Journal of Software Engineering Research and Development, 2023, 11:15, doi: 10.5753/jserd.2023.3310

© This work is licensed under a Creative Commons Attribution 4.0 International License..

Extending the Docstone to Enable a Blockchain-based Service
for Customizable Assets and Blockchain Types

Pamella Soares ® [State University of Ceara | pamella.soares@aluno.uece.br |

Raphael Saraiva ® [State University of Ceara | raphael.saraiva@aluno.uece.br |

Iago Fernandes ® [State University of Ceara | iago.fernandes@aluno.uece.br |

Allysson Allex Aratijo ® [Federal University of Cariri | allysson.araujo@ufca.edu.br |

Jerffeson Souza ® [State University of Ceara | jerffeson.souza@uece.br |

Ricardo Loiola @ [Pontifical Catholic University of Rio Grande do Sul | ricardo.loiola@edu.pucrs.br |

Abstract Document management ensures the accurate creation and storage of records within diverse organizations,
and the process has been significantly enhanced by digitization. In this sense, blockchain has been relevant for
meeting document management solution requirements. Nonetheless, there are still challenges in efficiently imple-
menting blockchain infrastructure in organizations. In this context, this article extends previous studies that pro-
pose DocStone, an architecture designed to provide and facilitate the integration of blockchain-based assets for
the registration and verification of client applications from different domains. In terms of contributions, this so-
lution allows us to configure parameters to create customizable asset templates and select blockchains through a
developer-friendly application programming interface. In this study, we discuss and evaluate an adaptation of Doc-
stone’s architecture to support new assets and smart contracts in a custom way and a mechanism that automatically
generates mapped IPFS directories for each smart contract. We performed an empirical study evaluating the deploy-
ment of smart contracts and data write and read operations using different types of assets. Moreover, we analyzed
design decisions for decentralized applications to build DocStone. Notably, the study’s findings reveal that NFTs
have higher deployment latency times than documents in Sepolia and Alfajores. However, documents have the low-
est latency time on both networks for write and read requests. Alfajores was the blockchain that stood out the most,

with the lowest latency of operations.

Keywords: Document Management, Blockchain-as-a-Service, Application Programming Interface

1 Introduction

A document represents a set of data capable of being used
for queries, evidence, and research so that facts and thoughts
of a person can be verified at a given time (de Oliveira Melo
and Neto, 2014). Due to the increase in the document vol-
ume of organizations, resources and processes are required
to properly manage all information, including guaranteeing
the production, storage, and correct use of documents from
public and/or private institutions (Morais et al., 2021).
Information technology has become essential in support-
ing activities related to document management, as it can im-
prove the efficiency of services, document management, re-
duction and optimization of storage space, and sharing infor-
mation, in addition to mitigating the loss of records (Ab Aziz
et al., 2020). With document management systems, it is pos-
sible to eliminate paper and use “digital documents”, repre-
sented by information in media, text, or images in electronic
format stored and manipulated by a computer (Kim, 2020).
However, when managing documents, organizations must
also ensure both privacy and information security for sensi-
tive and confidential data, as well as transparency regarding
the availability of public information (Jansen et al., 2011).
In light of the previous arguments, blockchain technol-
ogy assumes a prominent role in the storage process, given
its potential to guarantee the requirements of integrity, au-
thenticity, access control, transparency, and availability nec-
essary for document management solutions. In summary,
blockchain combines cryptography, data management, net-

working, and incentive mechanisms to support the verifica-
tion, execution, and recording of transactions between dif-
ferent parties without the central control of any trusted third
party (Xu et al., 2019a; Wenhua et al., 2023). In this sense,
the nodes insert data into the blockchain by agreeing through
consensus algorithms for ensuring the integrity of the shared
data.

Despite the promising outcomes of utilizing blockchain
for information management and storage, hindrances exist
to its advancement and acceptance (Wan et al., 2018; Kotha
and Sony, 2023). The implementation of blockchain and de-
centralized applications (dApps) can be intricate and error-
prone due to the need to account for network infrastruc-
ture components and Smart Contracts (SC) business regula-
tions across diverse software architecture aspects (Jie et al.,
2021). Furthermore, the deployment challenges and high op-
erational expenses of maintaining a distributed blockchain
system impede its market adoption (Li et al., 2021). To prop-
agate blockchain adoption, the concept of “Blockchain-as-
a-Service” (BaaS) platforms has emerged, allowing devel-
opers to concentrate solely on coding business rules while
benefiting from cloud services for infrastructure deployment
and network monitoring (Onik and Miraz, 2019). However,
adopting BaaS solutions like Amazon Managed Blockchain,
Huawei Blockchain Service, and Oracle Cloud Infrastruc-
ture Blockchain Platform necessitates substantial engage-
ment with their documentation to comprehend their distinc-
tive features and tools (Jie et al., 2021), particularly for intri-
cate systems like document information recording and vali-

https://orcid.org/0000-0002-8691-7180
mailto:pamella.soares@aluno.uece.br
https://orcid.org/0000-0003-2054-1982
mailto:raphael.saraiva@aluno.uece.br
https://orcid.org/0000-0003-0582-2815
mailto:iago.fernandes@aluno.uece.br
https://orcid.org/0000-0003-2108-2335
mailto:allysson.araujo@ufca.edu.br
https://orcid.org/0000-0001-8361-4806
mailto:jerffeson.souza@uece.br
https://orcid.org/0000-0001-8708-6641
mailto:ricardo.loiola@edu.pucrs.br

Extending the Docstone to Enable a Blockchain-based Service for Customizable Assets and Blockchain Types

dation.

Conversely, within the literature’s context, current pro-
posals reveal constraints stemming from domain specificity
and rigid business regulations. Instances include blockchain-
based platforms for certifying documents (Saraiva et al.,
2021; Abreu et al., 2020), managing medical data (Afrianto
and Heryanto, 2020), and inspecting water dams (Macedo
et al., 2021). Nonetheless, these approaches share core re-
quirements: registration, search, and document data valida-
tion, which a unified, adaptable architecture could address.
Aiming to tackle this opportunity, we have been developing
a Blockchain-based Customizable Asset Registration Service
in the form of a solution called Docstone. In summary, Doc-
stone allows the storage of document information in a per-
sonalized and flexible way, from the initial configuration of
parameters for creating document templates to its storage and
validation in one or more blockchains.

Therefore, this paper is part of a large project and extends
two previous articles (Soares et al., 2022a,b), the last one
awarded at the 16th Brazilian Symposium on Software Com-
ponents, Architectures and Reuse (SBCARS 2022). This ex-
tension enables a blockchain-based service for customizable
assets and blockchain types as, first, our analysis expanded to
include new asset types beyond Documents (as in Docstone’s
previous version), such as Processes and Non-Fungible To-
kens (NFTs). Including new asset types allowed us to investi-
gate how different SC types’ performances differ. In addition,
we can explore the use of NFTs for tokenizing documents
for future commercializing on blockchains. Second, we inte-
grated distributed file storage capabilities into our solution
and two new blockchains (Sepolia and Alfajores). By doing
so, we evaluated the performance of asset types when using
file media in several formats beyond the traditional metadata,
which is typically limited to text and numerical data. Lastly,
we conducted a comprehensive analysis comparing the per-
formance of Processes, Documents, and NFTs, including dif-
ferent blockchain networks. By exploring these perspectives,
we were able to provide a more nuanced and comprehensive
understanding of the performance of different assets (and SC
types) to different blockchain networks.

Ultimately, the relevance of this paper relies on the fol-
lowing contributions: 1) clarifying the software architecture
adaptation of the Docstone to support new assets and smart
contracts in a generic and customized way to cover other use
cases (such as process tracking and tokenization of assets
through NFTs), and 2) detailing an empirical assessment of
assets types to compare the execution performance of differ-
ent smart contract codes and blockchains.

This paper first presents the background of the problem
(Section 2), followed by related works (Section 3). Section
4 and 5 detailed description of our proposed solution and a
brief demonstration. Section 6 elucidates the empirical study
and analysis. Section 7 clarifies the threats to the validity of
this study. Finally, Section 8 highlights the final remarks.

2 Background

Understanding blockchain technology is crucial for this
study as our proposed solution extends Docstone to enable a

Soares et al. 2023

blockchain-based service. This section provides an overview
of the fundamental concepts related to Docstone, such as
blockchain and its structure and operation. It covers the two
main types of blockchains (public and private) and provides
examples of the technologies and standards used for imple-
menting smart contracts. Additionally, we briefly describe
the InterPlanetary File System.

2.1 Blockchain

Blockchain is a peer-to-peer (P2P) network that employs a
distributed ledger to store transactions through network con-
sensus. Due to its use of cryptography, smart contracts, and
other components, blockchain becomes a secure and reliable
network (Acharya et al., 2019). In summary, according to
(Van Molken, 2018), a blockchain is a chain of blocks com-
posed of transactions, with each newly validated block inter-
connected with the last block added to the network through
a cryptographic hash. This feature enables the integrity and
immutability of information, as shown in Figure 1.

Figure 1. Simplified representation of a blockchain. Adapted from Beck
et al. (2017).

‘ BLOCK HASH 0 ‘ ‘ BLOCK HASH I-1 ‘ ‘ BLOCKHASH | ‘ ‘ BLOCK HASH I+1 ‘

‘TIMESTAMPH NONCE ‘ e - ‘TIMESTAMPH NONCE ‘ - TIME%TAMP‘ NONCE ‘ - ‘TIMESTAMPH NONCE ‘

GENESIS BLOCK BLOCK | BLOCK I+1 BLOCK 142

Blockchain can be categorized into public or private net-
works (Van Molken, 2018). In public networks, any node
can join and write and read transactions. Furthermore, the
nodes are anonymous, as there is no need to verify the iden-
tity of network participants (such as Ethereum). Regarding
private (also known as permissioned networks), only pre-
viously authorized users or organizations can perform writ-
ing and/or reading operations, as in the blockchains devel-
oped with Hyperledger Fabric. Xu et al. (2019b) clarified
the relationship between blockchain types and their respec-
tive permission types. Both permissionless and permissioned
public networks offer transparency, disintermediation, and
anonymity (Acharya et al., 2019). The difference is that all
nodes can read, write, and validate transactions. In public per-
missioned networks, all users can read transactions, but only
some have permission to write or vice versa. In this case,
there are restrictions on reading and/or writing. On private
and non-permissioned blockchain networks, only selected
members can perform actions such as recording, reading, and
validating transactions. In general, permissions are central-
ized to certain members, which may even eliminate the de-
centralized nature of the network but favor possible privacy
needs. In private permissioned blockchains, the nodes are
identifiable, the permissions are managed, and the privacy of
the transacted data can be exclusive to a predefined group of
participants, as well as the control of the network consensus.

2.1.1 Blockchains Compatible with Ethereum Virtual
Machine (EVM)

After Bitcoin’s deployment, new generations of blockchains
allowed the development of other business logic and models,
expanding the use of blockchain beyond the finance domain.

Extending the Docstone to Enable a Blockchain-based Service for Customizable Assets and Blockchain Types

In particular, this capability was achieved through Smart
Contracts (SCs) introduced by the Ethereum network (Bu-
terin et al., 2013). In short, SCs consist of code that auto-
executes business logic when certain programmed conditions
are met (Bashir, 2017). The Ethereum network can be inter-
preted as a transaction-based state machine in which P2P
network nodes have a shared view of a global state. When
transactions are executed, a particular state passes to some fi-
nal state, representing the Ethereum network’s current state.
When interacting with the network, the user issues a trans-
action representing a valid state transition. Then, the nodes
choose a set of transactions not yet confirmed from the mem-
pool to verify their validity, perform the appropriate compu-
tation, and update the state (Tikhomirov, 2017).

Before submitting transactions permanently included in
the blockchain, network nodes called “miners” (in the case
of Ethereum 1.0) need to participate in a consensus proto-
col. One of the best-known consensus protocols is Proof-of-
Work (PoW), based on the idea that a random node is selected
to create a new block of transactions. A mining node can
prove that it has performed a non-trivial computational cal-
culation by solving a cryptographic challenge through brute
force (Greve et al., 2018). The node that finds the value of
nonce will transmit the block to other nodes that should mu-
tually verify the value of the hash. If the block is validated,
other miners will attach it to the blockchain. The miner who
discovered it would receive a reward (Zheng et al., 2017).

