Journal of Sofiware Engineering Research and Development, 2021, 9:10, doi: 10.5753/jserd.2021.477

© This work is licensed under a Creative Commons Attribution 4.0 International License..

A Data-centric Model Transformation Approach using

Model2GraphFrame Transformations

Luiz Carlos Camargo ® [Universidade Federal do Parana C3SL Labs | lccamargo@inf.ufpr.br |
Marcos Didonet Del Fabro ® [Universidade Federal do Parana, C3SL Labs | didonet@inf.ufpr.br |

Abstract

Data-centric (Dc) approaches are being used for data processing in several application domains, such as dis-
tributed systems, natural language processing, and others. There are different data processing frameworks that ease
the task of parallel and distributed data processing. However, there are few research approaches studying on how to
execute model manipulation operations, as model transformations models on such frameworks. In addition, it is of-
ten necessary to provide extraction of XMI-based formats into possibly distributed models. In this paper, we present
a Model2GraphFrame operation to extract a model in a modeling technical space into the Apache Spark framework
and its GraphFrame supported format. It generates GraphFrame from the input models, which can be used for
partitioning and processing model operations. We used two model partitioning strategies: based on sub-graphs, and
clustering. The approach allows to perform model analysis applying operations on the generated graphs, as well as
Model Transformations (MT). The proof of concept results such as model2GraphFrame, GraphFrame partitioning,
GraphFrame connectivity, and GraphFrame model transformations indicate that our Model Extraction can be used
in various application domains, since it enables the specification of analytical expressions on graphs. Furthermore,
its model graph elements are used in model transformations on a scalable platform.

Keywords: Model Extractor, Data-centric approach, Spark GraphFrames, Model Transformations

1 Introduction

Model Transformations (MTs) are key artifacts for exist-
ing MDE (Model-Driven Engineering) approaches, since
they implement operations between models (Brambilla et al.,
2012). Nevertheless, the transformation of models via paral-
lel and/or distributed processing is still a challenging ques-
tion in MDE platforms. There are recent initiatives that
aim to improve existing solutions by adapting the computa-
tion models, for instance, using MapReduce (Dean and Ghe-
mawat, 2008) to integrate model transformation approaches
within the data-intensive computing models. Works such as
Burgueno et al. (2016), Pagan et al. (2015), Benelallam
et al. (2015) and Tisi et al. (2013) aim at providing solu-
tions for this new scenario using frameworks such as Linda
and MapReduce. Even when adopting these frameworks, the
model processing is not a straightforward task, since the mod-
els are semi-structured, which can have self-contained or
inter-contained elements, different of flat data structures on
linear space usage, such as logs, text files, and others.

The need for performing complex processing on large vol-
umes of data has led to the re-evaluation of the utilization
of different kinds of data structures (Raman, 2015). Very
Large Models (VLMs) are composed of millions of elements.
VLMs are present in specific domains such as the automo-
tive industry, civil engineering, Software Product Lines, and
modernization of legacy systems (Gomez et al., 2015). Fur-
thermore, new applications are emerging involving domains,
such as Internet of Things (IoT), open data repositories, so-
cial networks, among others, demanding intensive and scal-
able computing for manipulating their artifacts (Ahlgren
etal., 2016).

There is a wide range of approaches of model transforma-
tions (Kahani et al., 2018), such as QVT (OMG, 2016), ATL,

ETL (Kolovos et al., 2008), VIATRA (Varré et al., 2016),
among others. However, most of these approaches adopt as
strategy the local and sequential execution for the transforma-
tion of models, conditioning the processing of models with
large amounts of elements (VLMs) to the capacity of the ex-
ecution environment.

Given the nature of models and meta-models, they can
have elements that are densely interconnected. This hardens
the processing of transformation rules, mainly when execut-
ing a pattern matching step (Jouault et al., 2008). Moreover,
distributed Model Transformation (MT) requires strategies
for partitioning and distributing the model elements on dis-
tinct nodes, while at the same time, ensuring the consistency
among their elements (Benelallam et al., 2018).

A large part of model-based tools uses a graph-oriented
data model. These tools have been designed to help users
in specifying and executing model-graph manipulation op-
erations efficiently in a variety of domains (Xin et al., 2013;
Szarnyas et al., 2014; Junghanns et al., 2016; Shkapsky et al.,
2016; Li et al., 2017; Benelallam et al., 2018; Tomaszek
et al., 2018; Azzi et al., 2018). The extraction of large semi-
structured data under a graph perspective can be useful in
choosing a strategy to design distributed/parallel MTs, graph-
data processing, model partitioning, and to analyze model
inter-connectivity, as well as to offer graph-structured infor-
mation to different contexts. Even though, the graph pro-
cessing in the MT context requires more research, involving
implicit parallelism, parallel/distributed environments, lazy-
evaluation, and other mechanisms for model processing.

For these reasons, in this paper, we present an evalu-
ation study on the application of a Data-centric (Dc) ap-
proach for model extraction and MT in the Spark framework,
based on GraphFrames (Apache, 2019). Therefore, we con-
sider that the mechanisms, such as implicit parallelism, lazy-

https://orcid.org/0000-0001-7879-9893
mailto:lccamargo@inf.ufpr.br
https://orcid.org/0000-0002-8573-6281
mailto:didonet@inf.ufpr.br

A Data-centric Model Transformation Approach using Model2GraphFrame Transformations

evaluation, model partitioning, and scalable framework, can
compose an approach for MT.

First, we inject the input model into a DataFrame, which
is a format supported by Apache Spark. Second, we im-
plement in Scala a model extraction with graph generation
from the DataFrame and its schema. It translates the in-
put models into GraphFrame from a DataFrame, through a
Model2GraphFrame transformation, which allows us to pro-
cess them. We evaluate how to query the graph elements us-
ing its native query language, and also, how to specify dif-
ferent kinds of operations over GraphFrames. We focus on
the partition of graphs from GraphFrames into sub-graphs, as
well as the clustering of its vertices, which are used in Model
Transformations. We provide the following contributions:

* We produce an automated mechanism for data trans-
lations between the MDE technical space and the
DataFrame and GraphFrame formats, which allows the
execution of different operations (including MT) over
the models from the GraphFrame;

* We use two partitioning strategies of models on Graph-
Frame (semi-automated), one based on the Motif al-
gorithm and another on clustering using the Infomap
framework. The model partitioning result is used on
MT, aiming to improve the execution performance;

+ To validate our approach, We implemented a proof of
concept, in which we compared the partitioning strate-
gies in MT executions on top of the Spark, a scalable
framework.

This paper is organized into 6 sections. In Section 2, we
introduce the context for this work with the DataFrame and
GraphFrames APIs and their data formats, as well as Model
Transformations using Graphs; In Section 3, we present the
specifications of our approach, including extracting, trans-
lating, partitioning, and model transformations; In Section
4, we describe the proof of concepts for validating our ap-
proach; In Section 5, we present related work; In Section 6,
we conclude with future work.

2 Context

In this section, we present DataFrame, a distributed col-
lection of data organized into named columns, and Graph-
Frames, a graph processing library based on DataFrames,
both for Apache Spark. We also introduce: the MT, the
key artifact for existing MDE approaches; Model Extractor
(ME) for extracting model elements from different technical
spaces; and Graph, a data structure composed of vertices and
edges, which may be used in MT.

2.1 Data Structures on GraphFrame

Apache Spark (Apache, 2019) is a general-purpose data pro-
cessing engine providing a set of APIs that allow the im-
plementation of several types of computations, such as in-
teractive queries, data and stream processing, and graph pro-
cessing. The DataFrame Spark API uses distributed Datasets.
A Dataset is a strongly-typed data structure organized in

Camargo and Del Fabro 2021

collections. The Dataset API allows the definition of a dis-
tributed collection of structured data from JVM objects, and
its manipulation using functional transformations such as
map, flatMap, filter, and others.

Structurally, a DataFrame is a two-dimensional labeled
data structure with columns of potentially different types.
Each row in a DataFrame is a single record, which is rep-
resented by Spark as an object of type Row. Each DataFrame
contains data grouped into named columns, and keeps track
of its own schema. Summarizing, a DataFrame is similar to
a table in a relational database, but with a difference, their
columns allow the manipulation of multivalued attributes. A
DataFrame can be transformed into new DataFrames using
various relational operators available in its API and expres-
sions based on SQL-like functions. DataFrames and Datasets
are (distributed) table-like collections with well defined rows
and columns. Each column must have the same number of
rows and each column has type information that must be
consistent for every row in the collection. DataFrames and
Datasets represent immutable and lazily evaluated plans that
specify what operations to apply to data residing at a loca-
tion to generate some output (Chambers and Zaharia, 2018).
Figure 1 shows an example of a DataFrame. It is formed
by three rows and five columns, and contains data extracted
from model Families (Rows with March, Sailor, and
Camargo families. A Row can have Columns with dif-
ferent types, such as String, Integer, Date, Boolean,
and Array.

| lastName|

| March| ([, Brenda]]| [, Jim]| [, Cindy]]| [[, Brandon]]]|
Rows

daughters| father| mother| sons |

| sailor| [[, Kelly]]|[, Peter]|[, Jackie]|[[,David],[,Dy...]|
| camargo|([, Jor], [, Testell| [, Luiz]| [, sid]| [[, Lucas]]|
+ + + + + +

Figure 1. DataFrame Families

Another possible way to describe elements and their rela-
tionships is the creation of graphs, due to their high expres-
siveness. Spark provides the GraphX and GraphFrames APIs
to process data in graph formats. In the GraphFrames API,
the GraphFrame class is used for instantiating graphs. In Fig-
ure 2, we present a simple illustrative example of a Family
model, using the March family elements into a GraphFrame
instance. It can be created from vertex (nameVerticesDF)
and edge (roleEdgesDF) DataFrames. A vertex DataFrame
has to contain a special column named "id", which specifies
aunique ID for each vertex in the graph. An edge DataFrame
should contains two special columns: "src" (as the source
vertex ID of the edge) and "dst" (as the destination ver-
tex ID of the edge) (Chambers and Zaharia, 2018; Apache,
2019).

The GraphFrame model supports user-defined attributes
within each vertex and edge. The GraphFrames API provides
the same operations of the DataFrame API, such as map,
select, filter, join, and others. It has a set of built-in
graph algorithms, such as breadth-first search (BFS), label
propagation, PageRank, and others. The GraphFrames and
DataFrame APIs are based on the concept of a Resilient Dis-
tributed Dataset (RDD), which is an immutable collection of
records partitioned across a number of computers or nodes.
To provide fault tolerance, each RDD is logged to construct

A Data-centric Model Transformation Approach using Model2GraphFrame Transformations

GraphFrame
/\

nameVerticesDF roleEdgesDF

[T + T +
| id| Name | |sre|dst]| role|
T T + R ST T T ——— +
1] March		1] 2	daughter
2	Brenda]	1	3] father
3] Jim		1] 4	mother
4] cindy]		1] 5] son	
5	Brandon	i T R +	
T +

Figure 2. March Family GraphFrame

a lineage Dataset (Data lineage (Tang et al., 2019)). When a
data partition of a RDD is lost due to the node failure, the
RDD can recompute that partition with the full information
on how it was generated from other RDD partitions (Apache,
2019).

