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Abstract
Mutation testing has attracted a lot of interest because of its reputation as a powerful adequacy criterion for

test suites and for its ability to guide test case generation. However, the presence of equivalent mutants hinders its
usage in industry. The Equivalent Mutant Problem has already been proven undecidable, but manually detecting
equivalent mutants is an error-prone and time-consuming task. Thus, solutions, even partial, can help reduce this
cost. To minimize this problem, we introduce an approach to suggest equivalent mutants. Our approach is based on
automated behavioral testing, which consists of test cases based on the behavior of the original program.We perform
static analysis to automatically generate tests for the entities impacted by the mutation. For each mutant analyzed,
our approach can suggest the mutant as equivalent or non-equivalent. In the case of non-equivalent mutants, our
approach provides a test case capable of killing it. For the equivalent mutants suggested, we also provide a ranking
of mutants with a strong or weak chance of the mutant being indeed equivalent. In our previous work, we evaluated
our approach against a set of 1,542 mutants manually classified in previous work as equivalents and non-equivalents.
We noticed that the approach effectively suggests equivalent mutants, reaching more than 96% of accuracy in five
out of eight subjects studied. Compared with manual analysis of the surviving mutants, our approach takes a third
of the time to suggest equivalents and is 25 times faster to indicate non-equivalents. This extended article delves
deeper into our evaluation. Our focus is on discerning the specific characteristics of mutants that our approach
erroneously classified as equivalent, thereby producing false positives. Furthermore, our investigation delves into a
comprehensive analysis of the mutation operators, providing essential insights for practitioners seeking to improve
the accuracy of equivalent mutant detection and effectively mitigate associated costs.
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1 Introduction

Mutation testing is a powerful technique employed to en-
hance the testing process (DeMillo et al., 1978; Jia and Har-
man, 2011). Over the years, it has garnered significant atten-
tion due to empirical studies demonstrating its ability to im-
prove test suites (Andrews et al., 2005; Just et al., 2014; Pa-
padakis et al., 2018). The fundamental idea behind mutation
testing involves applying syntactical transformations, known
as mutation operators, to introduce artificial faults into a pro-
gram, resulting in what is termed amutant. Subsequently, the
existing test suite is executed against these mutants to ascer-
tain whether the faults are detectable.
In the context of mutation testing, when a test suite is ca-

pable of distinguishing the output of the original program
from that of the mutant, the mutant is considered killed. Con-
versely, if themutant remains indistinguishable from the orig-
inal program, it is labeled as alive. The underlying premise
of mutation testing is that the higher the number of killed
mutants, the higher the quality of the test suite.
However, the costs of using mutation testing are usu-

ally high, mostly due to the Equivalent Mutant Prob-
lem (Madeyski et al., 2014; Kintis et al., 2018). An equiv-
alent mutant is syntactically different from the original pro-

gram but has the same behavior as such a program regarding
the observable output. This way, there is no test able to kill it.
Equivalent mutants are a well-known impediment to the prac-
tical adoption of mutation testing. A previous work (Budd
andAngluin, 1982) has already proven that this is an undecid-
able problem in its general form. Thus, no completely auto-
mated solution exists. In addition, manually detecting equiva-
lent mutants is an error-prone and time-consuming task. 20%
of the studied mutants were erroneously classified (Allen
Troy Acree, 1980) and developers take, on average, 15 min-
utes to manually classify a mutant as equivalent or nonequiv-
alent (Schuler and Zeller, 2013). This problem becomes quite
relevant when empirical studies report that up to 40% of all
the generated mutants can be equivalent (Madeyski et al.,
2014). In this way, research efforts to reduce these costs are
still needed.

This article presents an extension of our previous work
on mutation testing (Fernandes et al., 2022), wherein we
propose an innovative approach to suggesting equivalent
mutants using automated behavioral testing (Soares et al.,
2013a) and ranking the mutants based on their behavior dur-
ing test execution. Our approach leverages automated test
case generation tools to create targeted test cases for the lo-
cation where the mutation occurred. By executing these tests
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against both the original program and the mutant, we deter-
mine whether there are behavioral differences. If any test
case fails against the mutant, indicating a behavioral change,
the mutant is classified as non-equivalent. Testers can use
such tests to improve their test suite, effectively reducing
costs. Conversely, if no test cases kill the mutant, our ap-
proach suggests the mutant as equivalent. In the absence of
definitive proof of equivalence, we offer a ranking system
for mutants based on their behavior during test execution.
This ranking hinges on two key factors observed throughout
testing: the coverage impact, indicating discrepancies in test
execution coverage between the mutant and the original pro-
gram, and the number of test cases exercising the mutated
statement. Through the synthesis of these factors, we estab-
lish a tiered ranking of mutants proposed as potential equiva-
lents, with mutants having stronger evidence of equivalence
placed at the bottom, and those with weaker evidence placed
at the top. This prioritized ranking facilitates testers in de-
termining the mutants deserving of manual review, initiating
the process from the top. Our approach is implemented in a
tool named Nimrod.
To the best of our knowledge, no alternative strategy

has employed automated test case generation specifically
targeted at the mutated point to acquire equivalence infor-
mation. While several commendable strategies have been
proposed to assist testers, they confront inherent scalabil-
ity limitations, such as those associated with program slic-
ing (Voas and McGraw, 1997) and the impact of dynamic
invariants (Schuler et al., 2009). Recently, emerging tech-
niques have employed machine learning to categorize equiv-
alent mutants (Brito et al., 2020; Naeem et al., 2020; Peacock
et al., 2021). Despite their promising nature, these techniques
necessitate evaluation not only in terms of effectiveness but
also efficiency.
In our previous work, we evaluated our approach against

1,542 mutants generated from eight methods and manu-
ally classified as equivalent or non-equivalent in prior re-
search (Kintis et al., 2018). We submit all these mutants to
Nimrod suggesting equivalent mutants, and then compute
precision, recall, and F-measure to check its effectiveness.
The results indicate that the approach is effective in suggest-
ing equivalent mutants. The F-measure has reached more
than 96% in five out of the eight methods we studied. To bet-
ter analyze our approach, we also computed the time taken
by Nimrod to suggest equivalent mutants. On average, Nim-
rod took approximately five minutes to classify a mutant as
potentially equivalent (three times faster when compared to
the manual estimations (Schuler and Zeller, 2013)) and 24
seconds to classify a mutant as non-equivalent. Our results
include the time to generate the test cases using both Ran-
doop and EvoSuite.
This extended article delves deeper into our evaluation,

shedding light on the challenges associated with detecting
equivalent mutants through mutation testing. We specifically
analyze the characteristics of mutants that presented difficul-
ties in classification by Nimrod, our tool for automated be-
havioral testing, thus providing valuable insights for refin-
ing the mutation testing approach and improving equivalent
mutant detection in practice. Additionally, we investigate the
mutation operators frequently associated with misclassifica-

tions by Nimrod, offering crucial guidance to practitioners
aiming to enhance the accuracy of equivalent mutant detec-
tion and reduce costs.
The contributions of this paper encompass:

• An innovative approach for suggesting equivalent mu-
tants based on automated behavioral testing (Section 3).

• Development and automation of the entire approach
through a tool named Nimrod (available online (Fernan-
des, Leo, 2023)) (Section 3).

• A comprehensive evaluation of the effectiveness and
efficiency of our approach, shedding light on its per-
formance in classifying mutants as equivalent or non-
equivalent (Sections 4 and 5).

• An in-depth analysis of the challenges associated with
detecting equivalent mutants, with a particular focus on
the characteristics of mutants and mutation operators
that led to misclassifications (Section 5).

• Implications for practitioners on how to combine the
methods of Suggesting Equivalent Mutants and Detect-
ing Equivalent Mutants to optimize cost management in
addressing the equivalent mutation problem (Section 6).

2 Motivating Example

Detecting equivalent mutants poses a challenging problem in
mutation testing, as it is known to be undecidable (Budd and
Angluin, 1982). Consequently, the task of identifying equiv-
alent mutants often falls upon human testers. However, man-
ual detection of equivalent mutants is error-prone, with cor-
rect judgments achieved in only about 80% of cases (Allen
Troy Acree, 1980), and time-consuming, taking approxi-
mately 15 minutes per equivalent mutant (Schuler and Zeller,
2013). Thus, the need for effective heuristics to identify a
subset of equivalent mutants becomes imperative in order to
minimize costs.
One such heuristic, commonly employed, relies on com-

piler optimizations (Offutt and Craft, 1994; Kintis et al.,
2018). The basic idea behind this approach is that code opti-
mizations may result in identical compiled object codes for
both the original program and an equivalent mutant. The con-
cept of Trivial Compiler Equivalence (TCE) was already in-
troduced and implemented for popular compiled languages
such as C and Java, along with mutation testing tools like
Milu and Mujava (Kintis et al., 2018). The TCE approach is
sound, meaning that if two binaries are equal, the programs
have the same behavior. Consequently, it does not produce
false positives. However, it may not detect equivalent mu-
tants with the same behavior but different object codes, lead-
ing to potential false negatives.
To illustrate this scenario, consider the Triangle class

presented in Listing 1. This class contains a method named
classify that determines the type of a triangle based on
the sizes of its three sides. We have generated four different
equivalent mutants using the Mujava mutation tool:
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Listing 1: A code snippet extracted from the Triangle class.
1 public static int classify( int a, int b, int c ) {
2 int tri;
3 if (a <= 0 || b <= 0 || c <= 0) { return INVALID; }
4 tri = 0;
5 if (a == b) { tri = tri + 1; } M1 [tri + 1 ⇒ -tri + 1]
6 if (a == c) { tri = tri + 2; }
7 if (b == c) { tri = tri + 3; }
8 if (tri == 0) {
9 if (a + b < c || a + c < b || b + c < a) {

10 return INVALID;
11 } else {
12 return SCALENE;
13 }
14 }
15 if (tri > 3) {
16 return EQUILATERAL;
17 }
18 if (tri == 1 && a + b > c) { M2 [tri == 1 ⇒ tri <= 1]
19 return ISOSCELES;
20 } else {
21 if (tri == 2 && a + c > b) { M3 [a + c > b ⇒ a + c > b++]
22 return ISOSCELES;
23 } else {
24 if (tri == 3 && b + c > a) { M4 [tri == 3 ⇒ tri++ == 3]
25 return ISOSCELES;
26 }
27 }
28 }
29 return INVALID;
30 }

• M1 represents a mutant created by the AOIU (Arith-
metic Operator Insertion - unary) operator, with the
transformation: tri + 1⇒-tri + 1.