Docstone uses public blockchains based on the Ethereum
network, which allows computer programs to be written in
a Turing-complete programming language. These programs,
known as Smart Contracts (SCs), are self-executed on each
network node by invoking transactions. In this way, the
blockchain works as a distributed Virtual Machine (VM)
since each node runs a particular VM (Christidis and Devet-
sikiotis, 2016). On Ethereum, SC code is written in a stack-
based bytecode language and executed on the Ethereum Vir-
tual Machine (EVM). The EVM has memory, where items
are stored as word-addressed byte arrays, and is volatile as it
is not permanent. In addition, the EVM also has non-volatile
storage maintained as part of the system state. Notably, the
EVM stores the program code in a separate virtual read-only
memory, which can only be accessed through special instruc-
tions (Guide, 2021). Ethereum’s robust architecture includes
the utilization of the Proof of Stake (PoS) consensus mech-
anism. This mechanism enhances the network’s scalability
and energy efficiency, making Ethereum an attractive choice
for various decentralized applications.

Smart contracts can automate and manage the execution of
legal contracts between different parties based on previously
defined interaction protocols. To maintain a specification of
smart contract standards, mainly related to the development
of tokens and their management, Ethereum Request for Com-
ments (ERCs) are created. ERCs are technical standards for
Ethereum (or EVM) based tokens published and shared as
Ethereum Improvement Proposals (EIPs)!, which “describe
standards for the Ethereum platform, including core proto-
col specifications, client APIs, and contract standards”. EIPs
comprise core protocol specifications, covering those already

Uhttps://eips.ethereum.org/

Soares et al. 2023

implemented and released or those planned to be, along with
client APIs and contract standards.

There are different types of ERCs, most notably the ERC-
207 and the ERC-7213. For example, Figure 2 presents stan-
dards’ Unified Modeling Language (UML) class diagram.

Figure 2. UML classes diagrams representing ERC-20 and ERC-721.
Adapted from Stefanovi¢ et al. (2022)

<<Interface>>
ERC20

+name(): string

+ symbol(): string

+decimals(): uint8

+ totalSupply(): uint256

+ balanceOf(_owner: address): uint256

+transfer(_to: address, _value: uint256): bool
+transferFrom(_from: address, _to: address, _value: uint256): bool
+ approve(_spender: address, _value: uint256): bool

+ allowance(_owner: address, _spender: address): uint256

+ Transfer(_from: address, _to: address, _value: uint256): void

+ Approval(_owner: address, _spender: address, _value: uint256): void

<<Interface>>
ERC721

+balanceOf(_owner: address): uint256

+ ownerOf(_tokenld: uint256): address.

+ safeTransferFrom(_from: address, _to: address, _tokenld: uint256, data: bytes): void
+ safeTransferFrom(_from: address, _to: address, _tokenld: uint256): void

+ transferFrom(_from: address, _to: address, _tokenld: uint256): void

+ approve(_approve: address, _tokenld: uint256): void

+ setApprovalForAll(_operator: address, _approved: bool): void

+ getApproved(_tokenld: uint256): address

+isApprovedFor(_owner: address, _operator: address): bool
+Transfer(_from: address, _to: address, _tokenld: uint256): void

+ Approval(_owner: address, _approved: address, _tokenld: uint256): void

+ ApprovalForAll_owner: address, _operator: address, _approved: bool): void

The ERC-20 represents fungible tokens (FTs), which are
different amounts of identical (fungible) assets and are of-
ten employed for implementing cryptocurrencies for EVM-
based networks. Particularly, Docstone uses ERC-721 as one
type of non-fungible tokens (NFTs), which can represent
ownership of many different types of assets, such as real es-
tate or unique works of art. The ERC-721 standard provides
basic functionality for tracking and transferring NFTs, con-
sidering when tokens are transacted by their owners or by
consigned third parties.

In order to develop improvements for the Ethereum net-
work, blockchains compatible with the EVM have been
widely proposed. In addition to Ethereum and Ethereum
Classic, Docstone explores the following networks: 1) BNB
Smart Chain, 2) Polygon, 3) Klaytn and 4) Celo. These net-
works are briefly described below.

BNB Smart Chain supports consensus layers and hubs for
multi-chains and cross-chains. As one of the components of
the BNB Chain ecosystem, it is a solution whose initial ob-
jective was to provide programmability and interoperability
to Beacon Chain, another blockchain developed by Binance
and its community that implements a decentralized exchange
for digital assets. BNB Smart Chain has a system contain-
ing 21 active validators using the Proof of Stake Authority
(PoSA) consensus. This type of consensus enables short lock
times and lower rates (BNBChain, 2022).

Polygon is a scaling solution for public off-chain
blockchains composed of a decentralized network of
Proof-of-Stake (PoS) validators (Technology, 2022). This
blockchain supports all existing Ethereum tools and enables
faster and cheaper transactions. Known as an off-chain Layer
2 solution, its main objective is to solve scalability and us-
ability issues without compromising decentralization and to
leverage the existing developer community and ecosystem.

Zhttps://eips.ethereum.org/EIPS/eip-20
3https://eips.ethereum.org/EIPS/eip-721

Extending the Docstone to Enable a Blockchain-based Service for Customizable Assets and Blockchain Types

Polygon is divided into three main layers: (i) Polygon SC;
(i) Heimdall, which is the PoS layer; and (iii) Bor, the layer
that produces blocks.

Klaytn is designed for adoption by service providers and
enterprises, so its architecture promises to provide the high
level of flexibility, expandability, and modularity needed
for horizontal growth (Klaytn, 2022). Furthermore, Klaytn
uses Istanbul Byzantine Fault Tolerant (BFT) as a consen-
sus algorithm, as it seeks to combine the benefits of public
blockchains with the performance of consensus BFT.

Celo aims to enable a new field of accessible financial so-
lutions, including mobile users, so end-users only need a mo-
bile number to integrate into the Celo ecosystem. This tech-
nology uses a new address-based decentralized identity layer
to map phone numbers to wallet addresses. Celo takes a full-
stack approach, where each layer of the stack is designed
with the end-user in mind, taking into account other stake-
holders (such as network node operators), comprising the fol-
lowing layers: (i) Celo Blockchain, (ii) Celo Core Contracts,
and (iii) Applications. Part of the Celo blockchain code is de-
rived from the Ethereum network implementation to main-
tain full EVM compatibility for smart contracts. However,
this blockchain uses a BFT consensus mechanism (Proof-of-
Stake), introducing the concept of Validator Groups as inter-
mediaries between voters and validators.

2.2 Hyperledger Fabric

Among the tools and frameworks that help develop
blockchain systems based on the Linux Foundation’s Hyper-
ledger Project, we can highlight Hyperledger Fabric (HLF),
an open-source framework for developing enterprise-level
solutions and distributed applications based on permissioned
blockchain. Since HLF can satisfy a variety of industry use
cases (Gaur et al., 2018) through a modular and versatile de-
sign, we choose this framework to integrate Docstone to a
private blockchain.

Hyperledger Fabric comprises a series of components and
services. For example, the peers constitute the main func-
tions of the HLF network, which are maintaining shared
records, executing the chaincode, accessing ledger data, en-
dorsing transactions, and interacting with applications. There
are three types of peers in the HLF: (i) endorser peers, which
receive the request to validate the transaction and execute the
chaincode; (ii) anchor peers, which receive messages and
send them to other peers in the organization; and (iii) orderer
peers, which create, order, and attach blocks to the ledger. In
addition, the flow of transactions between network compo-
nents is managed by the ordering service, by peers, which are
responsible for receiving state updates in the form of blocks
from the ordering service, and finally, by chaincodes, which
handle the business logic of the network running on peers.

The persistence of the HLF ledger is formed by: (i) a world
state, which is a database containing the current values of
a set of states in the ledger, and (ii) a blockchain, which is
the log of transactions that records all the changes that re-
sulted in the world state, being collected in blocks that are
attached to the blockchain. The world state can frequently
change as states can be created, updated, and deleted. On the
other hand, the blockchain, once written, cannot be modified

Soares et al. 2023

since it is immutable. The network maintains multiple copies
of a ledger, consistent with all other copies through a consen-
sus process. Another relevant component is the Membership
Services Provider (MSP), given that HLF is a private and
permissions-based network. The MSP works for digital cer-
tificate management, user IDs, and authentication of all net-
work participants. Only members with known identities can
execute transactions.

2.3 InterPlanetary File System (IPFS)

Aiming to integrate an auxiliary file storage to Docstone, we
use InterPlanetary File System (IPFS) which is a distributed
system that allows access to and storage of files, websites,
applications, and data in general, powered by its commu-
nity (Benet, 2014). In short, IPFS requests several comput-
ers on the network to share the data of a given page, making
any user a data provider. Each piece of data using the IPFS
protocol has a Content Identifier (CID), the hash result of the
stored data. This value is specific to each piece of data, even
if it is smaller than the content itself.

In addition, IPFS uses the Directed Acyclic Graphs (DAG)
data structure, a type of graph that does not allow cycles, and
the edges have direction. IPFS uses Merkle-DAG, which are
DAGs with each node having a CID. As each node in the
DAG has information indicating who its descendants are, the
value of the CID is directly related to the graph’s topology.
Thus, two nodes with the same CID build the same graph.
This issue becomes a crucial part of the IPFS operation, as it
makes it possible to efficiently synchronize different graphs
representing the structure of the files in the protocol. When
creating a file representation, IPFS first divides it into several
blocks. This assumption allows other file parts to be authenti-
cated faster from different sources. Another essential feature
is that if two similar files are stored in the protocol, they can
share parts of the Merkle-DAG.

3 Related Work

This section will cover works related to our study, including
an overview of other research proposals for document regis-
tration in the literature.

Martiri et al. (2018) provided a system architecture for a
degree management system, which includes a plagiarism tool
and a statistics module. The flow starts by extracting unstruc-
tured information from documents in . pdf format, which are
then converted into a structured format resulting in a compact
table with the necessary fields from the documents. Finally,
the table data is encrypted and stored on the blockchain.

In turn, Bandara et al. (2020) presented Lekana, a docu-
ment archiving platform using the Mystiko blockchain. The
platform stores the file document information of an elec-
tronic invoice provider and their payloads (.pdf, .xml, im-
age byte streams). The functions of creating, retrieving, and
validating the hash chain of file documents are implemented
with smart contracts. They also proposed a mechanism to
build machine learning models.

In the studies conducted by Prathibha et al. (2021) and
Khokhariya et al. (2022), they present approaches that utilize

Extending the Docstone to Enable a Blockchain-based Service for Customizable Assets and Blockchain Types

blockchain technology for secure document storage and the
simplification of authenticity verification. This is achieved
by generating hash signatures through fingerprinting tech-
niques. However, in Khokhariya et al. (2022) an approach
that involves the use of Non-Fungible Tokens (NFTs) is
adopted. In this approach, not only the signature but also the
document data is incorporated. Furthermore, IPFS technol-
ogy is employed for remote storage of the original document,
ensuring its integrity and facilitating efficient document re-
trieval when necessary.

Han et al. (2021) proposed a Decentralized Document
Management System (DDMS) based on Ethereum to im-
prove the security of digital documents. In summary, the
DDMS works with a digital document encrypted employing
a symmetric key, which is managed on a blockchain and re-
built when the document is retrieved through smart contracts,
which also perform access control.

More recently, Das et al. (2022) presented a solution based
on Hyperledger Fabric with the main document manage-
ment functionalities in AEC projects (Architecture, Engi-
neering, and Construction), which involve information ap-
proval workflows, version management, and document life-
cyclerecording. Decisions in the document flow are recorded
on the blockchain to verify the integrity of document versions
and their log history.

