Journal of Software Engineering Research and Development, 2024, 12:5, doi: 10.5753/jserd.2024.3324

© This work is licensed under a Creative Commons Attribution 4.0 International License.

On the Effectiveness of Trivial Refactorings in Predicting

Non-trivial Refactorings

Darwin Pinheiro ® [Federal University of Ceara | darwinfederal@alu.ufc.br |
Carla Bezerra ® [Federal University of Ceara | carlailane@ufc.br |
Anderson Uchéa @ [Federal University of Ceara | andersonuchoa@ufc.br |

Abstract

Refactoring is the process of restructuring source code without changing the external behavior of the software.
Refactoring can bring many benefits, such as removing code with poor structural quality, avoiding or reducing tech-
nical debt, and improving maintainability, reuse, or code readability. Although there is research on how to predict
refactorings, there is still a clear lack of studies that assess the impact of operations considered less complex (triv-
ial) to more complex (non-trivial). In addition, the literature suggests conducting studies that invest in improving
automated solutions through detecting and correcting refactoring. This study aims to identify refactoring activity in
non-trivial operations through trivial operations accurately. For this, we use classifier models of supervised learning,
considering the influence of trivial refactorings and evaluating performance in other data domains. To achieve this
goal, we assembled 3 datasets totaling 1,291 open-source projects, extracted approximately 1.9M refactoring oper-
ations, collected 45 attributes and code metrics from each file involved in the refactoring and used the algorithms
Decision Tree, Random Forest, Logistic Regression, Naive Bayes and Neural Network of supervised learning to
investigate the impact of trivial refactorings on the prediction of non-trivial refactorings. For this study, we contex-
tualize the data and call context each experiment configuration in which it combines trivial and non-trivial refactor-
ings. Our results indicate that: (i) Tree-based models such as Random Forest, Decision Tree, and Neural Networks
performed very well when trained with code metrics to detect refactoring opportunities. However, only the first two
were able to demonstrate good generalization in other data domain contexts of refactoring; (ii) Separating trivial
and non-trivial refactorings into different classes resulted in a more efficient model. This approach still resulted
in a more efficient model even when tested on different datasets; (iii) Using balancing techniques that increase or
decrease samples may not be the best strategy to improve models trained on datasets composed of code metrics and

configured according to our study.

Keywords: Refactoring, Machine Learning, Sofiware Quality.

1 Introduction

During software maintenance, developers can introduce low-
quality code intentionally or unintentionally (Ouni et al.,
2015; de Mello et al., 2022). Over time, this low-quality
code can deteriorate the overall code quality and lead to
crashes in the future (Yamashita and Moonen, 2012). Refac-
toring is a solution that can be used to address this problem
by applying transformations to the source code (Silva et al.,
2016a). Refactoring is a term introduced by Opdyke (1992)
but only became widely known after the publication of Mar-
tin Fowler’s book (Martin Fowler, 2000). Refactoring refers
to a transformation that changes the internal structure of the
source code without changing its external behavior (Mar-
tin Fowler, 2000). In other words, the software should pro-
duce the same output after the refactoring activity as it did
before.

Researchers have investigated different perspectives for
the use of refactoring (Mens and Tourwé, 2004; Azeem et al.,
2019; de Paulo Sobrinho et al., 2018; Du Bois et al., 2004;
Cassell et al., 2011; Bavota et al., 2010; Alkhalid et al., 2011,
Al Dallal, 2012; Bibiano et al., 2023). Among them: (i) so-
lutions that recommend refactorings for developers (Bavota
et al., 2015; Tsantalis et al., 2018); (ii) challenges in ap-
plying refactoring (Sharma et al., 2015; Kim et al., 2014);
(iii) developers’ motivation to refactor the code (Silva et al.,
2016a; Palomba et al., 2017; Paixao et al., 2020); and (iv)

machine learning-based refactoring detection (Aniche et al.,
2020; Nyamawe, 2022; AlOmar et al., 2021). The utilization
of machine learning predictive models (ML) to assist devel-
opers in identifying refactoring opportunities to improve de-
sign is a relatively new area. (Azeem et al., 2019). Some
studies use ML to detect refactoring opportunities through su-
pervised learning (Aniche et al., 2020; AlOmar et al., 2021;
Nyamawe, 2022; AlOmar et al., 2022; Rish et al., 2001). Oth-
ers investigate refactoring opportunities using unsupervised
learning (Alkhalid et al., 2010; Bryksin et al., 2018).

Despite many studies investigating how ML can be lever-
aged as a way to improve refactoring techniques (Aniche
etal., 2020; Nyamawe, 2022; AlOmar et al., 2021; Panigrahi
et al., 2020; Rish et al., 2001; Bryksin et al., 2018; Alkhalid
et al., 2010), few studies investigate strategies on how to
improve the prediction of refactorings by these models. Ku-
mar et al. (2019a) states that software metrics are the most
important factors in helping to estimate the propensity for
refactoring at the class level among the main possible ap-
proaches. Azeem et al. (2019) conducts a literature review
and points out that there is room for studies to investigate
how ML can detect refactoring opportunities. Therefore, our
motivation is based on the scarcity of studies investigating
strategies to enhance refactoring prediction. Moreover, in
our review of existing literature, we noted the classification
of refactoring is a strategy frequently used in the literature.

https://orcid.org/0000-0003-1611-3600
mailto:darwinfederal@alu.ufc.br
https://orcid.org/0000-0002-5879-5067
mailto:carlailane@ufc.br
https://orcid.org/0000-0002-6847-5569
mailto:andersonuchoa@ufc.br

Pinheiro et al. 2024

Table 1. Group of Trival and Non-trivial Refactorings used in this research

Group Refactoring Problem Solution
Add Class Annotation When an annotation is needed Add an annotation
Add Class Modifier When it is necessary to use modifiers Add the final modifier, static or abstract
Change Access Modifier When it is necessary to change the access modifier ﬁ(l:ange SR, S, el e S e~
Trivial Modify Class Annotation ‘When you need to change an annotation Change the annotation

Remove Class Annotation
Remove Class Modifier
Rename Class

‘When no longer need to use annotation
When no longer need to use modifiers
When the class name is inappropriate

Remove annotation
Remove final modifier, static or abstract
Rename the class

Extract Class
Extract Subclass

Extract Superclass

Non-trivial Wit (RS

Move Class
Move and Rename Class

When one class does the work of two
When a class uses resources in specific cases
When two classes have common features

When a class does nothing or has no responsibilities
When a class is in an inappropriate package
Combination of the two aforementioned refactorings

Create a new class to be responsible for fields and
methods

Create a subclass to use these specific cases
Create a superclass and move similar attributes and
methods

Merge data from two classes into one

Move the class to a suitable package
Combination of the two aforementioned solutions

Thus, we chose to incorporate this perspective into our re-
search, adopting a classification based on the triviality of
refactoring.

In our previous study (Pinheiro et al., 2022), we inves-
tigated the impact of trivial refactorings on classification
model prediction. Non-trivial refactorings are operations that
generate changes in the design of system, while trivial refac-
torings do not significantly change the system design. The
models were trained using the algorithm: Decision Tree, Ran-
dom Forest, Logistic Regression, Naive Bayes, and Neural
Network in 884 open-source systems. We identified contexts
in which trivial refactorings can positively impact the predic-
tion of non-trivial refactorings. We analyzed: (i) the perfor-
mance of ML algorithms to predict refactorings; (ii) the ef-
fect of trivial operations on the prediction of non-trivial ones;
and (iii) the use of balancing techniques to improve the pre-
dictions.

This article is an extension of our previous study (Pin-
heiro et al., 2022), in which we investigated the effectiveness
of trivial refactorings in predicting non-trivial ones. Further-
more, we used classifier models of supervised learning, tak-
ing into account the influence of trivial refactorings. We also
evaluated the performance of these models in other datasets.
For this study, we: (i) added a new research question (RQ,4) to
assess whether the ML models trained with the code metrics
and attributes of the dataset used in our previous study (Pin-
heiro et al., 2022) can generalize to two other datasets se-
lected in this new study; (ii) increased the number of projects
used to compose each dataset, totaling 407 new projects (207
from the Apache community and 200 from the Eclipse com-
munity) in comparison to the previous study (Pinheiro et al.,
2022); (iii) expanded the data extraction process to include
refactorings, files, commits, and code metrics, to save all the
necessary data for training the machine learning models; (iv)
implemented a balancing technique called Synthetic Minor-
ity Oversampling Technique (SMOTE), which uses an ap-
proach to deal with unbalanced datasets through oversam-
pling of minority classes (Chawla et al., 2002); and, (v) used
the Area Under the ROC (AUC) metric in all models of this
new study, a widely used metric to measure the classification
of ML models (Hanley and McNeil, 1982).

As additional contributions to this article, we claim that

ML with tree-based models such as Random Forest and Deci-
sion Tree performed extremely well and demonstrated good
generalization in other data domains related to refactoring.
Additionally, separating trivial and non-trivial refactorings
into distinct classes resulted in a more effective model, even
when tested on different datasets. However, altering the data
balancing technique may lead to a comparable or worse out-
come compared to the unbalanced model. This extended ver-
sion of our study makes the following contributions:

Our results show that tree-based machine learning mod-
els, such as Random Forest and Decision Tree, have
shown excellent performance when trained with code
metrics to detect refactoring opportunities.

We identified that separating trivial and non-trivial
refactorings into different classes resulted in a more effi-
cient model, suggesting that this approach may improve
the accuracy of automated solutions based on ML.

We observed that sampling balancing techniques might
not be the best strategy to improve models trained on
datasets composed of code metrics and configured ac-
cording to the study at hand.

Finally, we observed that models trained with code at-
tributes and metrics demonstrate good generalization in
other data domain contexts.

The remainder of this article is organized as follows. Sec-
tion 2 introduces the key definitions of this study. Section 3
presents our study settings. Section 4 presents our main
findings, followed by a discussion. Section 5 presents an
overview of the related work. Section 6 discusses the main
threats to validity. Finally, Section 7 concludes the article
and suggests future work.

