
Journal of Software Engineering Research and Development, 2023, 11:13, doi: 10.5753/jserd.2023.3195
 This work is licensed under a Creative Commons Attribution 4.0 International License..

Test smell refactoring revisited: What can internal quality
attributes and developers’ experience tell us?
Humberto Damasceno [Federal University of Ceará | hdamasceno1998@gmail.com]
Carla Bezerra [Federal University of Ceará | carlailane@ufc.br]
Denivan Campos [Federal University of Bahia | denivan.campos@ufba.br]
Ivan Machado [Federal University of Bahia | ivan.machado@ufba.br]
Emanuel Coutinho [Federal University of Ceará | emanuel.coutinho@ufc.br]

Abstract
Test smells represent a set of poorly designed tests, which can harm test code maintainability. Although fun-

damental steps to understand test smells have been taken, there is still an evident lack of studies evaluating the
impact of test smell refactoring from the perspective of internal quality attributes, such as size, cohesion, coupling,
and complexity. In addition, the literature still lacks research that addresses the difficulties developers face during
test smell refactoring. This article investigates the impact of test smell refactoring from a developer’s perspective,
considering the internal quality attributes and the background experience. We investigated the perceptions and diffi-
culties encountered by 20 developers while removing five types of test smells in four open-source projects over two
months. Through this study, we analyzed: (i) the impact that test smell refactoring has on internal quality attributes;
(ii) the developers’ perception of test smells as actual problems within software systems; (iii) the main difficul-
ties developers face during test smell refactoring; (iv) the influence of developers’ experience on assertiveness and
refactoring time of test smells, and (v) the effects of refactoring on the test smell density. Our findings can help
developers design a prioritization scheme for test smell refactoring and make them aware of the real benefits of test
smell refactoring.

Keywords: Test Smells, Test Refactoring, Software Quality, Developers’ Perception.

1 Introduction

Software testing is an important activity that aims to ensure
the quality of software systems. Testing might demand much
effort and costly resources, especially when developed man-
ually (Myers et al., 2011; Orso and Rothermel, 2014). In this
context, automated tests, implemented via frameworks or
testing tools, have become first-class citizens, playing a par-
ticularly important role in the software quality assurance pro-
cess (Bertolino, 2007; Myers et al., 2011). Automated tests
can assist in identifying and removing errors and ensuring
that the production code is robust under various conditions
of use (Candea et al., 2010).
Nevertheless, either in manually or automated developed

tests, software developers should be careful about their test
code as they are with production code (Berner et al., 2005;
Beller et al., 2019). Recent studies show that developers un-
derstand and give more importance to the production code
than the test code, thus causing problems in the test qual-
ity (Beller et al., 2015; Palomba et al., 2018). In fact, poorly
designed tests might result in a lack of maintainability, and
potential bugs in the software being tested (Yusifoğlu et al.,
2015).
Van Deursen et al. (2001) introduced the concept of test

smells, which represent a poorly designed test that can harm
test code readability, maintainability, and quality. Since its
conceptualization, test smell has become the focus of sev-
eral studies in the software testing field due to its importance
for the quality of the software test code (Bavota et al., 2012;
Spadini et al., 2018; Garousi and Küçük, 2018; Kim, 2020;

Virgínio et al., 2021; Santana et al., 2022; Soares et al., 2022).
Some studies indicate that test smells negatively impact the
maintenance and understanding of test code. Therefore, it is
necessary to understand its likely effects and propose mech-
anisms, strategies, and tools to mitigate them. In addition,
several authors claim it is essential to investigate develop-
ers’ perceptions and difficulties in the impact of test smell
refactoring (Spadini et al., 2018; Soares et al., 2020; Spadini
et al., 2020).
Software refactoring consists of small code transforma-

tions to improve the quality of the source code without com-
promising its overall functionality and observable behavior
(Alizadeh et al., 2020; Fowler, 1999; Paixão et al., 2020).
Test smells can be removed through refactoring, which can
positively impact the test code quality (Spadini et al., 2018;
Campos et al., 2021). However, literature reviews indicate a
lack of studies evaluating the impact of test smell refactoring
on the quality attributes (Bavota et al., 2015).
In our previous study (Damasceno et al., 2022), we inves-

tigated the impact of refactoring five test smells:Magic Num-
ber Test, Duplicate Assert, Eager Test, Assertion Roulette,
and Sensitive Equality in four open-source systems. We iden-
tified the perception and difficulties encountered by twenty
software developers in refactoring test smells. We analyzed:
(i) the impact that test smell refactoring has on internal qual-
ity attributes; (ii) the developers’ perception of test smells as
real problems within a software system; and (iii) the main
difficulties that developers face during test smell refactoring.
This article extends prior work by adding two new research
questions, where we analyze whether test smell refactoring

https://orcid.org/0000-0002-9221-5193
mailto:hdamasceno1998@gmail.com
https://orcid.org/0000-0002-5879-5067
mailto:carlailane@ufc.br
https://orcid.org/0000-0002-0033-3791
mailto:denivan.camposa@ufba.br
https://orcid.org/0000-0001-9027-2293
mailto:ivan.machado@ufba.br
https://orcid.org/0000-0003-2233-7109
mailto:emanuel.coutinho@ufc.br

Damasceno et al. 2023

can introduce new test smells, and the impact of develop-
ers’ experience on assertiveness and refactoring time of test
smells. We next summarize the key results from this study:

• After refactoring the test smells, cohesion increased re-
spectively, 7.26%, 6.20%, 9.19%, and 9.47% in the four
analyzed systems.

• After refactoring the test smells, the complexity de-
creased respectively, 20.16%, 7.55%, 28.53%, and 21%
in the four analyzed systems.

• The developers considered the Assertion Roulette and
Magic Number Test test smells the least harmful in a
software project. On the other hand, the Eager Test and
Duplicate Assert test smells were considered the most
critical ones.

• Understanding the source code is one of the main diffi-
culties in refactoring test smells.

• The larger the source code, the more effort it will take
to complete the refactoring.

• Developers with less experience take twice as long to
complete the test smells refactoring compared to more
experienced ones.

• The density of test smells decreases as the projects
evolve.

The remainder of this article is organized as follows. Sec-
tion 2 presents the key definitions of this study; Section 3 in-
troduce the step-by-step procedure for conducting the study;
Section 4 presents the results found, followed by a discussion
of the results; Section 5 discusses the main threats to validity;
Section 6 discusses related work; and Section 7 concludes
and suggests on future work.

2 Background
This background Section provides the necessary information
to understand the concepts we addressed in our research.
Hence, Section 2.1 introduces the concept of test smells, with
an emphasis on its origins, and highlights the nature of the
five test smells we address in the scope of this research, in
particular their possible effects, detection, and refactoring
strategies. Section 2.2 briefly addresses existing strategies to
identify test smells. The last part, Section 2.3, briefly intro-
duces the concepts behind Internal Quality Attributes, partic-
ularly those we used in this study.

2.1 Test Smells

Code smells are assumed to indicate bad design that leads to
less maintainable code (Sjøberg et al., 2013). Smells could
be found in both the software project source code and in the
test code (Van Deursen et al., 2001). In this latter, they are
often referred to as test smells. Test smells refer to certain
patterns in software tests that may indicate potential prob-
lems or weaknesses in the tests. They are the effect of poorly
designed tests andmay result in a lack of maintainability, and
potential bugs in the software being tested (Yusifoğlu et al.,
2015).
The literature has introduced various types of test smells.

Van Deursen et al. (2001) documented an initial set of eleven
test smells: Assertion Roulette, Eager Test, For Testers Only,

General Fixture, Indirect Testing, Lazy Test, Mystery Guest,
Resource Optimism, Sensitive Equality, Test Code Duplica-
tion, and Test Run War. Later, Peruma et al. (2019) cataloged
12 new types, as follows: Conditional Test Logic, Construc-
tor Initialisation, Default Test, Duplicate Assert, Empty Test
, Exception Handling, Ignored Test,Magic Number Test, Re-
dundant Assertion, Redundant Print, Sleepy Test, and Un-
known Test. Other researchers have introduced another set
of test smells, mainly based on practical observations, such
as Garousi and Küçük (2018), who proposed a diverse cata-
log of test smells, as a result of a multivocal literature review
on smells in software test code.
In our research, we addressed five test smell types, which

we detail next in this Section. We selected these test smells
as they most commonly occurred in the selected, analyzed
systems.It is worth mentioning such test smells are widely
discussed in the literature (Spadini et al., 2018; Soares et al.,
2020; Spadini et al., 2020; Virgínio andMachado, 2021; San-
tana et al., 2021; Campos et al., 2022). Nevertheless, such
studies considered other quality aspects, such as test code
maintainability and readability.

2.1.1 Assertion Roulette
It occurs when a test method has multiple undocumented as-
sertions. JUnit assertions have an optional first argument for
adding a message that should explain what each assertion
checks for. This makes it easier to understand the different
assertions in the same test. The absence of this parameter in
the assertion structure can make it difficult to comprehend
during maintenance and identify the assertion if the method
fails (Van Deursen et al., 2001).

Possible effect: Multiple assertions statements in a test
method without an explanatory message can affect test code
readability, understandability, and maintainability.
Detection: A test method with more than one assertion state-
ment without explanation (parameter in assertion method).
Refactoring: Include explanation for each assertion (refac-
toring technique Add Assertion Explanation).

2.1.2 Duplicate Assert
It occurs when a test method checks for the same condition
more than once within its scope (Peruma et al., 2019).

Possible effect: Makes the test more difficult to read and
maintain since identical assertions within the same method
do not make the purpose of the test method explicit. Dupli-
cate Assert often creates a scenario that violates the account-
ability of each method fulfilling a single objective.
Detection: A test method that contains two or more asser-
tions with the same parameters.
Refactoring: To test the same condition with different val-
ues, a new test method must be implemented.

2.1.3 Eager Test
It occurs when a test method checks multiple methods of the
tested object (Van Deursen et al., 2001).

Possible effect:Makes tests more difficult to understand and
maintain.

