Journal of Software Engineering Research and Development, 2020, 8:7, doi: 10.5753/jserd.2020.744

© This work is licensed under a Creative Commons Attribution 4.0 International License..

Understanding the Impact of Introducing Lambda Expressions

in Java Programs

Walter Lucas ® University of Brasilia (UnB) & waltimlmm@gmail.com

José Fortes University of Brasilia (UnB) & jose.fortes.neto@gmail.com
Francisco Vitor Lopes University of Brasilia (UnB) & fvitorlopes@gmail.com
Diego Marcilio Universita della Svizzera italiana & dvmarcilio@gmail.com
Rodrigo Bonificio ® University of Brasilia (UnB) & rbonifacio@unb.br
Edna Dias Canedo ® University of Brasilia (UnB) & ednacanedo@unb.br
Fernanda Lima University of Brasilia (UnB) & ferlima@unb.br

Joao Saraiva University of Minho & saraiva@di.uminho.pt

Abstract

Background: The Java programming language version eight introduced several features that encourage the func-
tional style of programming, including the support for lambda expressions and the Stream API. Currently, there is
a common wisdom that refactoring legacy code to introduce lambda expressions, besides other potential benefits,
simplifies the code and improves program comprehension. Aims: The purpose of this work is to investigate this
belief, conducting an in-depth study to evaluate the effect of introducing lambda expressions on program compre-
hension. Method: We conducted this research using a mixed-method approach. For the quantitative method, we
quantitatively analyzed 158 pairs of code snippets extracted directly either from GitHub or from recommendations
from three tools (RJITL, NetBeans, and IntelliJ). We also surveyed practitioners to collect their perceptions about the
benefits on program comprehension when introducing lambda expressions. We asked practitioners to evaluate and
rate sets of pairs of code snippets. Results: We found contradictory results in our research. Based on the quantitative
assessment, we could not find evidence that the introduction of lambda expressions improves software readability—
one of the components of program comprehension. Our results suggest that the transformations recommended by
the aforementioned tools decrease program comprehension when assessed by two state-of-the-art models to esti-
mate readability. Differently, our findings of the qualitative assessment suggest that the introduction of lambda
expression improves program comprehension in three scenarios when: we convert anonymous inner classes to a
lambda expression, use structural loops with inner conditional to an anyMatch operator, and apply structural loops
to filter operator combined with a collect method. Implications: We argue in this paper that one can improve
program comprehension when he/she applies particular transformations to introduce lambda expressions (e.g., re-
placing anonymous inner classes with lambda expressions). Also, the opinion of the participants highlights which
kind of transformation for introducing lambda might be advantageous. This might support the implementation of

effective tools for automatic program transformations.

Keywords: Program Comprehension, Java Lambda Expressions, Empirical Studies

1 Introduction

Software evolves to adapt to social and technical needs (God-
frey and German, 2008): users might request new features,
or performance constraints must be met. Indeed, the success
of a system depends on how easy its evolution is. If it does
not change to reflect the needs of their users (Lehman and
Ramil, 2001), it is doomed to failure. In the same vein, suc-
cessful programming languages change over time (Overbey
and Johnson, 2009): programmers require more features and
more expressivity from language constructs.

Mainstream programming languages (e.g., Python and
C++) also evolve to support new programming styles, such
as the recent trend of imperative languages to adhere to the
functional style. Since version 2.0, Python language supports
features to facilitate list comprehension (Lott, 2018), a fea-
ture originally found in functional languages (like Erlang and
Haskell). Similarly, C++ introduced lambda expressions in
C++ version 11 (Stroustrup, 2013).

Recently, Java has adopted a faster release cycle to fre-
quently deploy new features. Some of these releases did

not significantly change the language semantics. Contrast-
ingly, other releases present remarkable changes in language
constructs. This is the case for Java 8, which introduces
new features to facilitate functional programming and be-
havior parameterization. Using these features, developers
can pass (anonymous) functions as arguments to other func-
tions (Urma et al., 2014).

However, as languages evolve, programs’ source code
usually lag behind. When a language releases a new version,
source code that was up-to-date suddenly becomes legacy
code and older constructs often persist in the system while
developers add new ones (Overbey and Johnson, 2009). The
coexistence of old and new constructs puts a toll on program-
mers, requiring them to be familiar with different idioms that
implement a similar behavior. To mitigate the problem of
these old and new constructs coexisting, Overbey and John-
son (2009) recommended using refactoring tools that aim to
help developers introduce new language constructs in legacy
programs automatically.

For instance, Gyori et al. (2013) proposed a tool to rejuve-

https://orcid.org/0000-0001-7391-9622
mailto:waltimlmm@gmail.com
mailto:jose.fortes.neto@gmail.com
mailto:fvitorlopes@gmail.com
mailto:dvmarcilio@gmail.com
https://orcid.org/0000-0002-2380-2829
mailto:rbonifacio@unb.br
https://orcid.org/0000-0002-2159-339X
mailto:ednacanedo@unb.br
mailto: ferlima@unb.br
mailto:saraiva@di.uminho.pt

Understanding the Impact of Introducing Lambda Expressions in Java Programs

nate Java programs that replaces legacy constructs, such as
anonymous inner classes, with lambda expressions. The au-
thors claim that the adoption of lambda expressions in Java
improves program comprehension, though without present-
ing empirical evidence (Gyori et al., 2013). However, Dantas
et al. (2018) report that this kind of transformation might not
always improve the quality of the code, and developers often
reject patches applying this kind of transformation (Dantas
et al., 2018). Moreover, Mazinanian et al. (2017) found that
developers often perform this kind of transformation without
any tool support.

In previous work (Lucas et al., 2019), we investigated how
the introduction of lambda expressions impacts source code
comprehension. We found that state-of-the-art metrics to
measure code readability fail to capture the benefits of intro-
ducing lambda expressions. Nonetheless, based on the find-
ings of a survey with practitioners, we disclosed that the in-
troduction of lambda expressions improve program compre-
hension only in a few specific scenarios, such using lambda
expressions as a substitute to anonymous inner classes.

In this paper, we extend our previous work, mitigating
two threats of that research: (a) the use of a small num-
ber of pairs of code snippets (each pair comprising the code
before and after the introduction of a lambda expression)
during the qualitative assessment; and (b) the use of real-
world code snippets collected from open-source projects,
whose versions after introducing lambda expressions could
also have additional modifications (such as a bug fix). There-
fore, we report the results of an extensive empirical investi-
gation on the benefits of introducing lambda expressions in
legacy code, considering 92 pairs of code snippets as sug-
gested by automated tools. We review some aspects of our
previous work and present new evidence about:

* Scenarios that benefit from introduction lambda ex-
pressions: We identified scenarios where the introduc-
tion of lambda expressions improve program compre-
hension. Tool developers might use this information to
customize techniques that find opportunities to refactor
a legacy code to use lambda expressions.

* Lambda expressions make the code more succinct:
Our findings provide evidence that the introduction
of lambda expressions makes the code more succinct
(in more than 80% of the scenarios, the total num-
ber of lines of code reduced after introducing lambda
expressions)—even though this does not necessarily
lead to an improvement on code comprehension.

* Lambda expressions make debugging difficult: Our
results suggest that the introduction of lambda expres-
sions can lead to pieces of code that are harder to debug.
We consider this as a possible negative side effect of in-
troducing lambda expressions.

* Relevance of tooling support for rejuvenating Java
code: We also found that developers consider tooling
support to be important for performing transformations
introducing lambda expressions in Java legacy code.
Nonetheless, existing tools also recommend transfor-
mations that need manual improvements, lead to small
benefits, or make the code harder to understand.

Walter Lucas et al. 2020

2 Background and Related Work

Program comprehension is a fundamental software attribute
that facilitates its maintenance and supports its evolu-
tion (von Mayrhauser and Vans, 1995). Understanding ex-
isting software enables maintainers to successfully evolve
functionality and/or integrate improvements for every type
of change commonly associated with software maintenance
and evolution, including adaptive, perfective, and correc-
tive modifications (von Mayrhauser and Vans, 1995). Un-
derstanding software is challenging due to several factors,
one of which is that large programs are often maintained
by developers with different skills and using different prac-
tices (Storey et al., 2000). Moreover, in many cases, the
source code may be the only available and up to date refer-
ence for a software (Storey et al., 2000), though poor design
and lack of good programming practices might compromise
program comprehension (Tilley et al., 1996).

The practices developers use to understand a software are
diverse and often are task-related (e.g., documenting part of
a system, fixing a bug, and implementing a new feature). In-
deed, “programmers use domain knowledge, programming
knowledge, and comprehension strategies when attempting
to understand a program” (Tilley et al., 1996). Program com-
prehension uses existing knowledge to acquire new knowl-
edge to build a mental model of the software that might help
developers accomplish a specific task (von Mayrhauser and
Vans, 1995). While it is true that the skills and experiences
of a developer are relevant when he/she wants to understand
software, it has been reported that a set of recommended
practices (such as the use of programming idioms and code
formatting tools, design patterns, and refactoring) might also
support program comprehension, in particular when using a
bottom-up strategy as defined by Pennington (1987). Con-
versely, the use of some obscure programming constructs
(e.g., atoms of confusion) increases the rate of source code
misunderstandings (Gopstein et al., 2017). For instance, the
atoms of confusion conditional operator and logical as con-
trol flow' involve fundamental language constructs such as
math operators and if statements.

Although many software characteristics might impact pro-
gram comprehension (e.g., variable names (Avidan and Feit-
elson, 2017) and atoms of confusion (Gopstein et al., 2017)),
in this paper, we are particularly interested in aspects re-
lated to source code quality that might either facilitate or
hinder program understanding (Storey et al., 2000). Sev-
eral research studies (Buse and Weimer, 2010; Posnett et al.,
2011; Scalabrino et al., 2016) have explored the use of mod-
els for estimating the readability of the source code—which
directly affect program comprehension. Additionally, previ-
ous research has already investigated the impact of coding
practices on software readability (Gopstein et al., 2017; dos
Santos and Gerosa, 2018). Our work builds upon these pre-
vious efforts, using existing models for estimating software
readability (Buse and Weimer, 2010; Posnett et al., 2011),
and procedures to qualitatively assess the preference of de-
velopers when considering sets of code snippets (dos Santos
and Gerosa, 2018). We apply these models in a different and

Thttps:/atomsofconfusion.com/

Understanding the Impact of Introducing Lambda Expressions in Java Programs

particular scenario: the introduction of lambda expressions
into Java legacy code.