2 Background
2.1 Code Refactorings

Code refactoring is a current practice of software develop-
ment (Kim et al., 2014; Murphy-Hill et al., 2011; Silva et al.,
2016b). Code refactoring was defined by Martin Fowler
(2000) as a disciplined technique for structuring an existing
source code, changing its internal structure without chang-
ing the system’s functional behavior. In other words, code

Rename Class

0
public class Customer { C‘\a
private String name;
private int age;
private String address;

public class Person {
private String name;
private int age;
private String address;

/I Constructor, getters and setters

} }

// Constructor, getters and setters

Before After

Add Class Anotation

o
@serializable O™
public class Person {

private String name;
private int age;
private String address;

public class Person {
private String name;
private int age;
private String address;

/I Constructor, getters and setters / Constructor, getters and setters

Before After

Figure 1. Example of Trivial refactoring

refactoring can be understood as applying transformations to
the code structures to enhance software maintainability (Kim
et al., 2014; Murphy-Hill et al., 2011). Each transformation
type defines how developers should modify certain code el-
ements, such as methods and classes. Extract Method is an
example of a transformation type popularly adopted by de-
velopers (Silva et al., 2016b; Tsantalis and Chatzigeorgiou,
2011). This transformation type consists of extracting partic-
ular code statements of a method to create a new method.
Extract Method can be used to separate the features across
methods of a project (Tsantalis et al., 2018).

Some studies classify or group refactorings according to
their general purpose (Sellitto et al., 2021; Smiari et al., 2022;
Fernandes et al., 2020). Other studies prefer to simplify the
binary classification by separating features into two classes,
features referring to files before refactoring (not refactored)
and after refactoring (refactored). (Eposhi et al., 2019; Nya-
mawe, 2022). AlOmar et al. (2021) classify their refactorings
into: internal, external, fix bug, and fix the smell. Other than
that, Sellitto et al. (2021) group refactorings into compos-
ing methods, moving resources, organizing data, simplifying
method calls, and others.

Currently, in the literature, we have not identified any clas-
sification taken as a rule for refactorings. Martin Fowler
(2000) describes cases where the same refactoring can be
trivial or not, usually involving changes in the code scope.
However, it does not describe or determine rules for classify-
ing refactoring as trivial or not. Thus, we expanded the focus
on this theme for this work and classified the refactorings
into trivial and non-trivial. We consider trivial refactorings
those operations that can change only one line, but not lim-
ited, of source code. Furthermore, trivial refactorings must
be indivisible operations. Two examples can be observed in
Figure 1, the Rename Class and Add Class Annotation.

Conversely, non-trivial refactorings generate a more sig-
nificant change in code design, modifying several lines
greater than one. Furthermore, they can be composed of other
refactorings. An example of non-trivial refactoring is the Ex-
tract Class operation which aims to separate the responsibili-
ties of a class, another example is the Move Class which aims
to move a class to a more suitable package (see Figure 2).
The procedure consists of: (i) creating a new class, and (ii)

Pinheiro et al. 2024

moving responsible attributes and methods. We can perform
this operation when a class does not have a clear responsi-
bility and when a subset of attributes and methods appear
to form a new set (Martin Fowler, 2000). This refactoring
is considered non-trivial because it significantly changes the
code design.

This operation can also use other refactoring operations
cataloged by Martin Fowler (2000), such as: Move Method,
Move Field, and Change Reference to Value. Trivial refactor-
ings are easier to identify because the operation changes the
code design little. For example, the Rename Class operation
might just change the name of the refactored class, changing
only a single line. Also, it is not possible to split it into other
refactoring operations.

Our study analyzed 13 types of transformations applied at
the class level. Our choice was based on the need for more
studies involving the main refactorings used in the indus-
try (Khanam, 2018) and more studies of refactorings that pri-
oritize the class level (Agnihotri and Chug, 2020). Addition-
ally, we split these 13 types of transformations into trivial
refactorings and non-trivial ones. Table 1 lists the set of triv-
ial and non-trivial refactorings considered in this study.

2.2 Machine Learning Techniques

To investigate how trivial refactorings affect the prediction
of non-trivial refactorings, we analyzed five ML techniques
frequently used in literature (Aniche et al., 2020; Nyamawe,
2022; AlOmar et al., 2021, 2022; Panigrahi et al., 2020).
These techniques involve different data analysis approaches,
such as decision trees and regression analysis, responsible for
creating the classifier models. We overview each ML tech-
nique as follows.

* Decision Tree (DT): a technique used for both classifi-
cation and regression. DT aims to learn decision rules in-
ferred from the data to predict the value of a target vari-
able. Represented by a binary tree model, where each
node will be represented by an input variable and the
leaves will represent an output variable used to make
the prediction. Its characteristics are the speed to make
predictions and accuracy for most problems (Quinlan,
2014).

Logistic Regression (LR): a technique that uses con-
cepts of statistics and probability for binary classifica-
tion. It analyzes different aspects or variables of an ob-
ject to determine which class best fits. It can be di-
vided into three models: binomial logistic regression,
ordinal logistic regression and multinomial logistic re-
gression (Bishop and Nasrabadi, 2006).

Naive Bayes (NB): a probabilistic classifier based on
the application of Bayes’ theorem (Jordan and Mitchell,
2015). This highly scalable technique disregards the cor-
relation between the variables in the training set. It is
considered a simple technique to train and fast (Rish
et al., 2001).

Neural Network (NN): a technique commonly used for
deep learning and designed to solve problems that other
techniques cannot solve. NNs comprise many intercon-
nected layers, so when data passes through these layers

Pinheiro et al. 2024

Extract Class

public class Person {
pr@vate $tring name; o
private int age; O‘(\a“
private String address; ~2°
private Contact contact;

public class Person {
private String name;
private int age; o
private String address; Wa(\(}
private String phone; A° o)
private String email;

/I Constructor, getters and setters

/| Constructor, getters and setters }

}

&
)
public class Contact { o o
private String phone;

private String email;

Before After

o 209
/package com.example.employee; N\ /package com.example.employee; N \
import com.example.common.Address;
public class Employee { .
private String name; public class Employee {
private String email; pr!vale Str!ng name;
private String phone; pr!va:e g:r!ng err:]all;
rivate Addr ress: private String phone;
private Address address; private Address address;
/| Constructor, getters and setters) / Constructor, getters and setters
}
&
- ‘\a(\‘l J
2° C!
ackage com.example.common;
public class Address { (° 5 A
private String street; publ{c class I}ddress {
private String city; pr]vate Str!ng sf{reel;
private String zipCode; private String city;
private String zipCode;
/| Constructor, getters and setters
/| Constructor, getters and setters
}
- I\ J
Before After

Figure 2. Example of Non-trivial refactoring

the NN can approximate calculations to transform input
into outputs (Jin et al., 2000).

* Random Forest (RF): technique capable of creating
several independent trees employing many samples of
observations and variables, with the main benefit of re-
duced variance compared to a single tree. It sums the
forecasts for each tree to determine an overall forecast
for the forest. RF-based algorithms are among the most
accurate in many ML problems (Cutler et al., 2012).

2.2.1 Machine Learning Metrics

To evaluate ML algorithms’ performance, metrics are neces-
sary to measure the quality of a model (Carvalho et al., 2019).
The metrics use the values extracted from the confusion ma-
trix: True Positive (TP), False Positive (FP), True Negative
(TN), and False Negative (FN). For this study, we used the
following metrics: (i) Accuracy, (ii) Precision, (iii) Recall,
and (iv) Fl-score (see Table 2). We present a short descrip-
tion of each metric as follows.

Table 2. Metrics for evaluating ML models

ML metrics Formula
TP+TN
Accuracy TP+FP+TN+FN
o TP
Precision TP+FP
TP
Recall TP+FN
Precision Xrecall
F1-score 2x Precision+recall
1 -1
AUC fo TPR(FPR) ™ 'dFPR

TPR - True Positive Rate
FPR - False Positive Rate

* Accuracy: It is the proportion of correctly classified ob-
servations among the total observations. The accuracy
indicates the overall performance of the model (Davis
and Goadrich, 2006).

* Precision: It is the proportion of positive observations
correctly classified among the predicted positive obser-

vations. Accuracy is measured when FP is considered
more harmful than FN (Carvalho et al., 2019).

* Recall: It is the proportion of positive observations cor-
rectly classified among true positive observations. The
recall is measured when FNs are considered more harm-
ful than FPs (Carvalho et al., 2019).

* Fl1-score: It is the harmonic mean between the precision
and the recall (Chicco and Jurman, 2020).

* AUC: Area Under the Curve is a commonly used metric
to evaluate the quality of a binary classification model.
Represents the area under the ROC (Receiver Operat-
ing Characteristic) curve, which is an indicator of the
model’s ability to distinguish between positive and neg-
ative classes (Hanley and McNeil, 1982; Muschelli II1,
2020).

2.3 Code Quality Metrics

Software metrics are used to measure and understand soft-
ware structure. Chidamber and Kemerer (1994) proposed
a suite of code metrics for software that adopts the object-
oriented paradigm. This suite, one of the precursors, is com-
monly used in the literature (Padhy et al., 2015; Aggarwal
et al., 2006; Malhotra! and Chug, 2012).

Our study selected a set of metrics from the CK suite pro-
posed by Chidamber and Kemerer (1994), LOC (Lorenz and
Kidd, 1994) and different attributes of the code elements,
such as: the number of methods, number of returns, num-
ber of variables, etc. The values were extracted using the CK
tool (Aniche, 2015) to be used as features to train the predic-
tion models. The set of these metrics and the attributes of the
code elements used in this work can be seen in Table 3.

3 Study Settings

This section describes the settings of our study. Section 3.1
introduces the study goal and research questions. Section 3.2
describes each study step and procedure, from data collection
to data analysis.