2.2 Model Transformations using Graphs

A directed graph may be represented by (G(V, E)), where
V represents a set of vertices and F the set of edges of the
graph G. A sub-graph S of a graph G is a graph whose ver-
tices V'(.S) are a sub-set of the set of vertices V(G), where
V(S) C V(G), and the set of edges E(S) is a sub-set of the
edges E(G), thatis, E(S) C E(G). Extensions of this basic
representation have been proposed to define the graph as a
data model (Junghanns et al., 2016; Barquero et al., 2018).

Graphs are useful for modeling computational problems.
They can be adopted to model relationships among objects. A
graph can be used, such as a representation format for models,
enabling abstract features of a model. In model transforma-
tion processes, graphs can be used to translate instances from
one modeling language to another, since the structures of that
language can be represented by a type of graph. The Triple
Graph Grammars approach (Schiirr, 1995) is a way to specify
translators of data structures and to check their consistency.
In addition to model transformation, there is a variety of
based-graph algorithms used for processing graph models in
different domains, such as complex network structures, net-
work analysis, business intelligence, and others (Junghanns
et al., 2016; Lowe, 2018).

Graph transformation has been widely used for express-
ing model transformations, since graphs are well suited to de-
scribe the underlying structures of models and meta-models.
Operations are implemented as model transformations solv-
ing different tasks. A transformation is a set of rules that
describe how a model in the source language can be trans-
formed into a model in the target language (Rutle et al., 2012).
The extraction is a process that transcribes model/meta-
model elements from the native source platform to the tar-
get platform (Jia and Jones, 2015). This is necessary mainly
when the input model comes from a different technical space
(e.g., input model is in the XMI format and the transforma-
tion platform works on data collections).

3 A Data-centric Approach for MT

In a previous work (Camargo and Fabro, 2019), we presented
a study on applying a data-centric language called Bloom (Al-

Camargo and Del Fabro 2021

varo et al., 2011) to develop model transformations. There
are three major differences from the previous study to this
paper: a) We define a specific format based on RDF (W3C,
2014), and we used it in the injection/extraction operations
for translating source model in new modeling domain; b) We
implement the RDF models in data collections and specify
transformation rules, mapping the source and target meta-
models and models elements as Ruby classes; and ¢) We
choose the Bloom language, a Data-centric declarative lan-
guage, since it is based in collections (unordered sets of facts)
and provides implicit-parallelism. On the other hand, the use
of the Data-centric approach, and parallel model transforma-
tions are the main similarities between these works.

The proposed approach in this work is built on top of the
Apache Spark framework, using Dc aspects such as high-
level programming, parallel/distributed environments, and
considering that a model element is a set of data. It allows
the extraction of models and meta-models in different for-
mats and transforming them to a directed-graph, which is as-
signed to a GraphFrame. The transformation output is the in-
put to process graph operations and model transformations.
In order to improve the performance of transformation exe-
cutions, we use two different strategies for partitioning mod-
els from GraphFrame. Figure 3 shows an overview of our ap-
proach. There are arrows between Spark components, mainly
in Spark Context. It is the responsible for managing all exe-
cutions on the Spark framework. The arrows among the ap-
proach modules (2, 3, and 4) represent the interaction be-
tween them and their outputs, forming a workflow. All the
steps of the workflow are automated, except for the Opera-
tion on Graph to the partitioning of models (semiautomated).
We describe these steps in the next sections.

The Driver Node controls the execution of a Spark Ap-
plication and maintains all states of a Spark cluster. It ex-
changes messages with the Cluster Manager in order to ob-
tain physical resources and launch executors (Worker Nodes).
The Executor is the process that performs the tasks assigned
by the Spark driver. The Executors have the responsibility to
receive the tasks (Task) assigned by the driver, run them, and
report back their state and results. The interaction between
the Work Nodes and Spark Context is supported by a Cluster
Manager, which is responsible for maintaining a cluster of
machines (nodes) that will run one or more Spark Applica-
tions (Chambers and Zaharia, 2018; Apache, 2019). In our
approach, the modules 2 and 3 are executed on the Driver
Node. The Injector module is responsible for extracting the
input model to the DataFrame, which is transformed into a
GraphFrame by the Model Translator module. The Model
Transformation (module 4) is executed on Worker Node(s).

For the Module 3, we create a meta-model to instantiate
the result of the translation of the input model to a graph
model. It is necessary for assuring the conformance and con-
sistency of translation output. Such meta-model is based on
the GraphDB meta-model proposed by (Daniel et al., 2016),
which focuses on NoSQL graph databases. Figure 4, de-
picts our Graph Meta-model, where GraphElement repre-
sents all elements of a graph. Their sub-types, Graph Vertex
and Graph Edge, express the vertices and edges, respectively.
A GraphVertex has an Id attribute, meaning that each ver-
tex is unique. Also, there are type and value attributes to

A Data-centric Model Transformation Approach using Model2GraphFrame Transformations

represent the model element properties, forming a triple. In
contrast, the GraphEdge type has a string attribute key for
identifying the elements from src and dst links, which are
represented by src (source) and dst (destination) associa-
tions between GraphVertex and GraphEdge Classes.

We use the Graph Meta-model as a schema to instan-
tiate model elements and their relationships by means of
the GraphVertex and GraphEdge classes. Their properties,
such as attributes and associations indicate the model ele-
ment structures. GraphVertex and GraphEdge classes are in-
stantiated into a GraphFrame, and from the GraphFrame it
is possible to specify operations and queries to manipulate
them. An instance of the Graph Meta-model is shown in Sub-
Figures 5a and 5b.

2

)
H_UA 11 2
Submit program [

USER withmodel format

Driver Node

Spark Context j
2

Cluster Manager

‘ Executor ~ Cache

e

M json |

‘ Task Task

Local, HDFS

Repositories

Target Model

Figure 3. An Overview of Data-centric Approach for MT

GraphElement

il

GraphVertex - src

- 1d :int 0.*
- value : string - dst

——

0..*

GraphEdge

- key : string

Figure 4. Graph Meta-model

A set of operations over graph elements of GraphFrame
can be executed, such as the Motif algorithm to split graph
in sub-graphs, graph degree to compute the valency of a ver-
tex in a graph, queries, and others'. In addition to such exe-
cutions, the Model2GraphFrame (M2G) output is also used
as input by the Model Transformation module, which trans-
forms the input model elements in a directed-graph format to
the target model.

In the next sections, we present the steps to extract and
transform models, as well as two alternatives for model par-
titioning.
into a

3.1 Extracting model elements

DataFrame

The initial step consists of the extraction of the input model
elements into a DataFrame model. It starts when the user
submits (1 in Figure 3) the input model with its name, and

I The valency of a vertex of a graph is the number of edges that are
incident to the vertex

Worker Node

Camargo and Del Fabro 2021

location (path) (Figure 3) to the Driver Node. The Injector
Module (2 in Figure 3) assigns the input model in formats
such as XMI or JSON to a variable (modelPath) which is
read for loading the input model. Next, the input model is
parsed (DataFrame API) and its elements are assigned to a
DataFrame (modelDF). All DataFrame has a schema for de-
scribing the data structures, such as the input model. Thus, a
schema is formed according to the input data structures. List-
ing 2 shows an example of a DataFrame schema. We choose
to use the DataFrame in this step due to their schema. It pre-
serves the input data structures, easing the translation of the
input models to the GraphFrame through the reuse of these
structures. Furthermore, it is not necessary to implement a
parser for loading the input model to DataFrame.

We use the Family model excerpt from the ATL
Zoo (Eclipse, 2019) to illustrate the extraction into the
DataFrame and we then describe how model elements are
represented in a DataFrame. In Spark, the operations on data
are made by means of Transformations and Actions. A Trans-
formation is formed by a set of instructions to manipulate
data and an Action is specified to trigger the computation on

/ data. When it is called, it notifies the Spark Engine to com-

pute a result from a series of transformations (Chambers and
Zaharia, 2018). Listing 3 illustrates the extraction result from
the model Family (excerpt) in XMI format (Listing 1) to a
DataFrame, where its structure is supported by DataFrame
Schema shown in Listing 2.

Listing 1: Model Families Excerpt

<?xml version="1.0" encoding="I1S0-8859-1"7>
<xmi:XMI xmlns="Families">
<Family lastName="March">

<father firstName="Jim"/>

<mother firstName="Cindy"/>

<sons firstName="Brandon"/>

Listing 2: Family Schema Excerpt

root
|-- Family: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- lastName: string (nullable = true)
| | |-- daughters: struct (nullable = true)
| | | |-- firstName: string (nullable = true)
Listing 3: DataFrame Family Excerpt
B o tommmm - Fommmm o +-——+

| lastName| daughters| father| mother| sons|
TR S S p—— RS PR —— TR
| March| [[, Brendalll [, Jiml| [, Cindyl| [[, Brandon]]|

According to Figure 3, the model elements are structured
in a set of columns with an unspecified number of rows,
since a schema defines the column names and types of a
DataFrame. The rows are unspecified because the reading
of the model elements is a lazily-evaluated operation (lazy
evaluation (Michael 1., 2016)). The schema does not require
the rows to be identified explicitly.

Although a DataFrame Schema can be specified manually,
we opt for the Schema generated by the parser by the read op-
eration of the input model (Extraction step). In this schema,
the structures of input model elements are preserved in a

A Data-centric Model Transformation Approach using Model2GraphFrame Transformations

tree format by the translation process. Listing 2 has a trans-
lation example, where the DataFrame Schema is structured
by element root and their rows are represented by Family
element. The multivalued elements are represented by ar-
rays (array) and their elements are represented by structs
that may have one or more elements, including null values
(containsNull). These elements represent the leaves (i.g.,
lastName) and have a type (i.g., string). All elements
represented on DataFrame Schema have the (nullable) at-
tribute assigned as true by default. This is for fitting the
Spark framework for handling the Dataframe columns, with
the nullable attribute true or false. Their columns are
logical constructions that represent a value computed by
means of programmatic expressions. Thus, to have a real
value for a column, we need to have a row, and consequently
to have a DataFrame. Therefore, since the input model was
translated to a DataFrame, it can be transformed according
to the transformation domains of the user.

3.2 Translating the
GraphFrame

input DataFrame to

In a second step, the Model Translator Module (3 in Fig-
ure 3) translates the input model, which was assigned to a
DataFrame, into a GraphFrame. We use the model elements
in the DataFrame as input to the Model Translator. In addi-
tion to elements, the schema associated with the DataFrame
that describes the model element structures is essential for
our Model Translator, since we use it for reproducing these
element structures in a graph, assigning them to the Graph-
Frame. We create an algorithm for translating a DataFrame
to a GraphFrame, conforming to the meta-model of Figure 4.
Algorithm 1 is responsible for such translation. As input,
the Algorithm receives a DataFrame, which is processed by
combining its content and Schema. Algorithm 1 contains the
functions model2GraphFrame and model2GraphSchema.
The source code of the functions is available on’. Since
the modelDF DataFrame contains all model elements, it is
assigned as a parameter to the mode12GraphFrame function.
It is responsible for starting the transformation process
called. For simplicity’s sake, we omit the specification of
the model2GraphSchema function in Algorithm 1 (line 2),
the model2GraphSchema function with the model elements
and the DataFrame Schema as parameters. It performs the
processing of model elements and their structures together
with the respective schema columns of DataFrame in a
recursive way, assigning its result into the verticesDF
and edgesDF DataFrames. (lines 3 and 4). We use the
wildcard parameters (_1 and _2) and the toDF function
with its parameters, and the respective DataFrame columns
("id","value"). Thus, the first elements are separated to
the verticesDF DataFrame and the remaining elements
are to the edgesDF DataFrame. Both DataFrames shape the
vertices and edges and are assigned into the GraphFrame
(GF, line 7) by model2GraphFrame function.

