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Context. Harmful Code denotes code snippets that harm the software quality. Several characteristics can cause this,
from characteristics of the source code to external issues. By example, one might associate Harmful Code with
the introduction of bugs, architecture degradation, and code that is hard to comprehend. However, there is still a
lack of knowledge on which code issues are considered harmful from the perspective of the software developers
community. Goal. In this work, we investigate the social representations of Harmful Code among a community of
software developers composed of Brazilian postgraduate students and professionals from the industry.Method.We
conducted free association tasks with members from this community for characterizing what comes to their minds
when they think about Harmful Code. Then, we compiled a set of associations that compose the social representa-
tions of Harmful Code. Results.We found that the investigated community strongly associates Harmful Code with
a core set of undesirable characteristics of the source code, such as bugs and different types of smells. Based on
these findings, we discuss each one of them to try to understand why those characteristics happen.Conclusion. Our
study reveals the main characteristics of Harmful Code by a community of developers. Those characteristics can
guide researchers on future works to better understand Harmful Code.
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1 Introduction

During software development, developers change the source
code to implement new requirements, improve the code, or
fix bugs. While those changes are inherent to software evolu-
tion, they may introduce code snippets that are likely to harm
software quality (hereafter called Harmful Code (15)). In our
study (15), we consider harmful a code snippet that contains
smells and has one or more functional bugs reported in its
history.
One might argue about different aspects of Harmful Code,

such as code that introduces bugs, degrades the architecture,
and is hard to comprehend. However, few studies focus on
understanding the characteristics of Harmful Code (15; 23).
The understanding of Harmful Code is beneficial for vari-
ous reasons. First, it would contribute to guiding develop-
ers on preventing and combating the incidence of Harmful
Code. Moreover, it would be more feasible to develop ef-
fective tools for Harmful Code detection. On the other hand,
these benefits become harder to achieve if there is no under-
standing or consensus about Harmful Code among software
developers.
Some studies have investigated harmful code by analyz-

ing code smells that are more harmful to the software. To
identify those smells, Olbrich et al. (23) analyzed which code
smells change more frequently. In our previous work, we an-
alyzed the existence and detection of Harmful Code in open
source projects (15). This research considers a code snippet
harmful if it contains smells and has one or more functional
bugs reported in its history. However, despite the existence

of related work based on the assumption that certain charac-
teristics of the source code are harmful, we could not find
previous studies investigating the understanding of Harmful
Code from the practitioners’ perspective. This understanding
may reveal a core set of quality issues in the source code that
may shed light on improving the practice.
This paper investigates the understanding of developers

about Harmful Code. In particular, we conducted an empir-
ical study to observe the social representations of Harmful
Code in a community of software developers. For this pur-
pose, we ground our research in the theory of social repre-
sentations from Social Psychology (26). This theory consid-
ers that a concept that is collectively seen through the set of
beliefs, values, and behaviours unconsciously shared by the
members from particular communities, such as software de-
velopers from a particular country. Consequently, these rep-
resentations influence how these members behave and com-
municate (21).
The first experiences with the theory of social representa-

tions in software engineering are recent (9; 8; 4). However,
these experiences resulted in practical resources to improve
the software development practice (9; 8; 4). Besides, the the-
ory of social representations has been successfully used in
different research fields (27; 19; 26; 17).
The findings of our investigation reveal a set of core is-

sues of Harmful Code that goes beyond current research di-
rections. Some of these issues address undesirable character-
istics of the source code, including bad programming prac-
tices that harm software maintainability. However, our find-
ings also reveal that the incidence of Harmful Code is a po-
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tential source of functional and non-functional bugs that may
directly harm the user experience in software. In this way, we
discuss alternatives for preventing the incidence of Harmful
Code.
The remainder of this paper is structured as follows. Sec-

tion 2 introduces the theory of social representations and cor-
respondent techniques used in this study. Section 3 presents
the experimental study aiming at characterizing the social
representations of Harmful Code. Section 4 shows the study
results. Section 5 discusses the main findings of the study.
Section 6 presents the threats to validity. Section 7 discusses
previous work on social representations and Harmful Code
and, finally, Section 8 concludes this work.