Table 3. Metrics and attributes of code elements used in this work Lorenz and Kidd (1994); Chidamber and Kemerer (1994)

Pinheiro et al. 2024

Field Description
Metrics

cbo Coupling between objects. Counts the number of dependencies a class has.
wmc (Weight Method Class or McCabe’s complexity. It counts the number of branch instructions in a class.
noc Number of Children. It counts the number of immediate subclasses that a particular class has.
rfc Response for a Class. Counts the number of unique method invocations in a class.
lcom Lack of Cohesion of Methods a normalized metric that computes the lack of cohesion of class
nosi Number of static invocations. Counts the number of invocations to static methods
loc Lines of code. It counts the lines of the count, ignoring empty lines and comments

Code elements attributes
totalMethodsQty Counts the number of all methods.
staticMethodsQty Counts the number of static methods.
publicMethodsQty Counts the number of public methods.
privateMethodsQty Counts the number of private methods.
protectedMethodsQty Counts the number of protected methods.
defaultMethodsQty Counts the number of default methods.
visibleMethodsQty Counts the number of visible methods.
abstractMethodsQty Counts the number of abstract methods.
finalMethodsQty Counts the number of final methods.
synchronizedMethodsQty ~ Counts the number of synchronized methods.
totalFieldsQty Counts the number of all fields
staticFieldsQty Counts the number of static fields
publicFieldsQty Counts the number of public fields
privateFieldsQty Counts the number of private fields
protectedFieldsQty Counts the number of protected fields
defaultFieldsQty Counts the number of default fields
finalFieldsQty Counts the number of final fields
synchronizedFieldsQty Counts the number of synchronized fields
returnQty The number of return instructions
loopQty The number of loops like for, while, do while and enhanced for
comparisonsQty The number of comparisons == and !=
tryCatchQty The number of try/catches
parenthesizedExpsQty The number of expressions inside parenthesis
stringLiteralsQty The number of string literals
numbersQty The number of numbers literals int, long, double, float
assignmentsQty The number of same or different comparisons
mathOperationsQty The number of math operations (times, divide, remainder, plus, minus, left shit, right shift)
variablesQty The number of declared variables
maxNestedBlocksQty The highest number of blocks nested together
anonymousClassesQty The quantity of anonymous classes
innerClassesQty The quantity of inner classes
lambdasQty The quantity of lambda expressions
uniqueWordsQty The algorithm basically counts the number of words in a class, after removing Java keywords
typeAnonymous Boolean indicating whether is an anonymous class
typeClass Boolean indicating whether is a class
typeEnum Boolean indicating whether is an enum
typelnnerclass Boolean indicating whether is an inner class
typelnterface Boolean indicating whether is an interface
Total: 45

3.1 Goal and Research Questions

This study aims to investigate the influence of trivial refac-
torings at the class level in predicting non-trivial refactorings.
To this end, we used models based on ML algorithms trained
with 45 code metrics. By understanding how trivial refactor-
ings affect the prediction of non-trivial refactorings, we will
be able to discover strategies to improve the prediction of
refactorings through supervised learning. Furthermore, we
investigated whether the trained models are generalized to
other contexts. We describe our research questions (RQ) as

follows.

RQ;: What is the performance of ML algorithms to
predict trivial and non-trivial refactorings? — RQ; aims
to investigate the performance of 5 ML algorithms(Random
Forest, Decision Tree, Logistic Regression, Naive Bayes and
Neural Network) to predict trivial and non-trivial refactor-
ings together. By answering RQ;, we can identify which al-
gorithms produce the best results for our different sets of con-
texts, considering each context as different set that combines
trivial and non-trivial refactorings.

RQ.: How effective is the inclusion of trivial refactor-

ings to predict non-trivial refactorings? — RQ, aims to
compare the performance of trained models to predict non-
trivial refactorings by considering different sets combining
trivial and non-trivial refactorings. By answering RQ-, we
can compare and evaluate which combination of trivial and
non-trivial refactorings presents better results.

RQ3: How effective are data balancing techniques in
the prediction of trivial and non-trivial refactorings? —
RQ3 aims to evaluate the effectiveness of the data balanc-
ing technique applied to our different sets of contexts. By
answering RQs, we can identify whether there is an imbal-
ance in our data, as well as find the data balancing technique
that performs best in our models with our configuration.

RQ,: Can the best models be carried over to different
contexts? — RQ, aims to understand whether the best mod-
els should be trained for a given context and whether it gen-
eralizes enough to different contexts. By answering RQg4, we
can reduce the cost that a new training can bring. In addition,
we identified the ability to handle large volumes of data and
avoid the cost of identifying complex patterns.

3.2 Study Steps and Procedures

Figure 3 overviews the sequence of five-step that we have fol-
lowed to answer our RQs: (1) Selection and analysis of open
source systems; (2) Detect refactoring opportunities and fea-
tures mining; (3) Contexts Selection; (4) Training and test-
ing the models; and (5) Evaluation Results. We describe each
step as follows.

Step 1: Selection and analysis of open-source software
systems. The first step consisted of selecting a set of open-
source software systems. For our study, we needed to gather
a large number of open-source projects to allow the study
replication. For this, we have built three sets of data. We used
the dataset used in the last article plus two similar datasets
in order to minimize any bias produced by just one dataset.
The new ones have the same characteristics and are com-
patible with the used tools. The first dataset (D1), namely
in this study as the base dataset used in the last study (Pin-
heiro et al., 2022). We selected 884 software projects from
a dataset of engineering software projects from different au-
thors. The second dataset (D2) is composed of 207 projects
from the Apache ecosystem. Finally, the third dataset (D3)
is composed of 200 projects from the Eclipse ecosystem.
These projects were chosen because the authors observed
evidence of solid software engineering practices, including
collaboration, continuous integration, quality, maintainabil-
ity, sustained evolution, project management, responsibility,
and unit testing. All projects were extracted from GitHub by
our tool. Table 4 summarizes the data for the selected soft-
ware systems. The first column contains the name of each
ecosystem in the dataset, followed by the number of projects,
commits, and refactorings. The replication package of the
previous study' and extension® contains their detailed infor-
mation.

Step 2: Detect refactoring opportunities and features
mining. In this step, we have extracted the data about refac-

! Available at https://doi.org/10.5281/zenodo . 6800385.
2Available at https://doi.org/10.5281/zenodo . 7820168.

Pinheiro et al. 2024

Table 4. Overview of the selected datasets

Ecosystem # Projects # Commits # Refactorings
D1 (Base) 884 35,838 84,262
D2 (Apache) 207 272,096 1,144,365
D3 (Eclipse) 200 153,610 767,111
Total 1,291 461.544 1,995,738

torings and code metrics (used as features) for all selected
projects. To this end, we have performed three key activi-
ties: (1) extracting code refactorings; (2) tracking the mod-
ified files before and after refactorings, and (3) extracting
code metrics to be used as features. We detailed each step as
follows.

Activity 1: Code refactorings extraction. We detected
refactorings for all selected projects. For this end, we chose
RMiner, (version 2.0) as the tool to detect code refactorings
due to its high accuracy (Tsantalis et al., 2020). This tool is
applied between two versions (commits) and returns the el-
ements that changed from one version to another. It also re-
turns the refactoring type associated with the change. The
tool detected a total of 1.995.738 refactoring types used in
our study (see Table 4). After the code refactoring extraction,
we divided the refactorings into two groups, trivial and non-
trivial refactorings, as described in Section 2.1.

Activity 2: Tracking the modified files before and after
refactorings. To analyze the prediction of trivial and non-
trivial refactorings, we need to track the modified files be-
fore and after the refactoring application. Thus, we tracked
the version before and after each file undergoing trivial and
non-trivial refactoring. To track the modified files, we uti-
lized Pydriller (Spadini et al., 2018) and the Jupyter Note-
book (Jupyter, 2022) to process the data. Thus, we tracked
the version before and after each file undergoing trivial and
non-trivial refactoring. A total of 39,423,447 files involved
in refactoring operations were analyzed.

Activity 3: Extracting code metrics for tracked files. In this
activity, we extracted the code metrics and some attributes of
code elements to be used as features in our study. To this end,
we have used the CK tool (Aniche, 2015) to extract each met-
ric and attribute. Additionally, we created a Python script to
automatize summarizing the file outputs provided by the CK
tool in a single file. For all fields calculated by the tool, af-
ter previous data analysis, we decided to use only 45 metrics
and attributes as features for our datasets. They can be seen
in Table 3.

Step 3: Contexts Selection. In this step, with the datasets
defined (D1, D2 and D3), we separate and combine each
dataset by type of refactoring (trivial and non-trivial) and
state of refactoring (before and after the activity occurred).
Each separation and combination in this study we call con-
text. Furthermore, we subdivide each context into two classes
depending on the type and state of the refactoring. In this
study, we call one class 0 and the other 1. The Table 5
presents all the divisions.

The base context (C0) is defined by separating features
from files that have undergone non-trivial refactoring activ-
ity. Class 0 is for features before the activity is executed,
while class 1 is for features after the activity is executed.

The next context (C1) is defined by file features that

https://doi.org/10.5281/zenodo.6800385
https://doi.org/10.5281/zenodo.7820168

Mining
b Features

= Refactorings
» Files
+ Meatrics

Dataset
Apache

Pinheiro et al. 2024

Cs

= ——
——

28

Learning Analysis
Caontexts H
= Accuracy
« Pracision
+ Recall
. CO,C1, 62, C2 0 A
« Under (C0-3) 0 GLH
« Over (C0-3)

Dataset
Apache

Generzalization

e B

Maodels

Figure 3. Overview of the research methodology

have undergone the trivial and non-trivial refactoring activ-
ity. Class 0 is for features after the trivial refactoring activity
is performed, while class 1 is for features after the non-trivial
refactoring activity is performed.

Context two (C2) is defined by file features that have un-
dergone trivial and non-trivial refactoring activity. Class 0
is for features before the trivial and non-trivial refactoring
activity is performed, while class 1 is for features after the
trivial and non-trivial refactoring activity is performed.

Context three (C3) is defined by file features that have
undergone trivial and non-trivial refactoring activity. Class
0 is for features before the trivial refactoring activity is per-
formed, while class 1 is for features after the non-trivial refac-
toring activity is performed.

It is important to highlight that most contexts included
refactorings since we sought to investigate how they can af-
fect the prediction of non-trivial refactorings. The number of
instances of each context can be seen in Table 5.