2https://github.com/lzcamargo/extracSpk

Camargo and Del Fabro 2021

11048592 | sons

1048590)| sons

|

|

|1048582|Brandon |
(:) |[Family

1048576 |March |

| 0 |[Family |

|

|

|

|

|

@ |(1048585) lastName |

10 11048576 |1lastName |
® i@Esy: |
11048583|11048584 | firstName |
[104859211048593 | firstName|
[104859411048595| firstName|
|1048577|1048578 | firstName |

[(1048585) Sailor

11048589 | Jackie [1 1104858610
[1048595|Kelly [1 11048594 |4
/1048587 |Peter |1 110485923

[(1048591)| David 1048590)I(1048591) firstName |

(a) GraphFrame Vertices (b) GraphFrame Edges

Figure 5. Family Model Elements Translating to GraphFrame

Algorithm 1 M2G Translation Algorithm

Input: model DF : DataFrame
Output: GF' : GraphFrame

1: function model2GraphFrame(model D F)
2: graphData < model2GraphSchema(model DF.collect,
model DF.schema, 0)

verticesDF < graphData._1.toDF(”id”, "value”)
edgesDF < graphData._2.toDF ("src”,”dst”, "key”)
return (verticesDF, edgesDF')

end function

. GF < model2GraphFrame(model DF)

A A s

We use some Family model elements (Listing 2) as input
to present a translation example (an Algorithm 1 execution).
To access the vertex and edge contents, we execute the com-
mands: GF.vertices.show() and GF.edges.show(). Its
outputs are represented in Figures 5a and 5b. The values of
Family model elements from the DataFrame are instantiated
into graph vertices. The model element names are assigned
to graph edges as keys. The links (src and dst) among ver-
tices and edges establish the relationship of the model ele-
ments. In Figure 5 we use circles and rectangles for illus-
trating the model element structures and their relationships.
For example, the vertices and edges marked in red demon-
strate the structure of the lastName Sailor element, and
the blue ones denote the firstName David element. The
relationship between these two elements is marked on edge
(Figure 5b), where the src column value is noted in red, and
the value of the dst column is noted in blue. The join of these
structures (the match between id, src, and dst columns) al-
lows to identify that David is a son (sons), and belongs to
Sailor Family. Thus, the model elements are structured into
GraphFrames so that they can be queried and processed for
different purposes.

In the first two steps, we obtain the extraction of the input
model to the modelDF DataFrame and its translation to the
GraphFrame GF. We consider the result of these operations as
the transformation of the input model to a graph, in particu-
lar the Model2GraphFrame transformation. In the next steps,
we use the GraphFrame contents for Model Partitioning and
Model Transformations.

https://github.com/lzcamargo/extracSpk

A Data-centric Model Transformation Approach using Model2GraphFrame Transformations

3.3 Model Partitioning

In this step, we present two strategies that we use for parti-
tioning models from GraphFrame: one based on the model
key-element names with the Motif Algorithm, and another
using clustering. First we present their implementation. In
the next section, we present a proof of concept on using these
strategies. We choose the first strategy because it allows us
to use the transformation rule names with an algorithm im-
plemented on the GraphFrames API itself, in this case the
Motif algorithm. Regarding clustering, we choose it to link
the model elements on clusters by means of the related ver-
tices (srctodst) in edges contained on the GraphFrame. We
use the clusters as parameters for the Spark framework par-
titions in the processing of the Model Transformations. In a
graph, a motif can be defined as a pattern of interconnections
of edges that occurs in a graph (Milo et al., 2002). We are in-
terested in finding patterns in a graph for a given purpose,
forming sub-graphs as such partitions from this graph. Thus,
we consider the following definition, where a Graph G’ is a
sub-graph of graph G = (V,E),if V' C Vand E' C E
U (V"% V). IfG' C G and G’ contains all of the edges (u,
v) € E with u, v € V', then G’ is an induced sub-graph of
G.

In our context, consider a scenario with the following
transformation rule names: Package2Schema, Class2Table,
Att2Col, and Family2Person. From each rule name, we use
its prefix (i.e., Package, Class, Att, and Family) as a pa-
rameter (key-element) in graph partitioning using Motif al-
gorithm, particularly for the key column of the edges. This
means that these prefixes are interest points in the graph.

In a GraphFrame, the Motif Finding is implemented in
a Domain-Specific Language (DSL) for expressing struc-
tural queries. For example, graph.find (" (a)-[e]->(b);
(b)-[e2]->(a)") will search for pairs of vertices a,b con-
nected by edges in both directions. It will return a DataFrame
of all the structures in the graph, with columns for each of the
named elements (vertices or edges) in the motif. The returned
columns will be the vertices a, b, and edges e, e2 (Apache,
2019).

We specify the sub-graphs extraction combining Motif
Finding and a filter. This means that depending on the in-
put model it is necessary to adjust of Motif algorithm pa-
rameters and/or filter, characterizing the model partition-
ing semi-automated. Listing 4 shows the implementation
in Spark Scala for the Class elements through the tag
"classes", which were mapped to column key of the
edgesDF DataFrame. Graph motifs are patterns that occur re-
peatedly in the graphs and represent the relationships among
the vertices. In a GraphFrame, Motif Finding uses a declar-
ative DSL for expressing structural queries for finding pat-
terns among edges and vertices by means of the £ind () func-
tion. Therefore, we choose it for easing the sub-graph extrac-
tions. We believe that its characteristics can generate consis-
tent sub-graphs from key model elements (prefix name rules).
Line 3 of Listing 4 is the specification of a query for search-
ing for pairs of vertices between (a,b), (b,c), and (c,d),
which are respectively connected by edges e, ea, and eb.
We also use a filter for delimiting the vertex pairs, starting
from an edge, whose key property element is equal to the

© =

Camargo and Del Fabro 2021

tag "classes". This means that the execution of this ex-
pression will return as motifsDF all the structures (vertices
and edges) related to the filtered property (classes) on the
graph, which are arranged ina, e, b, ea, c, eb,andd
columns. We select the edges contained in motifsDF and as-
sign them to the subE immutable variable (line 5). We use it
as edges for composing the subG sub-graph, whose vertices
are the same as in the GF graph. We apply the droplsolated-
Vertices() function to exclude the isolated vertices (i.e., ver-
tices with degree zero, if there are any.) for ensuring that the
links among vertices and edges in subG sub-graph. In this
case, Listing 4 allows us to get all the Class elements and
their associated elements from the GraphFrame that repre-
sent a Class model, producing a sub-graph.

Listings 11 and 12 show an example of the edges and ver-
texes of a sub-graph (S-G), such as a result from Listing 4.
This example and the results from of the other Motif specifi-
cations for the model key-elements, such as Package, Att,
Female, and Male are presented in Section 4.

Listing 4: Motifs Sub-Graph Extraction

object SubGraph {
def main(args: Array[String]): Unit = {
val motifsDF = GF. find(”(a)-[e]->(b);
(c)—[eb]—>(d)”). filter ("e.key =
val subE =
val subG = GraphFrame (GF.vertices, subE)
.droplIsolatedVertices ()

(b)—[ea]

*classes ™)

>(c);

Now we present the utilization of clustering as a strategy,
by implementing it using the Infomap from the MapEqua-
tion framework (Bohlin et al., 2014). There are other alter-
natives for such implementation, such as the utilization of
the k-means algorithm (MacQueen, 1967), one of the most
commonly used clustering algorithms. We could also adapt
the Apache Spark MLIib, machine learning (ML) library. It
provides various operations based in ML, including cluster-
ing. Infomap is a fast stochastic and recursive search algo-
rithm with a heuristic method Louvain (Blondel et al., 2008)
based on the optimization of modularity. When it is exe-
cuted with vertices and edges of a graph, the neighbor nodes
are joined into modules, which are subsequently joined into
super-modules and so on, clustering tightly interconnected
nodes into modules. Infomap has been used in community
partition problems (Aslak et al., 2018; Edler et al., 2017),
for detecting communities in large networks, and to help in
the analysis of complex systems. In addition, Infomap oper-
ates on graph-structures in the Pajeck format (file.net)’,
which can be easily extracted from the GraphFrame as input
to Infomap. For example, Listing 5 shows a excerpt of the
File.net extracted from Class-0 model, and Listing 6 shows
the .clu output file, the clustering result, where the nodes
are gathered in the respective clusters (node and cluster
columns). Column flow contains cluster indices for each
node, but they are discarded when the . clu file is injected
into DataFrame by a loading operation and used in clustering
model elements. However, the clustering from GraphFrame
using the Infomap framework is a semi-automated operation,
since we do not implement integration between our approach
and the Infomap framework (Operations on Graph, Figure 3)

3https://gephi.org/users/supported-graph-formats/pajek-net-format/

motifsDF . select(”eb.src”, “eb.dst”, “eb.key”)

A Data-centric Model Transformation Approach using Model2GraphFrame Transformations

Listing 5: Class-0 Filenet Listing 6: Clustering Nodes

*Vertices 50031 # node cluster flow:

00 8 1 0.0457141

11 7 1 0.00261991
22 10 1 0.00261991
. 6 1 0.00222776
*Arcs 50030 9 1 0.00222776
12 5 1 0.00195755
45 11 1 0.027326

46 46 1 0.00233907

Later, we present the use of Infomap and the model parti-
tioning in Section 4.

3.4 MT using GraphFrame

In the last step, we specify a set of operations and transfor-
mation rules to transform the source model in GraphFrame
into a target model. They are executed as parallel tasks on
Worker Nodes of the Spark framework, through the Model
Transformation module (4 in Figure 3). The source code of
the operations and transformation rules are available on*.
Listing 7 shows the Family2Person rule written in Scala
as a singleton object (object Family2Person). We sepa-
rate the male and female elements in the maleEdgesDF and
femaleEdgesDF DataFrames. They contain the target val-
ues (dstm, dstf, dst) that link each last name with its
first names. We use the select, join, and filter func-
tions to select the last and first names from of maleEdgesDF.
For each join operation, we use the filter function (lines
4,6, 12, and 14) to ensure the accurate selection of model el-
ements, since they are formed by relationships among edges
and vertices ("dstm" === "id").Inlines 7 and 15, we use
the select and concat functions to assign the last name
(1astName) and the respective first names (value) as the
full name (fullName column) to the maleFullNamesDF
DataFrame.