• M2 represents a mutant generated by the ROR (Rela-
tional Operator Replacement) operator, with the trans-
formation: tri == 1⇒tri <= 1.

• M3 and M4 are mutants created by the AOIS (Arith-
metic Operator Insertion - short-cut) operator. Both in-
sert a post-increment at the last access of the local vari-
able b.

By running the TCE against the mutants, it detects two out
of the four mutants: M1 and M4. When analyzing mutant
M2, one can see that the tri value starts with zero (line 4).
However, when reaching the mutated line (line 18), the tri
value can only be one or greater than one, which prevents
the behavior change for any possible entry of the program.
To identify this equivalent mutant, the compiler would need
to check the conditional expression of the if statement at line
8. In case the condition is true, tri is zero and the method
returns.
When applying TCE to detect equivalent mutants, it suc-

cessfully identifies M1 and M4 as equivalent mutants. How-
ever, for M2, detecting equivalence through code optimiza-
tion becomes challenging. The value of tri is initialized to
zero (line 4), and at the mutated line (line 18), tri can only
be one or greater, making it difficult to detect the behavioral
change for any possible program input. Similarly, forM3, ap-
plying a post-increment to the last access of a local variable
within a method will not alter the program’s behavior (Kintis
and Malevris, 2015; Fernandes et al., 2017). However, this
mutant’s equivalence is hidden in the specification of the &&
operator (Gosling et al., 2022). The conditional-and opera-
tor && only evaluates its right-hand operand if the left-hand
operand is true. The left-hand side of the conditional ex-
pression to which M3 belongs is mutually exclusive with the
left-hand side of another conditional expression at line 24.
Thus, detecting such equivalence through compilation opti-
mization becomes intricate.

In this research, we propose an alternative approach to sug-
gest equivalent mutants, leveraging automated behavioral
testing. While our approach cannot guarantee with absolute
certainty that a mutant is indeed equivalent, it can provide
strong or weak suggestions based on ranking the surviving
mutants. Returning to the motivating example above, our ap-
proach correctly identified all equivalent mutants. The de-
tails of our approach are elaborated in the subsequent section.

3 Suggesting Equivalent Mutants

In this section, we explain the proposed approach to suggest
equivalent mutants. Our approach is based on previous work
in the area of refactoring (Soares et al., 2013a). While refac-
toring is a transformation that preserves the external behavior
of a program, a mutant must transform a program so that the
program’s external behavior changes (Steimann and Thies,
2010). We adapt the refactoring solution to the mutation test-
ing context and add improvements in the impact analysis
phase, the automated test generation, and post-testing exe-
cution to improve the accuracy of mutant classification.
Figure 1 depicts an overall view of the approach. It con-

sists of four major steps. First, it carries out a change impact
analysis of the mutation. Second, it uses the change impact
analysis output to guide the generation of automated behav-
ioral tests. In the third step, it executes each generated test
case against the original program and the mutant. In the final
step, our approach suggests whether the mutant is equivalent
or not and supports the tester in case a test to kill the mutant
is found. We now detail each of the steps.

3.1 Identifying Impacted Entities

In Step 1, our approach receives two versions of the program
as input: the original and the mutant. We diff the two pro-
grams to find out where the mutation occurred. We handle
this information to carry out a change impact analysis and
generate tests only for the entities impacted by the transfor-
mation. Our approach is based on the change impact analy-
sis proposed by Mongiovi et al. (2014). It checks both the
original and mutant programs, beginning by decomposing a
coarse-grained transformation into smaller transformations.
For each small-grained transformation, we identify the set of
impacted entities and the set of public methods that need to
be executed to reach these entities directly or indirectly. Be-
sides the public methods, we also analyze the parameters of
such methods to identify methods dependency.
To illustrate the process of identifying impacted enti-

ties, we consider the FieldUtils class from the Joda-time
project as an example (Listing 2). Joda-time is a popular date
and time Java library. The FieldUtils class has 158 lines of
code, 17 methods, and no field. We introduce three different
mutants: M1 replaces the logical AND (&&) with the logical
OR (||) on line 7, M2 inserts a post-increment (++) to the
total variable on line 17, and M3 inserts a pre-decrement
(--) to the val2 variable on line 24.
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Figure 1. Our approach to suggest equivalent mutants.

Listing 2: An excerpt extracted from the FieldUtils class.
1 public class FieldUtils {
2 public static int safeMultiplyToInt(long val1, long val2) {
3 long val = FieldUtils.safeMultiply(val1, val2);
4 return FieldUtils.safeToInt(val);
5 }
6 public static int safeToInt(long value) {
7 if (Integer.MIN_VALUE <= value && M1 [ && ⇒ || ]
8 value <= Integer.MAX_VALUE) {
9 return (int) value;
10 }
11 throw new ArithmeticException(...);
12 }
13 public static long safeMultiply(long val1, long val2) { ...
14 long total = val1 * val2; ...
15 return total; M2 [ total ⇒ total++ ]
16 }
17 public static long safeSubtract(long val1, long val2) {
18 long diff = val1 - val2;
19 if ((val1 ^ diff) < 0 && (val1 ^ val2) < 0) {
20 throw new ArithmeticException
21 ("The calculation caused an overflow: " +
22 val1 + " - " + val2); M3 [ val2 ⇒ --val2 ]
23 }
24 return diff;
25 } ...
26 }

M1 occurred in the safeToInt method. Notice that this
method is called by another method, safeMultiplyToInt.
This way, the output of Step 1 is the following.

m:FieldUtils.safeToInt(long)
m:FieldUtils.safeMultiplyToInt(long, long)

Regarding mutant M2, the mutation occurred in the
safeMultiply method. This method is invoked by the

safeMultiplyToInt method. In this case, the output of the
change impact analysis is:

m:FieldUtils.safeMultiply(long, long)
m:FieldUtils.safeMultiplyToInt(long, long)

Regarding mutant M3, the mutation occurred in the
safeSubtract method. This method is not invoked by any
other method. This way, the output of Step 1 is the following:

m:FieldUtils.safeSubtract(long, long)

Now, we pass the change impact analysis results to the test
case generation step (Step 2).

3.2 Automated Generation of Test Cases
Automated generation of tests is a broad field of re-
search (Lakhotia et al., 2009; Shamshiri et al., 2015; Fraser
et al., 2015). Researchers have explored different approaches
to automatically generate unit tests, such as random test gen-
eration, constraint solver, symbolic execution, and genetic al-
gorithms. Tools such as EvoSuite (Fraser and Arcuri, 2011),
Randoop (Pacheco et al., 2007), and IntelliTest (Li et al.,
2016) implement such approaches. Each tool has a specific
purpose, so different tools will generate a different sequence
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of method calls and assertions. These sequences and asser-
tions of the generated test capture the current behavior of
the original program under test. Although not yet widely
adopted by the industry, these automated unit test generation
tools have become very effective in generating input data that
achieves high code coverage (Fraser et al., 2015) and finds
real faults (Shamshiri et al., 2015)
After collecting the information of the change impact anal-

ysis (Step 1), in Step 2, we use well-known automated test
generation tools to generate a comprehensive set of test cases,
based on the original program, for the identified impacted en-
tities. The idea is to generate a massive set of tests to only ex-
ercise the entities affected by the mutation, in an attempt to
bring up the behavior change caused by the transformation.
Notice that we can instantiate our approach using different
test generation tools or even instantiate the same tool more
than once using different input parameters.
To exemplify the Step 2, we return to the FieldUtils

class (Listing 2). In the previous step, only two methods
have been impacted by the mutant M1 (safeToInt and
safeMultiplyToInt) and the mutant M2 (safeMultiply
and safeMultiplyToInt). For mutant M3, only one
method was impacted (safeSubtract). Listing 3 shows test
cases generated for M1, M2, and M3 mutants. Tests from
the FieldUtilsTest_M1 class will execute against the orig-
inal program and the mutant M1. The same happens to the
tests of class FieldUtilsTest_M2 with the mutant M2 and
of class FieldUtilsTest_M3 with the mutant M3.

Listing 3: Examples of test cases generated to the
FieldUtils.