2 Theory of Social Representations
The theory of Social Representations (22) comes from the do-
main of social psychology. Based on this theory, social repre-
sentations aim to establish an order that enables the members
of a certain group (community) to guide themselves in their
material and social world. In this way, social representation
means the collective elaboration of a social object by a par-
ticular community for behaving and communicating (22). In
this definition, a social object corresponds to an object so-
cialized by two or more individuals from a community.
The theory of social representations has been applied to

support research in diverse fields, including health (19), so-
cial development (17), education (27), and psychology (26).
Recent works have applied the theory of social representa-
tions to investigate some social objects of Software Engineer-
ing, including the identification of code smells (9; 8) and con-
fusing code (4).
A community can be any group of individuals sharing com-

mon values and culture, such as a software company. In this
way, the social representations of Harmful Code in this com-
pany comprise the system of beliefs, values, and ideas shared
by the company developers about this social object. This sys-
tem establishes a code for social exchanging, naming, and
classifying the different aspects of their world (22). For in-
stance, let’s suppose that developers from a certain company
believe that novice developers are the authors of Harmful
Code. This belief will influence how teams from this com-
pany deal with code reviews. For instance, this belief could
lead to a more laborious approach to reviewing code imple-
mented by these developers. Consequently, reviewers may
feel less motivated to review the code produced by novice
developers. Unfortunately, this preconception could lead to
precipitately blaming these developers when Harmful Code
is detected in the project. Once the company teams are aware
of these representations, they can work on promoting clarify-
ing actions to overcome this negative association made be-
tween harmful code and novice developers.
To characterize the social representations of a social object,

researchers stimulatemembers from the investigated commu-
nity to reveal what is in their unconscious, avoiding censor-
ing their thoughts. For this purpose, individuals should per-
form free association tasks. Free association is a technique
from psychoanalysis (3) based on asking individuals to quote
what first comes to mind when they think about a particu-

lar social object. This question should be immediately an-
swered, and quotations provided should be written down in
the same uttered order, i.e., the order that came to the indi-
vidual’s mind. Then, the evoked terms are submitted to open
coding, resulting in the set of associations to be further an-
alyzed. For instance, bug may be an association of Harmful
Code, resulting from grouping evoked terms such as faults
and defects.
Figure 1 shows the procedure to characterize social repre-

sentations of social objects through the following steps:
Step 1: Free Association Task. In this step, individuals

freely express their thoughts (in our study, terms) related to
a specific social object (in our study, Harmful Code). For
example, in our study, we asked each participant to express
up to five terms. While participant #6 expressed the words
Unnecessary Repetition, Bad Writing, Long Methods, and
Non-intuitive variables about Harmful Code, participant #25
expressed the words Hard to Understand, badly structured,
Non-modular, and Code Smells.
Step 2: Clusterization. This step aims to cluster the terms

expressed by the participants in associations. To do that, we
follow the sub-steps. Sub-step 2.1: Terms Clustering In
this sub-step, researchers individually analyze each term ex-
pressed by the participant and define associations to repre-
sent the term; and Sub-step 2.2: Consensus Meeting Each
researcher defines the associations related to each term after-
wards, they have a meeting to obtain consensus regarding the
most representative association to the term. For example, in
our study, the researchers defined the associationCode Smell
to represent the term Unnecessary Repetition of the partici-
pant #6 and the association Lack of Comprehension to repre-
sent the term Hard to understand of the participant #25.
Step 3: Frequency & AOE Computation. After coding

the associations, they should be submitted to a comparative
analysis. The rank-frequency method is a common approach
for analyzing the corpora of associations obtained during free
association tasks (3; 16). This ranking is performed based on
the frequency of the association and the average order of their
evocation or appearance (AoE). While frequency helps to
identify how common the associations are made, AOE helps
to identify how promptly the associations come to individu-
als’ minds (3). The frequency of an association (F) is calcu-
lated by counting howmany times the community evoked its
corresponding terms. For instance, suppose that the associa-
tionBugs is composed of the term bugs, evoked 14 times,Not
working correct, evoked once, Crash, evoked once, Incor-
rect, evoked once, Fixes, evoked once, and failures, evoked
3 times. Thus, the frequency of this association is 21. The
AOE of an association is calculated by the sum of the orders
in which the subjects had evoked the corresponding terms, di-
vided by the frequency of this association. A low AOE value
for an associationmeans that the groupmakes the association
promptly. For instance, let us consider the Bugs association
example. Supposing that the term bugs was evoked 13 times
in the first place, five times in the second place, and three
times in the fourth place, the AOE of the association Bugs is
1.52, i.e., ((13 ∗ 1) + (5 ∗ 2) + (3 ∗ 3)/21).
Step 4: Four Zones Distribution. In this step, we allocate

the associations across four zones (see Figure 2) to identify
the strongest and the weakest associations made by partici-
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Figure 1. Social Representation characterization procedure