While some related works prioritize security, they usu-
ally lack flexibility in integrating diverse client applications
and do not have support for generic model creation. Further-
more, these solutions do not offer an easy option to select the
blockchain type or asset format. In contrast, our solution dis-
tinguishes itself through its adaptability, secamless integration
with client applications, support for generic model creation,
flexibility in choosing both the blockchain and asset format,
and the ability to efficiently record multiple documents si-
multaneously. Moreover, our system includes a data storage
module that addresses privacy concerns by securely manag-
ing sensitive information not suitable for blockchain storage.

4 Docstone: An Architectural

Overview

This study proposes Docstone, an architecture based on
blockchain that supports asset registration and validation ser-
vices. The service includes asset (Document, Process, and
NFT) management features, which can be easily integrated
into different client platforms to create customizable asset
templates that can be stored on one or more blockchains. As
shown in Figure 3, the Docstone architecture is organized
into three main layers: (i) Application Layer, (ii) Service
Layer, and (iii) Persistence Layer. The last layer comprises
three specific modules: Off-chain Module, EVM Module,
and Private Network Module. We provide detailed informa-
tion on this architecture in the following subsections.

4.1 Application Layer

In summary, the Application Layer comprises all client appli-
cations that connect to and use Docstone. In particular, this
layer should provide a human-readable interface where users

Soares et al. 2023

can perform and track their actions in their respective appli-
cations and businesses. The application layer does not imple-
ment a web interface, for example, of the Docstone itself, but
instead abstracts those of the integrated clients.

We implemented Docstone to enable the main require-
ments of blockchain-based asset management to be gener-
alized by different applications. To illustrate the generality
of this service regarding the use cases that can be integrated,
we can exemplify the types of client applications that have
already connected to the proposed application at some level,
such as (1) a system for copyright declaration certificates; (2)
a system for registering certificates and diplomas of students
in courses, schools, and universities; (3) a system for track-
ing protocols; and (4) a proposed system for registering news
and images by press vehicles in the fight against fake news,
among others.

Table 1 presents a subset of the main routes for integrating
third-party interfaces into Docstone according to functional-
ities and SC type.

Table 1. Docstone’s routes and request for each functionality.

Funcionalities Method Request Description
Model POST /model Creating models
Depl tofaCIt
Contract POST /contract 'ep oyr?en ora _ype
in specific blockchains
POST /documents Registration of a document
Document GET /documents Search for a document
POST /documents/valid Document validation
Registration of documents
POST /processes gl Tt n'f et
Process in a specific process
Search for documents from
GET /processes)
a specific process
POST /NFTs Minting a NFT
NFT
GET /NFTs Search for a NFT

The systems exemplified previously can be integrated with
Docstone through available routes for each functionality,
such as creating models, deploying contracts, registering and
searching documents, processes, and NFTs, and validating
documents. The requests in Table 1 are categorized based on
their functionalities. For instance, POST /contract is used
to deploy a contract into a blockchain, and it does not neces-
sarily involve data storage. Similarly, POST /NFT refers to
the Process of “minting” an asset on the blockchain. In addi-
tion, we abstracted other functionalities in Table 1, such as
functionalities related to managing Clients, Blockchains, and
Activity Logs, among others.

4.2 Service Layer

The Service Layer refers to the implementation and execu-
tion of all the functionalities related to Document, Process,
and NFT management. This capability is enabled in the API
through four main classes: (i) Client; (ii) Model; (iii) Smart
Contract (SC), and (iv) Assets. SC has specific types to
manage Docstone’s assets (i.e., Documents, Processes, and
NFTs). Despite these SC and assets being pre-configured, we
can further add other asset types to be managed by the AP

Extending the Docstone to Enable a Blockchain-based Service for Customizable Assets and Blockchain Types

Soares et al. 2023

Figure 3. Overview of the Docstone’s software architectural model.

APPLICATION LAYER SERVICE LAYER PERSISTENCE LAYER

OFF-CHAIN MODULE P

CLIENT 1 IPES "™ IIE
Database
22 CLIENTS
CLIENT 2 = Y Y
L EVM MODULE PRIVATE NETWORK MODULE
CUENTS 52 MODELS Z= CONTRACTS [B] ASSETS ‘ A (,‘
0= = S

YV ®

CLIENT 4 ¢ ¢ Ethereum Klaytn
it) % CELO
PROCESS MANAGEMENT —>-| PROCESS | Felye _—

CLIENTN NFTMANAGEMENT ~ — | NFT |

NODE 1

4.2.1 Client class

The Client class represents each client application from the
Application Layer, as exemplified in Section 4.1. The rela-
tionship model between the classes follows that:

1 Client has from 0 to N Models;
1 Client has from 0 to IV SCs;

* 1 Client has from 0 to /N Assets.

* 1 SCor 1 Asset has 0 to N Types.

4.2.2 Model class

The Model class represents the structure of the assets that
a Client will register on the blockchain through the API. In
other words, a Model created by a Client consists of prede-
fined specific attributes related to the asset and its general in-
formation, such as the Model’s description. For example, if
a Client registers student diplomas, they can create a Model
that contains attributes such as course name, student ID,
status, and grade, among others.

In addition to the attributes defined by the Client, the
Model must contain the idInternal and docHash fields
as mandatory fields. Docstone has these mandatory entries
as a business rule because it uses off-chain mechanisms
to map each Model attribute in the database with its re-
spective content on the blockchain. In summary, off-chain
mechanisms are related to outsourcing data storage out-
side the blockchain (Shukla and Samet, 2020). Hence, the
idInternal is a document identifier related to the ID gen-
erated by the Client’s storage systems, such as primary keys.
The docHash refers to the hash of the Document or media
generated by the Client application, usually in formats such
as .pdf, .png, . jpeg, .mp3, among others. Thus, the Client
must provide the docHash related to their documents or me-
dia as one of the inputs to the route for future validations.
The Client can apply this docHash according to their design
decisions, such as MD5 and SHA-256.

4.2.3 Smart Contract class

The Smart Contract (SC) class refers to the implemented
script code responsible for executing the main functions to
manage each asset type in the blockchain. Initially, we imple-
mented three SC types that can be selected according to what

1
2
3

[CBEN Be NNV IS

10
11
12
13
14
15

16
17
18
19
20

22
23

BNB Smart Chain

the Client wants to store. The SC types are (1) Document; (2)
Process; and (3) NFT. Next, we detailed each implemented
SC based on the Solidity language.

Document. Each SC can be associated with at least one
previously registered Model, i.e., each SC stores Documents
from one or more specific Model(s). The code presented in
Listing 1 represents the SC for Document management de-
signed to allow the generalization of document Models with-
out the need to implement specific business rules. The SC is
composed of two main functions: insertDocument () (line
19) and searchDocument () (line 26).

The Document SC has a struct (line 4), called
‘Document’, which comprises a vector of attributes
(docsAttributes) and CID as its main element. The
docsAttributes stores the values and contents of the
inserted documents. Each index of the vector corresponds
to each attribute defined in the creation of the Model,
respectively, as illustrated in Figure 4. In turn, the CID is the
hash provided by IPFS referring to the file associated with
the respective registered Document.

Listing 1: Docstone Document Smart Contract.

pragma solidity ~0.8.17;
contract Documents {
address public owner;
struct Document {
string[] docsAttributes;
string cid;
}

mapping(string => Document) private documents

3
constructor () {

owner = msg.sender;
}
modifier onlyOwner () {
require (
msg.sender == owner,
"Error: Only owner can call this
function"
);
}

function insertDocument (
string memory _idDocument,
string[] memory _docsAttributes,
string memory _cid
) public onlyOwner {
documents [_idDocument] Document (
_docsAttributes, _cid);

25
26
27
28
29
30
31

1
2
3
4
5

6

7
8
9
10
11
12
13
14

Extending the Docstone to Enable a Blockchain-based Service for Customizable Assets and Blockchain Types

}
function searchDocument (
string memory _idDocument
) public view returns (Document memory) {
return documents[_idDocument];
}
i

The use of mapping* ‘Documents’ (line 8) enables the
Client to store N Documents from their respective identi-
fiers. The insertDocument () function is responsible for
registering data on the blockchain, which requests as input
the Document ID and a vector of attributes related to the spe-
cific Document. In this case, it should be noted that only the
owner of the address that deployed the SC can make calls to
the SC functions. The searchDocument () function returns
the inserted information of a Document from its ID.

N N
'

I CLIENT A } \' CLIENTB :
\docsAttributes valueAttributes attribute (Off-chain Module) ! docsAttributes valueAttributes attribute (Off-chain Module) |
| —> Java —> ATTRIEUTEI(courseName)H > 0001 > ATTRIBUTE1 (idAuthor) |
3 —> 0001 —> ATTRIBUTE 2 (idStudent) i 3 —> NFTX —>ATTRIBUTE2(artworkName)i
| —> APPROVED —> ATTRIBUTE 3 (status) | ' > 02:20-2022—> ATTRIBUTE3 (data) |
I I

} —> 80 —> ATTRIBUTE4 (score) i } i

Process. In this SC type, we start from the assumption
that a Process contains different steps and, consequently,
contains different documents. The API is implemented to
deploy an SC when a client creates Process. In this sense,
we codified an association between SC to a specific Process.
Furthermore, we implemented the access control by the
client application side for writing documents. Thus, SC 2 has
the following functions: (i) addAuthorizedAddressQ),
(i) onlyAuthorized(), (iii) onlyOwner (),
(iv) insertDocument (), (v) searchDocumentByStep(),
(vi) searchDocument (), and
(vii) getDocumentAmount ().

We declared the authorizedAddress mapping (line 5),
which the function will handle addAuthorizedAddress ()
in order to associate a client application address with an ac-
cess status (true or false). Similarly to the first SC type,
the Document’s struct (line 7) consists of an array of at-
tributes (docsAttributes) associated with the Document
and its CID. In addition, each Document has the timestamp
and the respective step that the Process was inserted.

Listing 2: Docstone Process Smart Contract.

pragma solidity ~0.8.17;

contract Processes {

address public owner;

mapping (address => bool) public
authorizedAddresses;

event DocumentInserted(string step, uint
documentIndex) ;

struct Document {
string[] docsAttributes;
string cid;
uint time;
string step;

}

mapping(string => Document[]) private steps;

constructor () {

4Mappings are used to store data in key-value pairs.

15
16
17
18

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

Soares et al. 2023

owner = msg.sender;
authorizedAddresses [owner] = true;
}
function addAuthorizedAddress(address
_address) public onlyOwner {
authorizedAddresses[_address] = true;
}
modifier onlyAuthorized() {
require (
authorizedAddresses [msg.sender],
"Error: caller is not authorized"
D8
-
}
modifier onlyOwner () {
require (msg.sender == owner, "Error:
caller is not the owner");
}
function insertDocument (
string memory _stepCode,
string[] memory _docsAttributes,
string memory _cid
) public onlyAuthorized returns (uint) {
uint index = steps[_stepCodel].length;
steps[_stepCode].push(
Document (_docsAttributes, _cid, block
.timestamp, _stepCode)
)
emit DocumentInserted(_stepCode, index);
return index;
}
function searchDocumentsByStep(
string memory _stepCode
) public view returns (Document[] memory) {
return steps[_stepCode];
}
function searchDocument (
string memory _stepCode,
uint pos
) public view returns (Document memory) {
return steps[_stepCode] [pos];
}
function documentAmount (
string memory _stepCode
) public view returns (uint) {
return steps[_stepCodel.length;
}
}

The insertDocument () function (line 32) is similar to
the one performed in Document Type. Still, the client appli-
cation will be able to add to which step of the Process the
inserted Document belongs. We point out that only the ad-
dresses registered in authorizedAddress can write a Doc-
ument.

There are two types of reading, searchDocument () (line
45) and searchDocumentsByStep() (line 50). The first
performs the search for information on a specific docu-
ment based on the step and position in which the Docu-
ment is. Based on this information, the company passes
it transparently to the developer. A cross-referencing be-
tween the lead’s database and blockchain is carried out, and
the searched Document is returned. The second one returns
data from the documents of a specific step. Finally, the
getDocumentAmount () (line 56) is an auxiliary function
that returns the number of steps in a process.