1 public class FieldUtilsTest_M1{
2 @Test
3 public void test001(){
4 assertEquals(200, FieldUtils.safeMultiplyToInt(10L, 20L));
5 }
6 @Test
7 public void test002(){
8 try {
9 int val = FieldUtils.safeToInt(2147483648L);

10 fail("Failed: Should get an Arithmetic Exception");
11 } catch (ArithmeticException e) { }
12 } ...
13 }
14 public class FieldUtilsTest_M2{
15 @Test
16 public void test001(){
17 assertEquals(200, FieldUtils.safeMultiplyToInt(10L, 20L));
18 }
19 @Test
20 public void test002(){
21 assertEquals(25L, FieldUtils.safeMultiply(5L, 5L));
22 } ...
23 }
24 public class FieldUtilsTest_M3{
25 @Test
26 public void test001(){
27 assertEquals(-1, FieldUtils.safeSubtract(0L, 1L));
28 }
29 @Test
30 public void test002(){
31 try {
32 int val = FieldUtils.safeSubtract(Long.MIN_VALUE, 100L);
33 fail("Failed: Should get an Arithmetic Exception");
34 } catch (ArithmeticException e) { }
35 } ...
36 }

3.3 Test Execution
After generating tests (Step 2), we execute them against the
original program and one mutant at a time (Step 3). In case
a test fails in the original program, we discard it. This is not
a common situation for unit test generation tools since they

capture the current behavior of the original program. But, the
presence of non-deterministic outcomes (like flaky tests (Luo
et al., 2014)) could hinder the execution. This way, we end up
with a green test suite for the original program. Once we iden-
tify a test able to expose a behavioral change in the mutant
program, we do not execute the subsequent tests. Because
our goal is to suggest equivalent mutants, it makes no sense
to continue executing the subsequent tests since the mutant
has already been identified as non-equivalent.
During the test execution step, we also record the test

execution coverage of the original program and the mu-
tants (Schuler and Zeller, 2013). In other words, we record
the frequency in which each line has been executed by all
generated tests. In addition, we also track the number of test
cases that cover the statement where the mutation occurred.
We use these data to create a ranking of mutants suggested
as equivalents by the approach, as we explain next.

3.4 Suggesting Equivalent Mutants
In Step 4, we analyze the test suite execution results to sug-
gest equivalent mutants. Mutants that were killed by test
cases are marked as non-equivalent, as they exhibit a behav-
ioral change from the original program. For the mutants that
were not killed, we suggest them as equivalent.
Since we cannot guarantee that the suggestion is correct,

we provide a ranking of mutants to better support the testers.
The bottom of the ranking includes mutants that we have
strong confidence are equivalent, while the top includes mu-
tants in which we have weak confidence in our suggestion.
In case no test kills the mutant, our approach suggests the

mutant as equivalent. Since we cannot guarantee that the sug-
gestion is correct, we provide a ranking of mutants to better
support the testers. At the bottom of the ranking, we placemu-
tants that we have strong confidence they are indeed equiv-
alent. At the top, we place mutants in which we have weak
confidence that our suggestion is correct. Our ranking of mu-
tants relies on two information recorded during the test exe-
cution: a boolean value indicating whether the test execution
coverage of the mutant has changed when compared to the
original program (also called coverage impact); and the num-
ber of test cases that reached the mutated point. In our rank-
ing, we prioritize the coverage impact over the number of
tests that exercised the mutation. Schuler and Zeller (2013)
identified that coverage impact provides an effective means
to separate equivalent from non-equivalent mutations. They
reported that if a mutation changes the coverage, the mutant
has 75% of being non-equivalent.
To better explain the last step of our approach, we rely

on the code snippets presented in Listing 2 and Listing 3.
As mentioned, Step 4 analyzes the test suite execution
and classifies the mutant as equivalent or non-equivalent.
The test FieldUtilsTest_M1.test002 can expose the be-
havior change of M1 mutant. The approach then marks
this mutant as non-equivalent and informs the tester that
FieldUtilsTest_M1.test002 is enough to kill the mutant
M1. When considering the mutant M2, every generated test
suite will be executed, and the mutant will not be killed, then
suggested as equivalent. In the case of mutant M3, although
this mutant is not equivalent, no generated test identified the
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behavior change. This way, the approach suggests M3 as
equivalent. At this point we have two mutants suggested as
equivalent. Now we check the information collected at the
test execution step to create the ranking. Both suggested mu-
tants did not yield any impact on the coverage. Regarding the
exercised statement, the mutantM2 had three test cases exer-
cising the mutated statement, while the mutant M3 had only
one test case exercising the mutated statement. This way, the
mutant M3 goes to the top of the rank and the mutant M2
stays at the bottom of the ranking. The output of our approach
would be:

#Testing Execution Results
M3 | Possibly Equivalent | Coverage Impact: NO | Num.
Test Cases Exercise: 1
M2 | Possibly Equivalent | Coverage Impact: NO | Num.
Test Cases Exercise: 3
————————————————
M1 | Non-Equivalent | Killed by:
FieldUtilsTest_M1.test003

3.5 Improvements
As explained, our approach is based on previous ideas from
the refactoring field (Soares et al., 2013a; Mongiovi et al.,
2014). In addition to bringing this idea to the context of mu-
tation testing, we provide several improvements regarding
related work.
Mongiovi et al. (2014) presented a change impact analysis

to help with identifying the entities impacted by a code trans-
formation. They provide only the interclass analysis option.
However, for large projects with complex dependencies, it is
difficult to identify what needs to be tested after a transfor-
mation. Especially when we search for the set of indirectly
impacted methods that exercise an impacted entity. The list
of methods to test can get large, hindering the efficacy of
the testing generation tools. Then, we add the option of the
analysis to be intraclass, that is, the impact analysis identi-
fies only the public methods in the class where the mutation
occurred. We also add analysis to the parameters of the meth-
ods. If any of the parameters are not from a primitive type,
wrapper class, or String type, we search in the classpath for
constructors needed to initialize the objects and to perform
the method call. The output of the change impact analysis is
a set of public methods and, if necessary, a set of constructors
to build up object dependencies.
Other improvements were made in the Steps 3 and 4. Dur-

ing the test execution step, we record coverage information
to support the suggested equivalent mutants’ phase. First, we
follow the idea proposed by Schuler and Zeller (2013) to cal-
culate the impact on the coverage when we execute the tests
in the original program and the mutant. Second, we use the
coverage information to count the number of test cases that
were able to exercise the statement where the mutation oc-
curred. These pieces of information can help assess the be-
havior of the mutation during computation. As we cannot
guarantee that the suggestion of equivalence is correct, these
improvements were fundamental in supporting the results of
the approach.

The nature of our approach allows for an important cost
reduction. The cost of the tester to design and implement
a new test case to kill a survived mutant identified as non-
equivalent. The output of our approach indicates which test
case can kill the mutant. This way, the mutation tester might
use the automated-generated test to improve their mutation-
adequate test suite.
The automated implementation of our approach is pro-

vided through a tool named Nimrod1 The tool performs the
necessary steps, including change impact analysis, test case
generation, and test execution, to suggest equivalent mutants
in a codebase. It aims to reduce the tester’s effort by suggest-
ing potential equivalent mutants and providing relevant in-
formation to support the decision-making process.

4 Evaluation
In this section, we present the evaluation of our automatic be-
havioral testing approach, Nimrod, for suggesting equivalent
mutants from the perspective of mutation testers in the con-
text of mutation analysis. We detail the research questions
addressed, the subjects used, the experimental setup, and the
evaluation procedure.

4.1 Research Questions
To evaluate Nimrod, we address the following research ques-
tions:
RQ1. How effective is Nimrod in suggesting equivalent

mutants?RQ2.How long doesNimrod take to analyze a mu-
tant? RQ3. What are the characteristics of the mutants that
Nimrod failed to classify? RQ4. Which mutation operators
commonly lead Nimrod to fail?
The questions RQ1 and RQ2 were discussed in a previous

publication (Fernandes et al., 2022). In this extended article,
we introduce two new questions, RQ3 and RQ4.
We answer RQ1 by measuring the Precision, Recall, and

F-measure of Nimrod in suggesting equivalent mutants. To
establish a baseline, we use a set ofmanually identified equiv-
alent mutants from a previous work (Kintis et al., 2018). This
enables us to calculate true positives, false positives, true neg-
atives, and false negatives based on manual analysis. Addi-
tionally, we compare Nimrod with the TCE tool (Kintis et al.,
2018), which detects equivalent mutants. It’s important to
note that Nimrod and TCE are complementary tools, with
the former suggesting equivalent mutants and the latter de-
tecting them. It is important to addressRQ1 as it helps us de-
termine the potential time and effort saved by Nimrod when
compared to manually analyzing each surviving mutant.
To answer RQ2, we calculate the average time that Nim-

rod takes to suggest the mutants as equivalent or non-
equivalent. Once a test kills the mutant, we confirm that
such a mutant is non-equivalent. This means that Nimrod
has no false negatives since all mutants classified as non-
equivalents are killed by at least one test case. On the other

1Nimrod is a fictional character appearing in Uncanny X-Men (March
1985). Nimrod is a powerful, virtually indestructible descendant of the
robotic mutant-hunting Sentinels.
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hand, Nimrod can erroneously classify mutants as equiva-
lents (false positives). These mutants may be a stubborn mu-
tant (Yao et al., 2014), where only a very specific test case
can kill it. To better understand the types of mutants that our
approach classifies erroneously, we formalize the following
research question:
To answer RQ3, we analyze the context of the program in

which the mutation is inserted. Mutation testers usually em-
ploy a subset of the mutation operators to perform the analy-
sis. Therefore, having information about the relationship be-
tween the mutation operators and the equivalent mutants is
useful. This leads to answer RQ4.
We answer RQ4 by computing the contribution of each

operator to the proportion of equivalent mutants, as the ratio
of each operator to Nimrod false positives. We enable all 15
method-level mutation operators available in Mujava (Ver-
sion 3).