Table 5. Instance numbers of contexts

Context D1 D2 D3
class 0 1 0 1 0 1
CO 251,416 258,010 1,004,983 992,991 625,274 649,768
Cl 232,468 258,010 1,265,956 992,991 446,880 649,768
C2 364,015 377,879 1,633,881 1,630,119 845,395 876,527
C3 112,599 258,010 628,828 992,991 220,121 649,768

Step 4: Training and testing the models. In this step,
we used the datasets constructed by the combinations C1,
C2 and C3 created in the previous step to predict refactor-
ings. All contexts have been tested, with some changes to

the processing pipeline. Thus, the data from each dataset was
split into two datasets: 80% for the training set (used to train
the model) and 20% for the test set (used to validate and
test the model). The trained models formed binary classifiers
based on supervised ML algorithms: Random Forest, Deci-
sion Tree, Logistic Regression, Naive Bayes, and Neural Net-
work. The first four algorithms were used through the Scikit-
learn library?, while the Neural Network was used through
TensorflowKeras*. After training, each generated model was
validated by predicting the refactorings of the features in the
test set.

Furthermore, we consider that the prediction of ML algo-
rithms can be negatively affected by an unbalanced dataset
(number of different samples between classes). Therefore,
we applied two balancing techniques for each combina-
tion: Random Under Sampler and SMOTE (Chawla et al.,
2002). These balancing techniques were chosen because they
are commonly used in recent studies (Moreo et al., 2016;
Hasanin and Khoshgoftaar, 2018; Tabassum et al., 2023) and
because they facilitate the comparison of efficiency when
used together (Mohammed et al., 2020). In addition to unbal-
anced contexts, the balancing techniques were applied indi-
vidually by context C0, C1, C2 and C3, creating eight more
combinations: C0O Under, C1 Under, C2 Under, C3 Under,
C1 over, C1 Over, C2 Over and C3 Over. After training,
we tested the models to predict refactoring activity on the
datasets. Then, we tested the generated models from the base
dataset of the context that obtained better results in the other
datasets.

Step 5: Evaluation Results. Finally, we calculated accu-

*https://scikit-learn.org/stable/
“https://www.tensorflow.org/api_docs/python/tf/keras

https://scikit-learn.org/stable/
https://www.tensorflow.org/api_docs/python/tf/keras

racy, precision, recall, F1-score, and Area Under the Curve
metrics to evaluate the trained models and compared the re-
sults by context. We decided to use the mean as we needed
a value to represent the data. Next, we observed: (i) whether
the presence of trivial refactorings affects the prediction of
other refactorings; (ii) which algorithm obtained better re-
sults; (iii) whether data balancing techniques had any effect;
and, (iv) whether the models were able to generalize to other
contexts. With this, it was possible to answer our research
questions. We present the results in the next section.

4 Results and Discussions

In this section, we describe our results. We present an
overview of calculating metrics for the contexts mentioned in
Table 6 and Table 8. The choice of AUC and F1-score metrics
is supported by the need to comprehensively assess the per-
formance of machine learning models in classification tasks.
AUC provides a robust measure of the model’s discrimina-
tive ability in binary scenarios, while the F1-score balances
precision and recall, proving particularly useful in cases of
class imbalance. When used together, these metrics offer a
more comprehensive analysis, enhancing the reliability and
validity of the presented results.

We also present the generalization of the models. In the
following subsections, we answer each of the RQs.

4.1 Performance of ML algorithms to predict trivial
and non-trivial refactorings (RQ1)

To answer RQ, we combined several datasets and evaluated
the performance of the ML algorithm in predicting trivial
refactorings (present in all contexts). Table 6 presents the per-
formance of each ML algorithm by ML metric and context
specified in this study.

In summary, our results indicate that the Random Forest al-
gorithm achieved the best performance indices, considering
the general average in all contexts, with an average of 0.71,
0.72,0.74, 0.73 and 0.70 for the accuracy metrics, precision,
recall, Fl-score, and AUC, respectively. This Random For-
est algorithm stood out in the first context, with a remarkable
balance (see Table 6). For the context C1, the performance
was 0.84, 0.86, 0.84, 0.85, and 0.84 for the metrics of accu-
racy, precision, recall, F1-score, and AUC, respectively. For
C1 with undersampling balancing, the performance was 0.84,
0.86, 0.82, 0.84, and 0.84 for the metrics of accuracy, preci-
sion, recall, F1-score, and AUC, respectively.

While for C1 with oversampling balancing, 0.84, 0.86,
0.83, 0.84, and 0.84 were obtained for the metrics of accu-
racy, precision, recall, F1-score, and AUC, respectively. Fur-
thermore, in the C3 context, the models showed even better
results with 0.88, 0.89, 0.94, 0.91, and 0.84 for the metrics of
accuracy, precision, recall, F1-score, and AUC without bal-
ancing the data, respectively. With undersampling balancing,
the performance was 0.85, 0.86, 0.84, 0.85, and 0.85. With
the data oversampling, the values reached 0.88, 0.89, 0.86,
0.87, and 0.88, respectively.

Pinheiro et al. 2024

Finding 1: Models based on the Random Forest algo-
rithm were the best in general contexts, with highlight-
ing for the contexts C1 and C3.

In Table 6, we also observed that the Decision tree in the
C3, without balancing data, achieved equivalent results of
the Random Forest. The indices were (accuracy, precision,
recall, Fl-score, and AUC) 0.88, 0.90, 0.93, 0.91, and 0.85,
against 0.88, 0.89,0.94, 0.91, and 0.84 of the Random Forest.
With both balancing techniques, the results remained equiv-
alent.

Finding 2: Decision tree and Random Forest were the
algorithms that achieved better results in the C3 context,
using or not the balancing technique.

As shown in Table 6, the model built by a Neural Net-
work using a balancing technique with data oversampling
showed the best results, considering the area under the ROC
curve (AUC). This model achieved a significant AUC index
of 0.91, followed by Random Forest and Decision Tree.

Finding 3: The Neural Network was the algorithm that
created the best classification model, considering the
model’s ability to distinguish between classes, regard-
less of the chosen cutoff point.

Table 8 presents the values of the metrics obtained from
the models trained with data from datasets D2 and D3 in the
C3 context, as well as from the base dataset models applied
to datasets D2 and D3 in the same context, represented in the
Table 8 by D1_D2 and D1_D3.

The models based on Random Forest, Neural Network,
and Decision Tree showed great results both in dataset D2
and D3. In D2 the Decision Tree model obtained a F1-score
and AUC of 95% and 94%, respectively. In the case of Neu-
ral Network, a Fl-score and AUC of 86% and 90% were
obtained, respectively. For the Random Forest model was
obtained a F1-score and AUC of 95% and 93%, respectively.

Similarly, in D3, the performance was also optimistic, in
which the Decision Tree model obtained a F1-score and
AUC of 95% and 90%, respectively. The Neural Network
model obtained a Fl-score and AUC of 89% and 87%, re-
spectively. Finally, the Random Forest model obtained a F1-
score and AUC of 95% and 89%, respectively. On the other
hand, the models based on Logistic Regression and Naive
Bayes algorithms presented inferior results in both datasets.
In D2, the Logistic Regression model obtained a F1-score
and AUC of 75% and 52%, respectively, while with Naive
Bayes resulted in a F1-score and AUC of 74% and 51%, re-
spectively.

Finding 4: Tree-based and neural network models tend
to be more efficient regardless of the dataset.

Implications of RQ;. Our findings indicate that the Ran-
dom Forest and Decision Tree algorithms are the most effec-
tive. However, regarding the AUC metric, the Neural Net-
work created the best classifier.

In the context of our research, it is crucial to acknowledge
that each metric addresses specific facets of the model’s per-
formance, and the declaration of an algorithm as the best
according to a particular metric does not necessarily imply
overall superiority.

For instance, when considering the performance of algo-
rithms such as Neural Networks, which are identified as the
best based on the AUC metric, it suggests an exceptional ca-
pability for classification in terms of discriminating between
classes, as measured by the ROC curve. However, alterna-
tive metrics like the F1 score prioritize different aspects, such
as precision and recall, potentially yielding disparate con-
clusions regarding the overall model performance. This dis-
crepancy underscores the significance of selecting evaluation
metrics aligned with the specific objectives of the given task.

Furthermore, using a balancing technique, either through
undersampling or oversampling of the data, did not signif-
icantly improve the results. Therefore, the results obtained
in RQ; can help data scientists and developers of auto-
mated refactoring tools to make more informed decisions
about which algorithms to use when investigating refactor-
ings based on metrics and code attributes.

4.2 The effectiveness of including trivial refactorings
to predict new refactorings (RQ-)

To answer RQ2, we performed several combinations of triv-
ial and non-trivial refactorings, in which each combination
corresponds to a context in our study. In total, four differ-
ent contexts were created. Additionally, two balancing tech-
niques were applied to each of them. The first context (C0)
is the unique context in which trivial refactorings are not
present in any of the classes. We compared the results ob-
tained in other contexts with C0 to evaluate the effectiveness
of including trivial refactorings.

By looking at Table 6, we can see that the values obtained
in CO0 are recurrently smaller than C1, C2, and C3 even in
the set of unbalanced data. To compare the performance of
the classification models, we used the values of the metrics
F1-Score and AUC. Thus, the Decision Tree model obtained
an increase of 39% and 33% for F1-Score and AUC, respec-
tively, when including trivial refactorings in the configura-
tion of C3. In the same line, the Logistic Regression model
obtained an increase of 17% (F1-Score) and 4% (AUC) in
the configuration of C3. The model based on Naive Bayes
showed a significant increase in the Fl-score of 68% and
2% in AUC. Neural Network model obtained an increase of
21% and 36% for F1-score and AUC, respectively. Finally,
models based on Random Forest achieved similar scores to
those based on Decision Tree, with increases of 37% (F1-
Score) and 31% (F1-Score).

Finding 5: Adding trivial refactorings to different
classes along with non-trivial refactorings resulted in a
more effective model. This suggests that including triv-

Pinheiro et al. 2024

ial refactorings is important for improving the prediction
of new refactorings.

For C2, For C2, we added file features before passing
through a trivial or non-trivial refactoring in one class of the
machine learning algorithm, while in the other class, we kept
the features of the corresponding files with the refactoring
already performed. The dataset has grown by 45%, adding
232,468 rows.