Damasceno et al. 2023

Detection: A test method contains several calls to several
methods of the same tested object.
Refactoring:Extract themethod by separating the assertions
into separate test methods.

2.1.4 Magic Number Test
It occurs when a test method contains unexplained, undocu-
mented numeric literals as parameters or as values for iden-
tifiers (Peruma et al., 2019).

Possible effect: Similarly to production code, using undoc-
umented numeric literals can break the test method, making
tests difficult to understand and evolve.
Detection: Check if numerical literals are being used as pa-
rameters or as values for identifiers in the body of the test
method.
Refactoring: Numeric literals must be replaced with con-
stants or variables, thus providing a descriptive name for the
value (refactoring technique: Replace Magic Literal).

2.1.5 Sensitive Equality
It occurs when a test method has equality checks using
the toString() method. Generally, the actual result is
calculated and converted into a string, which is compared
with another string’s value, representing the actual value
(Van Deursen et al., 2001).

Possible effect: Equality checks using toString() depend
on irrelevant factors such as commas, quotes, and spaces that
can interfere with the test result. In this sense, it is common
for tests to start to fail when the toString() method of an
object is changed.
Detection: A test method comparing an object with an ex-
pected result via the toString() method.
Refactoring: Add an implementation of the equals()
method to the object class and rewrite the tests that
use toString() to use the equals() method (refactor-
ing technique Introduce Equality method). This way,
toString()’s equality checks are replaced by actual equal-
ity checks.

2.2 Identifying Test Smells

The literature presents several studies on tools, but a recent
study byAljedaani et al. (2021) presented 22 tools for dealing
with test smells. In this study by Aljedaani et al. (2021), most
tools support the Java programming language and the JUnit
testing framework1.
For this study, we adopted the JNose Test Tool2 (Virgínio

et al., 2020; Virgínio et al., 2021). JNose tool collects test
smells in Java programming language and detects 21 types
of test smells in the JUnit framework (Virgínio et al., 2020;
Virgínio et al., 2021). The JNose Tool provides software de-
velopers with an advanced visual interface of aspects related
to testing code, switching from statically computable indi-
cators (such as quality attributes and test smells) to dynamic
measures (such as code coverage and indicators). JNose Tool

1https://junit.org/
2https://github.com/arieslab/jnose

detects test smells through a set of rules and quantifies the
types of test smells by class and by project version.
To detect test smells the JNose tool uses a set of rules and

quantifies the types of test smells through four types of analy-
sis, TestClass, TestSmell, TestFile and Evolution. As a result,
JNose brings measures such as lines of code (LOC), number
of methods, types of test smells and the amount of test smells
in each test class of the project. Furthermore, JNose presents
test quality from an evolutionary perspective.

2.3 Internal Quality Attributes

According to the ISO/IEC 25010/2011 standard (ISO, 2011),
software quality can be defined as the compliance level of
a software system, component, or process according to the
needs and expectations of its stakeholders. Software quality
can be measured by different quality attributes, which might
be classified as (i) internal quality attributes and (ii) exter-
nal quality attributes (Malhotra and Chug, 2016). External
quality attributes are measured in how the process, resource,
or software relates to the environment. Internal quality at-
tributes such as size, cohesion, coupling, and complexity are
measured by analyzing the software separately from its be-
havior (Fernandes et al., 2020). Measuring internal quality
attributes is simpler than measuring external ones. For ex-
ample, the method or class size can be measured using the
LOCmetric (Morasca, 2009). In our study, we used 9 widely-
accepted metrics of internal quality attributes (see Table 3)
(Morasca, 2009; Chidamber and Kemerer, 1991; Lorenz and
Kidd, 1994;McCabe, 1976). Chidamber and Kemerer (1991)
metrics are forerunners in object-oriented (OO) metrics and
have a theoretical basis for measuring OO code. In this study,
the metrics defined by Chidamber and Kemerer (1991) were
chosen to analyze the internal quality of the systems (Malho-
tra and Chug, 2016; Dyer et al., 2012). To collect the metrics,
we used the Understand tool (Chávez et al., 2017).

3 Study Settings

This section describes the empirical study settings, compris-
ing its goal, research questions, and steps.

3.1 Goal and Research Questions

This article reports on a study on the impact of refactoring
test smells on internal quality attributes and the perceptions
and difficulties developers face during refactoring. In addi-
tion, we also analyzed the density of test smells before and af-
ter refactoring. The research questions (RQs) are stated next.
RQ1: What impact does refactoring test smells have

on the test code quality attributes? This question aims to
assess the impact of refactoring test smells on the test code
quality attributes. By answeringRQ1, we can identify which
test smells harm quality attributes and provide guidelines on
eliminating such risks within a software project. Verifying
which attributes improve or worsen after refactoring the test
smells is possible.
RQ2: Do developers perceive test smells as actual prob-

lems in a software project? This question aims to analyze
users’ perceptions through the impacts of test smells for a

https://junit.org/
https://github.com/arieslab/jnose

Damasceno et al. 2023

software project. By answering RQ2, we could warn and
make developers aware of test smells’ impacts on a software
project. We can also emphasize the importance of mitigating
such anomalies soon after detection, aiming to reduce their
impacts.
RQ3: What are the main difficulties developers face

during test smell refactoring? This question aims to iden-
tify developers’ main difficulties during test smell refactor-
ing. By answering RQ3, we can leverage and understand the
main difficulties and what factors developers consider to jus-
tify the difficulties in refactoring the test smells.
RQ4: How does the experience of developers influence

the assertiveness and refactoring time of test smells?. This
RQ investigates whether the developer’s experience influ-
ences the assertiveness of test smells refactoring. Further-
more, we also investigated whether experienced develop-
ers refactor test smells faster than inexperienced ones, and
whether they face fewer difficulties. By answering RQ4, we
can identify the profile of developers most likely to have dif-
ficulties during test smells refactoring.
RQ5: What are the effects of test code refactoring on

the test smell density? This question aims to analyze test
smell density before and after test code refactoring. By an-
swering RQ5, we could analyze the likely changes in test
smells density as a direct effect of refactoring. By density
we consider the ratio of test smells inserted to the number of
removed test smells.

3.2 Study Steps

Step 1: Select open-source systems for analysis. The first
step involves selecting a set of candidate software sys-
tems. To perform this step, we considered the dataset from
Pecorelli et al. (2021), which comprises eight open-source
software systems from GitHub, with plenty of test smells.
We selected four out of eight candidate software systems
from such a dataset as they have the most significant test
smells. The four software systems have 4147 commits, 53
releases, 300 production classes, and 155 test classes. Ta-
ble 1 shows raw data of the selected software systems. The
first column contains the identifiers of each system and their
GitHub URLs. The remainder includes additional informa-
tion about the systems, such as the number of commits, re-
leases, production classes, production and test LoC, and test
classes, as of the release date.

Table 1. Selected software systems.

Systems Commits Releases PC TC LoC* LoC**

S1 1702 45 26 31 4582 3850
S2 3091 49 270 139 9743 8248
S3 5400 54 100 47 6510 5620
S4 6395 65 804 404 8361 2198
Legend: [LoC*] Production code lines [LoC**] Test code line
[PC] Production Classes [TC] Test Classes

Step 2: Detect test smells. In this step, we first analyzed
the outcomes of a recently published literature review on tool
support for test smell detection Aljedaani et al. (2021). The
authors leveraged twenty-two existing tools and analyzed
their key features in such a study. Then, we defined the fol-

lowing criteria to select our study’s test smell detection tool.
The tool must: (i) be open-source; (ii) support the identifi-
cation of our pre-defined set of test smells; (iii) provides the
automatedmeasurement of quality attributes in test code; (iv)
handle Java projects developed withMaven support3; and (v)
evaluatemultiple test code files (classes and packages) simul-
taneously.
After analyzing the existing and available tools, we se-

lected the JNose Test4 for meeting all the pre-defined criteria.
The selected tool automatically detects test smells and col-
lects code coveragemetrics (Virgínio et al., 2020). It holds an
accuracy ranging between 91% and 100%, and a recall from
89% to 100%. The authors state that the test smells that use
external resources have the worst precision and recall values,
but this study did not evaluate them.
Table 2 shows the number of test smells detected in the

four selected software systems. The first column shows
the test smells analyzed in this study. We selected the
Magic Number Test, Duplicate Assert, Eager Test, Assertion
Roulette, and Sensitive Equality test smells as they are the
ones that occur the most in the four selected systems. The
following four columns show the number of test smells on
each system. Finally, the last column shows each test smell’s
total number of occurrences.

Table 2. Number of test smells detected per system.

Test Smell S1 S2 S3 S4 Total

Magic Number Test 265 1622 783 38 2708
Duplicate Assert 73 581 225 22 901
Eager Test 245 579 402 59 1285
Assertion Roulette 1908 4931 2697 135 9671
Sensitive Equality 27 191 153 49 420
Total 2518 7904 4260 303 -

Step 3: Measure quality attributes. This step consists of
measuring the quality metrics of the test code. We used the
Understand for Java5 to calculate the metrics. This tool has
been available for years (Lincke et al., 2008), and many stud-
ies have employed it due to its high precision in calculating
OO metrics (Nilson et al., 2019; Martins et al., 2021).
Table 3 presents the four internal quality attributes we used

to evaluate the quality of the selected systems. The first col-
umn lists the quality attributes. The second column shows
the quality metrics related to each attribute. The third col-
umn provides a short description of each metric. We selected
these metrics as they allow us to evaluate different particu-
larities of the internal quality attributes (Bieman and Kang,
1995).
In (Tahir et al., 2016), the authors observed a relationship

between production code quality metrics and test smells, re-
inforcing that some design aspects (e.g., complexity) are re-
lated to the appearance of failures in the test code.
Step 4: Select the developers to refactor the test smells.

This step involves selecting software developers to refactor
the test smells we detected in Step 2. To this end, we recruited

3Maven helps manage Java projects and automate application builds.
4Available at https://GitHub.com/arieslab/jnose.
5Understand for Java is a powerful static code analysis tool for Java

source code. Available at https://www.scitools.com/.

https://GitHub.com/apache/commons-codec
https://GitHub.com/apache/commons-collections
https://GitHub.com/apache/commons-io
https://GitHub.com/apache/commons-exec
https://GitHub.com/arieslab/jnose
https://www.scitools.com/

Damasceno et al. 2023

Table 3. List of analyzed internal quality attributes.