Listing 7: F2P Rule

object Family2Person {
val maleFullNamesDF = maleEdgesDF
.select($"dstm", $"dst").join(GF.vertices)

filter ($"dstm" === $"id")
.select($"value".alias("lastName"), $"dst")
.join(GF.vertices).filter($"dst"===§"id")
.select(concat($"lastName", 1it(" "), $"value")

as "fullName")

val femaleFullNamesDF = femaleEdgesDF
.select($"dstf", $"dst").join(GF.vertices)
.filter($"dstf" "id")
.select($"value".alias("lastName"), $"dst")
.join(GF.vertices).filter($"dst”===$"id")
.select(concat($"lastName", 1it(" "), $"value")
as "fullName")

}

For the femaleFullNamesDF DataFrame (lines 9 to 14),
we use the same idea applied to the maleFullNamesDF
Dataframe. These DataFrames are merged (union function)
in the personDF DataFrame, each one with a new column
Gender (withColumn ("Gender")) to ensure the gender dis-
tinction among persons.

“https://github.com/lzcamargo/transformSpk

Camargo and Del Fabro 2021

Next, we specify an operation, using coalesce(1)
method to instantiate the transformation output in a single
partition (1). This means that output tasks will be reduced
in a single partition (distinct output) as the final result of
the transformation. The example in Listing 8 is obtained
with the write function, and the tags (root and row) of the
databricks:spark-xzml library, indicating that the format
was assigned as xml. We separate these commands (write op-
erations in the target model) from the loading rules for better
code legibility. Since the target model was stored in a repos-
itory, it enables to load the output in xml/xmi format and in-
stantiate it back in GraphFrame.

Listing 8 shows a portion of the persons.xml file content.
It represents the Family2Person transformation result, using
the Family model presented in Listing 1 as the source model.

Listing 8: Persons Model Excerpt

<Persons>
<gender> Male </gender>
<fullName> March Jim </fullName>
<gender> Male </gender>
<fullName> Sailor Dylan </fullName>
<gender> Female </gender>
<fullName> March Cindy </fullName>
<gender> Female </gender>
<fullName> March Brenda </fullName>

</Persons>

In this section we described our approach. In the next sec-
tion, we perform the proof of concepts in order to validate its
feasibility.

4 Implementation

We implemented a Proof of Concept (PoC) (Kendig, 2016)
using GraphFrames to demonstrate the feasibility of our ap-
proach and to show its usefulness under following aspects:
the processing of Model2GraphFrame outputs, the partition-
ing of graphs contained in the GraphFrame, connectivity
among model elements in a set of GraphFrames, and the ex-
ecution of model transformation using the GraphFrames.

We run the PoC in a single machine with the following
software stack: Ubuntu 18.04; Spark 2.4; and Scala 2.3. It is
hosted by an Intel Core 15-4210U 1600 CPU with 8096 MB
of RAM; and the processor has two cores. As input, we use
the both Class and Family models in XMI format. There are
four models with the following specifications:

* Class-0, class model with no attributes or methods, only
Package and Class elements. This kind of model is used
in Domain Modeling, useful to understand the ideas and
concepts of the domain (Larman, 2004);

* Class-3, class model with Package and Class elements,
each Class contains from 1 to 3 methods and attributes;

*+ Class-6, as the previous item, but each class contains
from 1 to 6 methods and attributes;

* Family model with 0 to 3 sons and daughters. Its el-
ements are self-contained in LastName elements and
their attributes.

https://github.com/lzcamargo/transformSpk

A Data-centric Model Transformation Approach using Model2GraphFrame Transformations

We get the Class models from, each one with 10000
classes’. They were created to be used as a benchmark for
the Class2Relational transformation case studies in parallel
transformations using Lintra (Burgueno et al., 2015)°. These
models have references among their elements established
by attributes. For instance, the Class-0 model has 10 Pack-
age elements and each Package has 1000 Class elements.
The Family model has 10000 LastName elements, which we
created for this proof of concept. In this case, we consider
these elements as self-contained (Class-0 and Family). How-
ever, there are models (Class-3 and Class-6) that besides self-
contained elements, also contain inter-connected elements,
where Class elements are referenced by one or more Class
elements, which are contained in other Packages. Attributes
such as super, and type establish such references.

The models used on PoC have a different density (Class-
0, Family, and Class-6) and interconnectivity (Class-3 and
Class-6) among their elements. This means that we will
validate our approach in relation to these model aspects.
To measure the execution times in seconds, we use the
System.currentTimeMillis() function from the Scala
language, in a dedicated machine with no UI interactions.
The input model elements once extracted to a GraphFrame,
they must be available. Each model element in the Graph-
Frame vertices has to be linked to its properties through
GraphFrame edges.

We have defined three research questions to validate the
PoC implementation and its main aspects.

Q1: How to check if the Model2GraphFrame output is
available for processing?

To address this question, we use the directed-graph prop-
erty (DGP) to check the total of Edges and Vertices in a
directed-graph G, ZZ:(S) -1= Zf:(g;), where the V(G)
total minus 1 is equal to F(G) total. When this property
is true to a directed-graph it is considered as a simple
directed graph (Hochbaum, 2008). A directed-graph is no
longer simple if there are multiple edges or loops. Hence,
the V(G) total is less than to the E(G) total (3.V') <

Zfz(g)). In addition, we execute a set of queries on the
GraphFrame to validate the contents of vertices and edges,
whose input models contain 100 classes and 100 families.
This means that we take a set of model elements contained
into GraphFrame and we compare it with its input model
elements.

Although the M2G outputs are directed-graphs into
GraphFrame, we need to know whether it is achievable to
use them in model transformations. To address this issue,
we define question Q2.

Q2: Is it possible to perform MT using GraphFrame?

We address this question in order to use GraphFrame in
Model Transformations. Our goal is to verify how the
source models into GraphFrames can be transformed to
target models. We specify operations and rules using
methods and functions in Scala for manipulating vertices
and edges in GraphFrame (e.g., Listing 7). They are similar

Shttp://atenea.lcc.uma.es/Descargas/MTBenchmark/classModels
Ohttp://atenea.lcc.uma.es/index.php/Main_Page/Resources/LinTra

Camargo and Del Fabro 2021

to transformation specifications in ATL - ATLAS Transfor-
mation Language (Jouault et al., 2008), where Helpers and
Transformation Rules are the constructs used to specify the
transformation functionality.

Finally, the last question is about performance of MT exe-
cutions using clusters.
Q3: Does executing model transformations using model par-
titioning improve performance?
We address this question in order to verify whether the execu-
tions of model transformations using model partitioning im-
prove performance, since we adopted two partitioning strate-
gies for this approach: partitioning of input model into Graph-
Frame in sub-graphs, and generating of clusters from Graph-
Frame vertices. In the following Sections, we present the
proof of concepts, results and the answers for the above ques-
tions, as well as further discussions.

4.1 Processing Model2GraphFrame Outputs

To check the GraphFrame outputs with respect to the input
models, we obtain the total of vertices and edges and we use
the DGP to check their amount. Columns V(G) and E(G)
of Table 2 show the total of vertices and edges from the
input models (Model column). The amount of vertices V(G)
- 1 is equal to the amount of edges E(G) for the Class-0
and Family models, demonstrating that they are simple
directed-graphs. However, the total of vertices and edges
from the Class-3 and Class-6 models indicate that they
are not simple directed-graphs (V(G) < E(G)). In addition,
we execute queries as shown below, and their results are
compared to input model elements to validate the M2G
consistency. It returns the values of class properties such as
name, isAbstract, and visibility from the GraphFrame
vertices. It does not return Attributes and Methods, because
the key-element (key) is assigned the "classes" value.

gf .edges.where ($"key"==="classes")

.select($"dst".as("dstv")).join(gf.edges)

.filter($"dstv"===$"src").select($"dst")

.join(gf.vertices) .filter($"dst"===$"1id") .show()

Listings 9 and 10 show excerpts of Class-0 model elements

and the query output. They represent an example of our vali-
dation. In this case, the relation among classes and their prop-
erties are established by the GraphFrame edges (gf . edges
src and dst), whereas the value of each property is assigned
to the GraphFrame vertices (gf . vertices).

Listing 9: Class-0 Model Listing 10: Query Output

<classes name="Class14"
isAbstract="true"
visibility="public">

| idl value| valueTypel

| 23] public]

<classes name="Class15" stringl
isAbstract="true" | 22| Class14| stringl
| 21] true| Dbooleanl|

Table 2 (the first four columns) and the query outputs (ex-
ample in Listing 10) show that the M2G results from the
input models seem correct. This comparison complements
the quantitative checking through the DPG. For example,
when using the DPG for the Class models, we identify that
the Class-0 model is a simple directed-graph, since it only

A Data-centric Model Transformation Approach using Model2GraphFrame Transformations

has Package and Class elements. Furthermore, there is a
single relationship between Package and Class elements
that link them. In this case, 1000 Classes in each Package,
since the Class-0 model has 10 Package elements. On the
other hand, the Class-3 and Class-6 models have Package,
Class, Attribute, and Method elements, and relationships
among them include Data-type elements. This means that
these models, when transformed to graphs have a total of
edges larger than the total of vertices. Therefore, we answer
the question Q1 by validating the total of vertices and edges
for each input model, as well as the respective contents.
We follow with the proof of concepts executing the Motif
Algorithm for all input models (Class and Families) using
the strategy shown in Listing 4. Next, we measuring the
connectivity of models assigned to the GraphFrames.

4.2 Measuring GraphFrame Connectivity

The idea of measuring the GraphFrame connectivity is a strat-
egy to reveal how complex the input models that we use are,
with respect to the graph elements (vertices and edges). It can
help the choice of the strategy to be adopted for the partition-
ing and for operations over models with GraphFrame. Fur-
thermore, a set of functions can be executed from the Graph-
Frame, as for example the outDegrees and inDegrees
functions.

We execute the outDegrees and inDegrees func-
tions for all vertices of the GraphFrame models (e.g.,
outDeg = gf.outDegrees). These functions deter-
mine the amount of outward-directed (outDegrees)
and inward-directed (inDegrees) graph edges from
GraphFrame vertices. Once the degree is calculated for
all vertices of the graph, they are grouped and summed
(outDeg.groupBy("vertices") .sum()). Table 1 shows
the execution results. The amount of Degrees for each
GraphFrame Model is in descending order (only the first
four or six amounts are shown) in the Out-Degrees and
In-Degrees Columns, and the total of vertices of each
calculated degree is in the Total Vertices column. It is worth
mentioning that no sink vertex was found (vertex with
out-degree equal to 0) in the GraphFrame models, but one
source vertex was found (vertex with in-degree equal to 0),
in this case the vertex with id equal to 0, that represents the
root vertex.

In the In-Degrees column (Table 1), we can see that the
Class-0 and Family models in GraphFrame Models column
have Degrees equal to 1 for most of its vertices (except for
the vertex 0). The degree calculated of outgoing edges for the
vertices (Out-Degrees column) for these models show their
characteristics. For instance, a degree equal to 1000 and a
total of vertices equal to 10, mean that there are 10 vertices
with 1000 out-going edges. In particular, they represent the
directed-links between the Package and Class elements of
the Class-0, Class-3, and Class-6 models, since there are 10
Packages and 10000 Classes into each Class Model. There-
fore, the results obtained from the Class-0 and Family mod-
els indicate that they are simple directed-graphs and weakly
connected. On the other hand, the results in Out-Degrees and
In-Degress columns show that the Class-3 and Class-6 mod-
els are directed-graphs and strongly connected, since there

Camargo and Del Fabro 2021

are directed-links among Package, Class, and Attribute ele-
ments. In addition, the in-going edge from GraphFrame ver-
tex elements, such as Datatype and Type are also represented
in the In-Degrees Columns for these models. The result from
the inDegrees and outDegrees functions is useful to eval-
uate how complex models are.