Considering the F1-score and AUC, we obtained similar
results. The combination C2 showed an increase of only 6%
for both metrics, using the Decision Tree model. We also can
observe that no increase in the metrics was observed for the
model based on Logistic Regression. The same happened
with the model based on Naive Bayes, but with a loss in the
F1-score of 1%. The Neural Network model lost 6% of F1-
score and gained 1% of AUC. Finally, Random Forest had a
slight increase of 6% in both F1-score and 5% in AUC.

Finding 6: Combining trivial and non-trivial refactor-
ings in the same class does not change the results signif-
icantly. This indicates that the presence of trivial refac-
torings to be positive for refactoring prediction will de-
pend on how they are combined in the dataset.

Implications of RQ.. Trivial refactoring operations can
impact the result of predicting new refactorings, which can
be positive or negative. In the first case, an increase in accu-
racy was observed when partially combining the trivial refac-
torings in the C1 and C3 contexts, compared to the context
without trivial refactorings (C0). In the second case, when
combining all trivial and non-trivial refactorings and sepa-
rating them into before and after refactoring, some cases did
not show significant values and even worsened the indices.
Therefore, trivial refactorings can improve the models’ pre-
diction by choosing the appropriate configuration.

4.3 Effectiveness of data balancing techniques in
predicting trivial and non-trivial refactorings

(RQ3)

To improve the performance between the models and reduce
the outliers between classes, we have evaluated the Effec-
tiveness of two well-known data balancing techniques: Ran-
dom Under Sampler and Oversampling with SMOTE. In sum-
mary, we observed a significant increase only in contexts that
received trivial refactorings. The outliers are presented in Ta-
ble 7.

By applying the Undersampling and Oversampling balanc-
ing techniques in the C0 context, which does not have trivial
refactorings, we observed that the results obtained were little
significant or negative in all algorithms. In Table 7, we high-
light that the technique of Undersampling had a significant
negative impact on the F1-score of the Logistic Regression
model, with a worsening of 16%. In the other models, the
variation of worsening was from 0% to 4% in the F1-score.
In the same way with the Oversampling technique, we ob-
tain the same negative value for models based on Logistic

Regression in Fl-score, with a negative variation between
1% and 5%.

In the other contexts - C1, C2, and C3 - we have observed
a worsening in almost all algorithms. The context C2 stood
out negatively, using the Neural Network algorithm, with a
loss of 24% in the F1-score using Undersampling and 49%
in the Oversampling of the data.

On the other hand, the model based on the Decision Tree
algorithm stood out positively in the C1 context, with F1-
score increasing by 33% in both Undersampling and Over-
sampling. Similarly, AUC (Area Under the Curve) also in-
creased by 32% with Undersampling and 33% with Oversam-
pling. Furthermore, Table 7 presents the model based on the
Naive Bayes algorithm increased its F1-score by 46% with
the applied techniques.

Finding 7: For our problem, balancing the dataset up or
down usually keeps the same result or makes the model
worse.

The algorithm Navie Bayes in the C1 context obtained a
lower result, with a recall of 12% and an F1-score of 20%.
However, when applying the Undersampling and Oversam-
pling balancing techniques in this context, the model ob-
tained a significant improvement of 81% and 46% in recall
and F1-score, respectively.

Furthermore, the models based on the Naive Bayes algo-
rithm in the C3 context showed good recall and F1-score
indices, with 95% and 80%. respectively. However, we ob-
served a worsening with the use of balancing techniques, in
which the use of Undersampling and Oversampling resulted
in a worsening of 15% and 14% in the F1-score, respectively.

Finding 8: The model with the worst results in the
C1 context obtained the best use of the balancing tech-
niques.

We also observed that the model based on Logistic Re-
gression obtained the worst results when applying data bal-
ancing techniques. In the C0 context, using the undersam-
pling technique resulted in a 44% and 16% reduction in re-
call and F1-Score, respectively. Similarly, using the oversam-
pling technique resulted in a reduction of 45% and 16% in
recall and F1-Score, respectively.

In the C1 context, the reduction in recall and F1-Score
were 11% and 4% with undersampling and 15% and 6% with
Oversampling. In the case of the C2 context, the reduction
was even more significant, with a worsening of 56% and 23%
in recall and F1-Score with the use of Undersampling and
48% (recall) and 18% (F1-Score) of worsening in the use of
Oversampling. Finally, in the C3 context, the reduction was
26% and 18% with undersampling and 23% and 17% with
oversampling in the values of recall and F1-Score, respec-
tively.

Pinheiro et al. 2024

Finding 9: The Logistic Regression algorithm was the
one that deteriorated the most with the use of balancing
techniques.

Implications of RQs. The data balancing techniques’ re-
sults varied in the different models, both by context and algo-
rithm. In some cases, a complete rejection of the technique
was observed since the use of the technique did not result in
improvements or at least maintained the original results.

4.4 Generalization of the best model in other data
context domain (RQy4)

To answer RQ,4, we evaluated the best models obtained in
C3 context with the base dataset with respect to datasets
with different named data domains (D2 and D3). These other
datasets were configured in the same C3 context, trained, and
evaluated. Next, we evaluate the performance of the model
in terms of predicting refactorings, we also compared it with
the models trained using the base dataset.

Table 9, shows the values of the differences of the met-
rics obtained from the model trained with data from the base
dataset applied in dataset D2 and D3 with the values obtained
from the models trained in the same data domain of D2 and
D3. All models showed low or no variation, by presenting
values between 0% and 5%, except for the Neural Network
model which showed significant variation. Additionally, the
values obtained from the variation of the Neural Network
models trained in the base dataset and applied in D2 were
17% in the F1-score and 41% in the AUC metric.

Similarly, a variation was observed in D3, in which was ob-
tained at 8% in F1-score and 37% in AUC for less. The values
of the AUC metrics were the ones that most distanced them-
selves from the values obtained by the models when trained
in the domain itself.

Finding 10: Most of the models trained by the base
dataset obtained satisfactory results when generalized to
other domain contexts.

Table 8 presents the values obtained from the application
of the data balancing techniques in D2 and D3. We can ob-
serve that in D2, the models that underwent the Undersam-
pling technique obtained the worst results. Models based on
Decision Tree had a negative decrease of -1% in the F1-score
metric and -1% in the AUC.

The Logistic Regression based models also had a negative
decrease of -17% in the F1-score metric, but a 6% increase
in AUC. Additionally, those based on Naive Bayes also had
a negative decrease of -9% in the F1-score metric and main-
tained the same value in the AUC metric. Furthermore, the
models based on Neural Network obtained a negative de-
crease of -5% in the F1-score metric and -1% in the AUC.

However, only the Random Forest based models showed
even a small improvement with the balancing technique, with
an increase in the AUC metric by +1%. Furthermore, still in
D2, but with the Oversampling technique, the results were

very similar, with a slight loss of the F1-score metric of -4%
in the models based on Neural Network.

In D3, with the same balancing technique, the models ob-
tained slightly different results when compared to D2. The
Decision Tree based models obtained a negative decrease of
-4% in the Fl-score metric and an increase of +1% in the
AUC. Similarly, the Logistic Regression based models also
obtained a negative decrease of -25% in the F1-score metric
and an increase of +8% in the AUC. In the case of Naive
Bayes based models, we also observed a negative decrease
of -19% in the Fl-score metric and an increase of +1% in
the AUC metric. Furthermore, the Neural Network based
models obtained a negative decrease of -11% in the F1-score
metric and -2% in the AUC. Finally, those Random Forest
based models obtained a -5% decrease in the F1-score metric
and +1% increase in AUC.

We also observed that in the same dataset (D3), the Over-
sampling technique obtained similar results, with emphasis
on the Random forest based models, which presented an in-
crease in the AUC by +3% and a decrease of the Fl-score
to -3%. Additionally, in the case of Neural Network based
models, we observed an increase in AUC of +3% and a de-
crease of F1-score to -7%.

Similarly, the balancing technique applied to the models
trained with the base dataset and applied to the D2 and D3
datasets obtained little variation, between -6% and 7%. Ex-
cept in the case of Neural Network based models. In D2, the
generalized models based on the Neural Network algorithm
obtained a difference between the model of the domain itself
of -17% for the F1-score (Table 9). This difference increased
to -27% with the use of the Undersampling technique and to -
33% with the Oversampling technique. Similarly, on D3, the
values obtained for models based on Neural Network were
-8% in F1-score. In the case of the Undersampling technique,
was obtained -23% (F1-score), and Oversampling with -31%
(F1-score).

Finding 11: The balancing techniques applied to models
from other domains generated negative or little positive
results.

Implications of RQ,. In general, the generalization of the
models trained with the base dataset was positive. Although
refactoring data was extracted from multiple projects, the
models were able to identify refactorings based on code at-
tributes and metrics, regardless of the data domain.

5 Related Work

Similar strategies to those used in this work have been investi-
gated in the literature, exploring how machine-learning tech-
niques detect refactoring opportunities in various contexts.
Aniche et al. (2020) conducted a large-scale empirical
study on 11,149 projects to verify the effectiveness of ML
algorithms in predicting refactoring recommendations. The
authors identified that supervised algorithms are effective in
predicting refactorings. The results indicate that the result-
ing models achieved accuracy greater than 90%, and models
based on Random Forest performed better than the others.

Pinheiro et al. 2024

AlOmar et al. (2021) conducted a study using 800 projects
to understand what motivates developers to apply refactor-
ings. As a basis for the study, the comments on the commits
made by developers were used. For this, the authors used su-
pervised ML with multi-class models defining categories for
types of refactorings. The authors identified that the develop-
ers’ motivation to refactor is not only to correct code smell,
it is also motivated by error correction, changes in require-
ments, optimization of the design structure and improvement
in quality attributes. In addition, the authors identified the
most commonly used textual patterns in refactorings.

AlOmar et al. (2022) conducted a study to analyze the
relationship between documentation and refactoring opera-
tions, comparing two distinct approaches. They performed
text mining on commit messages, extracting keywords that
best represent the type of refactoring. Then, they trained mul-
ticlass classification models to predict the types of refactor-
ing. The results indicate that each type of refactoring opera-
tion presents a different complexity for prediction.

Nyamawe (2022) used ML with commit history to pre-
dict refactorings. The author implements a binary classifier
to predict the need for refactorings and a multi-label clas-
sifier to recommend refactoring. The author’s results sug-
gest that leveraging confirmation messages significantly im-
proved the accuracy of recommending refactorings.