Attribute Metric Description Source

Size Lines of code (LOC) Measures the number of lines of code for classes and methods. Morasca (2009)

Cohesion
Lack of Cohesion (LCOM) Measures the cohesion of a class or method. The bigger this value the

less cohesive the class/method.
Chidamber and Kemerer
(1991)

Lack Of Cohesion Modi-
fied (LCOM2)

Measures the cohesion of a class or method after sufferingmodifications.
The higher this value, the less cohesive the class/method.

Chidamber and Kemerer
(1991)

Coupling

Count Class Coupled
(CCC)

Number of classes that a class is bound to. The higher this value, the
greater the coupling of classes and methods.

Chidamber and Kemerer
(1991)

Count Class Coupled Mod-
ified (CCC2)

Measures the coupling of a class after modifications. The higher this
value, the higher the complexity.

Chidamber and Kemerer
(1991)

Complexity

MaxNesting (MN) Maximum depth of the control constructs (if, while, etc.). The higher
this value, the greater the complexity. Lorenz and Kidd (1994)

SumCyclomatic (SC) Sum of the cyclomatic complexity of all functions and nested methods.
The greater the value of this metric, the greater the complexity. McCabe (1976)

AvgCyclomatic (AC) Average complexity of all nested methods. The higher this value, the
more complex the class/method. McCabe (1976)

MaxCyclomatic (MC) Maximum cyclomatic complexity of themethods nested. The higher this
value, the more complex the class/method. McCabe (1976)

a group 25 collaborating developers from other projects to
participate in the experiment. All of them hold undergradu-
ate degrees in CS or related areas and work as software de-
velopers in the industry. As a first task, each had to fill in a
background questionnaire6. The questionnaire aimed to char-
acterize the developer in terms of experience, knowledge of
Java, and test smells. We carefully examined their responses
to determine which were eligible to participate in the exper-
iment. Out of the 25 developers invited, a total of 20 partic-
ipants successfully completed and passed the questionnaire
evaluation. These 20 developers were consequently selected
to take part in the experiment. Table 4 presents the profile of
the selected developers.
After selecting the developers, we held a two-hour training

session. We discussed underlying concepts, such as (i) test
smell detection, (ii) test code quality attributes, and (iii) test
smell refactorings. We presented practical examples of test
code refactoring. Afterward, we provided the participants
with practical activities of test smell detection and refactor-
ing. We sought to reduce bias by focusing on the main con-
cepts and presenting practical and objective examples. Table
5 shows the refactoring techniques the participants employed
in the experiment. The first column shows the technique’s
name. The second describes how the technique works. The
third column shows the test smells refactored using the tech-
nique.
Step 5: Remove test smells through manual refactor-

ing. This step consists of removing test smells through man-
ual refactoring. We employed manual refactoring to gather
developers’ perceptions and difficulties more accurately, as
they dealt directly with the test code. Our sample consisted of
20 examples of each of the 5 test smells randomly selected
through the JNose Test tool, totaling 100 examples of test
smels. Table 6 shows how we allocated the test smells for
each participant. The first column shows the test smells. The
second shows the occurrence of test smells. The third shows
the number of test smells allocated to each participant. The

6https://GitHub.com/leanresearchlab/JSERD_2023

Table 4. Profile of experiment participants.

ID Exp. Educ. Level QA TS Java

D1 2y Undergrad. Basic Basic Basic
D2 3y Undergrad. Int. Basic Int.
D3 3y Undergrad. Basic Basic Int.
D4 5y Undergrad. Basic Basic Adv.
D5 6y Undergrad. Basic Basic Adv.
D6 4y Undergrad. Adv. Basic Adv.
D7 4y Undergrad. Adv. Basic Adv.
D8 4y Undergrad. Int. Basic Adv.
D9 2y Undergrad. Int. Basic Basic
D10 4y Undergrad. Int. Basic Adv.
D11 8y Undergrad. Adv. Int. Adv.
D12 3y Undergrad. Basic Basic Int.
D13 5y Undergrad. Adv. Int. Adv.
D14 5y Undergrad. Adv. Int. Adv.
D15 2y Undergrad. Basic Basic Basic
D16 2y Undergrad. Basic Basic Int.
D17 4y Undergrad. Int. Basic Int.
D18 6y Undergrad. Int. Int. Adv.
D19 3y Undergrad. Basic Basic Int.
D20 4y Undergrad. Int. Basic Adv.

Legend: Exp. - Experience (in years); Educ. - Education Level;
QA - (Knowledge Level of) Quality Attributes; TS - (Knowl-
edge Level of) Test Smells; Int. - Intermediary Level; Adv. -
Advanced Level

fourth indicates the participants responsible for refactoring
the test smells. The last column contains the total number of
refactored test smells.

To assist the refactoring activity, we provided the partici-
pants with a list of classes and methods for identifying test
smells in the detection step. In addition, we created a branch
on GitHub for each developer to track the progress of refac-
torings individually. We held two weekly meetings to check
the progress and check if the developers faced any difficul-
ties. To maintain the organization of the experiment, each de-
veloper was responsible for performing a pull request with all
the operations performed to refactor the test smells. We eval-
uated each pull request to see if the test smells were refac-

https://GitHub.com/leanresearchlab/JSERD_2023

Damasceno et al. 2023

Table 5. Refactoring techniques used to remove the test smells

Refactoring Description Test smells

Extract Method Extract a method, separating assertions into different methods. Eager Test, Duplicate Assert

Add Assertion Explanation
Assertions usually have an optional first argument to provide an explanatory message to
the user when the assertion fails. So, one way to make the most understandable test is by
using this message to distinguish between different assertions that occur in the same test.

Assertion Roulette

Introduce Equality Method If an object structure needs to be checked for equality in tests, add an implementation for
the “equals” method for the object class. Sensitive Equality

Replace Magic Literal Substitute numeric literals without explanation by constants or descriptive variables. Magic Number

Table 6. Allocation of developers to refactor test smells

Test Smells Occurrences
Test smells
allocated
by dev.

Devs. allocated
for refactoring

Total
refactored
test smells

Magic
Number Test

2708 5 D7, D13, D14, D15 20

Duplicate
Assert

901 5 D1, D8, D9, D20 20

Eager Test 1285 5 D2, D5, D11, D17 20
Assertion
Roulette

9671 5 D4, D12, D16, D19 20

Sensitive
Equality

420 5 D3, D6, D10, D18 20

tored correctly according to the procedures presented in the
training session. Is it worth noting that we allowed the devel-
opers to have flexibility in terms of the frequency and time
allocated for refactoring the test smells, considering that they
also had work responsibilities to attend to. Therefore, we
took into account only the number of days each developer
took to complete the refactorings.
Step 6: Document developers’ perceptions and difficul-

ties in refactoring test smells. This step involves document-
ing developers’ perceptions of the risks of test smells within
a system and the difficulties encountered in refactoring such
smells. We relied on the diary technique to document devel-
opers’ perceptions of test smell refactoring. The Diary tech-
nique consists of a data collection method where participants
record in a form their daily activities about some event that
affected them positively or negatively. This technique is a
way of understanding participant behavior, reducing the im-
pact of researchers (França et al., 2020).
Hence, we asked the participants to document their activi-

ties whenever they refactored the test code. We did not estab-
lish a frequency at which they needed to work with the code
because they could have other duties. Table 7 shows the ques-
tions answered by the participants using the diary technique.

Table 7. Questions answered by developers through the diary tech-
nique

Questions Answers

Which test smell are you currently refactoring? -
What were the main difficulties in refactoring this test
smell? -

How harmful is this test smell to the system? 0 to 10
What refactoring techniques do you use to remove this test
smell? -

Step 7: Validate test smells removal. We reviewed all
pull requests to verify if the developers removed the test

smells correctly. We also analyzed: (i) the impact of test
smell refactoring on the internal quality attributes; and (ii)
which test smells are the most harmful within the systems
used in the study. As the developer completed the activity,
we analyzed the refactored files on a first-come, first-served
basis. After refactoring the test cases with test smells, the
authors re-run the JNose Test on the projects to validate the
removal and analyze the effects of test smell refactoring. The
complete removal of test smells via manual refactoring took
about two months. We completed our review in one month.
We evaluated the metrics by comparing the sums of metrics
before and after refactoring the test smells. To carry out the
measurements, we considered each refactoring that was ap-
plied to each system. Finally, we measured the impact that
developer experience can have during the test smells refactor-
ing. To measure the developers’ experience, we considered
their experience in Java programming.
It is worth mentioning that we placed a strong emphasis on

validating the successful removal of test smells and ensuring
the preservation of test behavior. To achieve this, after com-
pleting the refactoring process, we executed the JNose tool
to confirm the absence of test smells and verify the integrity
of the refactored code. Nevertheless, while using the JNose
tool provided a reliable means of validating the removal of
test smells, it is important to note that the refactoring process
itself is not completely immune to side effects. For example,
new test smellsmay be introduced after removing a particular
test smell through refactoring. This observation is consistent
with the findings reported by Campos et al. (2021), which
highlight the challenges associated with effectively address-
ing test smells and the potential for new smells to emerge
during refactoring.
For additional details on the test smell detection process

and the metrics collected before and after removing the
test smells, a comprehensive documentation is available at
the following GitHub repository: https://GitHub.com/
leanresearchlab/JSERD_2023.

4 Results and Discussions
In this section, we present the results and discuss the results
obtained, and show the main findings for each RQ.