4.2 Subjects

For the evaluation, we use programs and mutants from a pre-
vious work (Kintis et al., 2018). This set of programs is ac-
companied by manually identified equivalent mutants, pro-
viding a ”ground truth” about the undecidability of equiva-
lent mutants.
Table 1 details the Java programs used in the evaluation.

The first three columns of the table present the examined pro-
grams, the selected classes, and the considered methods. The
last two columns present the lines of code and the number of
generated mutants.

Table 1.Manually analyzed Java subjects.

Program Class Method LoC Total
Mutants

Bisect A program that calculates
square roots sqrt 23 135

Commons-
lang

An enhancements to
Java core library

capitalize 25 69

wrap 45 198

Joda-time A time manipulation library add 33 257

Pamvotis A wireless LAN simulator addNode 53 318
removeNode 18 55

Triangle A classic triangle classifica-
tion program classify 44 354

XStream A XML object serialization
framework decodeName 40 156

Total 281 1,542

The list of evaluated subjects covers: Bisect - a simple
program that calculates square roots, Commons-lang - an en-
hancements to Java core library, Joda-time - a time manipula-
tion library, Pamvotis - a wireless LAN simulator, Triangle
- a classic triangle classification program, and XStream - a
XML object serialization framework.

4.3 Experimental Setup

The evaluation is conducted on a 2.70GHz four-core PCwith
16 GB of RAM running Ubuntu 20.04.

Nimrod handles configuration files for each program to be
analyzed, indicating the test generation tools and their respec-
tive input parameters. In this evaluation, we use two popular
test generation solutions: EvoSuite (Fraser and Arcuri, 2011)
and Randoop (Pacheco et al., 2007; Soares et al., 2013a).
EvoSuite is a search-based tool that uses a genetic algo-

rithm to generate test suites for Java classes. We instantiate
EvoSuite twice for each mutant analysis: once for EvoSuite
Regression (EvoSuiteR) to generate test suites revealing dif-
ferences between two versions of a Java class (the original
and the mutant), and once with four coverage criteria (State-
ment, Line, Branch, and Weak Mutation coverage) for test
generation. A time limit of 60 seconds is set for test genera-
tion.
Randoop generates unit tests for Java using feedback-

directed random test generation. t randomly generates se-
quences of method/constructor invocations for the classes
under test and creates assertions that capture the actual be-
havior of the program. Randoop is normally used to create
regression tests. We also set a time limit of 60 seconds for
test generation.
For the generated tests, we set a timeout of 80 seconds to

execute the entire test suite. We also limited the maximum
number of test cases to 3,000. This was necessary mainly
due to the features of Randoop, which tries to generate the
widest variety of tests in the established time.
In order to make our analysis feasible, we have established

certain limits in this paper. These include a maximum of 60
seconds to generate tests, 80 seconds to execute the test suite,
and a cap of 3,000 tests. With regards to EvoSuite, we found
that there was no significant increase in the test suite beyond
the 60-second limit. On the other hand, Randoop generally
reaches 3,000 tests in under 60 seconds. Additionally, the
longest it takes for the worst test suite to execute against the
original program is 20 seconds. As a result, we have set a
guaranteed time of 80 seconds (4 x 20) to execute against
each mutant, given our scope.

4.4 Procedure
To perform the evaluation, we use the mutants generated us-
ing the Mujava tool2 (Kintis et al., 2018) with all available
method-level mutation operators. We then execute Nimrod’s
equivalence analysis individually for each mutant, compar-
ing it against the original program.
Nimrod’s equivalence analysis is done individually be-

tween the original program and the mutant. This is because
the change impact analysis (Section 3) reports the entities
that need to be exercised by the tests and the undecidable na-
ture of the automatic test generation tools used. Thus, the set
of tests generated to analyze a givenmutant is not necessarily
equal to the set of tests generated to analyze another mutant.
For each mutant, we first execute EvoSuiteR-generated tests,
followed by tests generated by EvoSuite with four coverage
criteria, and finally, tests generated by Randoop. This order is
chosen because EvoSuite can often reveal behavior changes
with fewer tests compared to Randoop.
If a test case fails or the test suite execution reaches the

2https://cs.gmu.edu/~offutt/mujava/

https://cs.gmu.edu/~offutt/mujava/
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timeout, Nimrod suspends the test execution, informs that
the mutant is not equivalent, and write out the test case that
exposes the behavior change. If all the test suite executes
against the mutant without any test case fails, nor does it
reach the timeout, Nimrod terminates the analysis of the mu-
tant, informs themutant is possibly equivalent, and writes out
the coverage impact and the number of test cases that reached
the mutated statement.
Upon analysis completion for each subject, we collect the

results and create a ranking of mutants suggested as equiva-
lents.
For a comprehensive evaluation, we also execute and

gather data from the TCE tool (Kintis et al., 2018) on the
same mutants, and the list of equivalent mutants manually
classified by Kintis et al. is made available at our companion
website (Fernandes, Leo, 2023).
In the next section, we present the experimental results and

discuss the main findings of the evaluation.

5 Analysis, Results, and Discussion
In this section, we present the results and address the re-
search questions. The basis for our analysis consists of 193
mutants3 manually classified as equivalents in previous re-
searches (Kintis et al., 2018). These 193 mutants represent
12.5% of the total 1,542 mutants analyzed.
Before detailing our approach, it is important to state the

notion of equivalencewe adopt. Amutant and an original pro-
gram are equivalents if they present the same externally ob-
servable behavior for all possible inputs. However, we can di-
vide this assumption into two different scenarios; open world
and closed world (Soares et al., 2013a). In an open world as-
sumption (OWA), any test case can be generated to discover
a behavioral change, without regarding the project or code
requirements. In a close world assumption (CWA), the test
cases must satisfy some domain constraints. For example:
“all the tested methods must be called through a Facade” or
“there is a strict call sequence of methods to be followed.” In
CWA an equivalent mutant may, for example, indicate that
the test is violating a system requirement, or the system has
a security flaw. Our approach adopts an open-world equiva-
lence notion, which means there are no constraints in the test
generation.
In the Nimrod, there is a possibility that our approach may

erroneously classify a mutant as equivalent when in reality,
the mutant is a stubborn mutant. A stubborn mutant is one
that remains undetected by a high-quality test suite and is,
therefore, non-equivalent (Yao et al., 2014). This represents
a false positive in our approach. Conversely, if Nimrod finds
a test that kills the mutant, but the manual analysis reports
that this mutant is equivalent, two situations may occur: (i)
the manual analysis is incorrect; or (ii) the tests, although
executing correctly, were written in the wrong way.

3Initially, the paper reported 196 equivalent mutants, but after reanaly-
sis, the authors updated the companion website, and this number dropped to
193.

5.1 How effective is Nimrod in suggesting
equivalent mutants?

Table 2 presents the general results of executing Nimrod on
the subjects. Columns 1 and 2 show the Program andMethod
names, respectively. Column 3 indicates the number of mu-
tants generated for each method. In total, the Mujava muta-
tion tool generated 1,542mutants. Column 4 shows the equiv-
alent mutants according to the manual analysis, the baseline.
Columns 5 and 6 show the number of equivalent mutants (N)
according to TCE detection, and Nimrod suggestion, respec-
tively. For the TCE and Nimrod results, we also present the
number of False Positives (FP) and False Negatives (FN) in
the table.
For clarity, we will refer to the subjects by the unique

names of the methods (Column 2) and the names of the pro-
grams (Column 1) in parentheses.
The manual analysis identified 193 equivalent mutants,

which we use as the baseline for comparison with our results.
The TCE tool detected 109 out of the 193 equivalent mutants
(56%). As TCE is a solution for detecting equivalent mu-
tants (Madeyski et al., 2014), there are no false positives (FP)
in the results. However, TCE can have false negatives (FN),
i.e., it may not identify all the equivalent mutants. All 84 false
negatives occurred because the optimization applied by TCE
produced a bytecode that differs from the corresponding orig-
inal program. It is important to note that this situation may
happen even when the mutant exhibits the same behavior as
the original program. We use the TCE data as a reference to
better understand the Nimrod results. It is not the purpose of
this paper to suggest a better solution, as our approach, to-
gether with TCE, may be complementary from the perspec-
tive of mutation analysis.
In contrast to TCE’s accuracy in detecting equivalent mu-

tants, our approach attempts to suggest whether a mutant is
equivalent through automated behavioral testing. Out of the
1,542 total mutants analyzed, Nimrod classified 449 as equiv-
alents. This is more than twice the number of 193 mutants
manually identified as equivalent. In fact, we expected our
solution to suggest more equivalents than the total number of
mutants that are indeed equivalent. The mutants that Nimrod
wrongly classified as equivalents represent the false positives
(FP).
Tables 4a to 4h present the detailed results of Nimrod and

TCE execution on the analyzed subjects. Each table repre-
sents a subject and shows the number of equivalent mutants
manually identified, suggested by Nimrod, and detected by
TCE. For each table, we also calculate the Precision, Recall,
and F-Measure for TCE and Nimrod. This information helps
us assess Nimrod’s performance on each subject.
Based on the F-measure, in three out of the eight sub-

jects evaluated, namely decodeName (XStream), add (Joda-
time), and classify (Triangle), the approach achieved an ac-
curacy of 100%. In two subjects, sqrt (Bisect) and capital-
ize (Commons-lang), the accuracy was above 96%. In the
other two subjects, wrap (Commons-lang) and removeNode
(Pamvotis), the approach had an accuracy above 82%.
However, Nimrod exhibited a very low accuracy in the

addNode (Pamvotis) subject, suggesting 277 out of 318 mu-
tants as equivalents. This is eight times more mutants than
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Table 2. General Results.