Lambda expressions were introduced in Java 8 to sup-
port functional programming (Tsantalis et al., 2017), lift-
ing function definitions to values, thus allowing develop-
ers to pass a lambda function definition as an argument to
a method (Alqaimi et al., 2019). Developers can also use
lambda expressions in Java to abstract parallelism and re-
move the boilerplate code necessary to write anonymous in-
ner classes (Algaimi et al., 2019). Moreover, lambda expres-
sions enable chaining functional recursive patterns (e.g., map
and filter) using the stream API methods as an alternative
way to iterate, filter, and collect data from a collection (Maz-
inanian et al., 2017). For instance, consider the code snippets
in Figure 1 (filter 1 and filter 2), based on an implementation
of the 101 Companies problem domain (Favre et al., 2012).
In this example, the goal is to filter a department’s employees
that have a salary greater than a given value. In the first snip-
pet, the code uses an implementation without the language
features of Java 8. In the second, the implementation uses a
lambda expression as an argument to the filter method of
the Java 8 stream API.

Figure 1. Filtering employees with high salaries, being filter1 approach pre-
vious to Java 8 and filter2 approach using lambda expressions and the Java
8 stream APIL.

public List<Employee> employeeWithHighSalaries(double salary) {
List<Employee> res = new ArrayList<>();
for(Employee e: employees) {
if(e.getSalary() > salary) res.add(e);

return res;

}

filter 1

public List<Employee> employeeWithHighSalaries(double salary) {
return employees.stream()
filter(e —e.getSalary() > salary)
.collect(Collectors.toList());

filter 2

Previous research on Java lambda expressions focused
on their introduction via automatic techniques for refactor-
ing legacy code to “make the code more succinct and read-
able” (Gyori et al., 2013; Dantas et al., 2018)—in partic-
ular situations that one can, for instance, replace either an
anonymous inner class or a loop over a collection by state-
ments involving lambda expressions. Other approaches rec-
ommend transformations that introduce lambda expressions
to remove duplicated code (Tsantalis et al., 2017) and to use
parallel features of Java 8 properly (Khatchadourian et al.,
2019). Also, Mazinanian et al. (2017) present a comprehen-
sive study on the adoption of Java lambda expressions to un-
derstand the motivations that lead Java developers to adopt
the functional style of thinking in Java. The authors pub-
lished a large dataset with more than 100 000 real usage sce-
narios. We use this dataset to understand program compre-
hension benefits with the adoption of Java lambda expres-
sions.

At first glance, the use of lambda expressions, due to its
conciseness, yields a more succinct and readable code (Gyori
et al., 2013; Dantas et al., 2018). However, this is not always

Walter Lucas et al. 2020

the case, as Dantas et al. (2018) produced automated refactor-
ings for iterating on collections that developers judged less
comprehensible. We aim to investigate further which scenar-
ios benefit from the introduction of lambda expressions. To
the best of our knowledge, previous research did not inves-
tigate the assumption that the use of lambda expressions ac-
tually lead to benefits on program comprehension.

3 Study Settings

The general goal of this research is to investigate the bene-
fits on code comprehension after refactoring a Java method
to introduce a lambda expression, and thus answering the
research questions we present in Section 3.1. To this end,
we conducted a research in two phases, both using a mixed-
methods approach.

In the first phase, whose results we presented in previ-
ous work (Lucas et al., 2019), we carried out a quantitative
assessment of 66 pairs of code snippets, using state-of-the-
art models for measuring software comprehension (see Sec-
tion 3.2). Each pair corresponds to a method body before and
after introducing lambda expressions. We also conducted a
qualitative investigation (survey) considering the opinion of
28 practitioners that answered questions that also aim to com-
pare the code before and after the introduction of lambda ex-
pressions in nine pairs of code snippets.

In the second phase we mitigated some possible threats
that we identified in the first study: a small number of code
snippets used in the survey of the first phase and the assess-
ment of code snippets that might contain not only a man-
ual program transformation, but actually a manual program
transformation and an additional contribution to the program
(e.g., a bug fix). As such, in the second phase we leveraged
existing support of program transformation tools to refactor
legacy code of open source systems to introduce lambda ex-
pressions. Considering the outcomes of these program trans-
formation tools, we again conducted a quantitative assess-
ment (using state-of-the-art models for measuring software
comprehension) of a random sample of 92 pairs of code snip-
pets and a survey with 182 practitioners that evaluated at least
five code snippets from this sample of 92 pairs.

3.1 Research Questions

We investigated the following research questions in our
study.

(Q1) Does the use of lambda expressions improve program
comprehension?

(Q2) Does the introduction of lambda expression reduce
source code complexity?

(Q3) What are the most suitable situations to refactor a code
to introduce lambda expressions?

(Q4) How do practitioners evaluate the effect of introducing
a lambda expression into a legacy code?

(Q5) What is the practitioners’ opinion about the recom-
mendations from automated tools to introduce lambda
expressions?

Understanding the Impact of Introducing Lambda Expressions in Java Programs

We conducted this research using an iterative approach,
and after investigating a given question, new sub-questions
and hypothesis emerged. For instance, we investigated
whether or not the reduction in the size of a code snippet, af-
ter introducing a lambda expression, has an influence on the
perception of the participants about the quality of the trans-
formation.

3.2 Metrics of the Quantitative Study

We measured the complexity of a code snippet using two met-
rics: number of source lines of code (SLOC) and cyclomatic
complexity (CC). Both metrics have been used in a num-
ber of studies (Riaz et al., 2009; Baggen et al., 2012; Land-
man et al., 2016). In addition, we used two models to esti-
mate and compare the readability of each pair of code snip-
pets considered in our research. Readability is one of the as-
pects used for assessing program comprehension, and here-
after both terms (readability and program comprehension)
are used interchangeably. The first model we used to esti-
mate program comprehension is based on the work of Buse
and Weimer (2010). It estimates the comprehensibility of a
code snippet considering a regression model that takes as in-
put several characteristics, including the length of each line
of code in a code snippet, the number of identifiers in a code
snippet, and the length of the identifiers present in a code
snippet (Buse and Weimer, 2010).

The second model was proposed by Posnett et al. (2011),
which builds upon the Buse and Weimer model, though con-
sidering a smaller number of characteristics. Based on this
model, we can estimate the readability of a code snippet us-
ing Eq. (1) and Eq. (2); and the constant C' = 8.87.

1
EX) = Tre 720 (D

C 4 0.40L(X) — 0.033V(X) — 1L.5H(X) (2)

N
>
I

That is, in the Posnett et al. model, we calculated pro-
gram comprehension using three main components: the num-
ber of lines of a code snippet (L(X)), the volume of a code
snippet (V' (X)), and the entropy (H (X)) of a code snip-
pet. The volume of a code snippet X is given by V(X) =
N(X)logan(X), where N (X) is the program length of the
code snippet and n(X) is the program vocabulary. These
measures are defined as

* Program Length (N (X)) is given by N(X) =
N1(X) + N2(X), where N1(X) is the number of op-
erators and N2(X) is the number of operands of a code
snippet.

* Program Vocabulary (n(X)) is computed using the
formula n(X) = nl(X) 4+ n2(X), where n1(X) is the
number of unique operators and n2(X) is the number
of unique operands of a code snippet.

The entropy of a document X (in our case a code snip-
pet) is given by Eq (3), where x; is a token in X, count(x;)
is the number of occurrences of x; in the document X, and
p(x;) is given by Eq (4). The entropy (H (X)) in our context
estimates the degree of disorder of the source code.

Walter Lucas et al. 2020

H(X) = =Y p(x:) logs p(x:) 3)
pla) = enin))

> i count(z;)

We used an existing tool? to estimate the comprehensibil-
ity of the code snippets using the Buse and Weimer (2010)
model. We developed our own tool to automate the computa-
tion of the comprehensibility model by Posnett et al. (2011).3
We executed these computations for all pairs of code snip-
pets that we collected either from real scenarios (first phase)
or from the outcomes of the program transformation tools
(second phase).

3.3 Code Snippets’ Datasets

In the first phase of this research, we used an existing tool
(MinerWebApp) and a dataset from a previous work (Maz-
inanian et al., 2017), to identify code snippet candidates
to our research. MinerWebApp monitors the adoption of
Java lambda expressions in open source projects hosted on
GitHub, and has been used in previous research on the adop-
tion of lambda expressions (Mazinanian et al., 2017). The
goal of MinerWebApp is to identify and classify the use of
lambda expressions code snippets. MinerWebApp classifies
the occurrences of lambda expressions into three categories:

* New method: When a new method containing lambda
expressions is added to an existing class;

* New class: When a new class is added to the project, and
this class contains methods with lambda expressions;
 Existing method: When a lambda expression is intro-

duced into an existing method.

The decision of using an existing tool and dataset simpli-
fied our process of collecting real usage scenarios of lambda
expressions. We randomly selected 59 code snippets from the
MinerWebApp dataset—considering exclusively the code
snippets of the third category (Existing method). We also col-
lected 29 code snippets of refactoring scenarios we gener-
ated using RJTL (Dantas et al., 2018) and submitted via pull
requests to open source projects. In total, we selected 88 code
snippets from 22 projects, including code snippets from the
Elastic Search, Spring Framework, and Eclipse Foundation
projects. We manually reviewed these code snippets and re-
moved 22 pairs that clearly do not correspond to a refactoring
or that already had a lambda expression in the first version of
the code. This cleanup lead to a final dataset with 66 pairs of
code snippets from 19 projects that we considered in the first
phase of the research. In Table 1 we show the number of pairs
of code snippets we collected from the GitHub repositories,
coming either from MinerWebApp or from RJTL transfor-
mations.