4.1 Impact of test smell refactoring on test code
internal quality attributes (RQ1)

In RQ1, we analyzed the impact that test smells refactoring
has on the following internal quality attributes: (i) size, (ii)
cohesion, (iii) coupling, and (iv) complexity. Twenty devel-

https://GitHub.com/leanresearchlab/JSERD_2023
https://GitHub.com/leanresearchlab/JSERD_2023

Damasceno et al. 2023

opers, who applied the refactoring techniques discussed in
training via manual refactoring, performed the removal of
test smells.
Table 8 contains data referring to the test smells refactor-

ing from the perspective of the analyzed systems and the qual-
ity attributes. In turn, Table 9 shows data about the test code
refactoring from the perspective of test smells and quality
attributes. Both tables show the four quality attributes and
the values of their respective metrics. To analyze the impact
of test smells refactoring on attributes with more than one
metric, we compared the sum of the metrics before and af-
ter refactoring using the Understand tool (Tarwani and Chug,
2016). The symbol ↑ represents an increase in the metric’s
value, the symbol ↓ represents a decrease in the metric’s
value, and the symbol – shows that the attribute value did
not change after refactoring the test smells.
It is worth noting that if the cohesion value increases, this

attribute has been improved due to the greater cohesion of the
class/method, thus improving the system’s quality. Attributes
such as coupling and complexity must have low values to in-
dicate an improvement in the system’s quality. The size at-
tribute can indicate improvement or deterioration in quality,
depending on the context in which it is under evaluation.
Internal quality attributes greatly benefited by the

refactoring of test smells. By analyzing data from Table 8,
we could observe that the cohesion and complexity of all ana-
lyzed systems improved after refactoring the test smells. Re-
garding cohesion, we highlight systems S3 and S4, as they
improved the attribute value by 9.19% and 9.47%, respec-
tively.

Finding 1: The refactoring of test smells resulted in an
increase in cohesion in the test code by 7.26%, 6.20%,
9.19%, and 9.47% across the four analyzed systems.
This finding suggests a positive relationship between the
refactoring of test smells and improved cohesion.

Some related work has already studied the impact of com-
plexity in OO systems (Alenezi and Almustafa, 2015). Prior
studies relate complexity to problems such as worsening soft-
ware maintainability, greater error proneness, and loss of
quality (Darcy et al., 2005; Xie et al., 2009). Regarding the
systems analyzed in this work, we can highlight the systems
S1 (20.16%), S4 (21%), and S3 (28.53%), which consider-
ably improved the value of complexity after removing the
test smells.

Finding 2:The refactoring of test smells resulted in a de-
crease in complexity in the test code by 20.16%, 7.55%,
28.53%, and 21% across the four analyzed systems. This
finding suggests a positive impact of test smell refactor-
ing on reducing complexity in the code.

Internal quality attributes are partially affected after
test smell refactoring. Let us consider data from Table 8
from another perspective. It is possible to notice that the
coupling quality attribute was not improved in all the sys-
tems. The systems S2 and S3 kept the values of the coupling-
related metrics the same as those measured before the test

smells were refactored. On the other hand, the systems S1
and S4 improved coupling by 4.3% and 2.97%, respectively.
We may observe that refactoring test smells partially im-
proves coupling, unlike the cohesion and complexity at-
tributes, which significantly improve after refactoring.
Internal quality attributes are negatively affected by

the refactoring of test smells. Table 8 shows that test smells
refactoring harmed the quality attribute size. After refactor-
ing, we observed that all systems worsened the value of
the LOC, particularly the systems S4, S3, and S1, which in-
creased the metric’s value respectively by 150%, 157.77%,
and 180.32%. We could infer that the size attribute is not di-
rectly related to the other attributes we analyzed in this study.
It is worth mentioning that the cohesion, coupling, and com-
plexity values improved, even with the worsening of the size.
Test smells that were removed and improved three

quality attributes. Table 9 shows exciting data and results
concerning such an issue. It is possible to notice that remov-
ing the test smells Eager Test andDuplicate Assert improved
all quality attributes, except for size. Specifically, the Ea-
ger Test refactoring increased cohesion by 8.24% and de-
creased coupling and complexity by 3.72% and 21%. Remov-
ing Duplicate Assert, in turn, increased cohesion by 10.52%,
decreased coupling by 3.56%, and complexity by 22.02%.
These results suggest that the presence of these test smells
causes damage to the system’s quality since the values of
quality attributes improved after refactoring both.
Test smells that partially impacted the internal quality

attributes. By observing data from Table 9, it is possible to
notice that the refactoring of all test smells, except for Asser-
tion Roulette and Sensitive Equality, increased LOC. Specif-
ically, Eager Test and Duplicate Assert increased the source
code size by 320.33% and 125.77%, respectively. LOC in-
crease in all systems occurred after refactoring due to the cho-
sen techniques that imply an increase in LOC, e.g., Extract
Method. Conversely, refactoringMagic Number Test and As-
sertion Roulette test smells did not change the coupling val-
ues. Despite the significant increase in LOC, it is possible to
suggest that this is not such a major factor affecting the test
code quality. Refactoring all test smells improved the values
of other quality attributes, like cohesion, coupling, and com-
plexity.

Finding 3:The removal of theEager Test andDuplicate
Assert test smells had a positive impact on the internal
quality attributes. Conversely, the Magic Test Number
and Assertion Roulette test smells did not positively af-
fect the size and coupling quality attributes. This sug-
gests the presence of these latter test smells in terms of
their impact on the code’s quality attributes.

Implications of RQ1. Our findings suggest that Eager
Test and Duplicate Assert are particularly detrimental to sys-
tem quality. Their removal resulted in a considerable im-
provement in internal quality attributes. In addition, Magic
Number Test, Assertion Roulette, and Sensitive Equality im-
proved certain internal quality attributes and worsened oth-
ers. Therefore, the results obtained in RQ1 can help project
managers and developers better decide to refactor a given

Damasceno et al. 2023

Table 8. Impacts of refactoring test smells grouped by system and internal quality attributes
Size Cohesion Coupling ComplexitySystem LOC LCOM LCOM2 CCC CCC2 MN SC AC MC

61 1164 943 277 277 39 414 41 96S1 with test smells Total 61 2107 554 590
171 1242 1018 260 270 18 338 35 80S1 Without test smells Total 171 2260 530 471

Results ↑ 180.32% ↑ 7.26% ↓ 4.3% ↓ 20.16%
38 673 569 375 367 45 1806 33 102S2 with test smells Total 38 1242 742 1986
80 708 611 375 367 19 1697 22 98S2 without test smells Total 80 1319 742 1836

Results ↑ 110.52% ↑ 6.20% - ↓ 7.55%
45 910 863 266 265 48 243 63 70S3 with test smells Total 45 1773 531 424
116 1025 911 266 265 21 187 44 51S3 without test smells Total 116 1936 531 303

Results ↑ 157.77% ↑ 9.19% - ↓ 28.53%
72 1001 857 308 298 79 363 80 116S4 with test smells Total 72 1858 606 638
180 1123 911 302 286 55 297 69 83S4 without test smells Total 180 2034 588 504

Results ↑ 150% ↑ 9.47% ↓ 2.97% ↓ 21%

Table 9. Impacts of refactoring test smells grouped by test smells and internal quality attributes
Size Cohesion Coupling ComplexityTest Smells LOC LCOM LCOM2 CCC CCC2 MN SC AC MC

20 592 465 215 215 30 275 31 49Magic Number Test before refactoring Total 20 1057 430 385
40 630 501 215 215 15 252 27 39Magic Number Test after refactoring Total 40 1131 430 333

Results ↑ 100% ↑ 7% - ↓ 13.50%
97 847 674 197 196 68 427 48 61Duplicate Assert before refactoring Total 97 1521 393 604
219 950 731 190 189 45 346 35 45Duplicate Assert after refactoring Total 219 1681 379 471

Results ↑ 125.77% ↑ 10.52% ↓ 3.56% ↓ 22.02%
59 1081 971 274 263 43 641 55 105Eager Test before refactoring Total 59 2052 537 844
248 1187 1034 263 254 16 529 39 82Eager Test after refactoring Total 248 2221 517 666

Results ↑ 320.33% ↑ 8.24% ↓ 3.72% ↓ 21%
20 497 373 156 157 36 308 39 82Assertion Roulette before refactoring Total 20 870 313 465
20 542 401 156 157 20 266 33 72Assertion Roulette after refactoring Total 20 943 313 391

Results - ↑ 8.40% - ↓ 15.91%
20 731 749 384 376 34 1175 44 87Sensitive Equality before refactoring Total 20 1480 760 1340
20 789 784 379 373 17 1117 36 74Sensitive Equality after refactoring Total 20 1573 752 1244

Results - ↑ 6.28% ↓ 1.05% ↓ 7.16%

test smell, taking into account the quality metric to improve.
Finally, except for Assertion Roulette and Sensitive Equality,
test smells refactoring led the source code to grow. Remov-
ing test smells demandsmore source code to implement. This
is not necessarily harmful since the results show that remov-
ing test smells positively impacted the other internal quality
attributes.

4.2 Developers’ perception of test smells as actual
problems in the projects (RQ2)

We addressed RQ2 by analyzing the information collected
through the diary technique, where each developer docu-
mented their impressions of the test smells. We also evalu-
ated the opinions of developers during the initial training ses-
sion. Table 10 presents the developers’ perceptions about the
impacts of test smells. The first column shows all reported
insights. The second contains the developers who reported
such insights. The third shows the occurrence of test smells
according to the developers’ perception.
We identified that all the developers who refactored Ea-

Table 10. Developers’ perceptions about the impacts of test smells

Perceptions Developers Test Smells

Highly harmful D2, D5, D9, D11, D17,
D20

Duplicate Assert, Eager
Test

Harmful D1, D8, D10 Duplicate Assert, Sensi-
tive Equality

Reasonably
harmful D3, D6, D18 Sensitive Equality

Weakly harmful D12, D14, D16 Assertion Roulette,
Magic Number

Irrelevant D4, D7, D13, D15,
D19

Magic Number Test, As-
sertion Roulette

ger Test and Duplicate Assert considered such smells highly
harmful. Some of them realized the relevance of these test
smells during introductory training. Others, in turn, identi-
fied the harmful effects of these smells after performing the
manual refactoring. We strengthen this evidence with some
highlights, as follows:

D2:“During the training, I noticed how harmful the test smell
Eager Test could be in a software project.”