Program Method Total
Mutants

Equivalent Mutants
Manual
(baseline)

TCE
N (FP-FN)

Nimrod
N (FP-FN)

Bisect sqrt 135 17 11 (0-6) 18 (1-0)

Commons-Lang capitalize 69 14 2 (0-12) 15 (1-0)
wrap 198 19 12 (0-7) 26 (7-0)

Joda-Time add 257 35 24 (0-11) 35 (0-0)

Pamvotis addNode 318 33 33 (0-0) 277 (244-0)
removeNode 55 7 6 (0-1) 10 (3-0)

Triangle classify 354 40 21 (0-19) 40 (0-0)
XStream decodeName 156 28 0 (0-0) 28 (0-0)
Total 1,542 193 109 449

the 33 manually marked as equivalent. Upon analyzing the
false positives for this subject, we found some characteris-
tics in the target program and in the mutants that might ex-
plain this result. The addNode method has the following
signature: void addNode (int, int, int, int, int,
int). It does not return a value, which requires the test to use
an assert that checks the state of the program by using another
method or a field (or an exception for exceptional cases).
Additionally, most mutants mistakenly marked as equivalent
change fields that do not have public methods or are located
in classes other than the target class where the mutation oc-
curred (we will discuss these cases in the next section). In
contrast, this was the only subject in which TCE had 100%
of accuracy.
As explained, Nimrod computes two metrics to create the

ranking and thus support the tester: the number of test cases
that reached the mutated point and a boolean value indicating
whether the test execution had a coverage impact. We rank
the mutants using the following criteria: first, the impact on
coverage, and then the number of test cases that exercised the
mutated point.
However, we cannot define a general threshold number

that determines how many mutants must be manually ana-
lyzed in all projects. It is up to the tester to decide which mu-
tants will be manually reviewed. In this study, we defined the
median number of test cases that touched the mutated point
as the threshold to verify the accuracy of the ranking. After
that, we checked how many false positives remained before
or after the median.
Table 3 presents the 18 mutants of sqrt (Bisect) suggested

as equivalent by Nimrod. According to the manual analysis,
17 mutants are equivalent, which means Nimrod classifica-
tion had one false positive. The false positive is AOIS_12
(in bold). No mutant has an impact on coverage. Using the
number of test cases that touched the mutated point, the me-
dian value for the 18 mutants is 204 test cases. The AOIS_12
mutant was exercised by 191 test cases. Notice that this mu-
tant is below the median value (191 < 204). Lower values
might represent potential non-equivalent mutants. Therefore,
mutants below the median could be selected for manual anal-
ysis.
Table 4 presents the false positives per subject. Only sub-

jects that had at least one false positive are listed in the table.
In the sqrt (Bisect) and capitalize (Commons-Lang) subjects,

Table 3. The sqrt (Bisect) mutants suggested as equivalent. The
AOIS_12 is the false positive (in bold) and the double line marks
the division based on the median.

Mutant Coverage
Impact

Num. Test
Cases Exercise

AOIS_43 NO 61
AOIS_48 NO 137
AOIS_60 NO 142
AOIS_31 NO 143
ROR_13 NO 146
AOIS_45 NO 156
AOIU_12 NO 191
AOIS_74 NO 199
ROR_12 NO 200
AOIS_59 NO 208
AOIU_4 NO 213
ROR_8 NO 221
AOIS_44 NO 235
AOIS_47 NO 245
AOIS_79 NO 311
AOIU_3 NO 329
AOIS_73 NO 386
AOIS_80 NO 465
MEDIAN 204

only one mutant was wrongly classified. In both cases, the
false positives were below the median.
In the addNode (Pamvotis) subject, despite having many

false positives, 214 (88%) out of 244 were below the median.
Upon examining the details of the result, we identified that
106 (38%) mutants were not exercised by any test case. Most
of these mutants were inside a switch-case structure, which
was nested with a conditional if. The worst-case happened
with the wrap (Commons-lang). This subject has a structure
with three conditional nested ifs. All false positives were at
some point in this structure, and the number of test cases that
touched these mutants ranged from two to seven. This is rela-
tively low since an average of three thousand tests were gen-
erated for these mutants.

Answer to RQ1: The accuracy of our approach reached
100% in three subjects, more than 96% in two subjects, and
more than 82% in two other subjects studied. In only one
subject, the performance was below 22%.We defined theme-
dian number of test cases that touched the mutated point to
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Table 4. Analyzed subjects.
(a) Subject: sqrt (Bisect).

MANUAL NIMROD TCE

EQUIVALENTS 17 18 11

PRECISION 94.44% 100.00%
RECALL 100.00% 64.71%
F-MEASURE 97.14% 78.57%

(b) Subject: classify (Triangle).

MANUAL NIMROD TCE

EQUIVALENTS 40 40 21

PRECISION 100.00% 100.00%
RECALL 100.00% 52.50%
F-MEASURE 100.00% 68.85%

(c) Subject: decodeName (XStream).

MANUAL NIMROD TCE

EQUIVALENTS 28 28 0

PRECISION 100.00% 0.00%
RECALL 100.00% 0.00%
F-MEASURE 100.00% -

(d) Subject: add (Joda-time).

MANUAL NIMROD TCE

EQUIVALENTS 35 35 24

PRECISION 100.00% 100.00%
RECALL 100.00% 64.86%
F-MEASURE 100.00% 78.69%

(e) Subject: capitalize (Commons-lang).

MANUAL NIMROD TCE

EQUIVALENTS 14 15 2

PRECISION 93.33% 100.00%
RECALL 100.00% 14.29%
F-MEASURE 96.55% 25.00%

(f) Subject: wrap (Commons-lang).

MANUAL NIMROD TCE

EQUIVALENTS 19 26 12

PRECISION 73.08% 100.00%
RECALL 100.00% 63.16%
F-MEASURE 84.44% 77.42%

(g) Subject: addNode (Pamvotis).

MANUAL NIMROD TCE

EQUIVALENTS 33 277 33

PRECISION 11.91% 100.00%
RECALL 100.00% 100.00%
F-MEASURE 21.29% 100.00%

(h) Subject: removeNode (Pamvotis).

MANUAL NIMROD TCE

EQUIVALENTS 7 10 6

PRECISION 70.00% 100.00%
RECALL 100.00% 85.71%
F-MEASURE 82.35% 92.31%

distinguish mutants with a strong or weak chance of being
equivalent. In two cases, the results reached 100% accuracy,
and in the worst case, it reached an accuracy of 57%.

5.2 How long does Nimrod take to analyze a
mutant?

To evaluate the efficiency of the approach and answer RQ2,
we calculate the average time that Nimrod took to sug-
gest each mutant as equivalent or non-equivalent. Table 5
presents the average time in seconds for each subject. For
example, the classify (Triangle) subject took an average of
197.10 seconds to suggest a mutant as equivalent and 11.46
seconds to detect one non-equivalent mutant.

Table 5. Average time Nimrod took to analyze each mutant and
distribution of the false positives according to the median.