Figure 2. The four zones of the social representations based on the rank-
frequency method.

pants based on their frequency (F) and AOE values to dis-
cern the most and least significant associations, as per the
recommendations of studies on social representations (13).
This step is critical in identifying which associations are at
the core of the social representations and which are on the
periphery. To support this distribution, we calculate the fol-
lowing thresholds: the mean frequency of the associations,
and the average AOE, i.e., the ratio between the sum of the
AOEs and the sum of the frequencies of the associations (3).
For instance, in our study, we have a mean frequency of 21
and an average AOE of 2.58. Thus, we allocated the associ-
ation Bugs to the Central system zone since this association
presents a frequency equal to 21 and an AOE equal to 1.52;
Step 5: Four Zones Analysis. In this step, we examine

these zones. The central system zone, which represents the
core elements of social representations, contains associations
with higher frequencies and lower AOEs, signifying their
prominence and promptness in the minds of individuals. The
potential changing zones indicate associations that are either
frequently evoked but not as promptly, or vice versa, sug-
gesting areas of potential change. Meanwhile, the periphery
embodies the least frequent and less promptly evoked asso-
ciations, thus considered irrelevant in the social representa-
tions framework (13).

3 Study Design
During software development, developers are continuously
affected by issues related to the quality of the source code.
Some of these issues may harm software development and
maintenance, while others may harm its use. Therefore, we
should understand Harmful Code from the perspective of its
authors, i.e., the developers, able to recognize its incidence

and assess its impact. The collective knowledge built and
shared among developers is a relevant source for establish-
ing a comprehensive understanding of Harmful Code. In this
way, the goal of our study is to characterize the social repre-
sentations of Harmful Code from the perspective of software
developers. To do that, we aim to answer the following re-
search question (RQ):
RQ.What are the social representations of Harmful Code

by software developers?
By answering RQ, we want to identify the core set of val-

ues, ideas, and beliefs collectively built by developers about
Harmful Code, which results in their social representations.
For this purpose, we should first establish a community of
developers to investigate. In this way, investigating social
representations in a country-wide community is a common
practice. Among others, members of a country-wide commu-
nity are influenced by unique cultural aspects that influence
how individuals see and classify social objects (5). Hence,
we opted to investigate Brazilian software developers, work-
ing with software development in Brazil or abroad.

3.1 Instrumentation
For each participant, we applied a free association task, com-
posed of the following stimulating question:

What immediately comes to mind when you think
about Harmful Code? Please provide up to five
words in the order they come to your mind.

Before applying the task, we oriented each participant on
avoiding overthinking their answers. We arbitrarily estab-
lished a limit of 10 seconds as a threshold for considering
an answer as immediately given. Besides, we assure that the
participants were unaware of the specific research topic be-
fore their participation. The procedure of asking for up to five
words is a common practice in free association tasks (9), al-
lowing to gather the associations made at different relevance
levels (3). After the stimulating question, the researcher ap-
plied the following open question:

Which word do you understand to be the most rel-
evant? Please justify your answer.

We applied this question to stimulate the respondents to
give conscious and well-formed arguments about the evoked
terms. These arguments help us to better understand the con-
text in which the developers evoked these terms. However,
since we are using the rank-frequency method, we do not use
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this content to modify the order of relevance reported during
the free association task.
After the free association task, the study participants were

invited by email to answer a characterization questionnaire1.
Table 1 summarizes the questions asked. Some of these
questions are intentionally redundant to capture the devel-
opers’ diversity of profiles from different perspectives. We
observed that C++ or Java developers are the ones most ex-
pressing the terms related to the associations in the central
system. Particularly, Java developers tend to express the term
code smell when they think about harmful code. We used a
four-level Likert scale (Very Low, Low, High, Very High) to
characterize the self-perception of the developers, we choose
this scale to prevent participants from choosing a neutral op-
tion.