All procedures to collect and characterize the code snip-
pets from GitHub pages have been automated, using a
crawler and additional scripts for computing source code

Zhttp://www.arrestedcomputing.com/readability/
3https://github.com/rbonifacio/program-comprehension-metrics

Understanding the Impact of Introducing Lambda Expressions in Java Programs

Table 1. Selected projects in the first phase.

Snippets from
MinerWebApp

Snippets from
RITL

10

Project

(=]

seleniumQuery
elasticsearch
CoreNLP
vertx-examples
Swagger2Markup
SpongeAPI

tailor

Agrona
RxAndroidBle
optaplanner
RxJava-Android-Samples
kaa

jersey

uhabits
graylog2-server
FluentLenium
qualitymatters
jbpm
spring-integration

W —m = = RN hE = WA~ BRENODNDO O
cCoOocCcOoO0oCcCOoO0OocOoOOoOoOoSO Gk

metrics (Figure 2 shows an overview of the approach). The
crawler expects as input a CSV file, where each line specifies
the project, the url of the commit, the start and end lines of
the code snippet, and the type of the refactoring (e.g., anony-
mous inner class to lambda expression, foreach statements
to a recursive pattern using lambda expressions, and so on).

000

&[G ollln S

Figure 2. Procedures for collecting code snippets and calculating metrics

In the second phase, we used three automated refactor-
ing tools (RJTL tool, NetBeans IDE, and Intellj IDE) to find
opportunities and then introduced lambda expressions glob-
ally into the methods of five open-source systems (see Ta-
ble 2). We chose these systems because they have been used
to assess the performance of Lambdaficator (Gyori et al.,
2013)—Ilately integrated into NetBeans to assist developers
to migrate legacy systems towards Java 8. We were also able
to build and execute the test cases of these systems, before
and after applying the transformations. After executing the
three tools in the five systems, we generated a dataset of
1987 transformations recommending refactorings to intro-
duce lambda expressions (Table 2 shows the details).

Table 2. Number of refactoring recommendations each tool (RJTL,
NetBeans IDE, and IntelliJ) produced.

Project RJTL NetBeans IDE IntelliJ IDE
junit4-r4.13-rc-2 9 104 39
tomcat-7.0.98 3 354 105
fitnesse-20191110 4 319 70
antlrworks-1.5.1 89 316 118
ant-ivy-rel-2.5.0 23 389 45

Walter Lucas et al. 2020

We followed a set of steps in order to validate and create
our second dataset of transformations. We first downloaded
and built the last (stable) version of the systems, before ex-
ecuting the refactoring tools. After that, for each program
transformation tool, we created a specific Git branch, exe-
cuted the program transformation tool, and built the system
again—Tlooking either for a compilation or test execution fail-
ure. We checked out the files that, after applying a transfor-
mation, introduced a failure, removing spurious transforma-
tions. Accordingly, we built a dataset with 1987 transforma-
tions. We then randomly selected 92 pairs of code snippets
to explore in the second phase of our research. We classified
this final set of 92 transformations (Appendix A details the
taxonomy) and computed the source code metrics and read-
ability models. We stored the code snippets and the results of
the metric calculations into a database. Table 3 summarizes
this final set of 92 transformations.

Table 3. Number of transformation grouped by Type and Tool.

Type RJTL Netbeans IDE IntelliJ IDE
Anonymous inner class 17 13 28
Reduce 0 2 0
Chaining 0 6 0
ForEach 0 9 0
Map 0 2 0
Filter 2 1 0
AnyMatch 12 0 0

We finally investigated the situations where at least two
tools recommended a refactoring in the same code snippet.
Considering the initial set of 1987 transformations, we found
357 cases (17.96%) of code snippets having recommenda-
tions from more than one tool. Nonetheless, the recommen-
dations are not exactly the same. For instance, the code snip-
pets of Figure 3 present transformations recommended to the
same original code (Figure 3-(a)), but suggested by NetBeans
IDE, IntelliJ IDE, and RJTL. In this example, it is possible to
realize that the IntelliJ IDE leverages the mechanism of type
inference, while NetBeans IDE and RJTL do not. Moreover,
there is a slight difference in the indentation of the resulting
code from the NetBeans IDE and RJTL recommendations.
We removed this kind of duplication in our dataset with 100
code snippets, leading to a final dataset of 92 pairs of code
that we used in the second phase of our research.

3.4 Procedures of the Qualitative Study

Regarding the qualitative study, we conducted the research
using an approach based on a previous work (dos Santos and
Gerosa, 2018). That is, we designed an online survey that al-
lowed the participants to evaluate pairs of code snippets. In
the first phase we only invited professional developers with
some background in Java programming, from a convenient
population of developers in our own professional network.
Table 7 details the characteristics of the survey participants
from the first phase of our research. The survey was orga-
nized in two sections. The first section aimed to character-
ize the experience of the participants; while the second one
aimed to investigate the benefits (or drawbacks) of introduc-

Understanding the Impact of Introducing Lambda Expressions in Java Programs

Figure 3. Transformations recommended to the same code snippet sug-
gested by RJTL, NetBeans,and IntelliJ.

public XJRotableToggleButton createToggleButton(String title...) {
XJRotableToggleButton b = new XJRotableToggleButton(title);
b.setFocusable(false);
b.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ¢) {
performToggleButtonAction(tag);
}
s
components2toggle.put(c, b);
return b;

}

(a) Original Code

public XJRotableToggleButton createToggleButton(String title...) {
XJRotableToggleButton b = new XJRotableToggleButton(title);
b.setFocusable(false);
b.addActionListener((ActionEvent ¢) — {

performToggleButtonAction(tag);

s
components2toggle.put(c, b);
return b;

(b) Code after applying the NetBeans transformation

public XJRotableToggleButton createToggleButton(String title...) {
XJRotableToggleButton b = new XJRotableToggleButton(title);
b.setFocusable(false);
b.addActionListener(e —performToggleButtonAction(tag));
components2toggle.put(c, b);
return b;

(c) Code after applying the IntelliJ transformation

public XJRotableToggleButton createToggleButton(String title...) {
XJRotableToggleButton b = new XJRotableToggleButton(title);
b.setFocusable(false);
b.addActionListener((ActionEvent e)— { performToggleButtonAction(tag); });
components2toggle.put(c, b);
return b;

(d) Code after applying the RJTL transformation

ing lambda expressions into legacy code. This second section
comprised the following (survey) questions.

* S1Q1: Do you agree that the adoption of lambda ex-
pressions on the right code snippet improves the read-
ability of the left code snippet? This is a Likert scale
question—(1) meaning Strongly disagree and (5) mean-
ing Strongly agree, which focuses on the readability as-
pect.

S1Q2: Which code do you prefer? This is a yes or no
question, which aims to understand if the new code
improves general quality attributes. The same question
has been explored in a previous work (dos Santos and
Gerosa, 2018).

S1Q3: Would you like to include any additional com-
ment to your answers? This is an open question that al-
lowed the participants to optionally present further de-
tails about their answers.

We first conducted a pilot with five students, to evaluate
whether our online survey tool would be able to properly cap-
ture the opinion of the developers. After conducting this pi-
lot, we implemented several adjustments in the layout and in
the functionalities of the tool, in order to increase our confi-
dence in the tool for the next executions of the survey. The
pilot also revealed that answering all pairs of code snippets
was a time-consuming activity. For this reason, we split the

Walter Lucas et al. 2020

pairs of code snippets into two groups, and then randomly
assigned the participants to answer the survey questions con-
sidering code snippets either from the first or from the second
group. The participants should answer the survey’s questions
for a set of a minimum three and a maximum of six pairs of
code snippets—randomly selected from the first or second
groups of code snippets.

Considering the second phase of our study, we used the set
of 92 randomly selected pairs of code snippets whose trans-
formed code correspond to a recommendation from RJTL,
NetBeans IDE, or IntelliJ. In this phase, the participants an-
swered the following questions.

* S2Q1: What is your opinion about the following sen-
tences?

(a) The new code is easier to comprehend,
(b) The new code is more succinct and readable,

(c) The intention of using a lambda expression in the
new code is clear, and

(d) The new code is harder to debug.

Respondents presented their opinion about these sen-
tences using a Likert scale—(1) meaning Strongly dis-
agree and (5) meaning Strongly agree. The first three
sentences are claims that motivate the adoption of
Lambda expressions in Java programs (Gyori et al.,
2013). The fourth sentence came from our own experi-
ence in debugging pieces of code that use Java lambda
expressions.

S2Q2: How often would you perform this type of trans-
Jformation? This is a Likert scale question— (1) mean-
ing Never and (5) meaning Always. The goal was to
evaluate how often developers would perform a specific
transformation to introduce lambda expressions.
S2Q3: How important is the automated support for
this kind of transformation? This is a Likert scale
question— (1) meaning Not important at all and (5)
meaning Extremely important. The goal of this ques-
tion was to evaluate how important the use of tools to
support a specific transformation is.

S2Q4: Would you perform this transformation? Why?
This is an open question that allowed the participants to
optionally present further details about their opinion.

In the second phase of our research, we used a set of so-
cial media tools to invite developers to answer the survey.
That is, we sent a message to specific communities of Java
Developers, including communities from Facebook, Reddit,
Telegram, and mailing list of Java developers (e.g. NetBeans
Developers, JDK Developers). We presumed that the devel-
opers have a good experience with Java programming. This
phase had 182 participants located in 32 different countries
(see Table 4). The developers needed 04:23 minutes (on av-
erage) to complete the questionnaire, where they evaluated
a maximum of 5 transformations and answered a set of 7
questions regarding each pair of code snippet. In this phase,
we generated a survey randomly selecting five pairs of code
snippets for each participant. Tables 5 and 6 summarize the
number of participants considering the level of education and
professional experience of the respondents, respectively.

Understanding the Impact of Introducing Lambda Expressions in Java Programs

Table 4. Distribution of respondents according to their location.