Program Method

Average Time
(seconds)

False
Positives

Equiv. Non-
Equiv. Qty Median

⇐= =⇒
Bisect sqrt 198.37 130.43 1 100% 0%

Commons-Lang capitalize 358.36 22.50 1 100% 0%
wrap 378.29 15.99 7 57% 43%

Joda-Time add 212.61 24.04 0

Pamvotis addNode 404.76 38.72 244 88% 11%
removeNode 391.89 25.79 3 66% 33%

Triangle classify 197.10 11.46 0
XStream decodeName 311.01 23.72 0

Our approach has a fast average response time for the cases
where the mutant is suggested as non-equivalent. That hap-
pens because once a test kills the mutant, we finish the analy-
sis. We chose to perform this phase sequentially and defined

EvoSuite Regression Testing (EvoSuiteR) as the first option.
This allowed easy-to-kill mutants to be quickly discovered
and killed.
To suggest a mutant as non-equivalent, the sqrt (Bisect)

subject had the worst results. In this subject, some non-
equivalent mutants led Nimrod to generate tests that reached
the execution timeout due to infinite loops caused by the mu-
tants. So, although this situation raises a behavioral change,
Nimrod spends a lot of time until the timeout. The classify
(Triangle) subject had the best response time to detect non-
equivalent mutants. This subject has relatively simple code
structures when compared to the other subjects of the study.
For instance, no dependencies with external classes, and no
complex conditional expressions. This condition leads to the
generation of many easy-to-kill mutants.
To suggest a mutant as equivalent, Nimrod needs to gen-

erate and execute all tests from all test-generation tools. The
subjects classify (Triangle) and sqrt (Bisect) had the best re-
sults with an average of 197.10 seconds and 198.37 seconds
to analyze a single equivalent mutant. Both classes of the two
subjects do not have dependencies with external classes. This
allows the test generation tools, especially EvoSuite, not to
take so long to generate the tests.
On the other hand, the subject addNode (Pamvotis) took an

average of 404.47 seconds to suggest a mutant as equivalent.
As explained, this subject has some features that difficult the
generation of tests. One may ask whether the time is taken by
Nimrod is acceptable. Notice that the time results we report
are dependent on the settings we use in the test generation
tools. For instance, we set up 60 seconds of time limit for
each instance (Randoop once, EvoSuite twice) to generate
the tests. These settings led Nimrod to take approximately
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five minutes to suggest a mutant as equivalent. It is worth
mentioning that identifying equivalent mutants is a manual
task in the last case.
Manually classifying mutants as equivalent and non-

equivalent takes an average of 15 minutes per mutant
(Schuler and Zeller, 2013). Moreover, this task is error-
prone: 20% of the studied mutants were erroneously classi-
fied (Allen Troy Acree, 1980). Nimrod can reduce this work
as it takes a third of the manual time and ranks the mutants
indicating which ones are likely to be equivalent. Also, for
a non-equivalent mutant, the average time reduces to 36.57
seconds, 25 times less than the manual time. TCE can ana-
lyze the equivalence in less than two seconds (Kintis et al.,
2018). In Section 6, we present a practical application com-
bining TCE and Nimrod as an alternative for the equivalent
mutant problem.

Answer to RQ2: Nimrod took an average of 306.55 sec-
onds per equivalent mutant analyzed and 36.57 seconds per
non-equivalent mutant. While manually analyzing a mutant
to indicate whether it is equivalent or not can take 15 min-
utes (Schuler and Zeller, 2013), Nimrod takes a third of this
time to suggest equivalent mutants and is 25 times faster to
indicate non-equivalents mutants.

5.3 What are the characteristics of the mu-
tants that Nimrod failed to classify?

To address RQ3, we carefully examined all the false positives
of each subject to identify common source code characteris-
tics that led Nimrod to suggest mutants as equivalents when,
in fact, they are not. We focused on three specific charac-
teristics: Access Level Modifier, External Entities, and Very
Restricted Value. Out of the 1,542 mutants analyzed, a to-
tal of 256 (16.60%) mutants were misclassified. Remarkably,
the majority of these misclassified mutants, specifically 244
(95%), were associated with the addNode (Pamvotis) subject.
In this section, we present a qualitative evaluation of the false
positives for each of these characteristics.
Access Level Modifier occurs when the test case and the

source code need to be in the same package structure so that
the mutant can be killed by the test. Listing 4 presents a code
snippet of the sqrt (Bisect) subject. In the M1 mutant, the op-
erator AOIU (Arithmetic Operator Insertion - Unary) inserts
a minus operator at the right-hand side of an assignment to
a field variable. This transformation changes the value as-
signed to the field mResult. This field has no other use or
definition in the sqrt method. Likewise, it has no other ac-
cess in any method of this class to set out a change in the
behavior.
This led us to believe that this mutant could be equivalent,

however, as can be seen in Listing 4, this field was declared
as package-private (no explicit modifier). So, to kill this mu-
tant it is necessary to use a Java language artifice to bypass
the field visibility constraint. The test should be created in
the same package as the original class under test and the as-
sertion should observe the state of the field. It will have direct
access to the field without the need to go through an access

method (e.g., getMResult()) for this purpose.Wewere able
to configure EvoSuite to follow the same package structure
as the original program. However, we did not get the tests to
perform assertions in package-private fields.
In the Bisect class example, if the developers of the

project had defined that the unit tests and the original source
code should be in different packages, the AOIU mutant
would be equivalent (CWA). As we are considering all
projects based on the notion of OWA, the mutant AOIU is
considered non-equivalent. So, here Nimrod failed.
To solve this problem, the Nimrod tests must follow the

same package structure of the class under test and, in addi-
tion, the test assertion must use the available class fields.

Listing 4: A code snippet extracted from the sqrt subject.
1 public class Bisect {
2 double mEpsilon, mResult;
3 ...
4 public double sqrt( double N ){
5 ...
6 while (Math.abs( diff ) > mEpsilon) {
7 ...
8 }
9 r = x;
10 mResult = r; M1 [mResult = r; ⇒ mResult = -r;]
11 return r;
12 }
13 }

Very Restricted Value occurs when the automatic testing
tool does not generate a test with an input that exercises the
behavior change made by the mutation. To better explain this
characteristic, we use an example extracted from the wrap
(Commons-lang) subject.
In the Listing 5, the mutant M2 (line 21) was generated by

the mutation operator AORB (Arithmetic Operator Replace-
ment). Here, it replaces the arithmetic operator + by %. To
change the behavior of this mutant, the test must reach the
mutated line, which is inside several nested if statements.
Also, the offset variable cannot be redefined in the subse-
quent repetitions of the while. During our study, this mutated
point was only exercised twice, even though more than 3,000
tests were generated by automatic generation tools.

Listing 5: A code snippet extracted from the wrap (WordU-
tils) subject.
1 public class WorldUtils {
2 public static String wrap( String str, int wrapLength,
3 String newLineStr, boolean wrapLongWords ) {
4 ...
5 while (...) {
6 if (...) {
7 offset++;
8 continue;
9 }
10 if (...) {
11 ...
12 offset = ...
13 } else {
14 if (...) {
15 ...
16 offset = ...
17 } else {
18 spaceToWrapAt = str.indexOf(' ', wrapLength + offset);
19 if (spaceToWrapAt >= 0) {
20 ...
21 offset = spaceToWrapAt + 1; M2 [ + ⇒ % ]
22 } else {
23 ...
24 offset = ...
25 }
26 }
27 }
28 }
29 wrappedLine.append(str.substring(offset));
30 return wrappedLine.toString();
31 }
32 }
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Table 6. Common characteristics (false positives) in the Nimrod’s results.
Problem Description Subjects

Access Level Modifier To kill the mutant, the test needs to be in the same
package structure as the program source code.

sqrt (Bisect), addNode (Pamvotis),
removeNode (Pamvotis).

Very Restricted Value To kill the mutant, the test needs to generate
a very specific value.

capitalize (Commons-lang),
wrap (Commons-Lang),
addNode (Pamvotis),
removeNode (Pamvotis).

External Entities To kill the mutant, the test needs to execute
and assert entities in classes different from
the mutated location.

addNode (Pamvotis),
removeNode (Pamvotis).

It is already known from the software testing community
that automatically creating tests to achieve high branch cov-
erage is difficult. A possible solution for Nimrod to solve
this problem is to increase the time limit of the tools to gen-
erate the tests and allow a larger number of tests to be gener-
ated (we limit these settings in 60 seconds of time limit and
a maximum of 3,000 tests). However, these decisions imply
directly in the total time to suggest a mutant as equivalent
or non-equivalent. New approaches to solving this problem
have been presented in recent years (Braione et al., 2017).
So, the next versions of the automatic test generation tools
are likely to show improvements in this regard.
External Entities happens when the test needs to execute
or assert entities that are not directly located in the target
class where the mutation occurred. Listing 6 presents a code
snippet extracted from the addNode (Pamvotis) subject. The
method (lines 4-24) has no return statement and its main goal
is to construct a MobileNode object and put this object into
a Vector (line 21). In the M3 mutant, the AOIS operator in-
serts a post-decrement in the variable SpecParams.CW_MAX
(Line 13). This global variable is static, public, and has only
one definition point in the SpecParams class.

Listing 6: A code snippet extracted from the addNode sub-
ject.
1 public class Simulator {
2 private java.util.Vector nodesList = new java.util.Vector();
3 ...
4 public void addNode( int id, int rate, int coverage, int

↪→ xPosition, int yPosition, int ac ) {
5 ...
6 if (...) {...}
7 else {
8 pamvotis.core.MobileNode nd = new pamvotis.core.MobileNode();
9 ...
10 switch (ac) {
11 case 1 : {
12 nCwMin = cwMin / cwMinFact1;
13 nCwMax = SpecParams.CW_MAX / cwMaxFact1;
14 nAifsd = sifs + aifs1 * slot; M3:
15 break; [SpecParams.CW_MAX ⇒ SpecParams.CW_MAX--]
16 }
17 ...
18 }
19 nd.params.InitParams( id, rate, xPosition, yPosition,

↪→ coverage, ac, nAifsd, nCwMin, nCwMax );
20 nd.contWind = nd.params.cwMin;
21 nodesList.addElement( nd );
22 nmbrOfNodes++;
23 }
24 }
25 }

To identify the behavior change of this mutant, the test
needs to assert the state of the SpecParams.CW_MAX variable
after executing the method addNode. However, our impact
analysis (presented in Section 3) is intraclass and does not
consider impacted entities in external classes/files.
As explained, the Nimrod notion of equivalence is based

on the behavior exposed by the program through the execu-
tion of automatically generated tests. Therefore, to have a
satisfactory result, the class under test must be designed so
that unit tests can be executed (Binder, 1994). However, this
is not always the case, so writing a good test in this sense
is difficult. When this occurs, Nimrod fails to generate a test
that could change the mutant’s behavior in comparison to the
original program. This situation can lead Nimrod to produce
false positives. We noticed that the high false positive num-
ber of subject addNode (Pamvotis) occurred because the sys-
tem was not designed to facilitate the use of unit tests (the
project does not have developer written unit tests). In the fu-
ture, we intend to do refactoring actions to make the code
more testable and then repeat the experiment.