In the next section, we present the results of our two parti-
tioning strategies over the GraphFrames. Furthermore, in the
following sections, we discuss the influence of these strate-
gies in model transformation executions, as well as we de-
scribe the distribution of model elements over the executor
processes (Worker nodes) on Spark framework in local mode
executions.

4.3 Partitioning M2G Outputs

Our approach provides model partitioning with two differ-
ent strategies (Section 3.3): the Motif Find algorithm avail-
able in GraphFrames API, and Infomap framework. From the
GraphFrame the Motif algorithm finds patterns among edges
and vertices for producing sub-graphs. Using the vertices and
edges from GraphFrame, the Infomap framework generates
clusters of vertices from format files (. net). We use them for
partitioning the operations on the GraphFrame in the process
of model transformations.

In Section 3.3, we showed a specification of how the Mo-
tif algorithm may be used in graph partitioning, where a
sub-graph (G’) is formed from the graph edges that con-
tain a key element extracted from the rule name (object
Package2Schema). For example, for the Key element ”Pack-
age” (k-element column at Table 2) there are 30 ver-
tices (V(G’) column) and 20 edges (E(G’) column) of the
sub-graphs from the input (Class-0,Class-3, and Class-6)
model transformation (M2G) outputs. In addition to Pack-
age names, their nearest neighbor elements are partitioned
together in the respective edges (in this case, Class ele-
ments). Listings 11 and 12 show edge and vertex samples
of a sub-graph (S-G), where vertex 17 contains the value
PckO. Listing 11 has this property, and the nearest neigh-
bor linked in two edges (16,17; 16,18). In this manner,
for each Package element, the partition contains three ver-
tices and two edges. All Class models have 10 Package
elements; this justifies the amount of 30 vertices and 20
edges in the sub-graphs for the key-element Package. Ev-
ery Class element in the Class-0 model has 10000 Class el-
ements, composed of name, isAbstract, and visibility
attributes. For each attribute an edge is created, whose
source (src) vertex is a StructType. Thus, each Class el-
ement has four vertices and three edges. Keeping the quan-
tifiable amount of model elements in mind, we execute
the Motif algorithm for the key elements such as Pack-
age, Classes, and Attributes (methods were not partitioned).

A Data-centric Model Transformation Approach using Model2GraphFrame Transformations

Camargo and Del Fabro 2021

Table 1. Input GraphFrame Model Degrees

GraphFrame Out-Degrees In-Degrees
Models Degrees Total Vertices Degrees Total Vertices
1000 10
Class-0 150 i 1 40030
4 10000
1000 10 15011 1
10 1 9919 1
7 10000 4902 1
Class-3 5 14990 3363 1
3 50737 3289 1
2 13748 1 318800
1000 10 48142 1
10 1 32069 1
7 10000 16179 1
Class-6 5 37179 9074 1
4 7098 9053 1
3 143346 1 740376
10000 1
. 5 10000
Family) 46366 1 160480
1 6748

Listing 12: S-G Vertices

Listing 11: S-G Edges

id | Typel valuel

Isrc ldst | key| |
| 16 | 17 | name | | 16 | StructTypel | |
| 16 | 18 | classes| | 17 | string| PckO|
| 21 | 22 | name | | 18 | ArrayTypel |
| | 23 | classes| |

21 | StructTypel |

As seen in the previous section, the Class-3 and
Class-6 models are directed-graphs and strongly con-
nected. Their elements such Package, Class, and Attribute
elements have links to each other through type and
super attributes. There are links among Attribute and
DataType elements such as float, string, integer,
and others. For Class elements there are edges containing
attributes, such as (19,22,name), (19,23,super),
(19,24,visibility), ...(99,101,name). These
attributes are also connecting structures between the class el-
ements, when the types of attributes are classes. For instance,
to establish links among Class elements using attributes,
edges such as the {(23,101,1nk) are formed to link the
super attribute of a Class element to the name attribute of
another Class element. These edges are joined with their
vertices, forming the sub-graph Classes. The Attributes
sub-graph is formed in same way, and its links to other
elements (i.g.,DataType) are established via type attributes.
Consequently, the amount of edges (E(G”)) is larger than the
vertices (V(G’)) for the sub-graphs (partitions) of Classes
and Attributes.

The Class element has 6 attributes, which are assigned to
vertices. For the type of structure (StrucType) of a Class
element, more than one vertex is assigned. These are linked
to the source (src) vertex of the class properties (18,19,70).

Thus, for each Class element in a Class sub-graph there are
7 vertices, explaining the 70000 vertices. Regarding the Fe-
male and Male sub-graphs, they were partitioned from the
Family model transformation (M2GQG) output. The 1lastName
element and its structure are duplicated into these sub-graphs.
Thus, the total of vertices (V(G’)) and edges (E(G”)) is more
than the total of vertices (V(G)) and edges (E(G)) of the
Family M2G output. Table 2 (the last four columns) shows
the partitioning results for each Model translated into Graph-
Frame. Each model partition (V(G’) and E(G’)) sub-graph) is
related to a key element (K-element). We extract the prefix
from transformation rule names, such as Package, Classes,
and Attribute, and we execute the Motif algorithm for each of
them, except the key element Attribute for the Model Class-
0. This partitioning strategy is dependent on the key attribute
of GraphFrame edges. It requires that all links among model
elements are instantiated into edges. Otherwise the partition-
ing will not be correct.

Now considering the graph clustering strategy, we ex-
tracted from the GraphFrame the vertices and edges in the
Pajeck format (.net), as required by the Infomap frame-
work’. Once the .net file is available for processing, we ex-
ecute it with a call to Infomap. The runtime arguments are
-z, -N 10, --directed, --clu, meaning respectively:
start with vertex equal to zero; iterate ten times over the
vertices and edges; the input is a directed graph; and the
output will be a file containing clusters of vertices. The
Infomap framework execution output is a text file (.clu)
containing a list of pairs formed by vertices and clusters
((11,1),(12,1),(13,1),(21,1),(22,1)). This list is formed ac-
cording to the incidence of each vertex in the edges. All links
shaped from a vertex are grouped in a single cluster, and thus,
a vertex belongs only to a single cluster.

"https://gephi.org/users/supported-graph-formats/pajek-net-format/

A Data-centric Model Transformation Approach using Model2GraphFrame Transformations

Camargo and Del Fabro 2021

Table 2. M2G Transformations and GraphFrame Partitioning

Model M2G; V(G) E(G) K-element V(G) E(G) G2G’;
Class-0 3s 40031 40030 Package 30 20 8s
Classes 40000 30000 12s

Attribute n/a n/a n/a

Class-3 11s 318789 350006 Package 30 20 55s
Classes 70000 84400 54s

Attribute 90934 129945 59s

Class-6 115s 740380 880776 Package 30 20 127s
Classes 70000 88200 129s

Attribute 179982 200982 149s

Family 118 160481 160480 Female 109808 92276 35s
Male 110698 92938 36s

We execute the Infomap framework for the four input mod-
els using .net files. These files contain vertices and edges
extracted from GraphFrames. Table 3 displays the execution
results of the Infomap framework using the . clu files. In the
Infomap output (Clusters(G) column), we can note that the
amount of clusters generated from the Class-0 (10012) and
Family (160480) models is much larger than Class-3 (7) and
Class-6 (13) models. This is related to the density of each
model. The higher the number of interconnections among
model elements (edges), the lower the number of clusters
generated, because each vertex in an interconnection is as-
sociated to the same cluster. As we saw in the previous sec-
tion, the Class-0 and Family GraphFrame models are sim-
ple directed-graphs and weakly connected. This corroborates
the cluster granularity in both cases. In contrast, the Class-
3 and Class-6 models, when translated to GraphFrames, are
directed-graphs as well, but the graphs are not simple. They
are in fact strongly connected. As a result, the number of clus-
ters generated for these models is much smaller when com-
pared to the Class-0 and Family models.

Once Infomap has generated the .clu Cluster file for
each model, we load them into their respective DataFrames.
As an example, for loading the Class-0 clusters:
val clusterPath = "/Infomap/output/class-0.clu"

val clusterInput = spark.read.option("header","true")
.option("delimiter", " ").txt(clusterPath)

.select($"node", $"cluster")

The graphs are used in the execution of model transforma-
tions to direct the model element partitions on the parallel
Spark execution (section 4.4). We can also use them on dis-
tributed Spark execution (cluster of machines in future exe-
cutions). For example, the number of nodes provided by the
user or obtained from machine clusters can be used as the
denominator in a division of the amount of clusters from the
partitions. On other hand, the partitioning and distribution of
data done by the Spark partitioner can be improved in terms
of data dependency among the environment nodes. Since the
clustering and the sub-graphs tend to have the linked model
elements closely. The partitioning and distribution of data
in Spark is done at run-time using the RDD (Resilient Dis-
tributed Datasets) API.

In Table 3, we report again the amount of vertices and
edges of models (Table 2) to show the relation of the num-

ber of clusters for each model, considering their total vertices
and edges.

Table 3. Clustering Models

Model Vertices(G) Edges(G) Clusters(G)
Class-0 40031 40030 10012
Class-3 318789 350006 7
Class-6 740365 880776 13
Family 160481 160480 3354

The results from the Motif algorithm executions showed
that Motif Find can be used as a partitioning strategy for
graphs represented in GraphFrames. Regarding Infomap, it
uses the GraphFrame output as input for processing the clus-
tering, and the result is injected back to Spark through a
DataFrame. This process requires an integration between In-
fomap and Spark frameworks. There is a drawback in the
way that we adopt both strategies of partitioning since we
do not consider data balancing. Even though we know that
it is difficult to treat the densely connected models, we be-
lieve that we may explore this challenge in a future work. In
the next section we execute the model transformations using
GraphFrames.

4.4 Executing Model Transformations using
GraphFrame

We execute the Class to Relational (C2R) and the Family to
Person (F2P) transformations using Class-0, Class-3, Class-
6, and Family as source GraphFrame models. Once they are
transformed to GraphFrames, their elements are used as input
in filtering operations and transformation rules (as shown in
Listing 7), which we submit to the Spark framework for exe-
cution. For each GraphFrame containing the source models,
we execute the transformations considering:

* No Partition (NP) in these executions, without any parti-
tioning strategy. We execute the model transformations
for the whole model in the GraphFrame;

* Motif, running the model transformations using the sub-
graphs from the Motif partitioning strategy (Table 2);

+ Infomap, executing the model transformations using the
clusters of vertices from the Infomap framework.

An operation that we used in F2P transformation has the
following specification:

A Data-centric Model Transformation Approach using Model2GraphFrame Transformations

val lastNameFamilyDF = edgesDF.filter("key =
'lastName'") .select($"src", $"dst", $"key"). It
selects the edges (src and dst) for each family last name
(lastName) and assigns them to the lastNameFamilyDF
DataFrame. Table 4 shows the model transformation results,
which include the times in seconds. These times were
computed as the average of 7 transformation executions for
every input GraphFrame model, having discarded the first
3 executions. They were considered as warm-up phases for
the virtual machine of the Spark framework.