NFT. As presented in the SC depicted in Listing 3, this
type is related to the insertion of documents (or other types of
assets) and its conversion to the ERC-721 standard. In other

1
2

3

4

50

Extending the Docstone to Enable a Blockchain-based Service for Customizable Assets and Blockchain Types

words, the asset stored through this SC type will be trans-
formed into a tokenized version. To implement this SC, we
used the OpenZeppelin library (imported in lines 2 and 3),
which has a collection of code to implement some standards,
including the ERC-721.

Listing 3: Docstone NFT Smart Contract.

pragma solidity ~0.8.17;

import "Qopenzeppelin/contracts/token/ERC721/
ERC721.s01";

import "@openzeppelin/contracts/utils/Counters.
sol";

contract Nfts is ERC721 {

using Counters for Counters.Counter;
address public owner;
Counters.Counter private _tokenlds;
constructor () ERC721("MyNFTs", "NFT") {
owner = msg.sender;
}
struct NFT {
string cid;
string[] metadata;
}
mapping(string => NFT) private _tokenData;
function mint (
address to,
string memory tokenId,
string memory tokenCID,
string[] memory metadata
) public returns (uint256) {
require (
msg.sender == owner,
"Error: only the contract owner can
execute this function"
);
require (bytes (tokenId).length > 0, "Token
ID cannot be empty");
require (
bytes (_tokenData[tokenId].cid).length
- B
"Token ID already exists"
);
_tokenIds.increment () ;
uint256 newItemId = _tokenIds.current();
_mint(to, newItemId);
_setTokenData(tokenId, tokenCID, metadata
);
return newltemId;
}
function _setTokenData(
string memory tokenId,
string memory cid,
string[] memory metadata
) private {
_tokenData[tokenId] = NFT(cid, metadata);
}
function getTokenData(
string memory tokenId
) public view returns (NFT memory) {
return _tokenData[tokenId];
}
}

As we can see, the “NFTs” SC inherits the ERC-721 stan-
dard as NFTs usually follow this standard. Its constructor
(line 8) initially takes a name and a ticket for the tokens ini-
tially named with “MyNFTs” and “NFT ”. Then, the struct
of the NFT (line 11) consists of its CID and metadata with
other information. Finally, themint () function (line 16) cre-
ates the token and sends it to a specified address. In addition,
some checks are performed to the creation of the NFT: (i) if

Soares et al. 2023

the client application running the SC is the owner, (ii) if the
token ID is greater than 0, and (iii) if the token ID exists.

Finally, the _setTokenData() (line 38) is an auxiliary
function to store data related to the minted token. In turn,
the getTokenData () (line 45) function returns information
about a specific token.

Unlike the previous study, where there was no possibility
to choose a smart contract, these adaptations allow that other
smart contracts and asset types to be also integrated into Doc-
stone in a customizable way.

4.2.4 Assets class

Finally, the Asset class consists of an asset’s current content/-
value (Document, Process, or NFT). Each asset information
is managed according to the Model previously created.

4.3 Persistence Layer

The Persistance Layer has three modules to support storing
document content: (i) Off-chain module; (ii)) EVM module;
and (iii) Private Network module.

4.3.1 Off-chain module

We are using two types of persistence in this module (Rela-
tional Database and InterPlanetary File System), as detailed
below:

Relational Database. We use an auxiliary database to reg-
ister and manage application Clients and store their creden-
tials, API access tokens, and other relevant information (such
as sensitive data). Thus, the database also stores private infor-
mation and Model attributes created to perform data cross-
referencing between the database and the blockchain. With
this off-chain approach, there is no need to insert raw records
into the blockchain since it stores only its main pointers and
hashes.

InterPlanetary File System (IPFS). We also decided to
use a peer-to-peer distributed file system such as IPFS to
store media files (.txt, .docx, .pdf, .mp4, among oth-
ers), given the limitations of file types for storage on the
blockchain (which preferably stores metadata in text format).
Like the blockchain approach, each user on IPFS can instan-
tiate a node. In our case, the server running Docstone also
runs a parallel process with an IPFS node. This node is ex-
plored to maintain a local copy distributed to the IPFS net-
work. The ipfs-core library was used to carry out this integra-
tion, which is the implementation of the IPFS Core API writ-
ten in JavaScript without depending on other languages/im-
plementations. This library provides all the necessary func-
tions to integrate IPFS into an application.

Regarding the implementation model for Docstone and
IPFS integration, we decided to use the concept of IPFS direc-
tories. We developed a mechanism for automatically creating
IPFS directories mapped to each smart contract. In addition
to storing independent documents, Docstone creates directo-
ries to organize documents, processes (grouped documents),
and NFTs collections. For example, when deploying an SC
referring to Process A, a new directory is created to store
all the respective documents related to this Process. Figure 5

Extending the Docstone to Enable a Blockchain-based Service for Customizable Assets and Blockchain Types

presents an example of a directory on IPFS regarding a pro-
cess with its documents.

Figure 5. Directory created with the respective documents.

About IPFS

nstall IPFS

Index of /ipfs/QmVETHF GLWNkSw3mz7Xf6BwmrLZcJN2rTmSiuexWpCVLm 20 MB
OmMVETT fFGLWNKkSw3mz7Xf6BwmrLZcIN2 rimSiuexwWpCVLm
deurc2yixolevwekf9 g..TeF3 266 kB
B dcurc2vsgclevm4obx jpg QmUu..E5gE 39 kB
deurc2vblclevsvuv3 OmUu..ESgE 39 kB
decurc2v5lclevswins QmuUg..TeF3 266 kB
deurc2vewdlewTcy3j OmZF..kgcy 6.8 MB
deourc2vggdlevyxOiw mbz..ZYPd 6.1 MB
deurc2vggdlewSfigt OmZF..kgcy 6.8 MB
B dcurc2vgrBlevivir4.jpg QmUu..ESgE 39kB
nfo.bxt OmaT..C4Te 121B

As shown in Figure 5, each directory has a CID
(e.g., /ipfs/QmVE. . .CVLm), just like each Document (e.g.,
QmUg. .. TeF3). By default, files are named with the
idDocument generated by Docstone to simplify automa-
tion (e.g., dcurc2vaxolevwekf9). However, this naming
convention can be more readable with other document titles.
Therefore, when Docstone creates a directory, it also gen-
erates an initial file (info.txt) with general information,
such as the associated smart contract’s ID (idContract)
and it is address in the blockchain where it was deployed
(idBlockchain), as well as the SC type (Documents, Pro-
cesses, or NFTs).

Figure 6. Info.txt

® https://ipfs.iofipfs/Qmv: x +

& c

& ipfsio/ipF

idContract:cturc2vgrBlevlslkp
address:@xcCF1D93E58A5cd7c73DAeed7dblOc33EAaTDODDT
idBlockchain:ALF

type:documents

4.3.2 EVM module

The non-sensitive information defined from the Model and
stored in the asset is inserted into the blockchain. Among
the design decisions of this solution, we point out that the
service allows the insertion of information into one or more
blockchains to enable a client application to be integrated
into Docstone using a blockchain that best suits their de-
mands. The option of choosing blockchain (s) can be oriented
by different criteria, such as:

Transaction speed;

Transaction cost;

Security;

Scalability;

Consensus algorithm;

Technologies used by each blockchain;

A

Soares et al. 2023

7. Network’s reputation in the community and engage-
ment;
8. Level of decentralization;
9. Number of transactions per second,
10. Application business context, and others.

Considering that the SC code is written in a stack-based
bytecode language and executed in the Ethereum Virtual Ma-
chine (EVM) through the Solidity language (Tikhomirov,
2017), it can be executed by all public blockchains compat-
ible with EVM integrated into this solution, for example,
Ethereum and Ethereum Classic; BNB Smart Chain; Poly-
gon; Klaytn; and Celo. These blockchains can be integrated
using libraries such as Web3.js and Caver.js, for example.

4.3.3 Private Network module

We also implemented a single organization-based Hyper-
ledger Fabric Private Network to integrate the private
blockchains connected to the Docstone. We chose this due
to support for confidential transactions, given the ability to
configure access to specific transactions for predefined users.
Additionally, one can highlight that cryptocurrencies are un-
necessary for performing operations. Figure 3 presents the
Private Network’s structure which has five nodes, each con-
taining at least one peer and one orderer.

The network’s peers are only of the anchor type since it is
a single organization, in which there is no need to transmit
messages to peers from another organization. Additionally,
the network uses Transport Layer Security (TLS), which re-
quires configuring a TLS CA and its use to generate TLS
certificates. In our architecture built on HLF, permissions
and access control are effectively managed through the Mem-
bership Services Provider (MSP), which handles digital cer-
tificates, user IDs, and authentication for all network partic-
ipants. This means that only authenticated individuals or en-
tities with known identities within the MSP can engage in
any transaction activities on our private blockchain network.
In this case, since we have implemented a single organiza-
tion architecture, only Docstone’s API is integrated into the
implemented private network, and its identity is recognized
within the network for read and write permissions. Addi-
tionally, all access to communication routes with the private
blockchain is authenticated using an access token provided
to network clients, in this case, Docstone.

Finally, we also integrated the Explorer and Grafana to
monitor the network hosted on one of the five nodes.

5 Docstone Demonstration

Figure 7 illustrates the main flow through a client applica-
tion’s registration of information on the blockchain using
Docstone. To exemplify this use case, we adopt the process
of data registration related to an artwork copyright certificate
system. Indeed, our API does not restrict other types of ap-
plications since it is possible for all those with a similar flow
to be integrated into Docstone.

Initially, the Client was registered with access creden-
tials to submit requests to Docstone. In Step 1, the Client
creates an artwork certificate model. The model structure

Extending the Docstone to Enable a Blockchain-based Service for Customizable Assets and Blockchain Types

consists of the following attributes: idAuthor, idArtwork,
description, and artworkType. In addition, the Client
must pass the idInternal referring to the identifier in the
application’s database and the hashDoc, which consists of
the hash of the certificate media to be inserted. When the
client request POST \models, Docstone creates a new model
with the informed data and receives a modelCode as an iden-
tifier. Optionally, the attrNotNull field establishes the re-
quired attributes among those defined in the model. Consid-
ering the proposed example, idAuthor and idArtwork are
mandatory attributes.

In Step 2, the Client requests the POST \contracts to
deploy the SC onto a specified blockchain indicating two pa-
rameters: (i) what blockchain the SC will be deployed and,
consequently, where the artwork certificate information will
be stored and, (ii) the SC type (code) that will be used. In this
case, Docstone addresses the available blockchains listed in
Section 4.3.2. We will use the Ethereum (ETH) network for
the current demonstration. In addition, we also choose “doc-
uments” from the available types (Documents, Processes,
and NFTs) when deploying the SC, as described in Section
4.2.3. Finally, Docstone returns a idContract after being
deployed in the blockchain.

In Step 3, the API receives the idContract and
modelCode to identify the SC already deployed and the type
of model that represents the format in which the informa-
tion will be stored when requesting the POST \documents.
At this point, the document’s content will be inserted into
the blockchain. For example, the stored artwork certificate
information indicates that an author with idAutor ‘0001’
created an artwork consisting of idArtwork ‘0003’, whose
typeWork is a ‘Painting’ and the description is ‘Blue
flowers in watercolor’. The certificate’s information is the
metadata related to a specific document. Additionally, the
Client can submit the media or file representing the docu-
ment (or artwork, in this example) in the file field>. In other
words, the client application can add the metadata (stored in
the blockchain) and the digital ‘Painting’ file (stored in the
IPFS), as shown in Figure 7.

Finally, this record can be queried through the
GET \documents request (Step 4) where Docstone re-
turns the metadata from blockchain and the file of the
artwork from the IPFS. In addition, several other requests
can be made to handle these artwork certificates, such as
the validation request. In this case, the client application
must inform the document hashDoc of the media. In turn,
Docstone returns whether the file hash is valid compared to
the previously registered on the blockchain. This require-
ment also allows verification of the file by an external user
in cases in which it is necessary to consult or validate some
information or documents.