Country Respondents Percentage
Brazil 71 39.01
United States 25 13.74
Germany 16 8.79
Portugal 8 4.40
India 7 3.85
United Kingdom 6 3.30
Netherlands 5 2.75
Spain 4 2.20
Other countries 40 21.97

Table 5. Characterization of the Survey’s Participants in the second
phase over the level of education.

Developers Degree Number of participants Percentage
Some high school 5 2,74%
High school graduate 13 7,14%
Undergraduate 21 11,53%
Bachelor’s degree 58 31.86%
Master’s degree 76 41.75%
Doctorate degree 9 4.94%

Table 6. Characterization of the Survey’s Participants in the second
phase over developer experience.

Developers Experience Number of participants Percentage (%)
Less than one year 14 7.69%
Between one and four years 52 28.57%
Between five and ten years 48 26.37%
More than ten years 68 37.36%

We cross-validated the results of the qualitative assess-
ment with the results of the quantitative assessments, by cor-
relating the results of the estimates for program comprehen-
sion from the two models discussed in the previous section
with the results of the surveys. We also explored the results
of the survey considering the measurements of SLOC and
CC, for all pairs of code snippets in the survey.

3.5 Data Analysis

We used exploratory data analysis (EDA) to answer our first
two research questions. EDA is a method that allows re-
searchers to build a broad understanding about the data, using
descriptive statistics (e.g., median and mean) and graphical
methods (e.g., histograms and boxplots). We also leveraged
hypothesis testing to further explore the first two research
questions.

Regarding the remaining research questions, which we ad-
dressed using surveys as the main method for data collection,
we also relied on EDA to consolidate the answers to the Lik-
ert scale based questions (in terms of descriptive statistics
and plots); while the answers to the survey’s open-end ques-
tions were literally quoted. Since we collected a more sig-
nificant feedback for the open-ended questions in the second
phase of the research (177 answers in total), we also consoli-
dated the answers to the second phase’s open-ended question
using Thematic Analysis (Silva et al., 2016; Shrestha et al.,
2020).

We conducted our thematic analysis in four steps. In the
first, we carried out an initial reading of the answers to the

Walter Lucas et al. 2020

fourth question of our survey (S2Q4), preparing the scene
before starting the coding stage. In the second step, we per-
formed an initial coding for each answer. Next, in the third
stage, we analyzed the codes with the goal of finding themes
(that is, grouping of related codes). Finally, in the fourth step,
we reviewed and merged the themes, generating a new, more
comprehensive list of topics. We included a small phase of
cross-validation, in which two authors gave feedback on the
assignments. These two authors did not contribute to the ini-
tial assignment of codes and themes to the answers.

4 Results of the First Phase

In this section we present the results from the first phase of
our research. Initially we discuss the outcomes of the quan-
titative assessment, which considers the models of Buse and
Weimer (2010) and Posnett et al. (2011) (Section 4.1). After
that, we present the results of the qualitative assessments and
compare the findings of the two studies (Section 4.2).

4.1 Quantitative Assessment

We considered the 66 pairs of selected code snippets dur-
ing the quantitative assessment. For each pair, we calculated
the number of lines of code (SLOC), the cyclomatic com-
plexity (CC), the estimate comprehensibility using the Buse
and Weimer and the Posnett et al. models. We addressed two
main hypothesis in order to answer our research questions.

H1: The introduction of lambda expressions improves
program comprehension, according to the state-of-the-
art readability models.

Conversely, our first null hypothesis (H1g) investigates
whether the introduction of lambda expressions does not
change program comprehension, according to state-of-the-
art readability models. We used a signal test (Wilcoxon
Signed-Rank Test Wilcoxon (1945)) to investigate this hy-
pothesis, considering the comprehensibility assessments us-
ing the models of Buse and Weimer and Posnett et al.
For each pair of code, the introduction of lambda expres-
sions might have increased, decreased, or unchanged the
comprehensibility, according to both models. As such, the
Wilcoxon Signed-Rank Test tested the null hypothesis that
the comprehensibility of the source code before and after the
introduction of lambda expressions are identical (Wilcoxon,
1945). Table 8 summarizes the results, considering all pairs
of code snippets.

Although the Posnett et al. method builds upon the model
of Buse and Weimer, our analysis revealed a lack of agree-
ment in the results from the two models. The outcomes of
the test revealed that the introduction of lambda expres-
sions actually decreases program comprehension (p-value
< 0.0001), when considering the Buse and Weimer model.
Nonetheless, when we considered the Posnett et al. model,
we could not reject the null hypothesis, and this result sug-
gested that the introduction of lambda expressions does not
affect the comprehension of the code snippets (p-value =
0.668). Due to these conflicting results, we compared both

Understanding the Impact of Introducing Lambda Expressions in Java Programs

Table 7. Characterization of the Survey’s Participants in first phase.

Walter Lucas et al. 2020

Experience Exper.ience .
ID | Gender Degree Lambda functlonztl Experience
programming

1 Male Master Student No 1-4 years 4 years
2 Male BSc degree Yes 1-4 years 2 years
3 Male Master Student Yes More than five years 11 years
4 Male BSc degree Yes 1-4 years 4 years
5 Male Master Student Yes 1-4 years 10 years
6 Male BSc degree No 5+ years 11 years
7 Male Master Student Yes 1-4 years 11 years
8 Male Master Student Yes More than five years 11 years
9 Male Master Student No No Experience 7 years
10 Male BSc degree Yes 1-4 years 5 years
11 Male BSc degree Yes 5+ years 5 years
12 Male PhD degree Yes No Experience 10 years
13 Male BSc degree Yes 1 year 11 years
14 | Female Master Student No No Experience 5 years
15 Male Master Student Yes No Experience 7 years
16 | Female PhD degree No 4-5 years 5 years
17 Male Master Student Yes 1 year 4 years
18 Male BSc degree Yes 1-4 years 2 years
19 | Female | Undergraduate Student No 1 year 1 years
20 Male BSc degree Yes No Experience 7 years
21 Male Master Student Yes More than five years 11 years
22 Male Undergraduate Student Yes No Experience 1 year
23 Male BSc degree Yes 1 year 1 year
24 Male Undergraduate Student Yes No Experience 1 year
25 Male Undergraduate Student Yes 1 year 4 years
26 Male Master Student Yes 4-5 years S years
27 Male BSc degree No No Experience 1 year
28 Male BSc degree Yes No Experience 11 years

Table 8. Number of pairs of code snippets that have increased the
readability, decreased the readability, and unchanged the readabil-
ity; after the introduction of lambda expressions.

Model Increased Decreased Unchanged
Buse and Weimer 13 44 9
Posnett et al. 31 35 0

models to the results of the qualitative assessment (Sec-
tion 4.2).

H2. SLOC and CC can be used to predict the benefits
(or drawbacks) on program comprehension, according
to the readability models considered in this research.

We investigated this hypothesis using a regression model.
First, we calculated the differences in the SLOC (As) and
CC (Acc) metrics, considering the code snippets before and
after the introduction of lambda expressions. We then built
two regression models, one considering as response variable
the difference in the Buse and Weimer model (Abw) and one
considering as response variable the difference in the Posnett
et al. model (Ap).

Abw
Ap =

bo + b1 AS + b2 ACC
co +c1 As+ cy Acc

)
(6)

Accordingly, we unfolded H2 in two alternative hypothe-

ses, one for each readability model. That is, the null hypothe-
ses for H2 are as follows.

* H2.1y: There is no relationship between Abw and the
predictors As and Acc.

e H2.2y: There is no relationship between Ap and the
predictors As and Acc.

Table 9 and Table 10 show the results of the regression
analysis, considering the first and second models of Eq (5)
and Eq (6). Considering a significance level <0.05, we could
not predict the benefits/drawbacks of introducing lambda ex-
pressions, according to the Buse and Weimer model to esti-
mate readability, in terms of lines of code (p-value = 0.08)
and cyclomatic complexity (p-value = 0.98). This result sug-
gested that we should not reject the null hypothesis H2.1,
and there is a negligible relationship between the predic-
tors (As and Acc) with the response variable Abw. Finally,
only 2% of the variability in Abw was explained by the lin-
ear regression of Eq. (5) (Adjusted R-squared: 0.02). Simi-
larly, variables As and Acc did not explain the variability
in Ap (Adjusted R-squared: 0.05). Nonetheless, considering
the second regression model (Eq. (6)), the result suggested
that there is a relationship between SLOC and Ap (p-value
= 0.01)—though it is a small correlation (p = —0.188 using
the Spearman correlation method).

In summary, the results of the regression analysis refuted
our hypothesis H2: As and Acc presented a negligible re-

Understanding the Impact of Introducing Lambda Expressions in Java Programs

lationship with Abw and Ap; and thus they could not ad-
equately predict the variability in the response variables of
Eq. (5) and Eq. (6).

Table 9. Summary of the regression model to estimate the differ-
ence on the Buse and Weimer estimates, using SLOC and CC

Estimate Std. Error tvalue Pr(>|t])

(Intercept) 0.0309 0.0128 2.41 0.0190
As 0.0052 0.0029 1.77 0.0816

Ace 0.0003 0.0199 0.01 0.9888

Table 10. Summary o the regression model to estimate the differ-
ence on the Posnett et al. estimates, using SLOC and CC

Estimate Std. Error tvalue Pr(>|t|)

(Intercept) -0.0184 0.0161 -1.14 0.2567
As -0.0088 0.0037 -2.41 0.0190

Acc 0.0099 0.0249 0.40 0.6937

4.2 Qualitative Assessment

Considering the qualitative assessment, 28 participants with
a substantial experience in Java programming evaluated a
number between three and six pairs of code snippets. For
each pair of code snippet, these participants answered the
survey questions S1Q1, S1Q2, and S1Q3. Recall that we split
the code snippets into two groups, and thus each code snippet
was evaluated by 14 participants. The data collection lasted
16 days, and, on average, each participant spent 2:30 minutes
to evaluate each pair of code snippet.