Before performing model transformations using the Clus-
tering strategy, we validate the cluster partitions using the
same procedure that we apply to the Motif partitioning (Sec-
tion 4.3). We identify that the clustering of GraphFrame is
consistent only when Infomap is executed without the level
parameter (visualizing the cluster output in modules), partic-
ularly for the Class-3 and Class-6 models. Otherwise, ver-
tices of the same model elements were in different clusters
due to the cluster modularity aspect of the Infomap algorithm.
We consider consistency as the main requirement of the par-
titioning results, but at the same time recognize that the parti-
tioning obtained through Infomap is conservative when eval-
uating the total of vertex clusters in Table 3. The vertices of
the Class-3 and Class-6 GraphFrame models were clustered
to 7 and 13 clusters respectively. It means the densely inter-
connected models require a more efficient partitioning strat-
egy with regards to the balancing and consistency of model
elements.

We run model transformations on the Spark framework in
local mode using four nodes, which were used for executing
the parallel tasks in memory. A task is the smallest unit
of schedulable work in a Spark program. A stage is a set
of tasks that can be run together (Apache, 2019). In this
manner, the requests for data manipulation operations
(name of transformation) and actions (requests for output,
for instance) are coordinated by the Spark framework.
Thus, we establish a traceability among source and target
elements, assigning the links among model elements from
the GraphFrame to a DataFrame (write the target model
output). For instance, the following expression selects all
links (vertices of last and first names) of sons elements.
val sonsNamesLinksDF = maleFamilyDF

.where($"key"==="sons")

.select($"dstm",$"dst".alias("dstt")).join(edgesDF)

filter($"dstt"===$"src") .select($"dstm",$"dst")
These links are inserted into the sonsNamesLinksDF
DataFrame, and we can use it to obtain the complete names
of sons on a parallel Spark framework execution. For each
source model (Table 4) in the GraphFrame, we submit all
the operation expressions and transformation rules to the
Spark context needed by the transformation of the model
in question.

According to Table 4, the partitioning model strategy with
the Motif algorithm penalized the performance of sub-graphs
transformation executions (Motif), due to the memory con-
sumption and the possible negative effect on mechanisms
of the Spark framework that minimize the data exchange
among the executors (data shuffles). The execution results
with no partitioning strategy (NP) have shown better perfor-
mance when compared with the sub-graphs executions (it

Camargo and Del Fabro 2021

does not interfere on Spark partitioner). In the cluster par-
tition executions (Infomap), we interfered in the Spark parti-
tioner, submitting the partitions from cluster model elements
to the Spark framework to improve the performance. This
strategy showed the best performance when compared to the
other executions (NP and Motif). The results on using these
strategies are present in this section.

Table 4. Execution Times for Model Transformations Using Graph-
Frame

C2R and F2P Class-0 Class-3 Class-6 Family
No Partitions 11s 54s 147s 39s
Motif 25s 107s 341s 78s
Infomap 8s 52s 141s 34s

Regarding execution times of model transformations,
we observe that the models which we consider weakly
connected, have the lowest execution times (Class-0 and
Family columns) when compared to the execution times
of the Class-3 and Class-6 models. These models have
their transformations times increased as the amount of
interconnected elements grow. In the transformations using
Infomap, we use the clusters to re-partition in run-time
the default Spark partitioning. For each expression, we
add the clusterInput DataFrame (node and cluster
columns) and invoke the repartition function with the
cluster column as parameter, in order to interfere in
Spark partitioner. This is necessary because the input model
clusters were generated before by Infomap framework.
The expression below shows an example of interference in
the partitioning of the Spark through the repartition()
function.

val lastNameFamily = clusterInput

.select($"node",$"cluster")

.join(edgesDF) .where($"node" ===

$"key"==="1lastName")

.select($"src", $"dst", $"key",$"cluster")

.repartition($"cluster")

We create the partitions of the model elements from the clus-
ters. This means that for the strongly connected models the
number of partitions in run-time is smaller. Consequently,
the amount of shuffling (operation in Spark to distribute
data across multiple partitions) also diminishes. However,
the execution times for the Motif is higher than in the other
executions for all input models used in this PoC. This is
due to memory consumption used to process the Motif
partitioning and model transformations, since all the steps of
our approach were executed in memory. In addition, when
the action is invoked by the program all the operations in
lazy evaluations are triggered.

A spark applications consist of a driver process (Driver
node) and executor processes (Worker nodes). The driver
runs, analyzes, and distributes work across the executors.
A partition is a logical chunk of a large distributed data
set (Apache, 2019). In our case, when the models are sub-
mitted to execution on the Spark framework, they are parti-
tioned automatically when there is no interference via code
(repartition() or coalesce()). For example, when a
class element requires one or more model elements that are

"dst" &&

A Data-centric Model Transformation Approach using Model2GraphFrame Transformations

in other nodes, these elements are shuffled and distributed
between nodes, and processed. These results are available to
the Worker nodes, which can then be used in a subsequent
operation.

Concerning the influence of partitioning strategies in
model transformations, we note that the generation of sub-
graphs with Motif execution penalizes the performance of
model transformation executions. Since they are running to-
gether in local mode, the sub-graphs were in the same JVM
(Java Virtual Machine) as the transformation code. We be-
lieve that the fact of model elements required by opera-
tions and transformation rules being together in sub-graphs
(GraphFrames) may diminish the amount of shuffles during
the model transformation executions. However, this strategy
can be better explored and be made more efficient on dis-
tributed executions with priority to data locality (data and the
code stored together on the same Worker Node). As for the
clustering strategy, we see that the use of clusters as a param-
eter for re-partitioning (Spark manages data using partitions)
of the source models for model transformation processing is
favorable to the performance of model transformations, since
they help parallelize data processing by minimizing shuffles
between executors (Worker nodes). This is a consequence
of each cluster and its vertices being distributed as a single
partition in run-time. However, this strategy is susceptible to
data skew when the data is unbalanced. In distributed execu-
tion, where each cluster of model elements is in a partition
and localization, the model transformation processing can be
minimized, with less network traffic overhead for sending
data between executors (Worker Nodes). In both strategies
there are open issues, such as data balancing (Le et al., 2014),
data skew processing (Gao et al., 2017), and data locality (Jin
et al., 2011) that need be contemplated in our approach.

Although there are open questions, we answer the question
Q2 admitting that it is feasible to use GraphFrame for model
transformations. According to the executing times of model
transformations in Table 4, the model partitioning based on
clustering performed better when compared with the other
times. On the other hand, the graph partitioning using the
Motif Find algorithm presented the worst performance in this
PoC. That means that we answer the question Q3. In the next
section, we present further discussion about this work.

4.5 Discussion

DataFrame and GraphFrames are flexible, structured, and
based in collections. These aspects allow us to extract meta-
models and models from different formats, such as XMI
and JSON. Moreover, their characteristics may ease the data
modeling for distinct transformation scenarios (local and dis-
tributed/parallel). Syntactically and semantically, the func-
tional constructs of the DataFrame and GraphFrames APIs
are relatively simple, though proper usage of some constructs
in Resilient Distributed Dataset (RDD) may require more
skill in functional programming.

In addition to the APIs, DataFrame has a schema that al-
lows interacting with its data structures and ease data op-
erations. The capability to process different data formats,
such as JSON and XMI can be considered a differential of
our approach to those that accept only the XMI format. An-

Camargo and Del Fabro 2021

other essential aspect is the transformation from a techni-
cal modeling space to the GraphFrame space, easing differ-
ent operations over model graphs through the GraphFrames
API. However, in our proof of concepts, we observe that
the Model2GraphFrame transformations consume a consid-
erable amount of memory, as the input model is loaded and
held in memory during the recursive processing. Even when
using a platform such as Spark, this problem with memory
usage needs to be addressed, in particular when using recur-
sive processing, or by avoiding it altogether.

Regarding the GraphFrames API, it has a set of func-
tions and built-in algorithms that can be used by different
languages. Its GraphFrame data representation (vertex and
edge DataFrames) allowed the manipulation of model ele-
ments while preserving their references and the connectivity
of models. The links between model elements are assigned to
GraphFrame edges, and from them, it is possible to identify
and process the elements and their links, such as when us-
ing Motif algorithm to generate sub-graphs, or via functions
that measure the connectivity of GraphFrames, among other
operations over GraphFrames. On the other hand, the model
elements that are in GraphFrame vertices and edges can be
joined in a single DataFrame using functions such as join,
union, and merge. When there is a need for a single out-
put from parallel/distributed processing, a reduce operation
can be executed using functions such as repartition(1)
or coalesce(1).

The model partitioning strategies used in fully connected
models need to be better investigated and integrated to model
partitioning in the Spark framework, mainly the clustering.
Issues of balancing the partitioning outputs, data skew, and
data locality need to be treated under the distributed/parallel
model transformations. Our approach can contribute to scal-
able MDE, since the Spark framework provides mechanisms
for such context. Nevertheless, we did not yet explore dis-
tributed processing in our approach. Furthermore, more ex-
periments involving a diversified set of transformation sce-
narios are necessary.

The results show that the parallel model transformations
is feasible in our approach, but is necessary to explore other
aspects such as the learning cost to use it, the semantic to
specify the transformation rules, and to know how difficult it
is to use our approach regarding the ATL-based approaches.

5 Related Work

Data extraction and operations on directed-graphs are used
in most application domains, such as MT, Reverse Engineer-
ing, Software Evolution, and others. We report some works
that highlight the Dc approach in MT, parallel/distributed
MT, some extraction processes, as well as works that process
graphs on the Spark framework.

MDE approaches have already been reinterpreted under
different views, for instance, Batory and Azanza (2017) do
a reinterpretation under the context of relational databases.
To ease the understanding of MDE approaches, they employ
a Dc approach and a declarative language to model trans-
formations. They map metamodels to relational tables and
use the Prolog language to write declarative constraints in

A Data-centric Model Transformation Approach using Model2GraphFrame Transformations

m2m transformation. This approach employs a Dc approach
to declarative styles. However, it was elaborated for helping
to explain the MDE concepts under relational perspectives,
whereas we seek to offer an approach for model transforma-
tion in a Dc approach.

In Wischenbart et al. (2012) an approach is proposed to
derive social network schemas from social network data.
They derive schema information expressed in JSON data. For
this, schema extraction strategies are provided for integration
tools that build on different technical spaces. Moreover, they
propose to apply techniques from MDE to transform schemas
into instance data. The extraction strategy used in this work
is similar to the one adopted in our ME, in which we use the
DataFrame schema from the output Injector module for pre-
serving the consistency of model elements during their trans-
lation into GraphFrame. However, they only use JSON as
input to the extraction and apply it on three social networks.
Our approach using DataFrame eases the extraction of data
from more than one format, such as XMI and JSON, and
translates it in a graph model for model transformations or
other GraphFrame operations.