Panigrahi et al. (2020) conducted a study in which they
proposed models based on Naive Bayes classifiers (Gaussian,
Multinomial and Bernoulli) to predict method-level software
refactorings. In addition, the authors used techniques such as
SMOTE, UPSAMPLE and RUSBOOTS for data balancing.
The results indicate that among the classifiers, Naives Bayes
and Bernaulli are the ones that provide greater precision com-
pared to the others used in the study.

Sheneamer (2020) proposes a study that presents a learn-
ing method that automatically extracts features from detected
code clones and uses classification models, such as Random
Forest, ForestPA, Bagging, and K-nearest neighbors, to ad-
vise developers on the need and type of refactoring that a
clone requires.

Peruma et al. (2020) conducted a study on 800 Java
projects, with the aim of identifying the influence of changes
in data types on the structure and meaning of a renaming
refactoring. The authors did not group the refactorings and
found that some developers with little experience tend to per-
form only renaming refactorings instead of other types of
refactorings. Based on these results, the authors seek to offer
improvements in support for renaming recommendations.

Kumar et al. (2019b) conducted a study aimed at devel-
oping classifier models capable of predicting the need for
method-level refactoring. To achieve this, five systems were
used to build the dataset, and 25 code metrics extracted from
SourceMeter software at the method level were used as fea-
tures for supervised learning. Additionally, balancing tech-
niques such as SMOTE, UPSAMPLE, and RUSBoost were
employed.

Other studies use ML to adopt unsupervised learning
to detect (Alkhalid et al., 2010; Bryksin et al., 2018)
refactorings. Alkhalid et al. (2010) uses the Adaptive
K-Nearest Neighbor (A-KNN) algorithm to recommend
method-level refactoring, providing suggestions to improve

Table 6. Results of the different ML models after trained and tested

Pinheiro et al. 2024

None Under Over
Alg M Co Cl C2 C3 M Co Cl C2 C3 M Co Cl1 C2 C3
acc 052 052 058 08 acc 052 084 058 08 acc 053 085 0.58 0.88
pre 053 053 059 090 pre 053 08 060 087 pre 053 086 060 0.89
Decision rec 0.51 048 0.58 093 rec 045 0.83 050 0.85 rec 044 0.83 050 0.87
f1 052 0.51 0.58 091 f1 048 0.84 054 0.86 f1 048 0.84 055 0.88
auc 052 052 058 085 auc 052 084 058 086 auc 053 0.85 058 0.88
acc 050 052 051 0.81 acc 050 0.61 050 0.60 acc 050 0.61 0.50 0.61
pre 050 060 051 0.81 pre 050 059 050 058 pre 050 059 050 0.59
Logistic rec 093 082 092 097 rec 049 071 036 0.71 rec 048 0.67 044 0.74
f1 065 0.69 065 0.82 f1 049 0.65 042 0.64 f1 049 0.63 047 0.65
auc 050 0.61 050 054 auc 050 061 050 060 auc 050 0.61 050 0.61
acc 049 049 049 068 acc 050 052 050 052 ace 049 052 050 0.52
pre 050 050 052 070 pre 050 051 0.50 0.51 pre 049 051 0.50 0.51
Navie rec 007 0.12 006 095 rec 006 093 008 092 rec 006 093 008 092
f1 0.12 020 0.11 0.80 f1 0.11 0.66 0.14 0.65 f1 0.11 0.66 0.14 0.66
auc 049 050 050 051 auwe 050 052 050 052 auec 049 052 050 0.52
acc 050 076 050 082 ace 050 076 051 075 ace 049 076 052 082
pre 050 074 074 0.1 pre 050 074 052 073 pre 049 073 0.78 0.80
Neural rec 097 082 050 095 rec 097 078 028 080 rec 095 082 0.06 081
f1 0.66 0.78 0.60 0.87 f1 066 076 036 0.76 f1 0.65 0.78 0.11 0.82
auc 050 085 051 08 auc 050 0.85 051 084 auc 051 086 051 091
acc 053 084 058 08 acc 053 084 058 085 ace 053 084 058 0.88
pre 054 08 059 089 pre 054 08 060 086 pre 054 086 059 0.89
Random rec 0.55 0.84 0.61 0.94 rec 0.50 0.82 0.52 0.84 rec 0.49 0.83 0.55 0.86
f1 054 0.85 060 091 f1 052 084 056 0.85 f1 051 0.84 057 0.87
auc 053 084 058 084 auc 053 084 058 085 auc 053 0.84 058 0.88
Table 7. Performance of algorithms in contexts
Cco Cl C2 C3
Alg under over under over under over under over
0,00 0,01 0,32 0,33 0,00 -0,02 -0,02 0,00
0,00 0,00 0,33 0,33 0,01 -0,03 -0,03 -0,01
decision -0,06 -0,07 0,35 0,35 -0,08 -0,08 -0,08 -0,06
-0,04 -0,04 0,33 0,33 -0,04 -0,03 -0,05 -0,03
0,00 0,01 0,32 0,33 0,00 0,00 0,01 0,03
0,00 0,00 0,09 0,09 -0,01 -0,01 -0,21 -0,20
0,00 0,00 -0,01 -0,01 -0,01 -0,01 -0,23 -0,22
logistic -0,44 -0,45 -0,11 -0,15 056 -0,48 -0,26 -0,23
-0,16 -0,16 -0,04 -0,06 -0,23 -0,18 -0,18 -0,17
0,00 0,00 0,00 0,00 0,00 0,00 0,06 0,07
0,01 0,00 0,03 0,03 0,01 0,01 -0,16 -0,16
0,00 -0,01 0,01 0,01 -0,02 -0,02 -0,19 -0,19
navie -0,01 -0,01 0,02 0,02 -0,03 -0,03
-0,01 -0,01 0,46 0,46 0,03 0,03 -0,15 -0,14
0,01 0,00 0,02 0,02 0,00 0,00 0,01 0,01
0,00 -0,01 0,00 0,00 0,01 0,02 -0,07 0,00
0,00 -0,01 0,00 -0,01 -0,22 0,04 -0,08 -0,01
neural 0,00 -0,02 -0,04 0,00 -0,22 -0,44 -0,15 -0,14
0,00 -0,01 -0,02 0,00 -0,24 -0,49 -0,11 -0,05
0,00 0,01 0,00 0,01 0,00 0,00 -0,02 0,05
0,00 0,00 0,00 0,00 0,00 0,00 -0,03 0,00
0,00 0,00 0,00 0,00 0,01 0,00 -0,03 0,00
random -0,05 -0,06 -0,02 -0,01 -0,09 -0,06 -0,10 -0,08
-0,02 -0,03 -0,01 -0,01 -0,04 -0,03 -0,06 -0,04
0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,04

cohesion. Bryksin et al. (2018) uses various clustering algo-
rithms to try to improve the Move Method refactoring oper-
ation recommendation. They implemented a plugin for the
IntelliJ IDEA integrated development environment.

Reflection about our contribution. Machine learning-
based prediction of refactorings has been extensively stud-
ied from various perspectives. However, classifying refac-
torings into trivial and non-trivial categories based on the
level of code change and their effect on prediction is a novel
approach. To investigate this, we conducted a study analyz-
ing over 1 million refactorings across 1,291 software projects
and developed the concept of trivial refactoring to quantify
their impact on predicting other refactorings.

6 Threats to Validity

This section discusses threats to the validity of the study ac-
cording to the classification of Wohlin et al. (2012).

Internal validity. In our study, we used Refactoring-
Miner (Tsantalis et al., 2020), a high-precision tool to de-
tect refactoring opportunities in commits, Pydriller (Spa-
dini et al., 2018) to extract source code from files and CK-
Tool (Aniche, 2015) to obtain code metrics of files involved
in refactorings. Despite the high accuracy, these tools may
still fail during the process of mining. To mitigate this prob-
lem, we have repeated some steps of the process when neces-
sary. Additionally, to find out the impact that trivial refactor-
ings have on the prediction of other refactorings, we grouped
the features of a set of refactoring operations in the same class
and this can cause a drop in the performance of the models.