We used two forms of data analysis in this assessment.
First, we summarized the responses to SQ1 and SQ2 using ta-
bles and plots, which allowed us to build a broad view of the
closed questions’ answers. In the second analysis, we con-
sidered the answers to the open questions literally (some of
them are quoted here), to draw a broader understanding about
the implications of refactoring Java legacy code to introduce
lambda expressions.

4.2.1 Improvements on Readability

The goal of the first question of our survey (Do you agree that
the adoption of lambda expressions on the right code snip-
pet improves the readability of the left code snippet?) was to
evaluate if, according to the perception of Java developers,
the introduction of lambda expressions improve the compre-
hension of the code snippets. We used a Likert scale to inves-
tigate this. Considering the answers to all pairs of code snip-
pet, 11.1% and 39.7% either strongly agree or agree that the
introduction of lambda expressions improve the readability
of the code, respectively; while 24.6% of the responses were
neutral, 21.4% disagree, and 3.2% strongly disagree with the
SQ1 statement (see Table 11). Therefore, we found develop-
ers leaning towards a readability improvement after the in-
troduction of lambda expressions.

To better understand this result, we analyzed the an-
swers for each pair of code snippet (see Figure 4). Trans-
formations 1035, 1052, and 1180 present more than 60%

Walter Lucas et al. 2020

Figure 4. Answers to the first question of the survey, considering the pairs
of code snippets

1192 29% 29% 43%

1183 | 36% 21% 43%

1182 | 43% 36% 21%

1180 21% 14% 64%

1166 | 29% 36% 36%

1062 7% 36% 57%

1052 14% 14% 71%

1035 14% 21% 64%

1027 29% 14% 57%

100 50 0 50 100
Percentage

Response Strongly Disagree Disagree Neutral Agree Strongly Agree

of positive answers (i.e., introducing lambda expressions
improves the readability of these code snippets). Differ-
ently, the pair of code snippet 1182 on Figure 5 received
79% of answers either neutral or negative (i.e., the intro-
duction of lambda expressions seems to reduce the read-
ability of this code snippet). In this particular case, a
for(obj: collection) {...} statement is replaced by
a collection.forEach(obj -> {...2}) loop, which in-
cludes a lambda expression. Most of the participants did not
agree that the introduction of a lambda expression improved
the readability of the source code in this situation. One of the
participants stated:

“(considering the code snippet 1182) I think that replac-
ing a normal for each by a collection. forEach()
would only bring benefits when there are additional
calls either to the map or filter methods, or perhaps
calls to some other method list processing.”

Figure 6 shows the pair of code snippet 1180. In this ex-
ample, an instance attribute (duplicate) was first initialized
using an anonymous inner class (Figure 6-(a)). This anony-
mous inner class was later replaced by a lambda expression
(Figure 6-(b)), and 64% of the participants either agree or
strongly agree that this transformation improves the readabil-
ity of the code snippet. Regarding this pair of code snippet,
one of the participants stated that:

Understanding the Impact of Introducing Lambda Expressions in Java Programs

Table 11. Summary of the answers for the question Do you agree
that the adoption of lambda expressions on the right code snippet
improves the readability of the left code snippet?

S1Ql1 Answers Percentage Cum. Percentage
Strongly disagree 4 3.2% 3.2%
Disagree 27 21.4% 24.6%
Neutral 31 24.6% 49.2%
Agree 50 39.7% 88.9%
Strongly Agree 14 11.1% 100.0%
Total 126 100.0%

Figure 5. Pair of code snippet 1182

assertEquals(numRequests, responses.size());
for(TestResponse t: responses) {

Response r = t.getResponse();

assertEquals(t.method, r.getRequestLine().getMethod());

(a)

assertEquals(numRequests,responses.size());
responses.forEach(t — {

Response r = t.getResponse();

assertEquals(t.method, r.getRequestLine().getMethod());

o

(b)

“Here the transformation makes sense, because it elim-
inates the use of anonymous inner class with a trivial
method body (often used to implement the Command de-
sign pattern in Java)”

Figure 6. Pair of code snippet 1180

private Function duplicate = new Function() {
public String apply(String in) {
return in + in;
}
3

(a)

private Function duplicate = (String in) —{ return in + in; };

(b)

Considering all pairs of code snippets we used in the sur-
vey, only in two pairs of code snippets (1166 and 1182)
we observed a tendency towards either a neutral or a dis-
agreement opinion that the introduction of lambda expres-
sions improves the readability of the code. More specif-
ically, in these two cases, the percentage of agree and
strongly agree was under 50%. Both are examples of trans-
formations that replace a regular for each statement to a
collection.forEach(...) using a lambda expression.

4.2.2 Source Code Preference

The goal of the second question of our survey (Which code do
you prefer?) was to understand if the practitioners had a pref-
erence for the code before or after the introduction of lambda
expression. Considering the nine pairs of code snippets of the
survey (that we randomly select from the initial population),
only the pair of code snippet 1166 received more selections
for the first version of the code (i.e., before the introduction

Walter Lucas et al. 2020

of lambda expressions). Therefore, we found some evidence
in this survey that the participants identify the introduction
of lambda expressions as a transformation that improves the
quality of the source code. Surely, this preference depends
on the experience of the developers, as one of the partici-
pants state:

“It depends on the practical knowledge on functional
programming, since programmers of the 1980s and
1990s are likely to consider easier to understand code
where loops, control variables, and pointers are ex-
plicit.”

We used the Spearman correlation test to verify whether
the reduction on lines of code and the reduction on cyclo-
matic complexity could explain the preference of the partic-
ipants for the pieces of code after the introduction of lambda
expressions. We found a moderate to high correlation (0.67)
between the reduction on the lines of code and the number
of votes in favor of the code after the introduction of lambda
expressions. Therefore, in the cases that a source code trans-
formation to introduce lambda expressions reduced the num-
ber of lines of code, it might have also improved the gen-
eral quality of the code—according to the perceptions of the
participants. Differently, we found a weak correlation be-
tween the reduction on cyclomatic complexity and the num-
ber of choices in favor (or against) of the code snippets using
lambda expressions. We could understand this result because
the introduction of lambda expressions did not reduce the cy-
clomatic complexity in several cases.

5 Results of the Second Phase

In this section, we replicate the process executed in the first
phase, but only considering transformations suggested by au-
tomated tools. Section 5.1 presents the results of the quanti-
tative assessment, taking into account the models of Buse
and Weimer (2010) and Posnett et al. (2011). After that,
we present the results of the qualitative assessments and
compare them to the results of the quantitative study (Sec-
tion 5.2).

5.1 Quantitative Assessment

We considered the 92 pairs of code snippets randomly se-
lected from the set of recommendations to introduce lambda
expressions suggested by RJTL, NetBeans, and IntelliJ. For
each pair, we estimated the code comprehension of the ver-
sions before and after applying the suggested transforma-
tions, using both the Buse and Weimer (2010) and Posnett
et al. (2011) models. We also calculated the SLOC and CC
metrics for both versions of code snippets.

To investigate H1 (The introduction of lambda expressions
improves program comprehension, according to state-of-the-
art readability models), we executed the Wilcoxon Signed-
Rank Test considering the two models to measure code com-
prehension. First, we evaluated the situations where a trans-
formation increased, decreased or unchanged code com-
prehension according to the models. After that, we executed

Understanding the Impact of Introducing Lambda Expressions in Java Programs

the Wilcoxon Signed-Rank Test. Table 12 summarizes the re-
sults, showing that, in most of the cases, the introduction of
lambda expressions suggested by automated tools actually
reduces code comprehension, according to both state-of-the-
art readability models.

Table 12. Number of pairs of code snippets that have increased the
readability, decreased the readability, and unchanged the readabil-
ity; after the introduction of lambda expressions.

Walter Lucas et al. 2020

Figure 8. Pair of code snippet 499. Replacing a structural for loop.

public void rewind(int start) {
currentTokenIndex = start;
%% Remove any consume and lookahead attribute for any token with index
* greater than start
for (Integer idx : inputTokenIndexes) {
if (idx >= start) {
indexToConsumeAttributeMap.remove(idx);
lookaheadTokenIndexes.remove(idx);
}
}

1
s

Model Increased Decreased Unchanged
Buse and Weimer 25 63 4
Posnett et al. 20 67 5

(a)

The results of the Wilcoxon Signed-Rank Test suggested
that the introduction of lambda expressions decreases the
comprehensibility of the pairs of code snippets (p-value <
0.0001). For instance, Figures 7 and 8 show pairs of snip-
pets that have been evaluated using the readability metrics.
The transformation of an anonymous inner class led to an im-
provement according to Buse and Weimer (2010) metric: the
readability for the code before the transformation according
to this model is 0.29; and 0.50 after introducing a lambda
expression. However, considering a transformation that re-
places a for loop by a lambda expression, the metric’s result
worsened significantly, reducing from 0.72 to 0.13 after the
source code transformation.

Figure 7. Pair of code snippet 528. Replacing an anonymous inner class.

public void rewind(int start) {
currentTokenIndex = start;
%% Remove any consume and lookahead attribute for any token with index
* greater than start
inputTokenIndexes.stream().filter((idx) — (idx >= start)).map((idx) — {
indexToConsumeAttributeMap.remove(idx);
return idx;
}).forEachOrdered((idx) — {
lookaheadTokenIndexes.remove(idx);
s
}

public synchronized String getResolverName(ModuleRevisionld mrid) {
ModuleSettings ms = moduleSettings.getRule(mrid, new Filter<ModuleSettings>()

public boolean accept(ModuleSettings o) {
return o.getResolverName() != null;
}
s
return ms == null ? defaultResolverName : ms.getResolverName();

}

(@)

public synchronized String getResolverName(ModuleRevisionId mrid) {
ModuleSettings ms = moduleSettings.getRule(mrid, (ModuleSettings 0)— {
return o.getResolverName() != null
Y)
25)
return ms == null ? defaultResolverName : ms.getResolverName();
1
5

(b)

To investigate the H2 hypothesis (SLOC and CC can be
used to predict the benefits (or drawbacks) on program com-
prehension, according to the readability models considered
in this research.), we calculated the differences in the SLOC
(As) and CC (Acc) metrics, considering the code snippets
before and after the introduction of lambda expressions.
Accordingly, we explored the null hypotheses H2.1; and
H?2.2((Section 4). Tables 13 and 14 summarize the results
of the regression analysis considering a significance level <
0.05.