3.2 Data Analysis
First, for each participant, a researcher (1st author) listened
to the recording and transcribed the answers to a spreadsheet.
Then, three researchers performed a separate coding of the
evoked terms (1st author, 2nd author, and 5th author). The
main goal of these analyses is to identify opportunities for
clustering terms with similar meanings into a single associ-
ation. After concluding the individual coding activities, one
researcher composed the final set of associations based on
the agreements found. Finally, the researchers discussed the
disagreements in a single meeting until reaching a consensus.
Then we normalized the corpus responses by excluding re-

peated terms of the same association for the same participant.
For instance, let us suppose that one developer quoted Bugs,
followed byDefects. Although these are different terms, they
were clustered into a single association (Bugs), counted a
single time. Therefore, as recommended in the social repre-
sentation analysis, the second evocation should be discarded.
After reaching the set of associations, we discarded those
made by a single participant. Finally, we applied the rank-
frequency method (see Section 2) for distributing the associ-
ations among the four zones. More details about the process
can be found on the spreadsheet.2

3.3 Execution
A single researcher performed the free association task from
August to October 2020. Due to the COVID-19 pandemic,
the task was performed through individual online meetings
with video sharing. All of the study participants agreed with
the recording of their participation. Among others, we used
these recordings to double-checkwhether the participants im-
mediately answered the stimulating question. In total, 53 soft-
ware developers participated in the study, evoking 155 terms.
We used video calls so the researcher could check that partic-
ipants did not have external distractions during the free asso-
ciation task. We also checked that all participants promptly
answered the free association task. Therefore, we did not dis-
card any evoked terms in the analysis.

1https://bit.ly/harmful-code-characterization-form
2http://bit.ly/harmful-code-associations

3.4 The community
After analyzing the answers given to the characterization
questions, we found diversity in the sample, counting with
the participation of 53 software developers. These individu-
als are Brazilian developers who work in companies inside
and outside Brazil. The sample is composed of 4 developers
working for a software house based in San Francisco (USA).
This company has a medium size and develops software for
clients worldwide. Another 5 developers belong to a New
York-based startup that develops a training platform for En-
glish exams. The other 44 developers work in companies
based in Brazil or are currently in Academia (in Brazil).
At the time of the study execution, most of the study par-

ticipants were currently playing the role of software develop-
ers. However, there are also project managers, tech leaders,
lecturers, and researchers, among others. Most of the study
participants hold Bachelor’s degrees (36,9%), while others
are undergraduate students (18%) or hold Master’s degrees
(42,1%).
The sample of Brazilian developers investigated is com-

posed of professionals having diverse backgrounds. Several
developers have experience in other fields of computer sci-
ence, such as data science, artificial intelligence, and human-
computer interaction. From the 53, 80% has at least three
years of experience in software development, indicating the
predominance of experienced developers in the sample.Most
of them declared having a high experience level (65%), rep-
resented by an average experience of 4.66 years/nine projects
and a median experience of four years/six projects. The four
programming languages they more frequently mentioned are
JavaScript (87.50%), Python (87.50%), Java (80%), and PHP
(42.50%). All the other programming languages comprise
less than a quarter of the sample.
Background in code smell identification. 71% of the de-

velopers declared familiarity with the concept of code smells.
Regarding their experience in code smells, most of these de-
velopers predominantly declared having a low (33%) or high
(43%) experience level, represented by an average experi-
ence of 2.03 years/three projects and a median experience of
two years/two projects. Moreover, 13% of the participants
declared a very high experience in code smell identification
tasks. Only three developers declared no previous experience
in code smell identification.
Background in bug fixing. We also asked developers

about their experience in bug fixing, where 100% of the de-
velopers declared some experience in bug fixing, with an av-
erage of 6 years and 12 projects fixing bugs. Despite that,
79% declared high experience in bug fixing, and 10% de-
clared a very high experience.

4 Results
The 53 developers evoked 155 terms. We found a total or par-
tial agreement among the researchers on coding 78.21% of
these terms. After a 2-hour meeting involving the three re-
searchers responsible for the coding activities, the remaining
disagreements were solved. Besides, the final name of each
association was established. The coding activities resulted in
a distribution of the 155 terms evoked among 53 associations.
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Table 1. Items of the Characterization Questionnaire
Questionnaire Item Type of Answer
Highest academic degree Nominal
Are you currently working in the industry? If so, what is your current role? Open
In the following lines, briefly summarize your experience with software development. Open
What are the programming languages are you familiar with? Open
How do you perceive your background in Software Development? Likert scale
How do you perceive your background in the identification of code smells? Likert scale
How do you perceive your background in bug fixing? Likert scale
Number of software development projects Numeric
Experience in software development in years Numeric
Experience in code smells identification in years Numeric
Number of software development projects in which you have identified code smells Numeric
Experience with bug fixing in years Numeric
Number of software projects in which you participated fixing bugs Numeric