External validity. Despite a large number of projects

Table 8. Result of generalization in the best context

Pinheiro et al. 2024

None Under Over
Alg M D2 DID2 D3 DID3 M D2 DID2 D3 DID3 M D2 DI D2 D3 DID3
acc 094 091 092 089 ace 094 090 091 085 acc 094 092 092 0.89
pre 095 092 094 092 pre 094 090 091 085 pre 094 092 093 090
Decision rec 095 094 095 094 rec 094 091 090 084 rec 094 092 092 089
fi. 095 093 095 093 fl. 094 091 091 0.85 fi. 094 092 092 0.8
auc 094 091 090 085 auc 094 090 091 085 auc 094 092 092 0.89
acc 062 062 0.75 075 ace 058 058 059 058 aec 058 057 059 059
pre 062 062 075 075 pre 058 058 058 059 pre 058 056 058 057
Logistic rec 096 097 099 099 rec 058 057 062 057 rec 058 058 066 068
fl 075 076 085 085 fl 058 057 060 058 fl 058 061 062 062
auc 052 052 051 051 aue 058 058 059 058 auc 0.58 057 059 0.59
acc 060 061 0.74 074 acec 051 051 051 051 aec 051 051 051 051
pre 061 061 075 074 pre 050 050 050 050 pre 050 050 050 050
Navie rec 0.94 094 098 098 rec 094 094 096 096 rec 094 093 097 096
fl 074 074 085 085 fl 065 065 066 066 fl 065 065 0.66 0.66
aue 051 051 050 050 aue 051 051 051 051 awe 051 051 051 051
acc 082 056 084 069 ace 091 049 077 049 acc 082 049 082 051
pre 083 061 085 075 pre 091 049 077 049 pre 080 049 0.82 051
Neural rec 089 081 094 088 rec 080 060 079 061 rec 084 048 082 051
fl 08 069 08 08 fI 08 054 078 055 fl 082 049 082 0.1
auc 090 049 087 050 auc 0.89 049 085 049 auc 090 049 090 0.0
acc 094 091 092 089 ace 084 091 090 085 acc 094 092 092 090
pre 095 092 094 091 pre 094 090 091 085 pre 094 092 093 090
Random rec 095 094 095 095 rec 093 091 090 086 rec 094 092 091 089
fl 095 093 095 093 fI 094 091 090 085 fl 094 092 092 0.89
auc 093 091 089 084 auc 094 091 090 085 auc 094 092 092 090
Table 9. Performance of generalization in the best context
None Under Over
Alg D1_D2 D1_D3 D1_D2 D1_D3 D1_D2 D1_D3
-0,03 -0,03 -0,04 -0,06 -0,02 -0,03
-0,03 -0,02 -0,04 -0,06 -0,02 -0,03
decision -0,01 -0,01 -0,03 -0,06 -0,02 -0,03
-0,02 -0,02 -0,03 -0,06 -0,02 -0,03
-0,03 -0,05 -0,04 -0,06 -0,02 -0,03
0,00 0,00 0,00 -0,01 -0,01 0,00
0,00 0,00 0,00 0,01 -0,02 -0,01
logistic 0,01 0,00 -0,01 0,05 0,00 0,02
0,01 0,00 -0,01 -0,02 0,03 0,00
0,00 0,00 0,00 -0,01 -0,01 0,00
0,01 0,00 0,00 0,00 0,00 0,00
0,00 -0,01 0,00 0,00 0,00 0,00
navie 0,00 0,00 0,00 0,00 -0,01 -0,01
0,00 0,00 0,00 0,00 0,00 0,00
0,00 0,00 0,00 0,00 0,00 0,00
-0,26 -0,15 -0,28 -0,33 -0,31
-0,22 -0,10 -0,28 -0,31 -0,31
neural -0,08 -0,06 -0,20 -0,18 -0,31
-0,17 -0,08 -0,27 0,23 0,33 -0,31
s 037 040 036 0 041 040
-0,03 -0,03 0,07 -0,05 -0,02 -0,02
-0,03 -0,03 -0,04 -0,06 -0,02 -0,03
random -0,01 0,00 -0,02 -0,04 -0,02 -0,02
-0,02 -0,02 -0,03 -0,05 -0,02 -0,03
-0,02 -0,05 -0,03 -0,05 -0,02 -0,02

(1,291) and code refactorings analyzed (1,995,738), different
results can be obtained depending on the domain of systems
in terms of: (i) programming language, (ii) maintainability,
(ii1) used programming paradigm, or (iv) software quality.
Regarding data balancing, we emphasize that the unbalance
of instances and refactorings accounted in each dataset can
negatively influence the result during the process of predict-
ing refactorings. To mitigate this threat, we applied balanc-
ing techniques in different contexts: Oversampling strategy
with SMOTE and Random Undersampling. However, there
was an unbalance in the generalization, as the models trained
on the base dataset had the lowest proportion and were com-
pared to the models trained on the datasets with the highest
proportions.

Construct validity. One threat to validity may be the
size of the dataset chosen for the study. This size was cho-
sen based on previous studies on refactorings (Aniche et al.,

2020; AlOmar et al., 2021; Peruma et al., 2020). However,
we do not know if it is the right size to find the best solu-
tion to our problem. This, finding the solution with different
dataset sizes may yield more efficient results. Another impor-
tant threat refers to the metrics used to build the dataset. How-
ever, we have used well-known metrics in the literature: accu-
racy, precision, recall, F1-score, and Area Under the Curve
metrics. In addition, it is necessary to investigate and sys-
tematize the choice of metrics based on the object-oriented
paradigm.

Conclusion validity. We investigated the effect of trivial
refactorings on the prediction of non-trivial ones. To identify
how the former affects the latter, data from files involved in
both types of refactorings are used and tested on the same and
different classes in the prediction models. This relationship
may cause some bias in the results at the prediction time. This
may affect our conclusion.

7 Concluding Remarks

Our study investigated how trivial (class-level) refactorings
can affect the prediction of non-trivial refactorings across at-
tributes and code metrics. Our experiment was carried out
on 1,291 open-source projects and used the following algo-
rithms as a supervised learning technique to create classifiers:
Decision Tree, Logistic Regression, Navies Bayes, Random
Forest and Neural Network. Our study also used two data
balancing techniques: Random Oversampling and SMOTE
Oversampling. We grouped refactorings according to their
triviality and proposed contexts based on combinations of
refactoring types. In addition, we separated the datasets to
identify possible generalizations of the models.

Our main findings: (i) ML with tree-based models such
as Random Forest, Decision Tree, and Neural network per-
formed very well when trained with code metrics to detect
refactoring opportunities. However, only the first two are
able to reach a good generalization in other data domain
contexts of refactoring; (ii) separating trivial and non-trivial
refactorings into different classes still results in a more effi-
cient model, even on different datasets; and (iii) using bal-
ancing techniques that increase or decrease samples may not
be the best strategy to improve models trained by datasets
composed of code metrics and configured according to our
study. (iv) We understand that a possible explanation for the
performance improvements when “trivial refactorings” are
included is that the machine learning models have increased
knowledge of what is not non-trivial refactoring, thus im-
proving their prediction.

In future work, we intend to: (i) Create a triviality index
that best defines a trivial refactoring operation and quanti-
fies that triviality; (ii) identify other attributes and metrics
that can produce more efficient results for predicting refac-
torings; (iii) perform an in-depth investigation of other al-
gorithms that may perform better in predicting refactorings;
and, (iv) investigate how models that predict trivial refactor-
ings impact the detection of refactorings performed by auto-
mated solutions.

Acknowledgements

This work is partially supported by the Cearense Foundation of
Scientific and Technological Support (FUNCAP) grant BP5-00197-
00042.01.00/22, and by the National Council for Scientific and
Technological Development (CNPq) grant 404406/2023-8.

References

Aggarwal, K., Singh, Y., Kaur, A., and Malhotra, R. (2006).
Empirical study of object-oriented metrics. J. Object Tech-
nol., 5(8):149-173.

Agnihotri, M. and Chug, A. (2020). A systematic literature
survey of software metrics, code smells and refactoring
techniques. Journal of Information Processing Systems,
16(4):915-934.

Al Dallal, J. (2012). Constructing models for predicting
extract subclass refactoring opportunities using object-
oriented quality metrics. Information and Software Tech-
nology, 54(10):1125-1141.

Pinheiro et al. 2024

Alkhalid, A., Alshayeb, M., and Mahmoud, S. (2010). Soft-
ware refactoring at the function level using new adaptive
k-nearest neighbor algorithm. Advances in Engineering
Software, 41(10-11):1160-1178.

Alkhalid, A., Alshayeb, M., and Mahmoud, S. A. (2011).
Software refactoring at the package level using clustering
techniques. IET software, 5(3):274-286.

AlOmar, E. A., Liu, J., Addo, K., Mkaouer, M. W., New-
man, C., Ouni, A., and Yu, Z. (2022). On the documenta-
tion of refactoring types. Automated Software Engineer-
ing, 29(1):1-40.

AlOmar, E. A., Peruma, A., Mkaouer, M. W., Newman, C.,
Ouni, A., and Kessentini, M. (2021). How we refactor and
how we document it? on the use of supervised machine
learning algorithms to classify refactoring documentation.
Expert Systems with Applications, 167:114176.

Aniche, M. (2015). Java code metrics calculator (CK). Avail-
able in https://github.com/mauricioaniche/ck/.

Aniche, M., Maziero, E., Durelli, R., and Durelli, V. (2020).
The effectiveness of supervised machine learning algo-
rithms in predicting software refactoring. /EEE Transac-
tions on Software Engineering, pages 1-1.

Azeem, M. 1., Palomba, F., Shi, L., and Wang, Q. (2019). Ma-
chine learning techniques for code smell detection: A sys-
tematic literature review and meta-analysis. Information
and Software Technology, 108:115-138.

Bavota, G., De Lucia, A., Di Penta, M., Oliveto, R., and
Palomba, F. (2015). An experimental investigation on the
innate relationship between quality and refactoring. Jour-
nal of Systems and Software, 107:1-14.

Bavota, G., Oliveto, R., De Lucia, A., Antoniol, G., and
Guéhéneuc, Y.-G. (2010). Playing with refactoring: Iden-
tifying extract class opportunities through game theory. In
2010 IEEE International Conference on Software Mainte-
nance, pages 1-5. IEEE.

Bibiano, A. C., Uchéa, A., Assungdo, W. K., Tenoério, D.,
Colanzi, T. E., Vergilio, S. R., and Garcia, A. (2023). Com-
posite refactoring: Representations, characteristics and ef-
fects on software projects. Information and Software Tech-
nology, 156:107134.

Bishop, C. M. and Nasrabadi, N. M. (2006). Pattern recog-
nition and machine learning, volume 4. Springer.

Bryksin, T., Novozhilov, E., and Shpilman, A. (2018). Auto-
matic recommendation of move method refactorings using
clustering ensembles. In Proceedings of the 2nd Interna-
tional Workshop on Refactoring, pages 42—45.

Carvalho, D. V., Pereira, E. M., and Cardoso, J. S. (2019).
Machine learning interpretability: A survey on methods
and metrics. Electronics, 8(8).

Cassell, K., Andreae, P., and Groves, L. (2011). A dual clus-
tering approach to the extract class refactoring. In SEKE,
pages 77-82.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. (2002). Smote: synthetic minority over-sampling
technique. Journal of artificial intelligence research,
16:321-357.

Chicco, D. and Jurman, G. (2020). The advantages of the
matthews correlation coefficient (mcc) over f1 score and
accuracy in binary classification evaluation. BMC ge-

nomics, 21(1):1-13.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite
for object oriented design. IEEE Transactions on sofiware
engineering, 20(6):476—493.

Cutler, A., Cutler, D. R., and Stevens, J. R. (2012). Random
forests. In Ensemble machine learning, pages 157-175.
Springer.

Davis, J. and Goadrich, M. (2006). The relationship between
precision-recall and roc curves. In Proceedings of the 23rd
international conference on Machine learning, pages 233—
240.

de Mello, R., Oliveira, R., Uchda, A., Oizumi, W., Garcia, A.,
Fonseca, B., and de Mello, F. (2022). Recommendations
for developers identifying code smells. IEEE Software,
40(2):90-98.

de Paulo Sobrinho, E. V., De Lucia, A., and de Almeida Maia,
M. (2018). A systematic literature review on bad smells—5
w’s: which, when, what, who, where. IEEE Transactions
on Software Engineering, 47(1):17-66.