After performing the regression analysis, both models led
to a p-value > 0.05, w.r.t the SLOC metric. However, dif-
ferently from the results of the first phase, the analyses led
to a p-value < 0.05 when considering the CC metric. Such
results suggested that cyclomatic complexity can be used to
estimate the impact on code comprehension after the intro-

(b)

duction of lambda expressions. Therefore, the results con-
firmed our second hypothesis with respect to the cyclomatic
complexity metric, being possible to estimate the effect on
the readability metrics using the difference on the CC met-
ric. We further detail these results in Section 6.

Table 13. Summary of the regression model to estimate the differ-
ence on the Buse and Weimer estimates, using SLOC and CC

Estimate Std. Error tvalue Pr(>|t|)

(Intercept) 0.0318 0.0220 1.44 0.1522
SLOCDiff 0.0038 0.0056 0.67 0.5034
CCDiff -0.0623 0.0136 -4.59 0.0000

Table 14. Summary of the regression model to estimate the differ-
ence on the Posnett et al. estimates, using SLOC and CC

Estimate Std. Error tvalue Pr(>|t])

(Intercept) 0.0100 0.0161 0.62 0.5357
SLOCDiff -0.0043 0.0041 -1.05 0.2975
CCDiff -0.0253 0.0100 -2.54 0.0130

5.2 Qualitative Assessment

In the qualitative assessment, we report the results of a sec-
ond survey with practitioners, to capture the perception of
the developers about the impact on the readability of the
code after applying transformations that introduce lambda
expressions. These transformations had been recommended
by automated tools only. We present the distribution of re-
sponses in the form of plots to build a broad perspective of
the opinion of the respondents to every closed question. We
then show the insights we got after conducting a thematic
analysis of the open-ended questions, highlighting the par-
ticipants’ opinions with quotations and code examples.

Understanding the Impact of Introducing Lambda Expressions in Java Programs

5.2.1 The Impact of Introducing Lambda Expressions

In our second survey, our first question asked the opinion
of the respondents about four sentences, which we use to un-
derstand the impact of introducing lambda expressions in the
pairs of code snippets. We organize this section according to
the sentences of the first question of the second survey.

The new code is easier to comprehend. The purpose of this
sentence was to evaluate if the transformations to introduce
lambda expressions (recommended by automated tools) im-
prove program comprehension. Contrasting with the over-
all claims about the benefits of introducing lambda expres-
sions (Gyori et al., 2013), we found that almost all types
of transformations the automated tools suggest do not im-
prove the readability of the programs.Interestingly, except
for three types of transformations (Anonymous Inner Class
to Lambda, For loop to Any Match, and For loop to Filter),
the respondents most often did not agree that the introduc-
tion of lambda expressions makes the code easier to compre-
hend. Actually, according to Figure 9, 68% of the respon-
dents stated that they did not agree that transformations in-
volving the chaining of different stream operations improve
program comprehension, and we observed the same trend for
other typical recursive patterns (e.g., map, reduce, and for
each).

Figure 9. Summary of the developers’ answers to the sentence The new
code is easier to comprehend of the survey.

Reduce | 50% 33% 17%
Map | 50% 17% 33%
ForEach | 39% 35% 26%
Filter | 28% 22% 50%
Chaining |~ 68% 24% 8%

AnyMatch | 28% 18% 54%

100 50 0 50 100
Percentage

Response [l Stongy Dissgree | Disagree Nelter agree ordsagree |11 Agree [Stongy Agree

It is worth to link these results to the answers to the open-
ended question. That is, according to the participants, replac-
ing an anonymous inner classes by a lambda expressions of-
ten improves program readability. Figure 10 shows an exam-
ple of this particular type of transformation. After introduc-
ing the lambda expression, the code is more succinct because
it removes some of the boilerplate code necessary to imple-
ment anonymous inner classes. Regarding the code snippet
of Figure 10, one participant stated:

“(the code on the right is...) easier to read, usually
lambda also makes the code cleaner and compact.”

This comment suggests that this is a situation where the in-
troduction of a lambda expressions improves program com-
prehension.

Differently, transformations involving chaining of the
stream API methods received 68% of responses as either

Walter Lucas et al. 2020

Figure 10. Pair of code snippets 480. Replacing an anonymous inner class
into lambda expression.

private ThrowingRunnable evaluateWithException(Exception e) {
return new ThrowingRunnable() {
public void run() throws Throwable {
statement.nextException = e;
statement.waitDuration = 0;
failOnTimeout.evaluate();
}
IS
}

(a)
private ThrowingRunnable evaluateWithException(Exception e) {
return () —{
statement.nextException = ¢;
statement.waitDuration = 0;
failOnTimeout.evaluate();
Y
1
f
(b)

Strongly disagree or Disagree, characterizing possible sce-
narios where the introduction of lambda expressions does not
improve code comprehension. Another case involved trans-
formations of for loops into forEach statements, which had
39% of negative answers (either Strongly disagree or Dis-
agree. The type of transformations with the recursive pat-
terns map and reduce received 50% of negative responses.

With respect to a transformation involving chaining, one
of the respondents stated the following about the example of
Figure 11.

“It’s a bad example ... although I use lambdas a lot, |
would never use them in exactly this way.”

Considering the same example of code in Figure 11, an-
other participant discussed that:

“(I would) almost never (execute this transformation).
Transforming for loops into forEach statements with
lambda expressions provides little benefit other than us-
ing a maybe slightly more concise syntax. “Readabil-
ity” in my mind is such a subjective criterion that it is
close to useless as a metric for making any decisions:
someone coming from a functional language will find a
map!/filter/reduce pipeline easier to “read”, and some-
one coming from a structured programming language
will naturally tend towards nested loops.”

This is an example of transformation that replaces for
each statements by lambda expressions. According to the
respondents, it does not improve program comprehension.
Based on these results, we disclose that transformations of
type Replacing anonymous inner class with lambda expres-
sions, Replacing a for loop with the filter pattern and Re-
placing a for loop with the AnyMatch method improve code
comprehension; while the transformations Replacing a for
loop with a for-each statement, Replacing a for loop with the
reduce pattern , Replacing a for loop with the map pattern,
and Replacing a for loop with a Chaining of operators of-
ten do not improve program comprehension according to the
developers’ opinion.

Understanding the Impact of Introducing Lambda Expressions in Java Programs

Figure 11. Pair of code snippet 489. Replacing Loop to forEach, filter
and forEachOrdered.

private void postConfigure() {
List<Trigger> triggers = settings.getTriggers();
for (Trigger trigger : triggers) {
eventManager.addIvyListener(trigger, trigger.getEventFilter());
}

for (DependencyResolver resolver : settings.getResolvers()) {
if (resolver instanceof BasicResolver) {
((BasicResolver) resolver).setEventManager(eventManager);

(a)

Walter Lucas et al. 2020

of the respondents are either neutral or does not agree that
his transformation brings these benefits). Regarding this pair
of code snippets, one of the respondents clearly stated this
perception.

“(this) transformation does not improve readability and
makes debugging more difficult.”

Figure 13. Pair of code snippet 504. Replacing a for loop by a forEach
pattern.

private void postConfigure() {
List<Trigger> triggers = settings.getTriggers();
triggers.forEach((trigger) — {
eventManager.addIvyListener(trigger, trigger.getEventFilter());
s
settings.getResolvers()
.stream()
filter((resolver) —(resolver instanceof BasicResolver))
forEachOrdered((resolver) — {
((BasicResolver) resolver).setEventManager(eventManager);

b

public ContextConfigurator updated With(Properties newProperties) {
for (String key : newProperties.stringPropertyNames()) {
withParameter(key, newProperties.getProperty(key));

return this;

}

(a)

(b)

The new code is more succinct and readable. The purpose
of this sentence was to assess whether or not the introduction
of lambda expressions makes the code more succinct and im-
proves its readability. Figure 12 summarizes the results of the
developers’ responses to this particular sentence. In this case,
we found a more positive tendency, and the transformations
from anonymous inner class into lambda expressions and the
transformations resulting in the map, reduce, filter, and
anyMatch patterns present a leaning towards positive an-
swers (Agree or Strongly agree). However, the assessment
revealed that two types of transformations do not improve
readability: transformations involving forEach and chain-
ing of the stream API methods received more than 49% of
negative responses (Strongly Disagree and Disagree).

Figure 12. Summary of the developers’ answers to the sentence The new
code is more succinct and readable of the survey.

Reduce | 17% 25% 58%
Map | — 33% 17% 50%
ForEach | 50% 19% 31%
Fiter | 28% 28% 4%
Chaining | 62% 16% 22%
AnyMatch | 19% 29% 51%

Anonymous inner class | 12% 6% 82%
100 50 0 50 100

Response [Strongly Disagree | Disagree Strongly Agree

The transformation in Figure 13 shows a scenario that
replaces a for each statement by a call to the forEach
method of the stream API. Although this is a straightfor-
ward situation where a developer might use a forEach, it
does not improve the quality of the code, and most of the
respondents considered that this particular scenario does not
make the code more succinct and readable (more than 80%

public ContextConfigurator updatedWith(Properties newProperties) {
newProperties.stringPropertyNames().forEach((key) — {
withParameter(key, newProperties.getProperty(key));
1
return this;

}

(b)

Differently, Figure 14 shows an example of transformation
that makes the code more succinct and readable, according to
the opinion of the respondents. In this case, more than 80% of
the answers were either neutral or present a leaning towards
the agreement that the resulting code is more succinct and
readable.

Altogether, from these observations, we argue that trans-
formations replacing for loops by a f orEach method call and
the composition of stream operations (sec.chaining) do not
improve readability or make the code more succinct. On the
other hand, the other types of transformations have shown
benefits regarding code readability.