After allocating each original term with its corresponding as-
sociations, we identified 25 cases in which the same associ-
ation was made two or more times by the same developer.
After discarding these repetitions, we found that 5 associa-
tions appeared only once in the whole data set. Thus, they
were also discarded. Therefore, 23 associations remained in
the data set.
We applied the ranking-frequency method over the 23 as-

sociations, resulting in the four zones of Harmful Code so-
cial representations presented in Table 2. Associations with
the frequency (F) equal or higher than 7 and with AOE (Av-
erage order of their evocation or appearance) lower than
2.58 compose the central system of the social representa-
tions. There are also the associations located in the periphery,
which should be discarded.
The central system of the social representations reveals

that developers strongly associate Harmful Code with the in-
cidence of two concrete issues while developing software,
i.e., functional Bugs and different types of Code smells. The
developers also strongly associate Harmful Code with two
non-functional quality issues: Lack of Performance and Lack
of Security. Finally, we also found that developers strongly
believe that Harmful Code is a source ofWaste.
Besides the issuesmentioned on the central system,we can

see that other non-functional issues appear in the potential
changing zones: Lack of Comprehension, Lack of Modular-
ization, and Lack of Tests. The potential changing zones also
reveal that developers associate Harmful Code to the imple-
mentation of Workarounds that may lead to the Rework of
resources. Besides, other associations include Lack of Main-
tainability, Lack of Standards, and Lack of Exception Han-
dling. In this way, the associations made with Code Smells,
Lack of Comprehension, Lack of Modularization, Lack of
Maintainability,Waste, Rework, and Bugs strengthen the per-
ception that code smells may affect the comprehensibility,
modularization, and maintainability of the source code and,
consequently, leading to bugs, rework, and waste.
The community of developers investigated shares a strong

belief that Harmful Code is associated with code smells and
bugs. This suggests that the mitigation of code smells and
bugs may be intricately linked to the prevention and combat
of harmful code. In particular, code smells and bugs associ-
ated with performance, security, and exception handling. For-
tunately, the literature offers a variety of tools and techniques
for detecting code smells and bugs. Our research sheds light
on the potential effectiveness of using a combination of these
tools to tackle harmful code.

5 Discussion

The findings of our study reveal five main characteristics of
Harmful Code. The first five of these characteristics address
issues that may also be considered harmful for the system
users. The first one is the incidence of code smells. For ex-
ample, a common code smell is the God Class, a large and
complex class that centralizes the behavior of a portion of
a system and only uses other classes as data holders. God
Classes can rapidly grow out of control, making it increas-
ingly harder for developers to understand them in the pro-
cess of bug fixing and adding new features. The incidence of
code smells is a great concern, as the second most frequently
evoked term (45.28%). Code smells typically require extra
reading and comprehension effort from developers (1), lead-
ing them to search for support in the code documentation. In
this way, the incidence of coarse-grained code smells such
as God Class and Spaghetti Code is frequently associated
with modularity problems in the system implementation. The
strong association of code smells with Harmful Code is justi-
fied in different ways, such as Subject #07: “...because they
are usually structural problems and make understanding dif-
ficulty”, and Subject #18: “...because we usually identify the
Harmful Code with them.”.
The secondmain characteristic of Harmful Code is the in-

cidence of functional bugs. One may see that strongly associ-
ating Harmful Code to functional bugs is somehow expected,
since these bugs typically lead to the system malfunctioning,
which is harmful to the system users. Consequently, bug fix-
ing is a natural priority in software maintenance activities.
In our study, a third of the participants concluded that bug
is the more relevant term they evoked. Their arguments for
this choice include Subject #03: “Bugs interfere in the system
functionality” and Subject #08: “Bugs create an anomaly”.
Besides, one developer argued that Subject #20: “Bugs af-
fect the most important user of the system, that is the client”.
Despite one may expect that the incidence of bugs would be
a strong association, it is important to note that only (41%) of
the developers evoke from their unconscious that bugs as the
greatest source of harmfulness. Thus, most of the developers
(59%) did not associate Harmful Code with functional bugs.
In this way, the findings of our study suggest that the Brazil-
ian software development community believes that other is-
sues in the source code may be as Harmful as bugs.
The aforementioned two first main characteristics of

Harmful Code address the definition of harmful code pro-
posed in (15), in which we define Harmful Code as a source
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Table 2. Four zones of Harmful Code social representations by developers.
Central system Potential Changing Zone