In addition to the discussed functionalities, the service has
other requirements and enables registering data in one or
more blockchains. Hence, Docstone allows the deployment
of other SC types, which may require some changes and adap-
tations in the flow. For example, the client application can
deploy a processes-type SC instead of a documents-type SC

SThe picture presented in Figure 7 was generated in
https://www.craiyon.com (an Artificial Intelligence image generator)
prompted with the text “Blue flowers in watercolor”.

Soares et al. 2023

Figure 7. Demonstration of Docstone integrated with a Copyright Certifi-
cate Registration System.

CLIENT
Copyright Certificate Registration System
DOCUMENT
Artwork Certificate
o CREATE e DEPLOY e REGISTER a SEARCH
MODEL CONTRACT DOCUMENT 1 DOCUMENT :
modelCode : 1
ASBSKD45S { 1
modelName idContract i 1
Certificate BAS54BARS] i
P)
SO, > blockchain o }. t
Artwork Cetificate ETH “idInternal001", [.
attributes *hashDoc001", "00001" | idDocument | |
idinternal, hashDoc, type "00002", ’ ! | ASBSKD45S 1 !
|dAutf_|or! idArtwork, document "Painting’, ! : H
description, artworkType "Blue flowers in watercolor” | 1 Vil
|
attrNotNull file blue_flowers.png i o
idAuthor, idArtwork 15 I iy
‘o'] Y
|
1]
N /9 ! i
> | |
3% \ i
Lo 4 < AT
POST \models POST \contracts POST \documents GET \documents :,«
(4
DOCSTONE 'S
Ay Ay Ay =
o
|
CLIENT A CLIENT B CLIENTE Z : %
Supply chain System Public Tender Processes cee Tokenization System G
System : o
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|

461c023814971b
h ethereum

.io/ipfs/Q

R
e e

(with /POST contracts). In this case, when adding each
document, it is necessary to inform the idProcess and the
specific step to which the inserted document belongs. In this
sense, we can have a set of documents associated with a sin-
gle process, different from the documents-type SC, where the
documents are independent. For instance, these cases can be
used for government procedures, such as ‘Public Tender Pro-
cesses’, in which a process is usually opened and consists of
creating different stages and inserting documents until com-
pletion.

On the other hand, using the SC of NFTs enables tokeniz-
ing documents (or other types of assets) in the standard al-
ready widely used among Web3 and blockchain users, the
ERC-721, to transfer ownership and commercialization of
the tokenized object. However, the commercialization of the
document tokenized is different from the focus of this re-
search. Furthermore, other SC types (new encodings), such
as recurrent usage standards, can be added to the blockchain
with the proper adaptations.

6 Empirical Study

We conducted a computational experiment using a set of anal-
yses and a performance metric. This work developed an API
as Proof-of-Concept (PoC) for experimentation with the tech-
nologies described in Table 2. We use Web3.js for API inte-
gration with blockchains by personal choice based on the re-
searchers’ experience, as we concentrate on using Javascript
and Node.js as the development stack for the API. However,
it is important to note that the approach could also be im-
plemented in Python or Java, for instance. Both of these lan-

Extending the Docstone to Enable a Blockchain-based Service for Customizable Assets and Blockchain Types

guages also offer libraries for blockchain integration, such as
Web3.py and Web3j, respectively.

Table 2. Tools used in the implementation of the PoC.

Tools Brief description

Languages used to implement smart contracts

Solidity and Go .
based on EVM and HLF, respectively.

Collection of libraries that allow interaction with
Web3.js and Caver.js a local or remote Ethereum node. Caver.js

is used on the Klaytn blockchain.

Sepoli Test networks of the used blockchains. Normally
epolia
P. is used by developers to run tests without
Alfajores .
using real cryptocurrency.

Node.js is a server-side Javascript execution
environment. Express.js is a web framework
based on the core Node.js HTTP module
and middlewares.

Node.js and Express.js

A set of virtualization products for delivering
Docker software in packages called containers, which

can be orchestrated by the Docker Swarm tool.

6.1 Experimental Setup

We conducted this experiment to analyze the performance
quality attribute considering the Testnets of two public
blockchains: Sepolia (Ethereum 2.0) and Alfajores (Celo). It
is worth noting that our previous studies Soares et al. (2022b)
did not include testing on Sepolia and Alfajores. Sepolia is a
testnet for a new version of Ethereum that was launched on
December 1, 2020, and utilizes the PoS consensus algorithm.
Meanwhile, Alfajores is a Celo testnet that focuses on sus-
tainable and democratic solutions, offering a new dimension
to our analysis of blockchains.

In the version of this article, we only use these two
blockchains (of six integrated into the Docstone), given that
our main goal here is to analyze the difference between SC
types (Documents, Processes, and NFTs). Another difference
is that we do not execute the single organization network
presented in the previous study as we already compared the
performance using public and private blockchains in (Soares
et al., 2022b). After delimiting what blockchains will be in-
vestigated, we overviewed our four new primary analyses in
Table 3 and established the following variables for this ex-
periment:

Independent variable:

* Type of request: GET and POST. We chose these
requests because they differ in their interaction with
the blockchain network and can have varying response
times, representing different perspectives in blockchain
integration.

* Number of requests: quantity of requests made during
the experiment considering each type. In this case, the
number of requests can help assess how the network per-
forms under different load levels.

* Blockchains: Sepolia and Alfajores. These blockchains
are distinct and are being evaluated to understand their
performance characteristics. Also, both blockchains
were not assessed in the initial version of this
study (Soares et al., 2022b).

Soares et al. 2023

Table 3. Overview of the conducted analyses.

Analysis Requests Blockchain

POST li
1) POST requests (write) analysis OS. /documents Sepf) 1
regarding the use of IPFS (without IPFS) Alfajores
B 8 POST /documents Sepolia
(with IPFS) Alfajores
POST /contracts Sepolia
(Documents) Alfajores

2) POST t 1 t
2108 e o) oSt o sl
Y P (Processes) Alfajores
POST /contracts Sepolia
(NFTs) Alfajores
POST /documents Sepolia
. . (with IPFS) Alfajores
POST . t \

3 OOSf Srf;;ii);s:; te) aer;a VS8 TBoST /processes Sepolia
P (with IPFS) Alfajores
POST /NFTs Sepolia
(with IPFS) Alfajores
GET /documents Asl?a)'ool r1:s

4) GET requests (read) analysis ! -
of smart contract types GET /processes Sepolia
P P Alfajores
Sepolia

ET /NFT:

GET/NFTs Alfajores

Dependent variable:

+ Latency: refers to the time delay it takes for a request/-
transaction to be processed by the blockchain network,
a crucial and widely used metric in this context.

Finally, we adopted JMeter 5.020 (Nevedrov, 2006) to sim-
ulate loads and send them to Docstone. JMeter is an open-
source performance testing tool developed by Apache for
load, performance, and functional testing of web applica-
tions, APIs, and services. To represent an asset model, we
followed the attributes defined below:

Listing 4: Model created for performance testing.

1{

2 "description": "Standard model for testing.",
3 "attributes": "idInternal;hashDoc;fieldl",

4 "modelName": "standardO1",

5 "attrNotNull": "fieldl"

6}

The defined scenario considers a specific client applica-
tion that makes requests every 5 seconds in a serialized way.
We chose this approach as we aim to evaluate only the be-
havior of Docstone being used by a company. For analysis
purposes, we executed 100 requests made by this client appli-
cation. The experiments were conducted on a virtual machine
with the VM.Standard. E4.Flex from Oracle Cloud with 8GB
of RAM, 2vCPUs, and a broadband internet connection of 1
Gbps.

Wilcoxon (WC) statistical tests were applied to the results
of each blockchain and SC Type to identify the occurrence
of statistical differences between the samples, considering a
confidence level of 95% using the Bonferroni correction. We
also used Vargha-Delaney as the effect-size to return the rel-
ative number of times one case type produced higher values
than the other. Additionally, we generated a boxplot for each
analysis to visualize and analyze the distribution of the set of
results.

Extending the Docstone to Enable a Blockchain-based Service for Customizable Assets and Blockchain Types

6.2 Performance Evaluation

In line with Table 3, we present below our results grouped by
four different analyses.

6.2.1 POST requests (write) analysis regarding the use
of IPFS

Figure 8 shows the difference between registering with and
without IPFS to store media files referring to documents, one
of the main changes related to previous work (Soares et al.,
2022b). Thus, we want to assess whether the use of IPFS
causes any change in terms of latency time. In this case, we
evaluate only for writes of the Document asset type.

Figure 8. Latency of the POST \documents request on the Sepolia and
Alfajores blockchains with and without IPFS.

o

150000 -

100000 -

50000 - 8

8
—_— 8
e ——
g —
T T T 1
DOCUMENTS DOCUMENTS DOCUMENTS DOCUMENTS
WITH IPFS WITH IPFS WITHOUT IPFS WITHOUT IPFS
(SEP) (ALF) (SEP) (ALF)

The present study reports on the latency performance of
POST /documents requests with and without IPFS. In Se-
polia, the results demonstrate that the median latencies for
requests with IPFS and without IPFS were 23531.50ms and
24104ms, respectively. While the difference between these
medians may appear relatively small, the use of IPFS was as-
sociated with greater variability in the latencies of requests
in Sepolia. This finding suggests that, when utilizing the
POST /documents route in Sepolia to store a media file,
there may be a higher variance in latency times when em-
ploying IPFS instead of simply sending the file’s metadata
without requesting the IPFS.

The statistical analysis presented in Table 4 supports these
results, which indicate a statistically significant difference in
the use of IPFS in Sepolia, with a significance level of 95%.
However, the analysis also demonstrates that IPFS resulted in
higher latency times only 36% of the time and that, in general,
IPFS did not significantly increase latency times in Sepolia.

Table 4. Latency of the POST \documents request on the Sepolia
and Alfajores blockchains with and without IPFS.

Without IPFS
Alfajores Sepolia
With WC A wC A
IPFS 6.8¢-08 0.72 0.0013 0.36

Regarding the results of the Alfajores, the median laten-
cies for POST /documents requests with and without the
use of IPFS were 10941ms and 10270ms, respectively. With
this blockchain, we noticed a more significant variability in

Soares et al. 2023

latency results compared to not using IPFS, although with a
smaller amplitude than in Sepolia. As for the results of the
statistical tests carried out with Alfajores, we observed a sta-
tistically significant difference (see Table 4), considering a
significance level of up to 99%. Approximately 72% of the
time, using IPFS resulted in higher latency times than when
IPFS was not used at Alfajores. We can see that using IPFS
for media storage negatively impacted the latency time for
the Alfajores network.

Regarding network performance, Alfajores exhibits a set
of latencies that are noticeably distinct from those observed
in Sepolia, despite having lower values. Statistically speak-
ing, Alfajores only outperforms Sepdlia using IPFS approxi-
mately 12% of the time, and without IPFS, that figure drops
to a mere 2%.

6.2.2 POST requests (deployment) analysis of smart
contract types

In Figure 9, the different SC types in the Sepolia blockchain
presented similar median latency times during the de-
ployment, with values of 23256.50ms, 23993.50ms, and
23988.50ms, respectively, to Documents, Processes, and
NFTs. However, we noticed that the SC Document presented
a more significant variability of latency values when com-
pared to other SCs. Some responses took much longer latency
than others (and vice versa). This behavior is particularly rel-
evant, given that the Document and Process SC implementa-
tion have similar logic, with little change between functions.
Moreover, we discovered a statistically small difference
between NFTs and Documents (for a confidence level of
95%) by analyzing the statistical tests in Table 5. In the other
comparisons, there is no statistically significant difference.