Damasceno et al. 2023

D11:“Eager Test is undoubtedly harmful to the health of the test
code.”

D17:“The experience of refactoring the Eager Test test smell
certainly changed my conception of how to develop test code.”

On the other hand, we also encountered test smells that de-
velopers did not perceive as highly detrimental. Specifically,
the test smells Assertion Roulette and Magic Number Test,
which involve undocumented assertions and unexplained nu-
meric literals, were found to be the least harmful in the an-
alyzed scenarios. This observation is further supported by
some reports:

D4:“In my view, the Assertion Roulette test smell does not
negatively impact a software project.”

D7:“I didn’t consider the Magic Number Test smell as harmful
inside the file I refactored.”

D15:“I see no need to refactor the smell Magic number Test.”

Finding 4: In the evaluation of test smell’s perceived
impact, developers identified that Eager Test and Dupli-
cate Assert test smells as the most critical. Conversely,
the Assertion Roulette and Magic Number Test were
deemed the least harmful smells by developers. This dis-
cernment highlights the likely varying degrees of con-
cern about different test smells in software projects.

Implications of RQ2. Our findings indicate that some de-
velopers might not see test smells as harmful within a soft-
ware project. Let us recall that only eight out of twenty par-
ticipants considered test smells irrelevant or weakly harm-
ful within a system. We highlight the Assertion Roulette and
Magic Number Test smells, which were the most cited ones.
In contrast, all the participants who refactoredEager Test and
Duplicate Assert considered them highly harmful or harm-
ful within a software project. Due to the results obtained, we
strengthen the claim that any test smell in a system can nega-
tively impact it. In addition, test engineers must refactor such
smells as soon as they are detected.

4.3 Difficulties identified by developers during test
smell refactoring (RQ3)

We discussed RQ3 by analyzing the responses from the di-
aries.We performed qualitative analysis on the responses and
identified four categories: (i) Difficulty in understanding the
source code; (ii) Major refactoring effort; (iii) Difficulty in
applying the refactoring technique; and (iv) a Large amount
of source code. Table 11 shows the categories. The first col-
umn lists the categories found, and the second shows the
number of participants that faced difficulties in refactoring
the test smells.
From Table 11, it is possible to notice that there were de-

velopers who fit into more than one category of difficulty in
refactoring the test smells. From this, we could identify re-
lationships between the categories of difficulties. The first

Table 11. Categories of difficulties reported by the participants.

Categories Developers

Difficulties understanding the
source code D1, D3, D7, D9, D13, D20

Huge refactoring effort D1, D4, D7, D10, D13, D14,
D16

Difficulty applying the refactoring
technique D3, D9, D20

Lots of source code D4, D10, D14, D16

relationship was found between the categories “difficulty un-
derstanding the source code” and “great refactoring effort.”
We strengthened this relationship through the following re-
ports:

D1:“It took me longer than expected to refactor methods that
required extraction.”

D10:“Undoubtedly, the smell Sensitive Equality test was the most
difficult to refactor, as I had complications applying the
refactoring technique.”

D2:“I had trouble refactoring the Eager Test because I couldn’t
fully understand the source code.”

Our review reinforces that the difficulty of understanding
the source code is directly proportional to the refactoring ef-
fort. Therefore, if the developer takes much time to under-
stand the source code, his effort to perform the refactoring
will be greater than usual.

We also identified a relationship between the categories
“great refactoring effort” and “a large amount of source
code.” Some developer reports that confirm this relationship
are highlighted next:

D17:“It took a lot of effort to complete the task, due to the large
amount of source code.”

D20:“Refactoring this gigantic method took a lot of work.”

D16:“The test smells I received were very extensive, so I required
a higher level of effort than necessary.”

We may observe that the main difficulties in applying
a given test smell refactoring technique concern the diffi-
culty of understanding the source code. The reports below
strengthen the relationship between these two categories of
difficulties encountered:

D3:“I had difficulties applying the refactoring technique as I did
not fully understand the source code.”

D9:“There were times when I found the source code so complex to
the point of not knowing how to apply the refactoring technique.”

D11:“I didn’t feel safe refactoring the test smell, as I had trouble
understanding the source code.”

Damasceno et al. 2023

Finding 5: The refactoring of test smells presents in-
herent challenges, particularly regarding the comprehen-
sion of the source code. As the size of the codebase in-
creases, so does the effort required for successful refac-
toring. However, it is worth noting that well-written
code significantly eases the process of refactoring test
smells. These findings underscore the significance of
code understandability and quality in enabling efficient
and effective test smell refactoring.

Implications of RQ3. Our findings indicate that a large
amount of source code and the difficulty of understanding
the source code lead to a high refactoring effort. Developers
do not feel safe applying a particular refactoring technique
when they cannot fully understand the source code to refactor.
Thus, good programming practices can positively impact the
test smell refactoring. Furthermore, it is noticeable that devel-
opers still do not feel completely confident about identifying
and refactoring test smells, given the difficulties documented
in this RQ.

4.4 Impact of developer experience on assertiveness
and refactoring time of test smells (RQ4)

We address RQ4 by analyzing the results obtained in RQ1
and RQ3, which range from the removal of test smells to the
difficulties the developers faced when performing the refac-
toring. From such analyses, it was possible to investigate
whether developers with more experience could refactor the
test code faster and with fewer difficulties.
Table 12 presents the average time required (measured in

days) for developers to refactor the passed test smells. The
first column groups developers according to their program-
ming experience. The second contains the days required to
refactor the test smells. The third shows the standard devia-
tions. It is worth reiterating that each developer was respon-
sible for refactoring a single type of test smell.

Table 12.Average time needed to refactor the test smells, according
to the developers’ experience

Exp. (in years) Ave. time to refactor
(in days) Std. dev.

2 4 1
3 4 0.71
4 3 1.15
5 3 0.82
6 2 0
8 2 0

From RQ1, all developers, experienced or not, refactored
all the test smells during the study. However, from Table
12, we notice that less experienced developers (maximum
3 years) demanded twice as much time to refactor the test
smells than experienced ones. The average time for expe-
rienced ones (minimum 6 years) to refactor the test smells
was about two days. On average, developers with interme-
diate experience (between 4 and 5 years) took three days to
complete the tasks. Therefore, we claim the importance of

diversifying a team of developers in terms of programming
experience. Bearing in mind that such diversification will be
highly beneficial for less experienced developers, who will
improve their skills and, consequently, will start to refactor
test smells in a shorter period.
Furthermore, the findings obtained in RQ3 align with the

statement that developers with less experience require more
time to refactor test smells. Table 11 presents the categories
of difficulties reported by developers during the refactoring
of test smells. From this information, it was possible to no-
tice that categories, such as refactoring effort, problems in
understanding the source code, and difficulty in applying the
refactoring technique, were reported mainly by developers
with less programming experience. Therefore, the test smells
introduction training we carried out with all the developers
was helpful for this experiment.

Finding 6: The experience level of developers signifi-
cantly impacts the duration of test smell refactoring. We
observed that less experienced developers took twice as
long to complete the test smells refactoring compared to
more experienced ones. In addition, the categories of dif-
ficulties identified inRQ3 were predominantly reported
by less experienced developers. This suggests a direct
relationship between the longer refactoring time and the
challenges faced by developers with limited program-
ming experience.

Implications of RQ4. Our findings infer that program-
ming experience impacts the test smells refactoring. They
bear in mind that developers reported virtually all difficul-
ties collected with a maximum of four years of experience in
programming. Consequently, the refactoring activity tends
to take longer if performed by developers with less program-
ming experience since they are more likely to experience dif-
ficulties when refactoring test smells. Therefore, a develop-
ment team training process within a company/organization is
essential. Such training should address theoretical and practi-
cal aspects of test smells to improve developers, increase the
success rate in refactoring test smells, and reduce the time to
implement such a process.

4.5 Test Smells Density (RQ5)

We ran the JNose Test to detect the existing test smells in the
projects. Then, we asked the developers to refactor the five
types of test smells (Assertion Roulette, Eager Test, Magic
Number Test, Sensitive Equality, Duplicate Assert) in each se-
lected software system. After refactoring, we reran the JNose
Test and obtained a new .csv file with the test smells. As men-
tioned earlier in Section 3, the test smells refactored by the
developers were all removed. We compared the test behavior
before and after refactoring to answer this RQ.
Table 13 presents the density of test smells. The first col-

umn shows the test smells added to the project after refactor-
ing; the second shows the number of test smells before refac-
toring. The third shows the number of test smells removed
through refactoring in each project, the fourth shows the total
number of test smells after refactorings, and the fifth shows

Damasceno et al. 2023

the number of added test smells after refactoring.
After test smells refactoring, we noticed that in project

S1, all test smells were removed correctly, and during the
refactoring, there was no change regarding the test smells.
Project S2, after refactoring, added 6 test smells, 3 Asser-
tion Roulette and 3 Magic Number Test. In project S3, the
test smells that appeared after refactoring were 4 Assertion
Roulette and 3 Magic Number Test. In project S4, after test
smells refactoring, three more test smells were inserted (2
Assertion Roulette and 1Magic Number Test.

Table 13. Density of test smells after refactoring
Test Smells S2 BR RR S2 AR* S2 Increased
Assertion Roulette 4931 5 4929 3
Magic Number Test 1622 5 1620 3
Test Smells S3 BR RR S3 AR* S3 Increased
Assertion Roulette 2697 5 2696 4
Magic Number Test 783 5 781 3
Test Smells S4 BR RR S4 AR* S4 Increased
Assertion Roulette 135 5 132 2
Magic Number Test 38 5 34 1
Legend: Before Refactoring (BR), Refactoring and Removal (RR),
After Refactoring (AR*), Magic Number Test (MNT)

The proposed test smells were refactored and removed cor-
rectly. While fixing these test smells (Assertion Roulette, Ea-
ger Test, Magic Number Test, Sensitive Equality, Duplicate
Assert), new test smells were inserted. The test smells in-
serted are Assertion Roulette andMagic Number Test. The re-
sults show that the density of test smells decreases as the soft-
ware evolves. Considering the four projects, 20 test smells
were removed from the project; for example, the Assertion
Roulette, 20 were removed, but during the refactoring, nine
new Assertion Roulette were inserted.
Other results point out that there is a co-occurrence of test

smells after test smells refactoring. In addition, other types
of test smells were inserted in the projects, but there was no
change concerning them, only about the test smells that were
refactored. This may have occurred because the developers
have reallocated or created new test methods.