(F≥7, AOE <2.58) (F≥7, AOE ≥2.58)
Name(F) AOE Name(F) AOE

Code Smells (24) 2.00 Lack of Comprehension (8) 2.75
Bugs (21) 1.52 Lack of Tests (7) 2.71
Waste (10) 2.50 Lack of Modularization (7) 2.71
Lack of Performance (8) 1.88
Lack of Security (8) 2.38

Potential Changing Zone Periphery
(F<7, AOE<2.58) (F<7, AOE≥2.58)
Name(F) AOE Name(F) AOE

Lack of Maintenability (6) 1.17 Badly Written (6) 2.67
Rework (6) 2.33 Lack of Readability (6) 2.67
Difficulty (4) 2.50 Bad Documentation (6) 3.29
Lack of Standards (4) 2.00 Refactoring (3) 2.67
Work around (3) 2.33 Debugging (3) 3.00
Lack of Exception Handling (2) 2.50 Bad Names of Code Elements (3) 4.00

Lack of Communication (2) 3.00
Lack of Scalability (2) 3.00
Legacy Code (2) 3.00

code snippet containing smells and one or more (functional)
bugs. However, the results of our investigation on the devel-
opers’ social representations indicate the need for expand-
ing this definition. The thirdmain characteristic of Harmful
Code is the Waste. Based on the developers’ arguments, the
word “Waste” in this study clusteredmany evoked termswith
converging meanings, such as “Loss”, “Cost”, “Project Dam-
age”, “Headache” and “Finance Problem”. One may think
that these terms are not related to technical activities, since
they are mainly related to negative feelings and financial is-
sues. We interpret that the developers evoked these terms as
they believe that harmful code is a source of waste for its
maintainers and supporters, directly harming software devel-
opment productivity.
The fourth main characteristic of Harmful Code is the

lack of performance. This aspect highlights how inefficient
or poorly optimized code can significantly impact the overall
functionality and user experience of a system. Performance
issues often manifest as slow response times, increased re-
source consumption, and diminished throughput, which are
detrimental to both the user’s experience and the system’s
reliability (Story).
The fifth main characteristic of Harmful Code is the lack

of security. Security can be related to the information and ser-
vices being protected, the skills and resources of adversaries,
and the costs of the potential assurance remedies; security
is an exercise in risk management (25). In this context, de-
velopers associated Harmful Code with the lack of security,
mainly due to the perceived harmfulness of security breaches
to systems’ users. For instance, the developers argued that:
Subject #16: ”Security Failures, because if someone is able
to explore the failures, it will directly impact the users’ infor-
mation and the application work”, Subject #16: ”Vulnerabili-
ties, because we work with users’ data, if this gets leaked the
whole company is damaged.”
Considering the mentioned main characteristics of Harm-

ful Code, one can see that the incidence of functional bugs

and code smells are recurrent concerns that are strongly con-
nected. While developers fixing bugs should avoid harming
the source code design, developers removing code smells
should attempt to preserve the original system behavior. In
both cases, developers should have in mind the need to pre-
serve or even enhance the systems’ security and performance.
For instance, validating the incidence of a certain code smell
includes checking whether potential improvements in the
source code structure would not harm the system perfor-
mance (6). Next, we discuss other potentially relevant char-
acteristics of Harmful Code identified in our study.
Lack of Maintainability. Maintainability is an internal

software quality attribute, so it does not directly harm users,
but may significantly harm the developers’ work. Lack of
maintainability generates waste of development efforts, lead-
ing to rework, which is another main characteristic of Harm-
ful Code. This lack of maintainability may be caused by sev-
eral issues, which include code smells (another main charac-
teristic). For large systems, the maintenance phase tends to
have a comparativelymuch longer duration than all other pre-
vious life-cycle phases taken together, resulting in more ef-
fort (2). Developers that associated maintenance issues with
Harmful Code include Subject #32: “The code will be harm-
ful because, it will take much more time to maintain, turning
it harmful.”, Subject #37: “It can not only break the part re-
lated to the code itself, but it can also break other parts of the
software, things that were working perfectly before.”, and
Subject #38: “Because let’s say you are looking for the part
of the code that is making it slow, then you will spend a lot
of time searching for it.”.
Lack of Modularization and Lack of Standards. These