Figure 9. Latency of the POST \contracts request on the Sepolia and

Alfajores blockchains.
o

o
70000 +

- o
60000 .
50000 o °
40000 — E 0
! g
30000 —
‘ : ‘
20000 — o — E‘
== = :
10000 - —— s
T T T T T 1
DOCUMENTS DOCUMENTS PROCESSES PROCESSES NFTS NFTS
(SEP) (ALF) (SEP) (ALF) (SEP) (ALF)

Regarding the latency values of the request at Alfajores,
we note that only the Documents and Processes contracts
have similar median values (14932ms and 15074.50ms). In
contrast, the median latency value of the NFT deployment
is almost 1.5 times higher. Therefore, we realized that the
result confirms the conclusion obtained in the statistical test
presented in Table 5, where it is possible to verify that there
is no statistical difference between Documents and Processes
(value in red). In addition, the other statistical results showed
that the NFT contract had the worst latency time compared to
the others, approximately 99% greater than the latency time
of the Documents and Processes contracts.

Extending the Docstone to Enable a Blockchain-based Service for Customizable Assets and Blockchain Types

Table 5. Latency of the POST \contracts request on the Sepolia
and Alfajores blockchains.

Alfajores Sepolia
Documents NFTs Documents NFTs
wC A wC A wC A wWC A
NFTs 2.00e-16 0.9921 - - 0.004 0.62 - -

Processes 0.98 0.54 2.00e-16 0.01 0.27 0.56 0.61 0.44

Regarding the analysis between the networks, the Alfa-
jores network stands out with better performance. For the
three types of assets (Documents, Processes, and NFTs),
there is a statistical difference using Sepolia since it has lower
latency results in most cases. In turn, Sepolia spends more
time to complete the deployment, approximately 77%, 85%,
and 67% of the time for each asset type, respectively.

6.2.3 POST requests (write) analysis of smart contract
types

According to Figure 10, the different assets in the Sepolia
network present approximate median values for Document,
Process, and NFT, 23531.50ms, 24590.00ms, and 25006ms,
respectively. However, we found significant statistical dif-
ferences between these assets. For example, we verified that
79% of the time, between Document and NFT, the time to
write information through the POST route was more signifi-
cant for NFT. Likewise, we obtained a statistical difference
contrasting Processes and Documents, where Processes had
higher results 72% of the time than Documents. However, no
significant difference was found between Process and NFTs
in the Sepolia network, according to the values in red in Table
6. These results demonstrate that the latency time between
these assets is similar when using Sepolia.

Figure 10. Latency of the write requests on the Sepolia and Alfajores
blockchains.
50000

40000 4

30000 -

20000 - —

T T T T T 1
DOCUMENTS DOCUMENTS PROCESSES PROCESSES NFTS NFTS
(SEP) (ALF) (SEP) (ALF) (SEP) (ALF)

On the Alfajores network, 50% of the latency val-
ues are concentrated below 10941.00ms, 12919.50ms, and
17064.50ms for Documents, Processes, and NFTs, respec-
tively. These values are well below what was obtained with
the Sepolia network. We also noticed a variability of latency
values between the Documents and Processes assets similar
to the Sepolia network. When we compare the performance
of assets on the Alfajores network, both Processes and Doc-
uments again stand out concerning the NFT asset. However,
the latter has higher latency times of more than 90% of the
time compared to the other two assets, with approximately
similar times and statistically smaller than the NFTs.

Soares et al. 2023

However, in the Alfajores network, we obtained a statis-
tically significant difference between Processes and NFTs,
indicating that the latency time of the Processes asset was
higher than that of the NFT asset only 4% of the time. There-
fore, we conclude that the Documents asset was the fastest
concerning the latency time in writing information as in the
Sepolia network. However, the Processes asset has a shorter
time than the NFTs in the Alfajores network.

Table 6. Latency of the write requests on the Sepolia and Alfajores
blockchains.

Alfajores Sepolia
Documents NFTs Documents NFTs
wWwC A WwWC A WwWC A WC A
NFTs 2.00e-16 0.95 - - 8.00e-13 0.79 - -
Processes 0.002 0.61 2.00E-16 0.04 8.50e-08 0.72 0.12 0.41

Finally, regarding the analysis between the networks, the
Alfajores network stands out again with the best performance
in the three types of assets, with Sepolia being greater in 88%,
100%, and 99% of the times for each type of asset, respec-
tively.

6.2.4 GET requests (read) analysis of smart contract
types

Figure 11 presents an analysis of latency performance for dif-
ferent asset types and blockchains, as demonstrated in Figure
11. Our findings reveal that each box in the chart represents
a statistically significant difference related to asset types and
blockchains. Furthermore, our examination of the data pre-
sented in Table 7 permits us to make robust statistical conclu-
sions regarding the performance of the various asset types.
Specifically, our analysis indicates that Documents exhibit
superior performance compared to other asset types, with sig-
nificantly lower latency values. In contrast, NFTs are asso-
ciated with latency values approximately 100% higher than
Documents on both networks. While exhibiting higher la-
tency values than Documents, processes demonstrate strong
performance, with latency values around 82% on Sepolia and
97% on Alfajores relative to Documents. Notably, the Pro-
cesses asset type also outperforms NFTs regarding search
time, requiring only 100% of the time on both networks.

Our results suggest that NFTs are the asset type most as-
sociated with longer search times and higher latency values.
At the same time, Documents and Processes demonstrate su-
perior performance in this regard.

Table 7. Latency of the read requests on the Sepolia and Alfajores
blockchains.

Alfajores Sepolia
Documents NFTs Documents NFTs
wcC A wWC A wWC A WwWC A
NFTs 2.00e-16 1 - - 2.00e-16 1 - -

Processes 2.00e-16 0.9706 2.00e-16 0 4.4e-15 0.82 2.00e-16 0

Similar to the previous analyses, we notice that the results
of the assets with Sepolia present latency values with more
significant variability than those coming from Alfajores. For
example, while the standard deviation for the set of latencies

Extending the Docstone to Enable a Blockchain-based Service for Customizable Assets and Blockchain Types

Figure 11. Latency of the read requests on the Sepolia and Alfajores
blockchains.

14000 —
12000

10000 -

Q
8000 | s 8
8 —_—
6000 —_ ‘
4000 E ° — e
R ——
2000 - T T T T T
DOCUMENTS DOCUMENTS PROCESSES PROCESSES NFTS NFTS
(SEP) (ALF) (SEP) (ALF) (SEP) (ALF)

of NFTs in Sepolia is approximately 1072ms, in Alfajores, it
is 272ms, almost 4x more minor than in the first blockchain.

Lastly, on the analysis between the networks, as well as the
deploy and write requests, in the read requests, the Alfajores
network stands out with the best performance in the three
assets. In the latter case, Sepolia is more significant by 99%,
99%, and 100%, respectively.

In summary, our empirical study’s results offer insights
into DocStone’s performance across various blockchains and
asset types compared with the presented proposals. Notably,
the use of IPFS introduces variability in latency times, partic-
ularly in Sepolia, but the benefits of media storage through
IPFS outweigh occasional latency concerns. For smart con-
tract deployment, consistent performance is observed except
for NFTs on Alfajores, which exhibit higher latency. Doc-
uments demonstrate efficient write operations, while Alfa-
jores consistently outperforms Sepolia. In read requests, Doc-
uments excel, while NFTs display longer search times. These
findings aid in asset and blockchain selection for optimal
performance, although further comparison with existing so-
lutions could enhance contextual understanding.

6.3 Discussion and Lessons Learned

We briefly discuss in this section the highlights of Docstone
architecture and the lessons learned. To this end, we also an-
alyze our proposal based on Wohrer et al. (2021), which pro-
posed a framework for decisions, issues, options, and concep-
tual components concerning the design of blockchain-based
architectures and applications.

6.3.1 Performance

Specifically, public blockchains usually have more challeng-
ing scalability than private blockchains. Hence, the perfor-
mance of networks can vary according to several factors.
These causes do not refer only to the applied consensus al-
gorithms but also to other blockchain scalability limits that
may be related to the size of the data in the blockchain,
the processing rate, and the latency of the data transmission
data (Koteska et al., 2017; Xie et al., 2019).

In addition, we recognize that test networks can differ
greatly from mainnets in terms of performance. For exam-
ple, while Ethereum has 6049 nodes?® in its structure, Sepolia

Shttps://ethernodes.org/

Soares et al. 2023

(Ethereum’s testnet) has 1972 active nodes’. When writing
this study, we collected these numbers, which are subject
to change. Certainly, running the experiments on mainnets
would also provide relevant results more adherent to reality.

The variability in latency values is another important point
depicted by our results. In most of the analyses (Sections
6.2.2,6.2.1,6.2.3, and 6.2.4), the Sepolia blockchain shows
a higher range of values, resulting in less stability in terms
of request latency time, which is common in blockchain net-
works. On the other hand, we also observe that Alfajores
demonstrated greater stability in response flow, maintaining
consistent values, especially for write and read requests. In
practice, when developers and researchers in this study re-
quested operations on blockchains, the results for Sepolia
were not consistent related to the latency times. Sometimes,
the response returns within a few seconds, while in other situ-
ations, we may need to wait for a significant amount of time.
In contrast, on Alfajores, the responses were consistently re-
turned within approximate latency times.

6.3.2 Decentralization level

The level of decentralization in the Docstone architecture
was a careful design decision, with the option of either com-
plete or partial decentralization (Wohrer et al., 2021). In this
sense, Docstone adopts a semi-decentralized or hybrid archi-
tecture with centralized components to support certain func-
tions, such as storing sensitive information using a relational
database (as described in Section 4). This decision was made
to balance the advantages of decentralization with the techni-
cal limitations and usability challenges that still exist today.
While partially decentralized architectures reduce the need
for trust in fully decentralized applications, centralized com-
ponents can still provide practical benefits in certain scenar-
ios (Wohrer et al., 2021).

Additionally, we specifically opted for a relational
database over NoSQL options in the Docstone architecture
due to the imperative requirement for robust data consis-
tency and the structured format of the data. This decision
aligns with the necessity to securely and reliably manage
and store information. In situations where intricate scenar-
ios and data integrity hold paramount importance, relational
databases shine by offering a well-defined schema and robust
transactional support, thereby guaranteeing the integrity of
data records.

These explanations clarify our architectural decisions
in creating a semi-decentralized system that combines
blockchain, IPFS, ensuring redundancy of data, transparency,
immutability and integrity of data and a centralized database
to meet project requirements (Wiist and Gervais, 2018; See-
bacher and Schiiritz, 2017).

6.3.3 Identity Provisioning, Key Management, and
Transaction Handling

Docstone does not yet implement the mapping of users
through their specific addresses (address in Solidity) in
blockchain through their wallets. In other words, handling
the blockchain identity for the user is the responsibility of

"https://sepolia.beaconcha.in/

Extending the Docstone to Enable a Blockchain-based Service for Customizable Assets and Blockchain Types

Docstone itself through managing data in an off-chain ap-
proach, without handling the custody of the users’ secret
keys, for example. Indeed, Docstone manages its key pairs,
signing and forwarding information (transactions) to the
blockchain. Thus, implementing key management by users
is a strong lead for Docstone to move towards a fully decen-
tralized version.

Furthermore, Docstone does not use its wallets to map
users via their specific blockchain addresses (address in
Solidity). This decision means that the handling of a user’s
blockchain identity is the responsibility of Docstone itself
through off-chain data management, without handling the
custody of users’ secret keys, for example. However, Doc-
stone manages its key pairs and signs and forwards informa-
tion (transactions) to the blockchain. We acknowledge that
implementing key management by the users is a crucial step
for Docstone toward achieving a fully decentralized version.

Regarding transaction handling, our development process
also faced challenges similar to those described by Wohrer
et al. (2021), such as nonce errors, network congestion, peer
loss, and transaction loss due to sudden price increases.
Transaction Managers help to overcome these issues by con-
trolling how transactions are signed and transmitted to the
blockchain network. However, these aspects are still un-
der development and generally come with additional costs.
For PoC purposes, adopting specific Transaction Managers
(EthVigil, for example) is quite challenging. However, other
techniques that follow these principles were applied, such
as estimating adequate transaction costs to ensure sufficient
funds for execution and managing nonce and keys.

6.3.4 Connection to blockchain

In particular, the interaction with the blockchain was car-
ried out through blockchain endpoints, which are devices
or nodes running software that implements the blockchain
protocol. To achieve this capability, Docstone explores
providers (such as Infura) that enable users to interact with
the blockchain without setting up their nodes. We clarified
that the creation of nodes for the public blockchains inte-
grated into the API was not initially necessary, as our goal
was not to implement a truly private, self-sufficient, and trust-
less network for the use of public blockchains (which is also
possible), but, in fact, to the use of the HLF network with
permission control properties.