Answer to RQ3: We have successfully identified the three
main characteristics that cause Nimrod to fail in suggesting
equivalent mutants. These include the Access Level Modifier,
External Entities, and Very Restricted Value. However, we
have discovered that it is possible to significantly reduce the
number of false positives by enhancing the static analysis and
adjusting the automatic test generation configuration. Out of
the three characteristics, the Very Restricted Value is the most
common and challenging to address. This type of mutant is
notoriously known as stubborn because it requires highly spe-
cific tests to be eliminated.

5.4 Whichmutation operators commonly lead
Nimrod to fail?

In this section, we investigate the influence of mutation op-
erators on the performance of Nimrod and determine which
ones commonly led to misclassifications. To achieve this, we
counted the number of suggested equivalent mutants per op-
erator that caused Nimrod to fail. Table 7 presents the results
for each mutation operator, including the total number of mu-
tants analyzed per operator.
Our focus is on the false positive column since it repre-

sents mutants that were incorrectly classified as equivalent
by Nimrod. By analyzing the absolute numbers, we observe
that the AOIS (Arithmetic Operator Insertion, short-cut) op-
erator stands out, generating 650 (42%) mutants, the high-
est among all operators. Consequently, this operator was re-
sponsible for producing both equivalent and non-equivalent
mutants in large quantities. Specifically, Nimrod classified
251 AOIS mutants as equivalent, out of which 125 (50%)
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were misclassified. It is noteworthy that the AOIS operator is
known for generating numerous equivalents, some of which
could potentially be avoided before their generation (Kintis
and Malevris, 2015; Fernandes et al., 2017). Additionally,
this operator also generates several stubbornmutants, which
require specific tests for mutation analysis (Yao et al., 2014).
However, when considering the relative numbers, i.e., the

false positive rates for each operator, we find that the worst
performance occurred with the AOIU (Arithmetic Operator
Insertion, unary) and AORB (Arithmetic Operator Replace-
ment, binary) operators, both having false positive rates close
to 30%. Notably, more than 93% of the false positives from
bothAOIU andAORBoriginated from the addNode (Pamvo-
tis) subject. The misclassification in these cases often re-
sulted from the AOIU operator changing a field that either
belonged to an external entity or had package-private access
level.
For the remaining mutation operators (LOI and ASRS),

where Nimrod also exhibited misclassifications, the hit rate
in detecting non-equivalent mutants (True Negative column)
was above 80%, indicating that Nimrod performed well in
distinguishing non-equivalent mutants. As a result, we did
not identify any specific mutation operator that was inher-
ently leading to Nimrod’s failure.

Answer to RQ4: In our investigation, we identified ten Mu-
java mutation operators, generating a total of 1,542 mutants.
Six operators, notably AOIU and AORB, produced false pos-
itives, erroneously marked as equivalent by Nimrod. The
AOIS operator, contributing 42% of mutants, stood out as
the most prolific in both equivalent and non-equivalent cate-
gories. Despite AOIS’s tendency to create many equivalent
mutants, some could potentially be prevented before gener-
ation, as suggested by previous research (Fernandes et al.,
2017). Additionally, AOIS generates stubborn mutants re-
quiring very specific tests. While AOIU and AORB had the
highest false positive rates at nearly 30%, the majority origi-
nated in the addNode (Pamvotis) subject. For other misclas-
sified mutation operators (LOI and ASRS), Nimrod excelled
in detecting non-equivalent mutants, with hit rates exceeding
80%. No specific mutation operator consistently led to Nim-
rod’s failure; misclassifications were linked to specific code
characteristics, detailed in Section 5.3.

5.5 Threats to Validity
In this section, we discuss potential threats to the validity of
our study.
External Validity: The selection of projects used as sub-

jects in this study may pose a threat to external validity, es-
pecially since we focused on a limited number of methods.
To address this concern, we aimed to diversify the subjects
by choosing projects from different systems and domains.
Although the subjects were selected based on a previous
analysis of equivalence, our approach has not been tested
against methods with complex external dependencies, such
as those involving objects like ObjectC func(ObjectA , Ob-
jectB);. Methods with such dependencies might be challeng-
ing for test generation tools, as they require the creation of

mocks (Arcuri et al., 2017) or the discovery of valid con-
structors, which may have further dependencies. Addition-
ally, dependencies on external elements like graphical user
interfaces or file manipulations could limit the ability of test
generation tools to generate test cases that expose behavioral
changes (Soares et al., 2013b).
Internal Validity: The manual analysis used to classify

the mutants represents a potential threat to internal validity.
However, the set of mutants was manually analyzed by two
previous independent studies (Kintis et al., 2018; Kintis and
Malevris, 2015) in addition to our present analysis. Further-
more, TCE was used to confirm some of the equivalent mu-
tants. For the remaining ones, we manually verified all the
equivalents and corroborated the previous manual analysis.
It is important to note that this threat arises due to the unde-
cidability of the equivalent mutant problem, and it applies to
all relevant mutation testing studies on this topic.
The set of selectedmutant operators also introduces threats

to the internal validity of this work. However, this set in-
cludes all 15 operators available in Mujava (version 3), and
we did not exclude any mutants from our investigation. We
did not evaluate object-oriented related mutation operators,
as previous research (Offutt et al., 2006) has shown that they
yield a small number of mutants and a relatively low number
of equivalent ones.
The ranking approach we used counts the number of test

cases that reach the mutated point, which relies on code line
coverage information. This metric may not always provide
precise information. For instance, given the expression if
(a > 0 && b < 10), if the mutation occurs at the right-
hand side of the && operator (e.g.: b >= 10), all tests that
reach this line, even if they only evaluate the left-hand side
of the expression, will be computed as reaching the mutated
point. To mitigate this threat, our ranking also considers an-
other metric: the impact on coverage.
The presence of flaky tests (Luo et al., 2014) could repre-

sent a threat as well. For instance, Nimrod might suggest a
mutant as non-equivalent because there is a test exposing a
behavioral change in the mutant program, while the mutant is
actually equivalent, and the difference in behavior occurred
due to a flaky test. This would lead to a false negative for
Nimrod. To minimize this threat, we execute the generated
tests against the original program to confirm that they cap-
ture the current behavior of the original program. Addition-
ally, both EvoSuite and Randoop have settings to avoid flaky
tests. Notably, we did not identify any false negatives among
the mutants analyzed manually and subsequently evaluated
by TCE.
Other potential threats could arise from defects in the em-

bedded software, such as in the static analysis or automatic
test generation tools. Such defects could impact our results.
However, we believe that the influence of such defects would
be minimal in our study.
Construct Validity: All our results are empirical observa-

tions, and they might not necessarily hold in all cases. How-
ever, we have made all our subjects, tools, and data available
on the companion website of this article, which enables in-
dependent researchers to verify, replicate, and analyze our
findings. This transparency helps to mitigate construct valid-
ity threats.
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Table 7. Nimrod Results by Mutation Operator.

Nimrod
Mutation
Operator Description Mutants True

Positive
True

Negative
False
Positive

AORB Arithmetic Operator Replacement (binary) 232 14 (6%) 151(65%) 67 (29%)
AORS Arithmetic Operator Replacement (short-cut) 8 0 8 (100%) 0
AOIU Arithmetic Operator Insertion (unary) 108 9 (8%) 67 (62%) 32 (30%)
AOIS Arithmetic Operator Insertion~(short-cut) 650 126 (20%) 399 (61%) 125 (19%)
AODU Arithmetic Operator Deletion~(unary) 2 1 (50%) 1 (50%) 0
AODS Arithmetic Operator Deletion~(short-cut) 0 0 0 0
ROR Relational Operator Replacement 254 34 (13%) 220 (87%) 0
COR Conditional Operator Replacement 24 3 21 0
COD Conditional Operator Deletion 0 0 0 0
COI Conditional Operator Insertion 67 0 67 (100%) 0
SOR Shift Operator Replacement 0 0 0 0
LOR Logical Operator Replacement 0 0 0 0
LOI Logical Operator Insertion 181 6 (3%) 146 (81%) 29 (16%)
LOD Logical Operator Deletion 0 0 0 0
ASRS Assignment Operator Replacement~(short-cut) 16 0 13 (81%) 3 (19%)
Total 1,542 193 1,093 256

In conclusion, while our study presents valuable insights
into the performance of Nimrod for mutation analysis, it is
essential to be aware of the potential threats to validity men-
tioned above. These considerations provide a more compre-
hensive understanding of the scope and limitations of our
findings.