Triple Graph Grammars (TGG) is considered a stan-
dard framework for model transformation based on
graphs (Tomaszek et al., 2018). Its expressiveness and its
mathematical basis are relevant aspects in graph transfor-
mation, since a single set of triple rules is sufficient to
generate the operational rules for the forward and backward
model transformations (Hermann et al., 2014). Tools such
as eMoflon, MoTE, TGG Interpreter, and EMorF are TGG-
based (Kahani et al., 2018; Edgar et al., 2014). However,
the optimization is still a challenge for applications based
on TGG, which may be a trade-off between expressiveness
and scalability (Anjorin et al., 2016). Our approach uses
directed-graphs as a means of representing the model ele-
ments and easing the operations over them. In addition, the
aspects of the platform that we use can be a differential for
development of parallel/distributed model transformation.

Bollati et al. (2013) introduced the MeTAGeM, a method-
ological and technical framework for the development of
model transformations, which bundles a set of Domain Spe-
cific Languages (DSL) for modeling model transformations
with a set of meta-model transformations in order to bridge
these languages in (semi-) automated model transformations
development. Amongst the aspects of the MeTAGeM, we re-
port two to our work: the concern with interoperability of dif-
ferent languages in the transformation process; and the Plat-
form Dependent Transformation (PDT) model, that allows
the use of Injectors/Extractors for model-to-text transforma-
tions. However, the injector/extractor are based on Textual
Concrete Syntax (TCS), which provides a DSL for the spec-
ification of the correspondence between the meta-model of
a given DSL and its textual representation. This means that,
for each DSL it is necessary to recover its TCS correspon-
dent, in case it already includes the DSL. Otherwise is needed
to develop a TCS. Vara and Marcos (2012) developed a tex-
tual editor and model extractor for Oracle OR models using
the TCS language to support textual editing of models and
the extraction of models from legacy code, for validating a
systematic study and a technical solution for MDE develop-
ment of information systems. Our approach extracts model

Camargo and Del Fabro 2021

elements in XMI/JSON format and transforms them to the
directed-graph format using the GraphFrames API from the
Spark framework. The extraction output is used in model par-
titioning, as well as in model transformations. In addition, it
may be used for general purposes in graph-oriented applica-
tions.

Distributed/parallel graph processing has been applied as a
way to optimize the graph operations. Imre and Mezei (2012)
introduced an algorithm to do graph transformations in a
parallel way using threads on a GPU (Graphics Processing
Unit). The transformation is executed on this algorithm in
two phases: matching and modifier. Although, the algorithm
can take the advantage of multi-core processors, the modi-
fier phase executes the modifications sequentially on a sin-
gle thread. In our approach, a graph can be processed on a
distributed and/or parallel way, since we utilize the parallel
implicit operations on a general-purpose cluster computing
framework. When some operation and/or transformation is
required by a program on the Spark framework, the model
is automatically split in partitions (this step can be changed
by the developer) and processed on nodes by a set of tasks in
memory. Furthermore, the graph operations can be specified
SQL-like declarative style and/or functional-like.

Benelallam et al.(Benelallam et al., 2015, 2016) present
the ATL-MapReduce as a distributed MT engine. They em-
bed the ATL on the MapReduce framework for obtaining an
implicit distribution of ATL rules, achieving distributed exe-
cution. From static analysis of transformation rules, they pro-
posed a model partitioning for balancing and preserving the
dependency among model elements by means of a greedy
distribution algorithm. The strategy is relevant for apply-
ing an algorithm for balancing the partitioning. The ATL-
MapReduce solution is dependent on the MapReduce frame-
work and an implicit distribution of models, as well as the
transformation executions on two phases (map and reduce).
Our partitioning strategies are based on directed-graph and
search split model into in sub-graphs and clusters of vertices.
Our approach uses the GraphFrame as a bridge between input
models and model transformations. It depends on the Spark
framework.

NeoEMF is a scalable model persistence framework based
on a modular architecture enabling model storage into mul-
tiple data stores. This framework is proposed by Daniel
et al. (2017), it provides model-to-database mappings for
persistence solutions and enables to store models in graphs,
key-value, and column databases. This framework provides
an API compatible with the Eclipse Modeling Framework
(EMF) API, meaning that the NeoEMF accepts only models
from EMF. Furthermore, the NeoEMF focuses on scalable
model persistence, whereas our approach aims at scalable
transformation of models, supporting input models in XMI
or JSON formats.

Junghanns et al. (2016) propose the Extended Property
Graph Model (EPGM), a graph data model that supports
flat and graph collections with heterogeneous vertices and
edges. They implemented a set of analytic operators using
a DSL on top of Apache Flink® to graph processing of sin-
gle graph representations (i.g., in collection), and to provide

8https://flink.apache.org/

A Data-centric Model Transformation Approach using Model2GraphFrame Transformations

general-purpose operators (i.g., select, count,...) on graph.
The graph representation in EPGM contains three object
types (GraphHead, Vertex, and Edge), whereas ours has two
object types: GraphNode and GraphEdge, which are sub-
types of GraphElement (Figure 4) and are contained in the
GraphFrames API. In EPGM, the input data format for pro-
cessing is not informed. Our extractor processes different
data formats (XMI and JSON). To process the graphs, we
use the operators from of the GraphFrames API itself (spe-
cific for graphs) in a function-like style assembling a lazy
evaluated pipeline of transformed data. The vertex and edge
instances are the input for model transformations.

Szarnyas et al. (2014) handle MDE scalability issues,
proposing an architecture (the IncQuery-D) for a distributed
and incremental model query framework by adapting incre-
mental graph pattern matching techniques to a distributed
cloud based infrastructure. This architecture evaluates graph
patterns over EMF models using Rete algorithm in a dis-
tributed environment. It focuses in distributed data store and
distributed query evaluation network for model transforma-
tions. The Rete algorithm uses tuples to represent the ver-
tices, edges and subgraphs in the graph. This graph represen-
tation is similar with our approach, which uses Dataframes
for representing vertices and edges into a Graphframe (graph
instance). Furthermore, the IncQuery-D uses incremental
queries based on joins to specify rules transformation, similar
to the specifications (transformation rules) of our approach.

The works (Szarnyas et al., 2014; Junghanns et al., 2016;
Benelallam et al., 2018) address the scalability with model
partitioning and or graph pattern techniques in MT. Our ap-
proach includes these aspects on Spark, a scalable frame-
work. Furthermore, the lazy-evaluate in monotonic opera-
tions, the implicit parallelism, transformation rules in declar-
ative specifications (SQL-like functions), data collections,
and parallel/distributed environment establish the technical
space of our approach.

6 Conclusion

We applied a Dc approach for model transformations through
the GraphFrames API, including model extraction. We eval-
uate the API, together with an implemented extraction pro-
cedure, to assess if they are a valid alternative for directed-
graph operations including model transformations. We devel-
oped a Model Extraction from technical modeling spaces to
the Apache framework on its DataFrame and GraphFrame
formats. From GraphFrame, we developed two partitioning
strategies, one based on the Motif algorithm and another
based on clustering using the Infomap framework. Both may
be used for partitioning models, but their outputs are not bal-
anced.

We also developed a set of operations and transformation
rules on the Scala language and validated them with a proof
of concept using the Spark framework on four nodes, in lo-
cal mode. The results obtained indicate that the extraction of
large semi-structured data under a directed-graph perspective
can be useful in choosing a strategy to design model transfor-
mations in a scalable platform, such as the Spark framework.
In addition, the model GraphFrame may be used for model

Camargo and Del Fabro 2021

partitioning, graph-data processing, and to analyze model
inter-connectivity, as well as to offer graph-structured infor-
mation to different contexts. However, there is a need for fur-
ther studies to apply more sophisticated strategies in model
partitioning and for improving the integration with the Spark
framework.

As future work, we plan run transformation rules using
GraphFrame on distributed environments such as cloud com-
puting, aiming for a benchmark with Very Large Models
on top scalable frameworks, to evaluate the scalability and
model partition strategies, whilst prioritizing load balancing,
minimizing data skew, and improving data locality of sub-
models. The benchmark can be based on works such as Varro
et al. (2005); Szarnyas et al. (2018). Furthermore, it is also
worth assessing whether our approach is practical, or too dif-
ficult for a typical developer.

References

Ahlgren, B., Hidell, M., and Ngai, E. C. (2016). Internet
of things for smart cities: Interoperability and open data.
IEEE Internet Computing, 20(6):52-56.

Alvaro, P., Conway, N., Hellerstein, J. M., and Marczak,
W. R. (2011). Consistency analysis in bloom: a CALM
and collected approach. In CIDR 2011, pages 249-260,
CA, USA. CIDRDB.

Anjorin, A., Leblebici, E., and Schiirr, A. (2016). 20 years
of triple graph grammars: A roadmap for future research.
Electronic Communications of the EASST, 73.

Apache, S. F. (2019). Apache spark, 2019 may, release 2.4.3.
https://spark.apache.org/. Online, accessed 2019-
08.

Aslak, U., Rosvall, M., and Lehmann, S. (2018). Con-
strained information flows in temporal networks reveal in-
termittent communities. Phys. Rev. E 97, 062312 (2018),
97(6):062312.

Azzi, G. G., Bezerra, J. S, Ribeiro, L., Costa, A., Rodrigues,
L. M., and Machado, R. (2018). The verigraph system for
graph transformation. In Heckel, R. and Taentzer, G., ed-
itors, Graph Transformation, Specifications, and Nets: In
Memory of Hartmut Ehrig, pages 160—178. Springer Inter-
national Publishing.

Barquero, G., Burgueiio, L., Troya, J., and Vallecillo, A.
(2018). Extending complex event processing to graph-
structured information. In Proceedings of the 21th
ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, MODELS ’18,
pages 166175, New York, NY, USA. ACM.

Batory, D. and Azanza, M. (2017). Teaching model-driven
engineering from a relational database perspective. Soft-
ware & Systems Modeling, 16(2):443—467.

Benelallam, A., Goémez, A., Tisi, M., and Cabot, J. (2015).
Distributed model-to-model transformation with atl on
mapreduce. In 2015 ACM SIGPLAN Software Language
Engineering, SLE 2015, pages 3748, New York, NY,
USA. ACM.

Benelallam, A., Gomez, A., Tisi, M., and Cabot, J. (2018).

https://spark.apache.org/

A Data-centric Model Transformation Approach using Model2GraphFrame Transformations

Distributing relational model transformation on mapre-
duce. Journal of Systems and Software, 142:1 —20.

Benelallam, A., Tisi, M., Cuadrado, J. S., de Lara, J., and
Cabot, J. (2016). Efficient model partitioning for dis-
tributed model transformations. In Proceedings of the
2016 ACM SIGPLAN International Conference on Soft-
ware Language Engineering, SLE 2016, pages 226-238,
New York, NY, USA. ACM.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefeb-
vre, E. (2008). Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):10008.

Bohlin, L., Edler, D., A., L., and M., R. (2014). Mapequation
framework.

Bollati, V. A., Vara, J. M., Jiménez, A., and Marcos, E.
(2013). Applying mde to the (semi-)automatic devel-
opment of model transformations. Inf. Softw. Technol.,
55(4):699-718.

Brambilla, M., Cabot, J., and Wimmer, M. (2012). Model-
Driven Sofiware Engineering in Practice, volume 1. Mor-
gan & Claypool, Williston, USA, 1 ed. edition.