Finding 7: Following the refactoring of test smells,
increased density was observed in certain test smells.
Specifically, the number of occurrences of Assertion
Roulette increased by nine during the refactoring pro-
cess. Similarly, the count of Magic Number Test in-
stances increased by seven in the projects. This unfore-
seen outcome highlights the need for further investiga-
tion and potential adjustments in the refactoring pro-
cess to address the unexpected rise in these specific test
smells.

Implications of RQ5. We compared the test behavior be-
fore and after refactoring the following test smells: Assertion
Roulette, Eager Test, Magic Number Test, Sensitive Equality,
Duplicate Assert. Out of the five refactored test smells, there
was a co-occurrence of only two types of test smells (Asser-
tion Roulette and Magic Number Test), distributed over three
projects. The Assertion Roulette was the test smell with the
most variation, and there was an addition of 9 insertions. In

comparison, the test smells Magic Number Test varied with
seven new insertions. These new insertions may occur due to
the developer’s effort to refactor the extensive test methods.
These methods can have more than one test method that tests
the same production method.
Furthermore, the test smells (Assertion Roulette and

Magic Number Test) do not harm the project, so it may have
been added, as reported by some of the developers. However,
other test smells, such as Sensitive Equality, are more diffi-
cult to refactor, and new test smells can be inserted during
refactoring. Therefore, further studies need to be conducted
to find out whether other types of has a negative impact on
the test code.

5 Threats to Validity

Internal validity. If a relationship between treatment and
outcome is observed, we must be sure that it is a causal re-
lationship and not the result of a factor over which we have
no control or have not measured. Threats to internal validity
concern issues that may indicate a causal relationship, even
if none exists. Factors that impact internal validity are how
subjects are selected and divided into different classes, how
subjects are treated and compensated during the experiment,
whether special events occur, etc. All these factors can cause
the experiment to present behavior that is not due to the treat-
ment but to the noise-causing factor.
In this sense, we might observe a potential threat in each

developer’s division of test smells. According to the study
design, each developer only refactored one type of test smell.
This might have influenced the results to some extent. How-
ever, taking from another perspective, this ensured a focused
and dedicated approach to addressing specific test smells
within the scope of the study.

Moreover, since the study involved professionals who had
the freedom to perform the tasks at their discretion, there
is a potential for a maturation effect on the results. This is
attributed to the possibility of participants carrying out the
tasks over an extended duration of time, potentially influenc-
ing the outcomes.
Construct validity. This validity concerns the relation-

ship between theory and observation. If the relationship be-
tween cause and effect is causal, we must ensure that the
treatment reflects the construct of cause well and that the out-
come reflects the cause and effect well. It is about the extent
to which the studied operational measures represent what the
researcher has in mind and what is investigated according to
the research questions.
Therefore, we could point out some threats that might

have affected the results. For example, we only employed
the JNose Test to identify test smells and the Understand for
Java to gather code quality metrics. Although such tools are
very representative of both the test smell detection field and
the source code analysis field, if other tools were employed,
the gathered results could have been different as well.
Another threat concerning construct validity is that the de-

velopers might subjectively fill the diary. However, to reduce
the impacts of this threat, we have explained in detail the
main reports written by the developers.
External validity. External validity refers to generaliz-

Damasceno et al. 2023

ability, the extent to which it is possible to generalize the
findings, and the extent to which the findings interest oth-
ers outside the investigated case. During the analysis, some
questions must be asked, so the researcher tries to analyze
the extent to which the findings are relevant to other cases.
Threats to external validity concern the ability to generalize
experiment results outside the experiment setting and are af-
fected not only by the chosen experiment design but also by
the chosen experiment objects and subjects.
In this sense, an important threat to consider in this study

refer to the number of systems analyzed in our experiment.
We only considered a small number of selected software sys-
tems. In addition, the results we gathered might be only valid
for systems implemented in Java. We may not generalize the
findings for every other scenario. Further empirical studies
are necessary.
In addition, it is important to note that while we used the

JNose tool for validating the removal of test smells, the refac-
toring process itself is not entirely free from side effects. We
took rigorous measures to minimize these risks and main-
tain the desired behavior of the tests throughout the refactor-
ing process. However, the complex nature of software sys-
tems introduces inherent uncertainties, and it is impossible
to eliminate the possibility of side effects completely. We
proactively monitored the test behavior, conducted thorough
testing, and addressed any unintended changes. These con-
siderations should be taken into account when interpreting
and generalizing the results of our study.

6 Related Work

Over the past decade, researchers have made a remarkable ef-
fort to study (Palomba et al., 2014) and detect (Palomba et al.,
2018) structural flaws in production code, the widely-known
code smells (Van Rompaey et al., 2007). Analogously, prob-
lems concerning the test code design have been partially ex-
plored. This section discusses related work that has analyzed
the impact of test smells on code maintenance, developer ex-
perience, and software quality.

6.1 Practitioners’ perception of test smells

Campos et al. (2021) conducted an empirical study to investi-
gate developers’ perceptions about the severity of test smells
and the behavior of test code after test smells refactoring.
Most of the interviewed developers considered test smells
to have low severity in their code. The developers report that
test smells can negatively impact the project, particularly on
the maintenance and evolution of the test code. Furthermore,
the authors indicate that during the activity of refactoring test
cases, it may induce the inclusion of new test smells.
Similarly, Santana et al. (2021) conducted a survey of 87

developers and interviewed another eight of these developers
intending to understand how often and what strategies devel-
opers use to refactor test code to fix test smells. The results
indicated that most participants consider it relevant to refac-
tor test smells but do not refactor frequently. What differen-
tiates our study from that of Campos et al. (2021); Santana
et al. (2021) is that we investigate the density of test smells
and the developers’ experience with refactorings.

Soares et al. (2020) conducted a study to assess open-
source developers’ awareness of the existence of test smells
and their appropriate refactoring strategies. To validate the
research, the authors performed a two-part mixed study: (i)
a survey of 73 open-source developers with extensive ex-
perience; and (ii) elicited 50 pull requests to assess the de-
velopers’ acceptance of the refactoring proposals. As a re-
sult, the authors found that most developers chose to refactor
proposals for 78% of the investigated test smells. Moreover,
that pull requests had an average acceptance of 75% among
the developers who were interviewed. In general, developers
could identify the negative impact that test smells have on
test code. Our experiment differs from this one because we
evaluate the impact of test smell refactoring on the internal
quality attributes size, cohesion, coupling, and complexity.
Spadini et al. (2020) investigated the severity rating for

four test smells and their respective impacts on the main-
tainability of the developers who were selected to perform
such activity. The authors analyzed about 1,500 open-source
projects to obtain the severity limits for test smells to carry
out the study. After that, they conducted a study with expe-
rienced developers to assess the limits of the severity of test
smells. The results obtained after the application of the study
were: (i) the set of rules for the detection of certain test smells
was considered very restrictive by the developers, and (ii)
the newly defined severity thresholds are in line with partic-
ipants’ perception of how test smells impact the sustainabil-
ity of test files. In our study, we increased the number of test
smells evaluated. Furthermore, we analyze the risks of test
smells through the impact of refactoring such smells on the
internal quality attributes.
Bavota et al. (2015) carried out an empirical study divided

into two parts to analyze the prevalence and impacts that test
smells have on test code. The first part of the study found a
high occurrence of test smells in open-source and industrial
systems. 86% of JUnit tests contain at least one test smell
and six tests with six different test smells. The second part, in
turn, shows that test smells negatively impact quality criteria
such as the maintenance and understanding of the test code.
The highlights of the second study point out that the under-
standing of the test code is 30% better in the absence of test
smells. Our study found that in addition to negatively impact-
ing test code understanding, test smells also negatively im-
pact quality attributes, such as coupling, cohesion, and com-
plexity.

6.2 Developers’ Experience and Refactoring

Campos et al. (2022) conducted an empirical study to an-
alyze developer experience and test code quality from the
perspective of test smells. The authors investigated whether
developer experience on the project influenced the insertion
or removal of test smells in 4 Java language projects. In the
study, the authors identified 18 types of test smells and their
authorship. The authors of the test smells were classified as
core and peripheral. The results indicate that core developers
insert and remove more test smells than peripheral develop-
ers. Also, most test smells are removed due to the removal
of classes or test methods, which may indicate that core and
peripheral developers are unaware of test smells in the test

Damasceno et al. 2023

code. The difference in our study is that we want to know
if developer experience can impact refactorings of test cases
with test smells.We selected developers with skills other than
project experiences, such as Java programming experience
and quality attributes ranging from basic to advanced.
AlOmar et al. (2020, 2021) conducted an empirical study

to identify contributors to production code and test code and
associated a score for each contributor’s experience with
the number of recent commits (across commit authors and
source files that were changed) over the past three years in
refactoring activities across 800 open source projects hosted
on GitHub. As a result, refactoring does not limit only a
subset of developers. Furthermore, developers with higher
scores performed more refactorings than other developers.
Although, the authors report no correlation between expe-
rience and motivation behind refactoring. The difference in
our study is focused on the relationship between developer
experience and the difficulties in the activity of refactoring
test smells.
Gall et al. (2010) investigated the relationship between

different code ownership (known as developer experience
in the project) and software failures in different domains
(Windows Vista, Eclipse Java IDE, and the Firefox browser).
The authors classified this experience as core or peripheral,
core developers are the more experienced developers, and
peripheral developers are the developers with less experi-
ence in the projects. As a result, the authors identified that
the core developer has a relationship with pre-release and
post-release failures. The difference between our study and
Gall et al. (2010)’s study is that our study is focused on
the developer’s experience concerning their programming
knowledge and length of experience from a test smells per-
spective. In this study, we observe whether developers with
a long time of experience and knowledge in Java language
programming refactor test cases with test smells more easily.
Spadini et al. (2018) investigated the link between the ex-

istence of test smells and the propensity for changes and de-
fects in the test code. The authors collected data about 221 re-
leases of ten software systems to conduct the research. They
analyzed over one million test cases to investigate the re-
lationship between six test smells and their co-occurrence
with software quality. The results obtained in the research
show that: (i) test smells are more subject to refactoring and
defects; (ii) the Indirect Testing, Eager Test and Assertion
Roulette test smells are the most biased towards refactoring;
and (iii) the probability of production code having defects
is much higher when tested by code that has test smells in
its structure. However, this study does not assess the main
difficulties encountered by developers during the test smell
refactoring. Our study found that developers experience sev-
eral difficulties in refactoring test smells, the main one being
understanding the source code.
Kim et al. (2021) performed an empirical study on 12

open-source systems from projects considered relevant to
understanding the evolution and maintenance of test smells
and how such smells are linked to software quality. The re-
sults obtained by the authors highlight that: (i) although the
number of test smell instances increases, the density of test
smells decreases as systems evolve; (ii) 83% of removed test
smells are a by-product of resource maintenance activities;