6 Implications for Practice
We propose to extend the traditional mutation process by
incorporating TCE and Nimrod to minimize the high cost
of manual analysis. Figure 2 presents this extension. Step 1
presents Offutt’s and Untch’s proposition of the commonmu-
tation process. The solid boxes represent steps that are auto-
mated by tools such as Mujava, and the dashed boxes repre-
sent manual steps.
In Step 2, TCE receives as input a set of mutants that were

not killed by the application test suite and safely discards a
number of useless mutants. In Step 3, Nimrod receives as in-
put the mutants that TCE could not confirm as equivalents. If
Nimrod finds a test that exposes a behavioral change, it indi-
cates that the mutant is not equivalent and informs which test
can kill it. If after the timeout no test is capable of exposing
a behavioral change, Nimrod suggests the mutant as equiva-
lent. Step 4 shows the manual process to identify equivalent
mutants. After using TCE and Nimrod, the tester now should
consider a smaller number of mutants.
To better illustrate a potential cost reduction, we refer to

the FieldUtils class (Joda-time project) presented in Sec-
tion 3. Table 8 presents a summary of the effort reduction.
When executing the Mujava with all the mutation operators,
1,339 mutants are generated. After executing the test suite
of the Joda-time project, 543 mutants have been killed and
796 were still alive. This represents a mutation score of 40%
(without any analysis of equivalence). By using the tradi-
tional process, 796 mutants should be still analyzed.
Our first step is to consider the live mutants as input for

TCE. TCE took 17.33 minutes to analyze the 796 mutants.
An average of 1.3 seconds per mutant. TCE detected 117
mutants, reducing the number of mutants to be investigated

Table 8. Effort’s reduction when combining TCE and Nimrod for
the class FieldUtils of project Joda-Time.

Mutants Description
1,339 Total FieldUtils mutants
-543 Killed by joda-time test suite
796 Survived mutants 100.00%
-117 TCE equivalents 17.33 minutes
679 Survived mutants ⇓ 14.69%
-608 Nimrod non-equivalents 410.99 minutes
71 Survived Mutants ⇓ 91.08%

to 679. Then, we execute our approach against these 679
mutants. Nimrod was able to identify 608 mutants as non-
equivalents (76% of all the mutants analyzed by Nimrod).
The total time to analyze these 679 mutants was 24,659 sec-
onds (6.8 hours). At the end, Nimrod suggested 71 mutants
as potential equivalents. To sum up, we achieved a total re-
duction of 91.08% in the number of mutants to be analyzed.
We do not intend here to generalize the cost reductions

whatsoever. Instead, we intend to show that our approach
might potentially reduce costs when analyzing and marking
equivalent mutants.

7 Related Work

Addressing the equivalent mutant is not a recent problem (Jia
and Harman, 2011; Madeyski et al., 2014; Pizzoleto et al.,
2019; Papadakis et al., 2019). To tackle the mutation equiv-
alent problem, researchers used compiler optimizations. Ap-
plication of six techniques for compiler optimization in an
experiment with 15 small Fortran programs along with 14
mutation operators (Offutt and Craft, 1994). Development
of the Trivial Compiler Equivalence (TCE) and implemented
compiler optimizations for Java and C (Kintis et al., 2018).
To check the equivalence, it was used a diff program. Our ap-
proach aims to work in conjunction with detection strategies
like these ones.
There are studies to avoid equivalent mutants even before

they are generated. Heuristics specifications, based on equiv-
alence conditions, that avoid equivalent mutants for class-
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Figure 2. Combining TCE and Nimrod to minimize the manual analysis to identify equivalent mutants.

level mutation operators (Offutt et al., 2006). Application
of data-flow patterns to identify equivalents (Kintis and
Malevris, 2015) and introduction of a strategy to help devel-
opers with deriving rules to avoid the generation of useless
(equivalents and duplicated) mutants right before their gener-
ation (Fernandes et al., 2017). Strategies to avoid equivalent
mutants are alternate options to reduce cost and can be com-
bined with complementary approaches to detect and suggest
equivalent mutants after mutation analysis, such as TCE and
Nimrod, may come as a complement to these solutions.
Other studies check the impact of the mutant execution.

The more invariants a mutant violates, the more likely it is to
be detected by actual tests (Schuler et al., 2009). Analyzes
to verify whether changes in coverage can be used to detect
non-equivalent mutants (Schuler and Zeller, 2013). In our
work, we take advantage of the coverage impact to build our
ranking (Table 3).
Recent techniques classify equivalent mutants using ma-

chine learning (ML). 80.30% accuracy while classifying
equivalent mutants in investigation of seven traditional ML
algorithms (Brito et al., 2020). Evaluate an Abstract Syn-
tax Tree Neural Network Model with two mutation opera-
tors and 582 mutants, resulting in a classification accuracy
of 90% (Peacock et al., 2021). Although promising, these
techniques still need to assess not only effectiveness but also
efficiency.
The idea of automatically generating a test suite to detect

behavioral changes was proposed in the context of refactor-
ing (Soares et al., 2010). They presented SafeRefactor, a tool
for improving safety during refactoring activities, that was
able to identify bugs in Eclipse and NetBeans (Soares et al.,
2013a; Mongiovi et al., 2018).
We extend the initial idea to adapt to the mutation testing

context.

We add more tools to automatically generate the tests. We
also provide the user the test that can identify the behavioral
change and calculate the confidence of the equivalence by
counting the number of tests that touch the mutated point.
Finally, our approach can be used with strate-

gies (Guimarães et al., 2020; Gheyi et al., 2021) that
identify mutation subsumption relations to reduce mutation
testing effort.

8 Concluding Remarks
In this paper, we introduced Nimrod, an approach based
on automated behavioral testing, to mitigate the impact of
equivalent mutants in mutation testing. By automatically sug-
gesting equivalent mutants and generating tests to kill non-
equivalent mutants, Nimrod reduces the manual labor re-
quired in mutation analysis.
Our results demonstrate that Nimrod achieved a high suc-

cess rate in suggesting equivalent mutants, correctly iden-
tifying 100% of the equivalents in three out of eight sub-
jects, and achieving above 96% in two subjects. Only in one
subject did the performance drop below 50%. Additionally,
Nimrod significantly reduced the time taken to identify non-
equivalent mutants, with an average of 36.57 seconds per
non-equivalent mutant. For the mutants suggested as equiv-
alent, where test generation tools needed to execute all gen-
erated tests, Nimrod took an average of 306.55 seconds (ap-
proximately 5.1 minutes). This is substantially faster than the
15 minutes typically required for manual analysis (Schuler
and Zeller, 2013). By automating this process, Nimrod saves
testers valuable time and effort in thinking and implementing
test cases to identify non-equivalent mutants.
The scalability of the presented approach relies signifi-
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cantly on the automated test generation tools employed in
Step 2 (Figure 1). Given the impracticality of conducting ex-
haustive tests for more intricate programs, these tools utilize
a time configuration as a stopping criterion. We have uni-
formly allocated a fixed time for all subjects, regardless of
the complexity of the tested method, a practice that should
not be considered standard. Extracting information from the
program under test through static analysis and subsequently
configuring the test generation tool according to the context
can be considered an option to enhance performance.
We also investigated the characteristics of the mutants that

Nimrod misclassified as equivalent (false positives). Three
classes of characteristics were identified, including Access
Level Modifier, External Entities, and Very Restricted Value.
Improvements in static analysis and automatic test genera-
tion tools can help reduce false-positive instances, particu-
larly by designing testable classes to aid Nimrod’s equiva-
lence analysis. Notably, around 69% of errors occurred due
to behavioral changes in tests necessitating access to external
entities or matching package structures between tests and the
program under test. These issues can be mitigated through
evolving automatic testing tools, employing inter-class im-
pact analysis, and adjusting test generators to match pack-
age structures and access package-private and protected ele-
ments.
Furthermore, we assessed the impact of mutation opera-

tors on Nimrod’s performance. While the AOIU and AORB
operators had the highest false-positive rates, their hit rates in
Nimrod surpassed the error rates, indicating no definitive set
of operators leading to misclassifications. The AOIS opera-
tor generated the most equivalent mutants but maintained a
high hit rate in Nimrod. Hence, we did not identify a specific
set of operators responsible for misclassification.
Future work includes carrying out new experiments to sta-

tistically revalidate the findings of this paper. Both using
other mutation tools such as Major and PIT, as well as dif-
ferent operators like class-level mutation operators (Offutt
et al., 2006).
We also plan to include subjects with different levels of

complexity. For instance, methods with complex external
dependencies to further enhance the analysis. Novel bench-
marking frameworks (van Hijfte and Oprescu, 2021) can sup-
port this plan.
As an improvement in the approach, we intend to incre-

ment the tool to reduce the number of false positives for the
cases we identified. This should include improving the im-
pact analysis. In the actual version, we only have two options
in impact analysis: intraclass and interclass. In the case of in-
traclass, we direct the tests only to the entities impacted in the
mutated class itself, which may be insufficient. In the case of
interclass, we direct the tests to the entities impacted through-
out the project, which can be very large. Perhaps, a middle
ground can bring more benefits to our context.
Furthermore, by understanding the different cases of stub-

born mutants, we can better guide automatic testing, or even
change these tools for something like mutant-based test gen-
eration.
To summarize, our research proposes using Nimrod as a

solution to address equivalent mutants in mutation testing.
By automating the identification of equivalents and produc-

ing tests to reveal non-equivalents, Nimrod offers valuable
assistance to software testers, greatly reducing the need for
manual labor and time while ensuring the efficacy of the mu-
tation analysis process.
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