Du Bois, B., Demeyer, S., and Verelst, J. (2004). Refactoring-
improving coupling and cohesion of existing code. In //th
working conference on reverse engineering, pages 144—
151. IEEE.

Eposhi, A., Oizumi, W., Garcia, A., Sousa, L., Oliveira, R.,
and Oliveira, A. (2019). Removal of design problems
through refactorings: are we looking at the right symp-
toms? In 2019 IEEE/ACM 27th International Confer-
ence on Program Comprehension (ICPC), pages 148—153.
IEEE.

Fernandes, E., Chavez, A., Garcia, A., Ferreira, 1., Cedrim,
D., Sousa, L., and Oizumi, W. (2020). Refactoring effect
on internal quality attributes: What haven’t they told you
yet? Information and Software Technology, 126:106347.

Hanley, J. A. and McNeil, B. J. (1982). The meaning and use
of the area under a receiver operating characteristic (roc)
curve. Radiology, 143(1):29-36.

Hasanin, T. and Khoshgoftaar, T. (2018). The effects of
random undersampling with simulated class imbalance for
big data. In 2018 IEEE international conference on infor-
mation reuse and integration (IRI), pages 70-79. IEEE.

Jin, W, Li, Z. J., Wei, L. S., and Zhen, H. (2000). The im-
provements of bp neural network learning algorithm. In
WCC 2000-ICSP 2000. 2000 5th international conference
on signal processing proceedings. 16th world computer
congress 2000, volume 3, pages 1647-1649. IEEE.

Jordan, M. 1. and Mitchell, T. M. (2015). Machine
learning: Trends, perspectives, and prospects. Science,
349(6245):255-260.

Jupyter, P. (2022). Notebook jupyter. https://jupyter.
org/.

Khanam, Z. (2018). Analyzing refactoring trends and prac-
tices in the software industry. [International Journal of
Advanced Research in Computer Science, 10(5).

Kim, M., Zimmermann, T., and Nagappan, N. (2014). An
empirical study of refactoringchallenges and benefits at
microsoft. [EEE Transactions on Software Engineering,
40(7):633—-649.

Kumar, L., Lal, S., Goyal, A., and Murthy, N. B. (2019a).
Change-proneness of object-oriented software using com-

Pinheiro et al. 2024

bination of feature selection techniques and ensemble
learning techniques. In Proceedings of the 12th Inno-
vations on Software Engineering Conference (formerly
known as India Software Engineering Conference), pages
1-11.

Kumar, L., Satapathy, S. M., and Murthy, L. B. (2019b).
Method level refactoring prediction on five open source
java projects using machine learning techniques. In Pro-
ceedings of the 12th Innovations on Software Engineering
Conference (Formerly Known as India Software Engineer-
ing Conference), ISEC’19, New York, NY, USA. Associ-
ation for Computing Machinery.

Lorenz, M. and Kidd, J. (1994). Object-oriented software
metrics: a practical guide. Prentice-Hall, Inc.

Malhotra', R. and Chug, A. (2012). Software maintainability
prediction using machine learning algorithms. Software
engineering: an international Journal (SeiJ), 2(2).

Martin Fowler, K. B. (2000). Refactoring: Improving the
Existing Code Design. Bookman Co., Inc., 1st edition.

Mens, T. and Tourwé, T. (2004). A survey of software
refactoring. IEEE Transactions on software engineering,
30(2):126-139.

Mohammed, R., Rawashdeh, J., and Abdullah, M. (2020).
Machine learning with oversampling and undersampling
techniques: overview study and experimental results. In
2020 1l1th international conference on information and
communication systems (ICICS), pages 243-248. IEEE.

Moreo, A., Esuli, A., and Sebastiani, F. (2016). Distribu-
tional random oversampling for imbalanced text classifica-
tion. In Proceedings of the 39th International ACM SIGIR
conference on Research and Development in Information
Retrieval, pages 805—808.

Murphy-Hill, E., Parnin, C., and Black, A. P. (2011). How
we refactor, and how we know it. IEEE Transactions on
Software Engineering, 38(1):5-18.

Muschelli I11, J. (2020). Roc and auc with a binary predictor:
a potentially misleading metric. Journal of classification,
37(3):696-708.

Nyamawe, A. S. (2022). Mining commit messages to en-
hance software refactorings recommendation: A machine
learning approach. Machine Learning with Applications,
9:100316.

Opdyke, W. F. (1992). Refactoring object-oriented frame-
works. University of Illinois at Urbana-Champaign.

Ouni, A., Kessentini, M., Bechikh, S., and Sahraoui, H.
(2015). Prioritizing code-smells correction tasks using
chemical reaction optimization. Software Quality Journal,
23(2):323-361.

Padhy, N., Panigrahi, R., and Baboo, S. (2015). A systematic
literature review of an object oriented metric: Reusability.
In 2015 International Conference on Computational Intel-
ligence and Networks, pages 190—191.

Paixdo, M., Uchoa, A., Bibiano, A. C., Oliveira, D., Garcia,
A., Krinke, J., and Arvonio, E. (2020). Behind the in-
tents: An in-depth empirical study on software refactoring
in modern code review. In Proceedings of the 17th In-
ternational Conference on Mining Software Repositories,
pages 125-136.

Palomba, F., Zaidman, A., Oliveto, R., and De Lucia, A.

https://jupyter.org/
https://jupyter.org/

(2017). An exploratory study on the relationship between
changes and refactoring. In 2017 IEEE/ACM 25th Inter-
national Conference on Program Comprehension (ICPC),
pages 176-185. IEEE.

Panigrahi, R., kuanar, S. K., and Kumar, L. (2020). Applica-
tion of naive bayes classifiers for refactoring prediction
at the method level. In 2020 International Conference
on Computer Science, Engineering and Applications (ICC-
SEA), pages 1-6.

Peruma, A., Mkaouer, M. W., Decker, M. J., and Newman,
C. D. (2020). Contextualizing rename decisions using
refactorings, commit messages, and data types. Journal
of Systems and Sofiware, 169:110704.

Pinheiro, D., Bezerra, C. I. M., and Uchoa, A. (2022). How
do trivial refactorings affect classification prediction mod-
els? In Proceedings of the 16th Brazilian Symposium
on Software Components, Architectures, and Reuse, SB-
CARS ’22, page 81-90, New York, NY, USA. Association
for Computing Machinery.

Quinlan, J. R. (2014). C4. 5: programs for machine learning.
Elsevier.

Rish, I. et al. (2001). An empirical study of the naive bayes
classifier. In IJCAI 2001 workshop on empirical methods
in artificial intelligence, volume 3, pages 41-46.

Sellitto, G., Iannone, E., Codabux, Z., Lenarduzzi, V., Lucia,
A., Palomba, F., and Ferrucci, F. (2021). Toward under-
standing the impact of refactoring on program comprehen-
sion.

Sharma, T., Suryanarayana, G., and Samarthyam, G. (2015).
Challenges to and solutions for refactoring adoption: An
industrial perspective. /[EEE Software, 32(6):44-51.

Sheneamer, A. M. (2020). An automatic advisor for refac-
toring software clones based on machine learning. /EEE
Access, 8:124978-124988.

Silva, D., Tsantalis, N., and Valente, M. T. (2016a). Why we
refactor? confessions of github contributors. In Proceed-
ings of the 2016 24th acm sigsoft international symposium
on foundations of software engineering, pages 858-870.

Silva, D., Tsantalis, N., and Valente, M. T. (2016b). Why we
refactor? confessions of github contributors. In Proceed-
ings of the 2016 24th acm sigsoft international symposium
on foundations of software engineering, pages 858-870.

Smiari, P., Bibi, S., Ampatzoglou, A., and Arvanitou, E.-
M. (2022). Refactoring embedded software: A study in
healthcare domain. Information and Software Technology,
143:106760.

Spadini, D., Aniche, M., and Bacchelli, A. (2018). PyDriller:
Python framework for mining software repositories. In
Proceedings of the 2018 26th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium
on the Foundations of Software Engineering - ESEC/FSE
2018, pages 908911, New York, New York, USA. ACM
Press.

Tabassum, N., Namoun, A., Alyas, T., Tufail, A., Taqi,
M., and Kim, K.-H. (2023). Classification of bugs in
cloud computing applications using machine learning tech-
niques. Applied Sciences, 13(5).

Tsantalis, N., Chaikalis, T., and Chatzigeorgiou, A. (2018).
Ten years of jdeodorant: Lessons learned from the hunt

Pinheiro et al. 2024

for smells. In 2018 IEEE 25th international conference on
software analysis, evolution and reengineering (SANER),
pages 4—14. IEEE.

Tsantalis, N. and Chatzigeorgiou, A. (2011). Identification
of extract method refactoring opportunities for the decom-
position of methods. Journal of Systems and Software,
84(10):1757-1782.

Tsantalis, N., Ketkar, A., and Dig, D. (2020). Refactoring-
miner 2.0. [EEE Transactions on Software Engineering,
48(3):930-950.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell,
B., and Wesslén, A. (2012). Experimentation in software
engineering. Springer Science & Business Media.

Yamashita, A. and Moonen, L. (2012). Do code smells reflect
important maintainability aspects? In 2012 28th IEEE in-
ternational conference on sofiware maintenance (ICSM),
pages 306-315. IEEE.

	Introduction
	Background
	Code Refactorings
	Machine Learning Techniques
	Machine Learning Metrics

	Code Quality Metrics

	Study Settings
	Goal and Research Questions
	Study Steps and Procedures

	Results and Discussions
	Performance of ML algorithms to predict trivial and non-trivial refactorings (RQ1)
	The effectiveness of including trivial refactorings to predict new refactorings (RQ2)
	Effectiveness of data balancing techniques in predicting trivial and non-trivial refactorings (RQ3)
	Generalization of the best model in other data context domain (RQ4)

	Related Work
	Threats to Validity
	Concluding Remarks