(iii) 45% of the removed test smells were transferred to other
test cases; and, (iv) most test smells have a minimal effect
on post-release defects. Despite analyzing factors related to
test smells and software quality, the authors did not investi-
gate the impacts of test smell refactoring on internal quality
attributes. Our experiment found that refactoring test smells
impacts the values of internal quality attributes in several
ways.

7 Concluding Remarks

Our study investigated the impact of test smell refactoring
from developers’ perspectives and the internal quality at-
tributes. Our experiment considered 100 examples of five
types of test smells present in four open-source systems and
four internal quality attributes: (i) size, (ii) cohesion, (iii) cou-
pling, and (vi) complexity. Twenty developers refactored the
test smells, and their perceptions and difficulties were quali-
tatively collected using the diary technique.
Our main findings were: (i) after refactoring the test

smells, cohesion increased respectively, 7.26%, 6.20%,
9.19%, and 9.47% in the four analyzed systems; (ii) after
refactoring the test smells, the complexity decreased respec-
tively, 20.16%, 7.55%, 28.53% and 21% in the four ana-
lyzed systems; (iii) the developers considered the Assertion
Roulette and Magic Number Test test smells to be the least
harmful smells within a software project. On the other hand,
theEager Test andDuplicate Assert tests were considered the
most critical ones; (iv) understanding the source code is one
of the main difficulties in refactoring of test smells; (v) the
larger the source code, the more effort it will take to complete
the refactoring; (vi) developers with less experience (maxi-
mum 3 years) took twice as long to complete the test smells
refactoring compared to more experienced developers (min-
imum 6 years); (vii) by refactoring large methods there can
be a co-occurrence of test smells; and, (viii) after refactoring,
there was an addition of 16 test smells (9 Assertion Roulette
and 7Magic Number Test), but as the project evolves the den-
sity of these test smells decreases.
Based on the results obtained, we developed the following

recommendations for software development teams: (i) prior-
itize the refactoring of the Eager Test and Duplicate Assert
test smells; (ii) implement test smells identification and refac-
toring training; (iii) implement test smell detection and refac-
toring tools; and, (iv) establish a refactoring hierarchy of test
smells, according to the internal quality attribute that needs
to be improved.
In future work, we intend to: (i) increase the number of

systems to be used; (ii) increase the number of test smells to
be evaluated; (iii) use other tools to identify test smells and
measure quality attributes; (iv) analyze systems developed
in other programming languages; (v) increase the number of
developers; (vi) analyze the phenomenon of co-occurrences
of test smells in test files; and, (vii) evaluate the developers’
ability to detect test smells.

Acknowledgements

This work is partially supported by the Ceará Foundation for
Scientific and Technological Support (FUNCAP-CE); INES

Damasceno et al. 2023

(www.ines.org.br), CNPq grant 465614/2014-0, FACEPE
grants APQ0399-1.03/17 and APQ/0388-1.03/14, CAPES grant
88887.136410/2017-00; the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001;
and FAPESB grants BOL0599/2019 and PIE0002/2022.

References

Alenezi, M. and Almustafa, K. (2015). Empirical analysis of
the complexity evolution in open-source software systems.
International Journal of Hybrid Information Technology,
8(2):257–266.

Alizadeh, V., Kessentini, M., Mkaouer, M. W., Ó Cinnéide,
M., Ouni, A., and Cai, Y. (2020). An interactive and dy-
namic search-based approach to software refactoring rec-
ommendations. IEEE Transactions on Software Engineer-
ing, 46(9):932–961.

Aljedaani, W., Peruma, A., Aljohani, A., Alotaibi, M.,
Mkaouer, M. W., Ouni, A., Newman, C. D., Ghallab, A.,
and Ludi, S. (2021). Test smell detection tools: A system-
atic mapping study. In Evaluation and Assessment in Soft-
ware Engineering, EASE 2021, page 170–180, New York,
NY, USA. Association for Computing Machinery.

AlOmar, E. A., Peruma, A., Mkaouer, M. W., Newman,
C. D., and Ouni, A. (2021). Behind the scenes: On the re-
lationship between developer experience and refactoring.
CoRR, abs/2109.11089.

AlOmar, E. A., Peruma, A., Newman, C. D., Mkaouer,
M. W., and Ouni, A. (2020). On the relationship between
developer experience and refactoring: An exploratory
study and preliminary results. In IEEE/ACM 42nd Inter-
national Conference on Software Engineering Workshops,
ICSEW’20, page 342–349, New York, NY, USA. ACM.

Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., and Binkley,
D. (2015). Are test smells really harmful? an empirical
study. Empirical Software Engineering, 20(4):1052–1094.

Bavota, G., Qusef, A., Oliveto, R., Lucia, A. D., and Binkley,
D. W. (2012). An empirical analysis of the distribution of
unit test smells and their impact on software maintenance.
In 28th IEEE International Conference on Software Main-
tenance, ICSM 2012, Trento, Italy, September 23-28, 2012,
pages 56–65. IEEE Computer Society.

Beller, M., Gousios, G., Panichella, A., Proksch, S., Amann,
S., and Zaidman, A. (2019). Developer testing in the IDE:
patterns, beliefs, and behavior. IEEE Trans. Software Eng.,
45(3):261–284.

Beller, M., Gousios, G., Panichella, A., and Zaidman, A.
(2015). When, how, and why developers (do not) test in
their ides. In Proceedings of the 2015 10th Joint Meet-
ing on Foundations of Software Engineering, ESEC/FSE
2015, page 179–190, New York, NY, USA. Association
for Computing Machinery.

Berner, S., Weber, R., and Keller, R. K. (2005). Observations
and lessons learned from automated testing. In Proceed-
ings of the 27th International Conference on Software En-
gineering, ICSE ’05, page 571–579, New York, NY, USA.
Association for Computing Machinery.

Bertolino, A. (2007). Software testing research: Achieve-
ments, challenges, dreams. In Briand, L. C. and Wolf,

A. L., editors, International Conference on Software Engi-
neering, ISCE 2007, Workshop on the Future of Software
Engineering, FOSE 2007, May 23-25, 2007, Minneapolis,
MN, USA, pages 85–103. IEEE Computer Society.

Bieman, J. M. and Kang, B.-K. (1995). Cohesion and reuse
in an object-oriented system. SIGSOFT Softw. Eng. Notes,
20(SI):259–262.

Campos, D., Martins, L., and Machado, I. (2022). An em-
pirical study on the influence of developers’ experience
on software test code quality. In Proceedings of the
XXI Brazilian Symposium on Software Quality, SBQS ’22,
New York, NY, USA. Association for Computing Machin-
ery.

Campos, D., Rocha, L., andMachado, I. (2021). Developers’
perception of the severity of test smells: an empirical study.
pages 192–205.

Candea, G., Bucur, S., and Zamfir, C. (2010). Automated
software testing as a service. SoCC ’10, page 155–160,
New York, NY, USA. Association for Computing Machin-
ery.

Chávez, A., Ferreira, I., Fernandes, E., Cedrim, D., and Gar-
cia, A. (2017). How does refactoring affect internal qual-
ity attributes? a multi-project study. In Proceedings of
the 31st Brazilian Symposium on Software Engineering,
SBES’17, page 74–83, New York, NY, USA. Association
for Computing Machinery.

Chidamber, S. R. and Kemerer, C. F. (1991). Towards a
metrics suite for object oriented design. SIGPLAN Not.,
26(11):197–211.

Damasceno, H., Bezerra, C., Coutinho, E., and Machado, I.
(2022). Analyzing test smells refactoring from a develop-
ers perspective. In Proceedings of the XXI Brazilian Sym-
posium on Software Quality, SBQS ’22, New York, NY,
USA. Association for Computing Machinery.

Darcy, D. P., Kemerer, C. F., Slaughter, S., and Tomayko,
J. E. (2005). The structural complexity of software: An ex-
perimental test. IEEE Trans. Software Eng., 31(11):982–
995.

Dyer, R., Rajan, H., and Cai, Y. (2012). An exploratory
study of the design impact of language features for aspect-
oriented interfaces. In Proceedings of the 11th Annual In-
ternational Conference on Aspect-Oriented Software De-
velopment, AOSD ’12, page 143–154, New York, NY,
USA. Association for Computing Machinery.

Fernandes, E., Chávez, A., Garcia, A., Ferreira, I., Cedrim,
D., da Silva Sousa, L., and Oizumi, W. N. (2020). Refac-
toring effect on internal quality attributes: What haven’t
they told you yet? Inf. Softw. Technol., 126:106347.

Fowler, M. (1999). Refactoring - Improving the Design of
Existing Code. Addison Wesley object technology series.
Addison-Wesley.

França, A. C. C., da Silva, F. Q. B., and Sharp, H. (2020).
Motivation and satisfaction of software engineers. IEEE
Trans. Software Eng., 46(2):118–140.