Figure 14. Pair of code snippet 465. Replacing Anonymous inner class.

public FitNesse(FitNesseContext context) {
this.context = context;
RejectedExecutionHandler handler = new RejectedExecutionHandler() {
@Override
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
LOG.log(WARNING, "Could not handle request. Thread pool ...”);
}

b

(a)

public FitNesse(FitNesseContext context) {
this.context = context;
RejectedExecutionHandler handler = (Runnable r, ThreadPoolExecutor ¢) — {
LOG.log(WARNING, "Could not handle request. Thread pool ...”);

¥

(b)

The intention of using a lambda expression in the new
code is clear. The purpose of this question was to investi-
gate whether or not developers are able to understand the
motivation for using the lambda expressions introduced in

Understanding the Impact of Introducing Lambda Expressions in Java Programs

the new code. Figure 15 summarizes the results of the de-
velopers responses to this question. Similarly to the previous
sentence, we found a more negative leaning when we consid-
ered the transformations that replace a for loop by a call
to the forEach method and transformations that introduce
a chaining of stream operations. The remaining types of
transformations seemed to make clear the intention of using
either a lambda expression instead of an anonymous inner
class or a recursive pattern (e.g., filter, anyMatch, map or
reduce) instead of a for loop.

Figure 15. Summary of the developers’ answers to the sentence The inten-
tion of using a lambda expression in the new code is clear of the survey.

Reduce | 33% 7% 50%
Map| —25% 25% 50%
ForEach | 44% 15% 41%
Filter |~ 39% 0% 61%
Chaining |~ 51% 16% 32%
AnyMatch| 6% 7% 88%

Anonymous inner class | 12% 10% 78%
100 50 0 50 100
Percentage

Response [l Stongy Dissgree | Disagree Nelter agree ordsagree |11 Agree [Stiongy Agree

Transformations introducing a call to the f orEach method
received 44% of negative (Strongly Disagree or disagree)
responses. This suggests a neutral opinion regarding the
clear intention of introducing a lambda expression. Figure 16
shows an example of code that replaces a for loop by the
forEach pattern, where 66% of the respondents considered
unclear the intention of the code. In particular, a participant
stated that:

“(I would never) perform this transformation. The for
loop makes it clear and explicit that we are iterating
over the elements in the collection—it is a fundamental
part of the language that we all understand. The (use
of) lambda expression does not.”

Figure 17 shows an example of transformation that makes
the intention of the code clearer. This transformation replaces
a for loop by a call to the anyMatch method, and 88% of
the respondents assigned either a neutral or a positive answer
(Agree or Strongly agree) with respect to the clear intention
of using a lambda expression in this example. A respondent
also claimed that:

“...The new code is more elegant and makes the inten-
tion of finding some occurrence where the condition is
true clearer.”

Altogether, from these observations, we argue that trans-
formations replacing for loops by calls to the forEach
method and the composition of stream operators (chaining)
do not make clear the intention of introducing lambda expres-
sions. On the other hand, the other types of transformations

Walter Lucas et al. 2020

Figure 16. Pair of code snippets 502. Replacing a for loop with the forEach
pattern.

protected Map<Object, Object> cSort(List<?> list, int col) {
TypeAdapter a = columnBindings[col].adapter;
Map<Object, Object> result = new HashMap<>(list.size());
for (Object row : list) {
try {

a.target = row;

Object key = a.get();

bin(result, key, row);

catch (Exception e) {
surplus anything with bad keys, including null
surplus.add(row);
}

return result;

}

(a)

protected Map<Object, Object> cSort(List<?> list, int col) {
TypeAdapter a = columnBindings[col].adapter;
Map<Object, Object> result = new HashMap<>(list.size());
list.forEach((row) — {
try {

a.target = row;,

Object key = a.get();

bin(result, key, row);

catch (Exception e) {
surplus anything with bad keys, including null
surplus.add(row);

¥
s
return result;

}

(b)

Figure 17. Pair of code snippet 548. Replacing a for loop with the anyMatch
pattern

private static boolean isAssignableToAnyOf(Class<?>[] typeArray, Object target) {
for (Class<?> type : typeArray) {
if (type.isAssignableFrom(target.getClass())) {
return true;
}

}

return false;

(@)

private static boolean isAssignableToAnyOf(Class<?>[] typeArray, Object target) {
return typeArray.stream()
.anyMatch(type —type.isAssignableFrom(target.getClass()));

(b)

have shown benefits, making it clear the intention of replac-
ing anonymous inner classes with lambda expressions and
the use of other recursive patterns (filter, anyMatch, map,
and reduce).

The new code is harder to debug. The goal of this sentence
was to assess whether or not the introduction of lambda ex-
pressions makes the code more difficult to debug. The results
in Figure 18 show that practically all types of transformations
present the side effect of hindering the task of debugging,
apart from the transformations that replace anonymous inner
classes by lambda expressions.

Transformations involving calls to the filter and
chaining methods of the stream API received more than
70% of negative responses—that is, respondents either Agree
or Strongly agree that the transformations make the code
harder to debug. Differently, transformations that replace

Understanding the Impact of Introducing Lambda Expressions in Java Programs

anonymous inner classes by lambda expressions received
53% of positive answers (respondents consider that this kind
of transformation does not hinder debugging activities).

Figure 18. Summary of the developers’ answers to the sentence The new
code is harder to debug of the survey.

Reduce | 25% 17% 58%
Map | 25% 8% 67%

ForEach | 26% 35% 39%

AnyMatch | 29% 22% 49%

100 50 0 50 100
Percentage

Response [l Stongy Dissgree || Disagree Nelter agree ordisagree |11 Agree [Stongy Agree

Figure 19 shows an example of a transformation that in-
troduces a forEach statement. In this case, 88.33% of the
respondents were either neutral or presented a positive feel-
ing that this transformation does not hinder debugging tasks.
Interesting, one participant claimed that this transformation
made the code harder to debug (due to obfuscating the types
of variables), although he/she was still leaning towards con-
sidering the transformation beneficial.

“Obfuscating the types of the variables used makes the
code easier to change, but at the same time may make it
harder to debug. I would still perform the transforma-
tion though.”

Figure 19. Pair of code snippet 510. Replacing 1oop to forEach pattern.

Walter Lucas et al. 2020

own function. However, the suggested refactoring is in
itself valuable because it does bring out the important
part. If an automated tool did this to a whole codebase,
it would make debugging easier, especially for junior
developers.”

Figure 20. Pair of code snippet 491. Replacing anonymous inner class with
lambda expressions.

public File[] getConfigurationResolveReportsInCache(final String resolveld) {

final String prefix = resolveld + 7—;
final String suffix =”.xml”;
return getResolutionCacheRoot().listFiles(new FilenameFilter() {

public boolean accept(File dir, String name) {

return name.startsWith(prefix) && name.endsWith(suffix);

}

1

1
s

(@)

public File[] getConfigurationResolveReportsInCache(final String resolveld) {
final String prefix = resolveld + "—";
final String suffix = ”.xml”;
return getResolutionCacheRoot().listFiles((dir, name) —
name.startsWith(prefix) && name.endsWith(suffix));
}

public synchronized void addError(Test test, Throwable e) {
fErrors.add(new TestFailure(test, ¢));
for (TestListener each : cloneListeners()) {
each.addError(test, e);
}

}

(@)

public synchronized void addError(Test test, Throwable e) {
fErrors.add(new TestFailure(test, e));
cloneListeners().forEach((each) — {
each.addError(test, e);
1
}

(b)

Figure 20 shows an example of transformation that also
makes the code hard to debug (more than 85% of the respon-
dents either Agree or Strongly agree that this transformation
hinders debugging tasks). However, in the opinion of a de-
veloper, an improvement in the transformation could actually
make the resulting code easier to debug.

“Yes (I would perform this transformation), in a hurry,
but with a minute more time I'd extract the filter into its

(b)

In summary, from these observations, we argue that evolv-
ing a legacy code to use the stream API and lambda expres-
sions often makes the resulting code harder to debug. This
undesired side effect does not happen in the case of transfor-
mations from anonymous inner classes into lambda expres-
sions.

5.2.2 How often would you perform this type of trans-
formation?

The purpose of this question was to assess how often devel-
opers would perform the set of 98 transformations we explore
during the survey. Interesting, besides the possible side ef-
fect of hindering debugging activities, respondents presented
a positive tendency to accept 72% of the transformations
in our dataset—respondents rejected 22% of the transfor-
mations and were neutral with respect to 6% of the trans-
formations. Nonetheless, when we discarded the transfor-
mations involving anonymous inner classes, the number of
transformations that the respondents would accept dropped
from 72% to 44.44%, and the respondents would reject 50%
of the transformations.

Figure 21 summarizes the responses to this question,
which presents options related to frequency (from Never to
Always). It is possible to observe that the respondents would
not perform some of the transformations. For instance, the re-
spondents would never or rarely replace a for loop by a call
to the forEach method in 50% of the scenarios. We found
a similar result when considering transformations that intro-
duce the map recursive pattern. Differently, the respondents
stated they will either Often or Always perform transforma-
tions replacing for loops by a call to the anyMatch method
(61%) and inner classes by lambda expressions (60%). Ta-
ble 15 presents a different perspective about the answers to
this question, without splitting them using the type of the
transformations.

Understanding the Impact of Introducing Lambda Expressions in Java Programs

Figure 21. Summary of the developers’ answers to the question How often
would you perform this type of transformation? of the survey.

Reduce | 17% 67% 17%

Map | —42% 33% 25%

ForEach | 59% 28% 13%

Filter | 22%

Chaining |~ 38% 51% 1%

AnyMatch | 10% 29% 61%

Anonymous inner class | 17% 23% 60%

100 50 o 50 100
Percentage

Response [l Never Rarely Sometimes || Often [l Aways

Table 15. Summary of the answers for the question How often
would you perform this type of transformation?

