015).

Bezerra and Coutinho 2023

Experimental evaluation of a serious game for teaching
software process modeling. IEEE Transactions on Educa-
tion, 58(4):289–296.

Cheng, B. H., Sawyer, P., Bencomo, N., and Whittle, J.
(2009). A goal-based modeling approach to develop
requirements of an adaptive system with environmen-
tal uncertainty. In International Conference on Model
Driven Engineering Languages and Systems, pages 468–
483. Springer.

Cito, J., Leitner, P., Fritz, T., and Gall, H. C. (2015). The
making of cloud applications: An empirical study on soft-
ware development for the cloud. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software En-
gineering, pages 393–403.

Corbin, J. and Strauss, A. (2014). Basics of Qualitative
Research: Techniques and Procedures for Developing
Grounded Theory. SAGE Publications, 4 edition.

Coutinho, E. F., Viana, D., and dos Santos, R. P. (2017).
An exploratory study on the need for modeling software
ecosystems: The case of solar seco. In 9th International
Workshop on Modelling in Software Engineering (MISE),
MISE ’17, pages 47–53, Piscataway, NJ, USA. IEEE
Press.

de la Vara, J. L., Marín, B., Ayora, C., and Giachetti, G.
(2020). An empirical evaluation of the use of models to
improve the understanding of safety compliance needs. In-
formation and Software Technology, 126:106351.

De Lemos, R., Giese, H., Müller, H. A., Shaw, M., Ander-
sson, J., Litoiu, M., Schmerl, B., Tamura, G., Villegas,
N. M., Vogel, T., et al. (2013). Software engineering for
self-adaptive systems: A second research roadmap. In Soft-
ware Engineering for Self-Adaptive Systems II, pages 1–
32. Springer.

De SenaQuaresma, J. A. andOliveira, S. R. B. (2021). Teach-
ing and learning strategies for software process subject.
In 2021 IEEE Frontiers in Education Conference (FIE),
pages 1–7.

Enríquez, F., Troyano, J. A., and Romero-Moreno, L. M.
(2019). Using a business process management system to
model dynamic teaching methods. The Journal of Strate-
gic Information Systems, 28(3):275–291.

Fernandes, E., Oliveira, J., and Figueiredo, E. (2016). Inves-
tigating how features of online learning support software
process education. In 2016 IEEE Frontiers in Education
Conference (FIE), pages 1–8.

Ferreira, T., Viana, D., Fernandes, J., and Santos, R. (2018).
Identifying emerging topics and difficulties in software en-
gineering education in brazil. In Proceedings of the XXXII
Brazilian Symposium on Software Engineering, SBES ’18.

Fontão, A., Santos, R., Dias-Neto, A., et al. (2016). Mseco-
dev: Application development process in mobile software
ecosystems. In Proceedings of the international confer-
ence on software engineering and knowledge engineering
(SEKE2016), pages 317–322.

Fredericks, E. M., DeVries, B., and Cheng, B. H. (2014). To-
wards run-time adaptation of test cases for self-adaptive
systems in the face of uncertainty. In Proceedings of the
9th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, pages 17–26.

García-Borgoñon, L., Barcelona, M. A., García-García, J. A.,
Alba, M., and Escalona, M. J. (2014). Software process
modeling languages: A systematic literature review. In-
formation and Software Technology, 56(2):103–116.

Giray, G. (2021). A software engineering perspective on en-
gineering machine learning systems: State of the art and
challenges. Journal of Systems and Software, 180:111031.

Hasić, F., Serral, E., and Snoeck, M. (2020). Comparing
bpmn to bpmn + dmn for iot process modelling: A case-
based inquiry. In Proceedings of the 35th Annual ACM
Symposium on Applied Computing, SAC ’20, page 53–60,
New York, NY, USA. Association for Computing Machin-
ery.

Jabangwe, R., Edison, H., and Duc, A. N. (2018). Software
engineering process models for mobile app development:
A systematic literature review. Journal of Systems and
Software, 145:98–111.

Johansen, J., Colomo-Palacios, R., and O’Connor, R. V.
(2016). Towards a manifesto for software process educa-
tion, training and professionalism. In International Con-
ference on Software Process Improvement and Capability
Determination, pages 98–105. Springer.