Gall, H., Devanbu, P., Murphy, B., Bird, C., and Nagappan,
N. (2010). An analysis of the effect of code ownership on
software quality across windows, eclipse, and firefox.

Garousi, V. and Küçük, B. (2018). Smells in software test
code: A survey of knowledge in industry and academia.

Damasceno et al. 2023

Journal of Systems and Software, 138:52–81.
ISO (2011). Iec 25010: 2011 systems and software
engineering–systems and software quality requirements
and evaluation (square)–system and software quality mod-
els. International Organization for Standardization,
34:2910.

Kim, D. J. (2020). An empirical study on the evolution of
test smell. In Proceedings of the ACM/IEEE 42nd Inter-
national Conference on Software Engineering: Compan-
ion Proceedings, ICSE ’20, page 149–151, NewYork, NY,
USA. Association for Computing Machinery.

Kim, D. J., Chen, T.-H. P., andYang, J. (2021). The secret life
of test smells - an empirical study on test smell evolution
and maintenance. Empirical Softw. Engg., 26(5).

Lincke, R., Lundberg, J., and Löwe, W. (2008). Compar-
ing software metrics tools. In Ryder, B. G. and Zeller,
A., editors, Proceedings of the ACM/SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ISSTA
2008, Seattle, WA, USA, July 20-24, 2008, pages 131–142.
ACM.

Lorenz, M. and Kidd, J. (1994). Object-oriented software
metrics - a practical guide. Prentice Hall.

Malhotra, R. and Chug, A. (2016). An empirical study
to assess the effects of refactoring on software maintain-
ability. In 2016 International Conference on Advances
in Computing, Communications and Informatics, ICACCI
2016, Jaipur, India, September 21-24, 2016, pages 110–
117. IEEE.

Martins, J., Bezerra, C., Uchôa, A., and Garcia, A. (2021).
How do code smell co-occurrences removal impact inter-
nal quality attributes? a developers’ perspective. In Brazil-
ian Symposium on Software Engineering, SBES ’21, page
54–63, New York, NY, USA. Association for Computing
Machinery.

McCabe, T. (1976). A complexity measure. IEEE Transac-
tions on Software Engineering, SE-2(4):308–320.

Morasca, S. (2009). A probability-based approach for mea-
suring external attributes of software artifacts. In Proceed-
ings of the Third International Symposium on Empirical
Software Engineering and Measurement, ESEM 2009, Oc-
tober 15-16, 2009, Lake Buena Vista, Florida, USA, pages
44–55. IEEE Computer Society.

Myers, G. J., Sandler, C., and Badgett, T. (2011). The art of
software testing. John Wiley & Sons.

Nilson, M., Antinyan, V., and Gren, L. (2019). Do in-
ternal software quality tools measure validated metrics?
In Franch, X., Männistö, T., and Martínez-Fernández, S.,
editors, Product-Focused Software Process Improvement,
pages 637–648, Cham. Springer International Publishing.

Orso, A. and Rothermel, G. (2014). Software testing: A re-
search travelogue (2000–2014). In Future of Software En-
gineering Proceedings, FOSE 2014, page 117–132, New
York, NY, USA. Association for Computing Machinery.

Paixão, M., Uchôa, A., Bibiano, A. C., Oliveira, D., Garcia,
A., Krinke, J., and Arvonio, E. (2020). Behind the in-
tents: An in-depth empirical study on software refactoring
in modern code review. InProceedings of the 17th Interna-
tional Conference on Mining Software Repositories, MSR
’20, page 125–136, New York, NY, USA. Association for

Computing Machinery.
Palomba, F., Bavota, G., Penta, M. D., Oliveto, R., and Lu-
cia, A. D. (2014). Do they really smell bad? A study on
developers’ perception of bad code smells. In 30th IEEE
International Conference on Software Maintenance and
Evolution, Victoria, BC, Canada, September 29 - October
3, 2014, pages 101–110. IEEE Computer Society.

Palomba, F., Zaidman, A., and Lucia, A. D. (2018). Auto-
matic test smell detection using information retrieval tech-
niques. In 2018 IEEE International Conference on Soft-
ware Maintenance and Evolution, ICSME 2018, Madrid,
Spain, September 23-29, 2018, pages 311–322. IEEE
Computer Society.

Pecorelli, F., Palomba, F., and Lucia, A. D. (2021). The rela-
tion of test-related factors to software quality: A case study
on apache systems. Empir. Softw. Eng., 26(2):18.

Peruma, A., Almalki, K., Newman, C. D., Mkaouer, M. W.,
Ouni, A., and Palomba, F. (2019). On the distribution
of test smells in open source android applications: an ex-
ploratory study. pages 193–202.

Santana, R., Fernandes, D., Campos, D., Soares, L., Maciel,
R., and Machado, I. (2021). Understanding practitioners’
strategies to handle test smells: A multi-method study. In
Proceedings of the XXXV Brazilian Symposium on Soft-
ware Engineering, SBES ’21, page 49–53, New York, NY,
USA. Association for Computing Machinery.

Santana, R., Martins, L., Virgínio, T., Soares, L., Costa, H.,
andMachado, I. (2022). Refactoring assertion roulette and
duplicate assert test smells: a controlled experiment. arXiv
preprint arXiv:2207.05539.

Sjøberg, D. I., Yamashita, A., Anda, B. C., Mockus, A., and
Dybå, T. (2013). Quantifying the effect of code smells
on maintenance effort. IEEE Transactions on Software
Engineering, 39(8):1144–1156.

Soares, E., Ribeiro, M., Amaral, G., Gheyi, R., Fernandes, L.,
Garcia, A., Fonseca, B., and Santos, A. (2020). Refactor-
ing test smells: A perspective from open-source develop-
ers. In Proceedings of the 5th Brazilian Symposium on Sys-
tematic and Automated Software Testing, SAST 20, page
50–59, New York, NY, USA. Association for Computing
Machinery.

Soares, E., Ribeiro, M., Gheyi, R., Amaral, G., and Santos,
A. L. M. (2022). Refactoring test smells with junit 5: Why
should developers keep up-to-date? IEEE Trans. Software
Eng., 49(3):1152–1170.

Spadini, D., Palomba, F., Zaidman, A., Bruntink, M., and
Bacchelli, A. (2018). On the relation of test smells to
software code quality. In 2018 IEEE International Con-
ference on Software Maintenance and Evolution, ICSME
2018, Madrid, Spain, September 23-29, 2018, pages 1–12.
IEEE Computer Society.

Spadini, D., Schvarcbacher, M., Oprescu, A.-M., Bruntink,
M., and Bacchelli, A. (2020). Investigating severity thresh-
olds for test smells. In Proceedings of the 17th Interna-
tional Conference on Mining Software Repositories, MSR
’20, page 311–321, New York, NY, USA. Association for
Computing Machinery.

Tahir, A., Counsell, S., and MacDonell, S. G. (2016). An em-
pirical study into the relationship between class features

Damasceno et al. 2023

and test smells. In Potanin, A., Murphy, G. C., Reeves,
S., and Dietrich, J., editors, 23rd Asia-Pacific Software
Engineering Conference, APSEC 2016, Hamilton, New
Zealand, December 6-9, 2016, pages 137–144. IEEECom-
puter Society.

Tarwani, S. and Chug, A. (2016). Sequencing of refactoring
techniques by greedy algorithm for maximizing maintain-
ability. In 2016 International Conference on Advances
in Computing, Communications and Informatics, ICACCI
2016, Jaipur, India, September 21-24, 2016, pages 1397–
1403. IEEE.

Van Deursen, A., Moonen, L., Van Den Bergh, A., and Kok,
G. (2001). Refactoring test code. In Proceedings of
the 2nd international conference on extreme programming
and flexible processes in software engineering (XP2001),
pages 92–95. Citeseer.

Van Rompaey, B., Du Bois, B., Demeyer, S., and Rieger, M.
(2007). On the detection of test smells: A metrics-based
approach for general fixture and eager test. IEEE Trans-
actions on Software Engineering, 33(12):800–817.

Virgínio, T., Martins, L., Rocha, L., Santana, R., Cruz, A.,
Costa, H., and Machado, I. (2020). Jnose: Java test smell
detector. In Proceedings of the 34th Brazilian Symposium
on Software Engineering, SBES ’20, page 564–569, New
York, NY, USA. Association for Computing Machinery.

Virgínio, T., Martins, L., Santana, R., Cruz, A., Rocha, L.,
Costa, H., and Machado, I. (2021). On the test smells
detection: an empirical study on the jnose test accuracy.
Journal of Software Engineering Research and Develop-
ment, 9:8–1.

Virgínio, T. G. A. and Machado, I. (2021). Avaliação em-
pírica da geração automatizada de testes de software sob
a perspectiva de test smells. In Anais Estendidos do XII
Congresso Brasileiro de Software: Teoria e Prática, pages
112–126. SBC.

Xie, G., Chen, J., and Neamtiu, I. (2009). Towards a better
understanding of software evolution: An empirical study
on open source software. In 25th IEEE International Con-
ference on Software Maintenance (ICSM 2009), Septem-
ber 20-26, 2009, Edmonton, Alberta, Canada, pages 51–
60. IEEE Computer Society.

Yusifoğlu, V. G., Amannejad, Y., and Can, A. B. (2015).
Software test-code engineering: A systematicmapping. In-
formation and Software Technology, 58:123–147.

	Introduction
	Background
	Test Smells
	Assertion Roulette
	Duplicate Assert
	Eager Test
	Magic Number Test
	Sensitive Equality

	Identifying Test Smells
	Internal Quality Attributes

	Study Settings
	Goal and Research Questions
	Study Steps

	Results and Discussions
	Impact of test smell refactoring on test code internal quality attributes (RQ1)
	Developers' perception of test smells as actual problems in the projects (RQ2)
	Difficulties identified by developers during test smell refactoring (RQ3)
	Impact of developer experience on assertiveness and refactoring time of test smells (RQ4)
	Test Smells Density (RQ5)

	Threats to Validity
	Related Work
	Practitioners’ perception of test smells
	Developers' Experience and Refactoring

	Concluding Remarks