characteristics address undesirable technical aspects of the
source code some developers promptly associate with harm-
ful code. For instance, developers argued that: Subject #05:
“If a code is not properly modularized, it is very difficult to
refactor it to a better code”, and that Subject #29: “The lack of
standards is the worst problem because you don’t know what
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the code action will do”. Software systems are prone to re-
peated debugging and feature enhancements throughout their
evolution. In this way, several studies reveal that large-scale
software systems tend to gradually deviate from the original
architecture, and might deteriorate into unmanageable mono-
liths (29). In this context, the lack of modularization and the
lack of standards may be considered a headache for software
developers, once they require extra effort from developers to
reach a proper comprehension. In recent work, it was found
that developers from different Brazilian companies strongly
associated the lack of modularization with confusing code
(4).
Lack of Comprehension and Difficulty. Some devel-

opers promptly associated harmful code with badly written
code and difficult to understand. To justify this association,
they raised arguments such as Subject #06: “badly written
code... it is very hard to understand” and Subject #17: “...if
the code was badly written, it probably will put at risk the
code quality and security”. Badly written code directly harms
software maintenance activities once developers should com-
monly understand code elements they did not implement.
Consequently, developers typically face several issues and
challenges to reaching proper program comprehension and
performing their maintenance activities. Not rarely, badly
written code results in confusing code, which may be com-
posed of different characteristics, such as long lines, abusive
nesting, and bad indentation (4; 12) identified that poor qual-
ity lexicon impairs program comprehension, increasing de-
velopers’ efforts to perform maintenance activities. Lavaliée
et al. (14) investigated the impact of organizational values
on software architecture and code quality. They reported the
case of a company in which frequent changes to product pri-
orities affect the code, resulting in the incomplete implemen-
tation of software changes, leaving dead code and code frag-
ments.
Rework. It addresses a main side-effect for developers.

This characteristic is directly associated with development
costs once companies estimate the projects considering the
substantial effort associated with rework in code (20). Fair-
ley and Wilshire (11) described different types of rework, in-
cluding evolutionary rework, avoidable retrospective rework,
and avoidable corrective rework. The different types are asso-
ciated with different effects on quality and productivity. De-
velopers who associated Harmful Code with rework argued
that: Subject #50: “Rework, it already happened a lot with
me, delivers a product fast with bugs because we had dead-
lines and after rework on it.”, and Subject #21: “Rework and
understand the whole code again to rework on it”.
Workaround. It is usually related to temporary fixes and

temporary solutions for critical problems. Once software sys-
tems are formalized collections of knowledge rather than
physical artifacts, the software development process allows
its authors to follow shortcuts (32). Even undesirable, these
shortcuts often remain in the source code without being refac-
tored or evolved. Consequently, workarounds are prone to
increase the technical debt of software systems. Software
developers are commonly experienced in creating and deal-
ing with workarounds, recognizing their potential to deliver
Harmful Code. Workarounds to solve technical issues often
result from conscious decisions to address time-to-market

pressure (32). However, stakeholders may not be familiar
with the side effects of workarounds, including additional
costs and poor quality (32).

6 Limitations and Threats to Validity
In this section, we present the threats to validity. From the
perspective of social representations and social psychology,
each community of individuals preserves unique cultural as-
pects that reflect how their members behave despite its size
and coverage (21). Thus, limitations for generalizing social
representations are expected. Tomitigate this issue, we opted
to narrow our focus to characterize the social representation
of developers from a specific country but including individu-
als working in different countries, which enriches the sample
with the influence of cultural diversity.
An internal threat to validity addresses possible issues

in applying the free association task, once the participants
should immediately evoke what comes to their minds. In this
sense, we count on the support of a researcher with experi-
ence in social representations for identifying the best prac-
tices for performing the free association task. This support
includes (i) setting an affordable environment for data gather-
ing through video conferences mainly due to the COVID-19
pandemic; (ii) how introducing the study to the participant
since the invitation to avoid “spoilers” that would harm the
free association task; and (iii) how to guide the interviewee
to immediately answer after listening to the stimulating ques-
tion.
As in any qualitative study, researchers’ background may

strongly influence data analysis. We adopted different strate-
gies to mitigate this bias. First, we applied data analysis tech-
niques frequently used and recommended for social repre-
sentations analysis (Section 2). Second, we involved spe-
cialists in social representations for supporting data analy-
sis. Third, researchers from different software engineering
research groups were involved in the data analysis. These
researchers have experience in topics addressing program
comprehension, code smells, and software maintenance. As
described in Section 3, three researchers coded the terms
evoked separately. These researchers discussed all diver-
gences found in their codes through a single meeting.