Kemell, K.-K., Ravaska, V., Nguyen-Duc, A., and Abra-
hamsson, P. (2020a). Software startup practices–software
development in startups through the lens of the essence
theory of software engineering. In Product-Focused Soft-
ware Process Improvement: 21st International Confer-
ence, PROFES 2020, Turin, Italy, November 25–27, 2020,
Proceedings 21, pages 402–418. Springer.

Kemell, K.-K., Risku, J., Strandjord, K. E., Nguyen-Duc, A.,
Wang, X., and Abrahamsson, P. (2020b). Internal software
startups – a multiple case study on practices, methods, and
success factors. In 2020 46th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA),
pages 326–333.

Koscianski, A. and dos Santos Soares, M. (2007). Qualidade
de Software-2ª Edição: Aprenda as metodologias e técni-
cas mais modernas para o desenvolvimento de software.
Novatec Editora.

Kratzke, N. and Quint, P.-C. (2017). Understanding cloud-
native applications after 10 years of cloud computing-a
systematic mapping study. Journal of Systems and Soft-
ware, 126:1–16.

Kuhrmann, M., Fernández, D. M., and Münch, J. (2013).
Teaching software process modeling. In Proceedings of
the 2013 International Conference on Software Engineer-
ing, ICSE ’13, page 1138–1147. IEEE Press.

Laigner, R., Kalinowski, M., Lifschitz, S., Salvador Mon-
teiro, R., and de Oliveira, D. (2018). A systematic map-
ping of software engineering approaches to develop big
data systems. In 2018 44th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA),
pages 446–453.

Larrucea, X., Combelles, A., Favaro, J., and Taneja, K.
(2017). Software engineering for the internet of things.
IEEE Software, 34(1):24–28.

Liu, H., Eksmo, S., Risberg, J., and Hebig, R. (2020). Emerg-
ing and changing tasks in the development process for
machine learning systems. In Proceedings of the Inter-

Bezerra and Coutinho 2023

national Conference on Software and System Processes,
ICSSP ’20, page 125–134, New York, NY, USA. Associ-
ation for Computing Machinery.

Marin, J., Hurtado, J., Bastarrica,M., and Silvestre, L. (2023).
Tailoring hybrid software processes in a medium-size soft-
ware company. In Proceedings of the 38th ACM/SIGAPP
Symposium on Applied Computing, SAC ’23, page 1042–
1050, New York, NY, USA. Association for Computing
Machinery.

Mascardi, V., Weyns, D., Ricci, A., Earle, C. B., Casals, A.,
Challenger, M., Chopra, A., Ciortea, A., Dennis, L. A.,
Díaz, Á. F., et al. (2019). Engineering multi-agent sys-
tems: State of affairs and the road ahead. ACM SIGSOFT
Software Engineering Notes, 44(1):18–28.

Medoh, C. and Telukdarie, A. (2017). Business process
modelling tool selection: A review. In 2017 IEEE Inter-
national Conference on Industrial Engineering and Engi-
neering Management (IEEM), pages 524–528.

Motta, R. C., de Oliveira, K.M., and Travassos, G. H. (2023).
An evidence-based roadmap for iot software systems engi-
neering. Journal of Systems and Software, 201:111680.

Moura, V. and Santos, G. (2018). Procsoft: A board game to
teach software processes based on iso/iec 29110 standard.
In Proceedings of the 17th Brazilian Symposium on Soft-
ware Quality, SBQS, page 363–372, New York, NY, USA.
Association for Computing Machinery.

Moyón, F., Soares, R., Pinto-Albuquerque, M., Mendez, D.,
and Beckers, K. (2020). Integration of security standards
in devops pipelines: An industry case study. In Product-
Focused Software Process Improvement: 21st Interna-
tional Conference, PROFES 2020, Turin, Italy, November
25–27, 2020, Proceedings 21, pages 434–452. Springer.

Nascimento, E. d. S., Ahmed, I., Oliveira, E., Palheta, M. P.,
Steinmacher, I., and Conte, T. (2019). Understanding
development process of machine learning systems: Chal-
lenges and solutions. In 2019 ACM/IEEE International
Symposium on Empirical Software Engineering and Mea-
surement (ESEM), pages 1–6.

OMG (2008). Software & systems process engineer-
ing meta-model specification - version 2.0. Tech-
nical report, Object Management Group (OMG).
https://www.omg.org/spec/SPEM/2.0/PDF.