6.3.5 Application Logic and Storage

We employed on-chain (through SCs) and off-chain (in the
back-end, database, and other storage systems) strategies for
logic implementation and storage. As previously explained,
off-chain techniques were used for user control and authenti-
cation to the API in the application logic. In regard to storage,
the goal was to preserve sensitive customer information and
attempt to outsource the storage location of raw data, such as
large amounts of data and media files.

With respect to back-end implementation, the code was
optimized by using Web3.js. We also created middleware as
well as unique and modularized flows since most integrated
blockchains follow the EVM standard. Consequently, a spe-

Soares et al. 2023

cific blockchain can be defined in function inputs and outputs
generated similarly for all blockchains. We pointed out that,
in order to improve security requirements, data stored in the
database was encrypted, and access tokens were generated
for customer use to routes. Finally, special tools were ap-
proached for API development, where the proper definitions
of resources, collections, endpoints/URLs, use of HTTP sta-
tus codes, and other important components in the develop-
ment of RESTful APIs were established.

6.3.6 Minimization of redundancies and the use of

blockchain’s libraries

Most implemented blockchains can use the web3.js library as
it follows the Ethereum standard (EVM-based). Therefore,
as a best practice, we architected the code project to avoid
redundancies related to using blockchain libraries. Instead
of each blockchain using the Web3.js library separately, we
grouped the blockchains by library type and enabled middle-
ware to perform optimized coding. For instance, there are
currently three groups of blockchains: 1) web3, a group with
unique functions, code, and web3.js libraries to connect to
Ethereum, Polygon, BNB Smart Chain, or Celo (and its test-
nets), 2) caverjs, a group with unique functions, code, and
caver.js libraries to connect to Klaytn, and 3) h1f, with spe-
cific coding to integrate with HLF.

Suppose we decide to integrate the Huobi Eco Chain
(HECO)? in the future, for example. In that case, we can
easily add it to the existing web3 group without making
any changes to the code, as we only need to provide the
blockchain’s specific configuration parameters. Some of the
parameters to add a new blockchain into Docstone are name,
chainId, and RPC endpoint, for example. However, if we
want to include Solana’ in Docstone, we must implement a
new group that includes the specific libraries. Once devel-
oped, these libraries can be used by any other blockchain-
based on Solana, with minimal or no code modifications nec-
essary.

6.3.7 Using different assets and SCs

Unlike previous studies (Soares et al., 2022a,b), the current
research employs two additional types of assets and smart
contracts related to Processes and NFTs. Related to the data
model used for off-chain storage, we employ a Model class
in our system to represent the structure of assets registered
on the blockchain via the API. This Model class allows us
to accommodate different asset types and provides flexibil-
ity for clients to define specific attributes related to their as-
sets. In this sense, we enable clients to adapt our system to a
wide range of asset types while maintaining essential data
consistency and integrity. This design choice ensures that
clients can define their asset structures as needed and facili-
tates the seamless integration of various asset types into our
blockchain-based solution.

Regarding the SC deployment in Sepolia, there is a sim-
ilarity between the asset types, with the document SC la-
tency time showing inconsistency in values. At Alfajores, the

8https://www.hecochain.com/
“https://solana.com/

Extending the Docstone to Enable a Blockchain-based Service for Customizable Assets and Blockchain Types

NFT’s SC deployment latency time was considerably higher
than that of Document and Processes. An observation is that
the NFT SC imports libraries with other legacy contracts,
which could lead to longer latency times for both blockchains.
However, we observed this behavior only in Alfajores.

Regarding writing and reading different assets, the NFTs
had higher latency times in Sepolia and Alfajores. Neverthe-
less, Documents had the lowest latency time in both networks
in writing and reading requests. These findings are consistent
with the complexity of SCs implementation, as Documents is
the simplest SC to implement and involves fewer operations
when compared to Process and NFTs. Thus, the complexity
of SCs affects the cost of blockchain fees.

In short, the difference in SC implementation impacts
more than the types of assets themselves. Depending on the
type of asset, the logic implemented in the SC may require a
series of business rules that demand greater complexity. The
impacts from the asset can be perceived depending on the
content inserted, as the loads can be small or large.

6.3.8 Distributed File Storage System

Different approaches have been proposed in the literature to
be used as auxiliary storage (as off-chain mechanisms) since
storing media files is still a limitation in the blockchain. Eber-
hardt and Tai (2017) coined the term Content-Addressable
Storage Pattern to the pattern that uses distributed storage
systems to outsource the storage location of raw data. In this
sense, we use IPFS in our solution to use auxiliary storage for
media files and to provide decentralized and immutable file
storage, enhance storage efficiency, and reduce operational
costs, scalability to handle large volumes of data, improve-
ment in file access speed, compatibility with smart contracts,
and resilience against censorship and failures. This strategic
integration strengthens the reliability and performance of the
blockchain application while preserving the integrity and ac-
cessibility of the associated data.

However, we faced some challenges during the initial inte-
gration. In contrast with blockchains, IPFS is not immutable
whether the file does not maintain by a node. In other words,
the files are only available if at least one machine stores them.
Therefore, we have two options to store the files in IPFS:
(a) create a node and maintain it or (b) use an infrastructure
provider, such as Infura, Pinata, Fleek, etc. We tried to use
Pinata and Infura, but these services are limited when using
the IPFS functions and methods. On the other hand, Fleek
makes many functions available regarding the IPFS. How-
ever, Fleeks charges for storage (with a limited free version
and a considerably expensive paid version), while Infura and
Pinata charge for the number of requests. Therefore, to ag-
gregate more implementation flexibility, minimize the costs
(mainly scalability), and secure the availability of files, we
decided to maintain an IPFS node integrated with our server.
To this end, we instantiated only one node and planned to
create new nodes further to improve availability.

6.3.9 Implications for software developers

When using blockchain technology in current systems, we
may face a significant barrier that limits its adoption: the

Soares et al. 2023

technical and organizational complexity that users encounter
when creating decentralized applications. However, this can
be partially compensated for using low-code or no-code plat-
forms (Curty et al., 2022).

Docstone technology is accessible for developers without
prior experience with blockchain, as they do not need to dive
deeply into the area to develop specific functionalities. In ad-
dition, the developers do not need to manage the network in-
frastructure, as many activities are outsourced to the service
provider. Consequently, companies and developers can ob-
tain advantages, such as reduced costs and implementation
times for complex requirements.

On the other hand, Docstone focuses on client applications
that require recording different assets and tracking informa-
tion rather than being a generic tool for exchanging cryp-
tocurrencies, for example. However, considering our gener-
alist architecture, Docstone may move towards other types
of generic business rules beyond registration data.

7 Threats to Validity

Following Wohlin et al. (2012), we discuss the potential
threats that may affect the validity of our work and which
strategies we adopted to mitigate them.

Regarding internal threats, our blockchain test networks
may exhibit latency changes at different intervals, even with
minor variations. To mitigate this threat, we performed 100
runs, considering the mean and standard deviations for each
type of operation. Additionally, test networks usually do not
behave like the main networks. However, since executing op-
erations on the leading network incurs actual costs due to
using cryptocurrencies, test networks with remote nodes pro-
vide an alternative to simulate reality, unlike local network
alternatives such as Ganache'®.

Regarding external threats, the implemented SC is limited
to clients who only wish to use the functionalities of registra-
tion, search, and validation. Nevertheless, we can achieve the
generality of this application since several applications share
similar principles, especially for registering information to
ensure integrity and future validation. In addition, the client
application can choose the type of SC and Asset that best
suits its needs. Additionally, we did not fully explore the per-
mission control resources among multiple organizations on
the private network. However, we acknowledge that a single-
organization architecture is sufficient for a first version in the
particular context of Docstone.

As for construction threats, additional metrics related to
the internal characteristics of blockchains could have been
added to complement the performance analysis. However,
the metric used is sufficient for our goal in this study’s ver-
sion, which aims to compare the different types of SC, assets,
and blockchains’ performance of two new blockchains (Se-
polia and Alfajores) integrated into Docstone.

Regarding conclusion threats, the number of requests in
the evaluation may not reflect real-world environments, es-
pecially when dealing with an API that should support more
than one type of client application. Nevertheless, the goal

10https://trufflesuite.com/ganache/

Extending the Docstone to Enable a Blockchain-based Service for Customizable Assets and Blockchain Types

was to understand the blockchains’ behavior, the API’s avail-
ability, and the difference between types of SC and Assets.

8 Conclusion

Document management has been highly relevant given the
speed and quantity in which information is generated, trans-
ferred, and shared through resources and processes to en-
sure the necessary quality requirements. Considering such
particularities, the use of blockchain shows promise because
of the unique ability to record digital events transparent, se-
curely, and resiliently immutably. Still, there may be barri-
ers to blockchain development, given the difficulty of de-
ployment and the high operation and maintenance cost. To
this end, using “Blockchain-as-a-Service” can reduce efforts
by enabling infrastructure deployment and monitoring the
blockchain network in the cloud. However, they can become
extensive in simple applications that only require functional-
ities in blockchain, such as recording, searching, and validat-
ing document information, which has been quite common in
applications.

This paper extended previous studies which proposed a
solution that allows the customization of parameters from
the creation of templates of documents to using a specific
blockchain, among some options. As new contributions,
there are 1) a discussion about a software architecture adapta-
tion of Docstone, enabling it to support new assets and smart
contracts in a versatile and personalized manner that caters to
other use cases, such as process tracking and asset tokeniza-
tion via NFTs; and 2) an evaluation of several asset types to
compare the execution performance of different smart con-
tract codes and blockchains. Our study has significant impli-
cations for the field of blockchain technology. By enabling
customizable assets, our solution opens up new possibilities
for the use of blockchain in various domains. We believe that
the generality of the solution can benefit a variety of sectors,
such as supply chain management, intellectual property pro-
tection, education, and health records, among others, while
also fostering positive socioeconomic impacts. This is be-
cause the solution aims to streamline blockchain integration,
offering advantages to companies and users.

This extension shows that NFTs have higher deployment
latency times than Documents in Sepolia and Alfajores. The
results of our empirical study offer valuable insights into
DocStone’s performance across multiple blockchains and as-
set types. Notably, using IPFS introduces some variability
in latency times, particularly in Sepolia, but the advantages
of decentralized media storage through IPFS outweigh occa-
sional latency concerns. SC deployment usually shows con-
sistent performance, with the exception of NFTs on Alfajores,
which have higher latency. Efficient write operations are ob-
served for documents, making it an attractive choice for docu-
ment management applications, while Alfajores consistently
outperforms Sepolia. In read requests, Documents stand out,
while NFTs have longer search times. These findings assist in
asset and blockchain selection for optimal performance, and
future research could further improve contextual understand-
ing through comparative analysis with existing solutions.

In future work, we intend to implement Smart Contracts

Soares et al. 2023

(SCs) with new features that will enable customers to se-
lect more specific rules and logic in addition to registration,
search, and validation. Additionally, we plan to introduce
a flagging mechanism within the smart contract framework.
This mechanism will allow the system to promptly halt the
SC execution in the event that a vulnerability is detected. In
this sense, we may advance the study to cover in-depth the
perspective of vulnerabilities and how we overcome them in
DocStone. Furthermore, we planned to evaluate the solution
in a scenario of parallel requests from different organizations
to test the API’s robustness when exposed to requests from
different sources. Moreover, to mitigate the limitations and
bias of analyzing only one metric (latency), we expect to con-
duct a comparative study using new relevant metrics to com-
plement the study findings and provide a set of guidelines for
selecting an appropriate blockchain according to the demand
from client applications. Among these metrics, we intend to
investigate Transaction Rate, Transaction Cost and Security.