7 Related Work
Although we could not find previous work investigating so-
cial representations of Harmful Code, there are reported stud-
ies on the social representations of other software develop-
ment topics: Mello et al. (4) investigated the social represen-
tations of confusing code among two distinct communities
of software developers from industry. They conducted free
association tasks with the developers to characterize their
minds about confusing code. Then they compiled and classi-
fied associations composing the social representations of con-
fusing code by each community. The results of them showed
that developers of both communities strongly associate con-
fusing code with a common set of undesirable characteris-
tics of the source code, such as different types of code smells
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and bad naming of code elements. Another study fromMello
et al. (10) conducted an empirical study on the social repre-
sentations of smell identification by two communities. One
community is composed of postgraduate students from dif-
ferent Brazilian universities. The other community is com-
posed of practitioners located in Brazilian companies. One
of the key findings is that the community of students and
practitioners has relevant differences in their social represen-
tations. Students shared a strong belief that smell identifica-
tion is a matter of measurement, while practitioners focus on
the structure of the source code and its semantics. The investi-
gation with the community of software developers was then
expanded (5), revealing a clear gap between code smell re-
search and practice (7). The investigation of the developers’
social representations contributed to the authors composing
evidence-based recommendations for developers identifying
code smells (6). The latest work from Mello et al. (18) made
a compilation of the previous works and provided practical
advice for development teams planning and optimizing their
efforts in identifying code smells.
Palomba et al. (24) conducted a survey to investigate de-

velopers’ perception on bad smells, they showed to develop-
ers code entities affected and not by bad smells, and asked
them to indicate whether the code contains a potential de-
sign problem, nature, and severity. The authors learned the
following lessons from the results: I. There are some smells
that are generally not perceived by developers as design prob-
lems. II. The instance of a bad smell may or may not rep-
resent a problem based on the “intensity” of the problem.
III. Smells related to complex/long source code are gener-
ally perceived as an important threat by developers. IV. De-
veloper’s experience and system’s knowledge pay an impor-
tant role in the identification of some smells. Sae-Lim et
al. (28) investigated professional developers to determine
the factors that they use for selecting and prioritizing code
smells. They found that Task Relevance and Smell Sever-
ity were most commonly considered during code smell se-
lection, while Module Importance is employed most often
for code smell selection. Souza et al. (30) investigated the
developers’ viewpoints on the relevance of certain assump-
tions to avoid bug-introducing changes. In particular, they
analyzed which assumptions developers can make during
software development. As a result, they identified five view-
points among developers regarding their assumptions around
bug-introducing changes.
In our work (15), we presented a study to understand and

classify code harmfulness. First, we analyzed the occurrence
of Clean, Smelly, Buggy, and Harmful code in open-source
projects as well as which smell types are more related to
Harmful Code. Further, we investigated to which extent de-
velopers prioritize refactoring Harmful Code. We also eval-
uated the effectiveness of machine learning techniques to
detect Harmful and Smelly code. Finally, we investigated
which metrics are most important in Harmful Code detection.
As a result, we found that even though we have a high num-
ber of code smells, only 0.07% of those smells are harmful.
Also, we performed a survey with 60 developers investigat-
ing to which extent developers prioritize refactoring Harm-
ful Code. The majority (53.8%) of the developers prioritize
code associated with bugs, and most of them (30%) prioritize

Harmful Code when refactoring.

8 Conclusions
This paper presented an investigation of social representa-
tions of harmful code. We conducted an empirical study with
53, using the theory of social representations (21). The re-
sults shed light on the challenge of identifying Harmful Code,
revealing its main characteristics from the perspective of a
particular community. We understand that reaching a com-
prehensive characterization of Harmful Code is essential to
prevent and combat the incidence of Harmful Code in soft-
ware systems. In this work, we characterized the social repre-
sentations of Harmful Code from a sample of Brazilian soft-
ware developers. The findings of our study reveal an initial
set of core issues of Harmful Code, discussed in the paper.
This set includes Bugs, Code Smells, Lack of Performance,
Lack of Security, and potentially other technical issues also
discussed. We understand that our findings may be used for
driving future investigations on the identification of Harmful
Code in software systems. In future work, we intend to refine
the initial set of core issues found by replicating our study in
distinct communities of software developers.

9 Data Availability
The datasets generated during and/or analyzed during the cur-
rent study are available.3
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