Omg, O., Parida, R., and Mahapatra, S. (2011). Business
process model and notation (bpmn) version 2.0. Object
Management Group, 1(4):18.

Osborne O’Hagan, A., Coleman, G., and O’Connor, R. V.
(2014). Software development processes for games: A
systematic literature review. In Barafort, B., O’Connor,
R. V., Poth, A., and Messnarz, R., editors, Systems, Soft-
ware and Services Process Improvement, pages 182–193,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Oshana, R. and Kraeling, M. (2019). Software engineering
for embedded systems:Methods, practical techniques, and
applications. Newnes.

Patel, P. and Cassou, D. (2015). Enabling high-level appli-
cation development for the internet of things. Journal of
Systems and Software, 103:62–84.

Pazin, M., Dias, J., OliveiraJr, E., Aleixo, F. A., Kulesza, U.,
and Teixeira, E. N. (2022). Variability representation in

software process with the smartyspem approach. In UML-
Based Software Product Line Engineering with SMarty,
pages 369–391. Springer.

Pillat, R. M. and Oliveira, T. C. (2016). A representation
structure for software process tailoring based on bpmn
high-level operations. In Proceedings of the 31st Annual
ACM Symposium on Applied Computing, SAC ’16, page
1576–1579, New York, NY, USA. Association for Com-
puting Machinery.

Pinheiro, F. V. S., Coutinho, E. F., Santos, I., and Bezerra, C.
I. M. (2022). A tool for supporting the teaching and mod-
eling of software ecosystems using ssn notation. Journal
on Interactive Systems, 13(1):192–204.

Pizzini, A., Bortolo Vieira, R., Deda Gomes, R., Santos, G.,
Malucelli, A., and Reinehr, S. (2021). Software quality
practices in growing startups: A qualitative study. In XX
Brazilian Symposium on Software Quality, pages 1–10.

Singer, R. (2019). In Shape Up: Stop Running in Circles and
Ship Work that Matters. 37signals LLC.

Sommerville, I. (2011). Engenharia de software. Pearson
Brasil.

Tiwari, S. and Singh Rathore, S. (2019). Teaching software
process models to software engineering students: An ex-
ploratory study. In 2019 26th Asia-Pacific Software Engi-
neering Conference (APSEC), pages 308–315.

Üstünel, H. (2020). A project based innovative approach to
an embedded systems course laboratory in software engi-
neering education. Computer applications in engineering
education, 28(1):160–166.

Vacca, A., Di Sorbo, A., Visaggio, C. A., and Canfora, G.
(2021). A systematic literature review of blockchain and
smart contract development: Techniques, tools, and open
challenges. Journal of Systems and Software, 174:110891.

Valente, M. T. (2020). In Engenharia de Software Moderna.
Independent publisher.

von Rosing, M., White, S., Cummins, F., and de Man, H.
(2015). Business process model and notation—bpmn. In
von Rosing, M., Scheer, A.-W., and von Scheel, H., ed-
itors, The Complete Business Process Handbook, pages
433–457. Morgan Kaufmann, Boston.

Weyns, D., Mascardi, V., and Ricci, A. (2019). Engineering
multi-agent systems. Lecture notes in computer science,
11375.

Yilmaz, M., Tasel, S., Tuzun, E., Gulec, U., O’Connor, R. V.,
and Clarke, P. M. (2019). Applying blockchain to im-
prove the integrity of the software development process.
In Walker, A., O’Connor, R. V., and Messnarz, R., ed-
itors, Systems, Software and Services Process Improve-
ment, pages 260–271, Cham. Springer International Pub-
lishing.

Younas, M., Jawawi, D. N. A., Mahmood, A. K., Ahmad,
M. N., Sarwar, M. U., and Idris, M. Y. (2020). Agile soft-
ware development using cloud computing: A case study.
IEEE Access, 8:4475–4484.

	Introduction
	Background
	SPEM Notation
	BPMN Notation

	Related Work
	Software Domain Processes
	Teaching Software Processes with SPEM
	Teaching Software Processes with BPMN

	Modeling different domains with SPEM
	Methodology
	Discipline Planning
	Execution

	Evaluation
	Discussion

	Modeling different domains with BPMN
	Methodology
	Discipline Planning
	Execution

	Evaluation
	Discussion

	General Discussions
	Discussions between Reports
	Threats to Validity and Research Limitations

	Conclusion