Burgueno, L., Troya, J., Wimmer, M., and Vallecillo, A.
(2015). Parallel in-place model transformations with lin-
tra. In Proceedings of the 3rd Workshop on Scalable Model
Driven Engineering, pages 52—62.

Burgueno, L., Wimmer, M., and Vallecillo, A. (2016). A
linda-based platform for the parallel execution of out-
place model transformations. [Inf. Software Technology,
79:17-35.

Camargo, L. C. and Fabro, M. D. D. (2019). Applying a data-
centric framework for developing model transformations.
In ACM/SIGAPP Symposium on Applied Computing, SAC
’19, page 1570-1573, New York, NY, USA. Association
for Computing Machinery.

Chambers, B. and Zaharia, M. (2018). Spark: The Definitive
Guide, volume 1. O Reilly Media, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA, USA, 1 ed. edition.

Daniel, G., Sunye, G., Benelallam, A., Tisi, M., Vernageau,
Y., Gomez, A., and Cabot, J. (2017). Neoemf: A multi-
database model persistence framework for very large mod-
els. Science of Computer Programming, 149:9 — 14. Spe-
cial Issue on MODELS’16.

Daniel, G., Sunyé¢, G., and Cabot, J. (2016). Umltographdb:
Mapping conceptual schemas to graph databases. In
Comyn-Wattiau, ., Tanaka, K., Song, I.-Y., Yamamoto, S.,
and Saeki, M., editors, Conceptual Modeling, pages 430—
444, Cham. Springer International Publishing.

Dean, J. and Ghemawat, S. (2008). Mapreduce: Simpli-
fied data processing on large clusters. Commun. ACM,
51(1):107-113.

Eclipse, F. (2019). Atl transformations list (zoo). http://
www.eclipse.org/atl/atlTransformations/. On-
line, accessed 2019/02.

Edgar, J., Sebastian, B., Dennis, W., Li, D., Abel, H., Markus,
H., Tassilo, H., Elina, K., Christian, K., Kevin, L., Markus,
L., Arend, R., Louis, R., Sebastian, W., and Steffen, M.
(2014). A survey and comparison of transformation tools
based on the transformation tool contest. Science of Com-
puter Programming, 85:41 — 99. Special issue on Experi-

Camargo and Del Fabro 2021

mental Software Engineering in the Cloud(ESEiC).

Edler, D., Bohlin, L., and Rosvall, M. (2017). Mapping
higher-order network flows in memory and multilayer net-
works with infomap. CoRR, abs/1706.04792.

Gao, Y., Zhou, Y., Zhou, B., Shi, L., and Zhang, J. (2017).
Handling data skew in mapreduce cluster by using parti-
tion tuning. In Journal of healthcare engineering, pages
1-12.

Gomez, A., Tisi, M., Sunyé, G., and Cabot, J. (2015). Map-
based transparent persistence for very large models. In
Fundamental Approaches to Software Engineering 18th
International Conference, (FASE), pages 19-34.

Hermann, F., Ehrig, H., Golas, U., and Orejas, F. (2014).
Formal analysis of model transformations based on triple
graph grammars. Mathematical Structures in Computer
Science, 24(4).

Hochbaum, D. S. (2008). The pseudoflow algorithm: A new
algorithm for the maximum-flow problem. Oper. Res.,
56(4):992-1009.

Imre, G. and Mezei, G. (2012). Parallel graph transforma-
tions on multicore systems. In Proceedings of the 2012 In-
ternational Conference on Multicore Sofiware Engineer-
ing, Performance, and Tools, MSEPT’12, pages 86—89,
Berlin, Heidelberg. Springer-Verlag.

Jia, X. and Jones, C. (2015). Design of adaptive domain-
specific modeling languages for model-driven mobile ap-
plication development. In 2015 10th International Joint
Conference on Software Technologies (ICSOFT), vol-
ume 1, pages 1-6.

Jin, J., Luo, J., Song, A., Dong, F., and Xiong, R. (2011). Bar:
An efficient data locality driven task scheduling algorithm
for cloud computing. In 2011 11th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing,
pages 295-304.

Jouault, F., Allilaire, F., Bézivin, J., and 1., K. (2008). Atl:
A model transformation tool. Science of Computer Pro-
gramming, 72(1):31 — 39. Special Issue on Second issue
of experimental software and toolkits (EST).

Junghanns, M., Petermann, A., Teichmann, N., Gémez, K.,
and Rahm, E. (2016). Analyzing extended property graphs
with apache flink. In SIGMOD workshop on Network Data
Analytics (NDA), pages 1-8.

Kahani, N., Bagherzadeh, M., Cordy, J. R., Dingel, J., and
Varro, D. (2018). Survey and classification of model trans-
formation tools. Software & Systems Modeling.

Kendig, C. E. (2016). What is proof of concept research and
how does it generate epistemic and ethical categories for
future scientific practice? In Nature, S., editor, Science
and Engineering Ethics, pages 735—753. Springer Interna-
tional Publishing, Switzerland AG.

Kolovos, D. S., Paige, R. F., and Polack, F. A. C. (2008). The
Epsilon Transformation Language, pages 46—60. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Larman, C. (2004). Applying UML and Patterns: An Intro-
duction to Object-Oriented Analysis and Design and the
Unified Process, volume 1. Prentice Hall, Upper Saddle
River, United States, 3 ed. edition.

Le, Y., Liu, J., Ergiin, F., and Wang, D. (2014). Online load
balancing for mapreduce with skewed data input. In JEEE

http://www.eclipse.org/atl/atlTransformations/
http://www.eclipse.org/atl/atlTransformations/

A Data-centric Model Transformation Approach using Model2GraphFrame Transformations

INFOCOM 2014 - IEEE Conference on Computer Com-
munications, pages 2004-2012.

Li, L., Geda, R., Hayes, A. B., Chen, Y., Chaudhari, P.,
Zhang, E. Z., and Szegedy, M. (2017). A simple yet effec-
tive balanced edge partition model for parallel computing.
SIGMETRICS Perform. Eval. Rev., 45(1):6-6.

Lowe, M. (2018). Model transformations as free construc-
tions. In Heckel, R. and Taentzer, G., editors, Graph Trans-
formation, Specifications, and Nets: In Memory of Hart-
mut Ehrig, pages 142—159. Springer International Publish-
ing, Cham.

MacQueen, J. (1967). Some methods for classification and
analysis of multivariate observations. In Proceedings
of the Fifth Berkeley Symposium on Mathematical Statis-
tics and Probability, Volume 1: Statistics, pages 281-297,
Berkeley, Calif. University of California Press.

Michael 1., S. (2016). Programming Language Pragmatics.
Morgan Kaufmann, 4 ed. edition.

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii,
D., and Alon, U. (2002). Network motifs: Simple building
blocks of complex networks. Science (New York, N.Y.),
298:824-17.

OMG (2016). Qvt query view transformation, formal/2016-
06-03 v1.3. http://www.omg.org/spec/QVT. Accessed in
2018/06.

Pagan, J. E., Cuadrado, J. S., and Molina, J. G. (2015). A
repository for scalable model management. Sofiware &
Systems Modeling, 14(1):219-239.

Raman, R. (2015). Encoding data structures. In Rahman,
M. S. and Tomiita, E., editors, WALCOM: Algorithms and
Computation, pages 1-7, Cham. Springer International
Publishing.

Rutle, A., Rossini, A., Lamo, Y., and Wolter, U. (2012). A
formal approach to the specification and transformation
of constraints in mde. The Journal of Logic and Algebraic
Programming, 81(4):422 — 457.

Schiirr, A. (1995). Specification of graph translators with
triple graph grammars. In Proceedings of the 20th Inter-
national Workshop on Graph-Theoretic Concepts in Com-
puter Science, WG 94, pages 151-163. Springer-Verlag.

Shkapsky, A., Yang, M., Interlandi, M., Chiu, H., Condie, T.,
and Zaniolo, C. (2016). Big data analytics with datalog
queries on spark. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD16, pages
1135-1149.

Szarnyas, G., Izso, B., Rath, 1., Harmath, D., Bergmann, G.,
and Varr6, D. (2014). Incquery-d: A distributed incremen-

Camargo and Del Fabro 2021

tal model query framework in the cloud. In Dingel, J.,
Schulte, W., Ramos, 1., Abrahdo, S., and Insfran, E., edi-
tors, Model-Driven Engineering Languages and Systems,
pages 653—669. Springer International Publishing.

Szarnyas, G., 1zso, B., Rath, 1., and Varro, D. (2018). The
train benchmark: cross-technology performance evalua-
tion of continuous model queries. Software System Model,
17,4:28.

Tang, M., Shao, S., Yang, W., Liang, Y., Yu, Y., Saha, B.,
and Hyun, D. (2019). Sac: A system for big data lineage
tracking. In 2019 IEEFE 35th International Conference on
Data Engineering (ICDE), pages 1964—1967.

Tisi, M., Martinez, S., and Choura, H. (2013). Parallel execu-
tion of atl transformation rules. In Proceedings of the 16th
International Conference on Model-Driven Engineering
Languages and Systems - Volume 8107, pages 656—672,
New York, NY, USA. Springer-Verlag New York, Inc.

Tomaszek, S., Leblebici, E., Wang, L., and Schiirr, A. (2018).
Model-driven development of virtual network embedding
algorithms with model transformation and linear optimiza-
tion techniques. In Schaefer, 1., Karagiannis, D., Vogel-
sang, A., Méndez, D., and Seidl, C., editors, Modellierung
2018, pages 39—-54, Bonn. Gesellschaft fiir Informatik e.V.

Vara, J. M. and Marcos, E. (2012). A framework for model-
driven development of information systems. Journal of
Systems Software., 85(10):2368-2384.

Varrd, D., Bergmann, G., Hegediis, A., Horvath, A., Rath,
I., and Ujhelyi, Z. (2016). Road to a reactive and incre-
mental model transformation platform: three generations
of the viatra framework. Software & Systems Modeling,
15(3):609-629.

Varro, G., Schurr, A., and Varro, D. (2005). Benchmark-
ing for graph transformation. In 2005 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing
(VL/HCC’05), pages 79-88.

W3C (2014). Rdf 1.1 concepts and abstract syntax.

Wischenbart, M., Mitsch, S., Kapsammer, E., Kusel, A.,
Proll, B., Retschitzegger, W., Schwinger, W., Schonbock,
J., Wimmer, M., and Lechner, S. (2012). User profile inte-
gration made easy: Model-driven extraction and transfor-
mation of social network schemas. In Proceedings of the
21st International Conference on World Wide Web, pages
939-948.

Xin, R. S., Gonzalez, J. E., Franklin, M. J., and Stoica,
I. (2013). Graphx: A resilient distributed graph system
on spark. In First International Workshop on Graph
Data Management Experiences and Systems, GRADES
’13, pages 2:1-2:6.

	Introduction
	Context
	Data Structures on GraphFrame
	Model Transformations using Graphs

	A Data-centric Approach for MT
	Extracting model elements into a DataFrame
	Translating the input DataFrame to GraphFrame
	Model Partitioning
	MT using GraphFrame

	Implementation
	Processing Model2GraphFrame Outputs
	Measuring GraphFrame Connectivity
	Partitioning M2G Outputs
	Executing Model Transformations using GraphFrame
	Discussion

	Related Work
	Conclusion