Additionally, we intend to apply specific methods for eval-
uating software architectures, such as the Architecture Trade-
off Analysis Method (ATAM), to determine the potential of
Docstone in meeting its expected quality attributes from an
architectural and business perspective. Regarding social im-
pact, the scope of this study did not encompass assessments
with real users. However, to maximize the utility of our so-
lution and explore these potentials, we aim to investigate the
sociotechnical impacts across diverse fields and client con-
texts for future evaluations.

References

Ab Aziz, A., Yusof, Z. M., Mokhtar, U. A., and Jambari, D. 1.
(2020). The implementation guidelines of digital docu-
ment management system for malaysia public sector: ex-
pert review. International Journal on advanced science
engineering information technology, 10(1):198-204.

Abreu, A. W. S., Coutinho, E. F., and Bezerra, C. 1. (2020).
A blockchain-based architecture for query and registration
of student degree certificates. In Proceedings of the 14th
Brazilian Symposium on Software Components, Architec-
tures, and Reuse, pages 151-160.

Acharya, V., Yerrapati, A. E., and Prakash, N. (2019). Or-
acle Blockchain Quick Start Guide: a practical approach
to implementing blockchain in your enterprise. Packt Pub-
lishing Ltd, Birmingham.

Afrianto, I. and Heryanto, Y. (2020). Design and implemen-
tation of work training certificate verification based on
public blockchain platform. In 2020 Fifth International
Conference on Informatics and Computing (ICIC), pages
1-8. IEEE.

Bandara, E., Liang, X., Shetty, S., Ng, W. K., Foytik, P.,
Ranasinghe, N., Zoysa, K. D., Langdy, B., and Larsson,
D. (2020). Lekana-blockchain based archive storage for
large-scale cloud systems. In International Conference on
Blockchain, pages 169—184. Springer.

Bashir, 1. (2017). Mastering blockchain. Packt Publishing
Ltd, Birmingham, United Kingdom.

Beck, R., Avital, M., Rossi, M., and Thatcher, J. B. (2017).

Extending the Docstone to Enable a Blockchain-based Service for Customizable Assets and Blockchain Types

Blockchain technology in business and information sys-
tems research.

Benet, J. (2014). Ipfs-content addressed, versioned, p2p file
system. arXiv preprint arXiv:1407.3561.

BNBChain (2022). Bnb chain documentation.

Buterin, V. et al. (2013). Ethereum White Paper, volume 1.
GitHub repository, Londres, Inglaterra.

Christidis, K. and Devetsikiotis, M. (2016). Blockchains and
smart contracts for the internet of things. IEEE Access,
4:2292-2303.

Curty, S., Hérer, F., and Fill, H.-G. (2022). Blockchain appli-
cation development using model-driven engineering and
low-code platforms: A survey. In Enterprise, Business-
Process and Information Systems Modeling: 23rd Interna-
tional Conference, BPMDS 2022 and 27th International
Conference, EMMSAD 2022, Held at CAiSE 2022, Leu-
ven, Belgium, June 67, 2022, Proceedings, pages 205—
220. Springer.

Das, M., Tao, X., Liu, Y, and Cheng, J. C. (2022).
A blockchain-based integrated document management
framework for construction applications. Automation in
Construction, 133:104001.

de Oliveira Melo, C. M. and Neto, J. A. M. (2014). Sistemas
automatizados: discussoes acerca de seus beneficios para
as unidades de informag¢do. HOLOS, 1:152-169.

Eberhardt, J. and Tai, S. (2017). On or off the blockchain?
insights on off-chaining computation and data. In Euro-
pean Conference on Service-Oriented and Cloud Comput-
ing, pages 3—15. Springer.

Gaur, N., Desrosiers, L., Ramakrishna, V., Novotny, P.,
Baset, S. A., and O’Dowd, A. (2018). Hands-On
Blockchain with Hyperledger: Building decentralized ap-
plications with Hyperledger Fabric and Composer. Packt
Publishing Ltd.

Greve, F. G. et al. (2018). Blockchain e a revolugdo do con-
senso sob demanda. In Anais..., pages 1-52, Sdo Paulo,
Brasil. Simpdsio Brasileiro de Redes de Computadores
e Sistemas Distribuidos (SBRC), 36., 2018, Sao Paulo,
SBC.

Guide, R. M. (2021). Solidity lang.

Han, J., Kim, H., Eom, H., and Son, Y. (2021). A decentral-
ized document management system using blockchain and
secret sharing. In Proceedings of the 36th Annual ACM
Symposium on Applied Computing, pages 305-308.

Jansen, W., Grance, T, et al. (2011). Guidelines on security
and privacy in public cloud computing.

Jie, S., ZHANG, P., ALKUBATI, M., Yubin, B., and Ge,
Y. (2021). Research advances on blockchain-as-a-service:
Architectures, applications and challenges. Digital Com-
munications and Networks.

Khokhariya, U., Shah, K., Pancholi, N., and Kumar, S.
(2022). Dambnft: Document authentication model
through blockchain and non-fungible tokens. In Smart
Trends in Computing and Communications: Proceedings
of SmartCom 2022, pages 347-354. Springer.

Kim, H. (2020). Digital Document Management System
with Distributed Permission Using Secret Sharing Scheme.
PhD thesis, Seoul National University Graduate School.

Soares et al. 2023

Klaytn (2022). Position paper - klaytn.

Koteska, B., Karafiloski, E., and Mishev, A. (2017).
Blockchain implementation quality challenges: a litera-
ture. In Anais..., pages 11-13, Belgrade, Serbia. Workshop
of Software Quality, Analysis, Monitoring, Improvement,
and Applications (SQAMIA), 6., 2017, Belgrade, Serbia,
CEUR.

Kotha, R. K. R. and Sony, M. (2023). Complexity and am-
biguity for blockchain adoption in supply chain manage-
ment. In Blockchain in a Volatile-Uncertain-Complex-
Ambiguous World, pages 29-41. Elsevier.

Li, X., Zheng, Z., and Dai, H.-N. (2021). When services com-
puting meets blockchain: Challenges and opportunities.
Journal of Parallel and Distributed Computing, 150:1-14.

Macedo, A. J., Aratijo, A. A., and Taveira, I. (2021). Adogdo
de blockchain para apoio ao cadastro ¢ inspegdo de barra-
gens hidricas: Uma proposta de pesquisa baseada em de-
sign science research. In 5° Conferéncia sobre Sistemas
de Informagdo na América Latina (ISLA).

Martiri, E., Muca, G., Xhina, E., and Hoxha, K. (2018). Dms-
xt: A blockchain-based document management system for
secure and intelligent archival. In RTA-CSIT, pages 70-74.

Morais, S. C. B., Mussi, C. C., and de Lima, M. A. (2021).
Tecnologia da informagdo e desempenho da gestdo docu-
mental: uma estrutura conceitual. Revista Brasileira de
Preservagdo Digital, 2:¢021004—021004.

Nevedrov, D. (2006). Using jmeter to performance test web
services. Published on dev2dev, pages 1-11.

Onik, M. M. H. and Miraz, M. H. (2019). Performance ana-
lytical comparison of blockchain-as-a-service (baas) plat-
forms. In International Conference for Emerging Tech-
nologies in Computing, pages 3—18. Springer.

Prathibha, S., Sona, T., and Krishna Priya, J. (2021). Secured
storage and verification of documents using blockchain
technology. In Transforming Cybersecurity Solutions us-
ing Blockchain, pages 71-90. Springer.

Saraiva, R., Aratjo, A. A., Soares, P., and Souza, J. (2021).
Miriam: A blockchain-based web application for manag-
ing professional registrations of medical doctors in brazil.
In 2021 IEEE International Conference on Blockchain
and Cryptocurrency (ICBC), pages 1-2. IEEE.

Seebacher, S. and Schiiritz, R. (2017). Blockchain technol-
ogy as an enabler of service systems: A structured liter-
ature review. In International Conference on Exploring
Services Science, pages 12-23. IESS.

Shukla, P. A. and Samet, S. (2020). Systematization of
knowledge on scalability aspect of blockchain systems.
In Anais..., pages 130—138. Future of Information and
Communication Conference, 2020, San Francisco, United
States, Springer.

Soares, P., Saraiva, R., Fernandes, 1., Neto, A., and Souza,
J. (2022a). A blockchain-based customizable document
registration service for third parties. In 2022 IEEE Inter-
national Conference on Blockchain and Cryptocurrency
(ICBC), pages 1-2. IEEE.

Soares, P., Saraiva, R., Fernandes, 1., Souza, J., and Loiola, R.
(2022b). Docstone: A blockchain-based architecture for a
customizable document registration service. In Proceed-
ings of the 16th Brazilian Symposium on Software Compo-

Extending the Docstone to Enable a Blockchain-based Service for Customizable Assets and Blockchain Types Soares et al. 2023

nents, Architectures, and Reuse, pages 1-10.

Stefanovi¢, M., Przulj, D., Risti¢, S., Stefanovi¢, D., and
Nikoli¢, D. (2022). Smart contract application for manag-
ing land administration system transactions. /EEE Access,
10:39154-39176.

Technology, P. (2022). Polygon documentation.

Tikhomirov, S. (2017). Ethereum: state of knowledge and
research perspectives. In International Symposium on
Foundations and Practice of Security, pages 206-221.
Springer.

Van Molken, R. (2018). Blockchain across Oracle: under-
stand the details and implications of the Blockchain for
Oracle developers and customers. Packt Publishing Ltd.

Wan, Z., Cai, M., Yang, J., and Lin, X. (2018). A novel
blockchain as a service paradigm. In International Con-

ference on Blockchain, pages 267-273. Springer.

Wenhua, Z., Qamar, F., Abdali, T.-A. N., Hassan, R., Jafri, S.
T. A., and Nguyen, Q. N. (2023). Blockchain technology:
security issues, healthcare applications, challenges and fu-
ture trends. Electronics, 12(3):546.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell,
B., and Wesslén, A. (2012). Experimentation in software
engineering. Springer Science & Business Media, Boston.

Woéhrer, M., Zdun, U., and Rinderle-Ma, S. (2021). Architec-
ture design of blockchain-based applications. In 2021 3rd
Conference on Blockchain Research & Applications for
Innovative Networks and Services (BRAINS), pages 173—
180. IEEE.

Wiist, K. and Gervais, A. (2018). Do you need a blockchain?
In 2018 crypto valley conference on blockchain technol-
ogy (CVCBT), pages 45-54. IEEE.

Xie, J., Yu, F. R., Huang, T., Xie, R., Liu, J., and Liu, Y.
(2019). A survey on the scalability of blockchain systems.
IEEE Network, 33(5):166—-173.

Xu, X., Weber, 1., and Staples, M. (2019a). Architecture for
blockchain applications. Springer.

Xu, X., Weber, 1., and Staples, M. (2019b). Blockchain pat-
terns. In Architecture for Blockchain Applications, pages
113-148. Springer.

Zheng, Z., Xie, S., Dai, H., Chen, X., and Wang, H. (2017).
An overview of blockchain technology: Architecture, con-
sensus, and future trends. pages 557-564, Boston. IEEE
international congress on big data (BigData congress), 1.,
2017 Boston, IEEE.

	Introduction
	Background
	Blockchain
	Blockchains Compatible with Ethereum Virtual Machine (EVM)

	Hyperledger Fabric
	InterPlanetary File System (IPFS)

	Related Work
	Docstone: An Architectural Overview
	Application Layer
	Service Layer
	Client class
	Model class
	Smart Contract class
	Assets class

	Persistence Layer
	Off-chain module
	EVM module
	Private Network module

	Docstone Demonstration
	Empirical Study
	Experimental Setup
	Performance Evaluation
	POST requests (write) analysis regarding the use of IPFS
	POST requests (deployment) analysis of smart contract types
	POST requests (write) analysis of smart contract types
	GET requests (read) analysis of smart contract types

	Discussion and Lessons Learned
	Performance
	Decentralization level
	Identity Provisioning, Key Management, and Transaction Handling
	Connection to blockchain
	Application Logic and Storage
	Minimization of redundancies and the use of blockchain's libraries
	Using different assets and SCs
	Distributed File Storage System
	Implications for software developers

	Threats to Validity
	Conclusion