S2Q2 Answers Percentage Cum. Percentage
Never 55 8.65% 8.65%
Rarely 92 14.5% 23.5%
Sometimes 173 27.2% 50.35%
Often 160 25.2% 75.5%
Always 156 24.5% 100.0%
Total 636 100.0%

5.2.3 How important is the automated support for this
kind of transformation?

The purpose of this question was to assess the importance of
using tools to perform transformations that introduce lambda
expressions. Figure 22 summarizes the results for this ques-
tion, where the options range from Not important at all to
Very Important. We can observe in the figure that respon-
dents considered the support of automated tools either Mod-
erately Important or Very Important to apply the transfor-
mation, in more than 50% of the cases. This might indicate
that developers prefer to perform these transformations using
some code refactoring tool. However, transformations intro-
ducing the forEach recursive pattern received most of the
responses between Not important at all and Low important,
which perhaps supports that this particular kind of transfor-
mation does not improve the source code. Finally, the trans-
formation classified as Replacing a for loop with a Chaining
of operators received most responses in Neutral (38%).

Based in these results, we can argue that developers con-
sider worth the use of refactoring tools to introduce lambda
expressions and rejuvenate Java programs. However, there is
some room for improving these tools, as we discuss possible
scenarios in the next section.

5.2.4 Synthesis of the Responses to the Open-ended
Question

In this section we present a synthesis of answers to the open-
ended question of our second survey, using the thematic
analysis procedures we detailed in Section 3. We found three
recurrent themes that might explain the reasons for accept-
ing a transformation: More Succinct Code, Easier to Under-
stand, and Clear Code Intention. We also identified three re-
current themes that might justify why a given transforma-

Walter Lucas et al. 2020

Figure 22. Summary of the developers’ answers to the question How im-
portant is the automated support for this kind of transformation? of the
survey.

Reduce | 17% 17% 67%
Map| 17% 33% 50%
ForEach | 46% 22% 31%
Filter| 6% 44% 50%
Chaining | 32% 38% 30%
AnyMatch | 29% 12% 58%

Anonymous inner class | 16% 19% 65%

|
100 50 0 50 100
Percentage

Response [l Notimportantatal * Lowimportance Neutal || Moderately [l Very important

tion should not be applied: Small Benefit, Harder to Under-
stand, and Wrong Scenario for using a lambda expression.
Finally, several answers claim that the transformations could
be improved (the Need Improvements theme that appears in
transformations marked either as accepted or rejected). Sev-
eral answers provided an alternative to the modified version
of the code (often using a textually description, but in a few
cases, the participants also shared as code example using a
Gist?).

Most recommendations to improve the resulting code (i.e.,
the code after applying a transformation) relate to the source
code format, e.g.: “No need of curly braces and semicolon
on the second statement” and “I would always perform this
transformation, but I would use line breaks and filters to
make the code more readable”. Perhaps, refactoring engines
that introduce lambda expressions could benefit from ad-
vanced code format tools (e.g., the approach by Parr and
Vinju (2016)). Other possible improvements are trickier,
which might indicate the need to follow a careful code re-
view process after applying code transformations (Carvalho
etal., 2020). For instance, one of the participants argued that:

“[...] streams should produce collections as results, not
populate them as side-effects. If we fixed that, and broke
to a new line before each transformation or filter, then
1 think it would be OK.”

Other possible improvements stress the use of the type in-
ference mechanism: “I don t think you need to specify (File
file), do you? You could just say "file” and let the type get in-
ferred [, right]? Unless CollectionUtils.select is overloaded
and takes multiple different functional types.” We found that
the transformation engines of NetBeans IDE and RJTL do
not explore the type inference mechanism in their refactoring
recommendations. Participants also suggested that the intro-
duction of lambda expressions brings small benefits, and, as
such, they would rarely change a legacy code that is working
just to introduce new language constructs or idioms.

“I would not rewrite legacy code to introduce a lambda
expression in this way, unless the inner code itself would
have to be rewritten.”

Understanding the Impact of Introducing Lambda Expressions in Java Programs

Walter Lucas et al. 2020

Table 16. Features that point to code improvements after introducing lambda expressions.

Themes Frequency Description

Representative Examples Partici

More Succinct Cod: 19 .
ore suceinet Lode make the code more succinct.

They are transformations to introduce lambda expressions that | to provide a better and easy code to developers make their softwares,

“yes, perfect case for lambda, short, clear”;

"Yes, I would because nowadays languages have improved their syntax
P203, P285,
Java 8 introduced Lambda, where you can write less code and do more.”; P749

”I would sometimes make this change, but not always because it is only
making the code more succinct”;

Easier to understand 5

make the code more comprehensibly.

They are transformations to introduce lambda expressions that

”Yes. The new code, besides looking cleaner, is also really easier to read
and comprehend.”;

P803, P334,
"Yes, code readability was a factor”; P337

“Easier to read, usually lambda also makes the code cleaner and compact”;

Clear Code Intention | 14

make the code more clear.

They are transformations to introduce lambda expressions that

”Yes, since it looks more “straight forward”, and it makes the code
itself cleaner”;

PS03, P635,

I would do it because it’s easier to write and the code gets cleaner.”; P229

”Yes, absolutely, clearer intent, more expressive, easier to read
and comprehend.”;

Table 17. Features that point to code worsening after introducing lambda expressions.

Themes Frequency Description

Representative Examples Participants

Small benefit 27 have little or no benefit.

They are transformations to introduce lambda expressions that

”No. The benefit isn’t big enough to perform the transformation.”;

I believe, in this example, the transformation is a small part of the method
and it does not influence positively or negatively at all the legibility of the
method.”;

P268, P138,
P66

I consider both versions to be similar”;

[

Harder to understand make code less comprehensibly.

They are transformations to introduce lambda expressions that

“This is still pretty hard to read and understand on account of a) the hard cast
of the lambda to Callable<Object>, which seems weird - is this necessary?
Isn’t it at least a Callable<T>? b) Why a “checkThat” method is calling
“checkSucceeds” which seems a little like jumping to a conclusion.”;

P229, P203,
“Maybe not a complex return on one line”; P583

I would never perform this transformation. The for loop makes it clear an explicit
that we are iterating over the elements in the collection - it is a fundamental part
of the language that we all understand.”;

Wrong scenario 3 shouldn’t be done.

They are transformations to introduce lambda expressions that

”Since this is a void method it will, by definition, never be truly functional.

Splitting the original code into a map — with a side effect, no less! — and a terminal
operation with forEach construct does not really improve anything in my mind.”; P694, P547
I tend to avoid try-catch in lambda expressions. I don’t think it’s bad to do so,
but I personally don’t do it, even if it means using an anonymous inner class.”;

Table 16 and Table 17 summarize the frequency of the re-
current themes. As a future work, our goal is to consider the
answers to this open-ended question to improve the RITL im-
plementation. All code snippets and datasets we used in our
research are available in the paper’s companion website 3.

6 Discussion

As explained in the previous section, we found conflicting
results in our research. In the first phase, the models for es-
timating readability diverge from one another. That is, the
Buse and Weimer (2010) model suggests that when a de-
veloper introduces a lambda expression into Java legacy
method, the readability of the method decreases. Differently,
the model of Posnett et al. (2011) suggests that the introduc-
tion of lambda expressions does not impact program compre-
hension in the first phase. Contrasting, in the second phase,
both models suggest that the introduction of lambda expres-
sions decreases program comprehension. The main differ-
ence between the two phases is that the second one only con-
sider transformations suggested by automated tools. Perhaps,
manual transformations fix some problems related to read-
ability.

Nonetheless, the results of the qualitative assessments

4Gist is a GitHub feature that allow developers to share code
Shttps://waltim.github.io/jserd.html

with practitioners suggest that the introduction of lambda
expressions improves program comprehension in particu-
lar cases. For instance, the replacement of anonymous inner
classes by lambda expressions often improve readability—
according to the results of our surveys. Other scenarios that
the introduction of lambda expressions might be positive
are the replacement of for loops with simple recursive pat-
terns like filter and anyMatch. We believe that these con-
flicting results are partially due to the limitations of both
models on identifying improvements in finer-grained trans-
formations. Considering the results of both quantitative and
qualitative studies, we answer our research questions in Sec-
tion 6.1 and present some lessons learned in Section 6.2. Fi-
nally, we present some threats to the validity of our study in
Section 6.3.

6.1 Answers to The Research Questions

When using a mixed-methods approach, the best scenario oc-
curs in situations where the results of a quantitative studies
support the findings and explains the results of the qualita-
tive ones (or vice-versa). Considering Table 18, which com-
bines the results of the quantitative and qualitative assess-
ment for the transformations that replace anonymous inner
classes with lambda expressions, it is possible to observe
differences between the outcomes of both readability mod-
els and the developers perceptions of code comprehension.

Understanding the Impact of Introducing Lambda Expressions in Java Programs

We are in favor of the results of the qualitative study. There-
fore, considering our first research question (Does the use of
lambda expressions improve program comprehension?), our
findings revealed that refactoring a legacy code to introduce
lambda expression improves program comprehension in the
specific scenarios we discussed earlier.

Table 18. Number of code snippets that increased readability,
decreased readability and unchanged readability; after replacing
anonymous inner classes with lambda expressions by the tools.

Evaluator Increased Decreased Unchanged
Buse and Weimer 23 32 3
Posnett et al. 11 43 4
Developers 51 3 4

After these results, we investigated whether the code com-
plexity metrics (SLOC and CC), independently, could pre-
dict if a transformation of a legacy code to introduce lambda
expressions improves the readability of the code. To perform
this investigation, we calculated the differences in SLOC
(As) and CC (Acc) metrics, considering the code snippets
before and after the introduction of lambda expressions. Af-
ter that, we ran the Pearson’s correlation test (Mukaka, 2012),
to assess whether these differences correlate with possible
improvements in program comprehension according to the
survey respondents. We found that (Acc) has no relation
to the answers of developers about comprehension. On the
other side, the (As) presents a moderate correlation (p =
0.5324 and p-value < 0.05). Such results revealed that the
greater the reduction of lines after the introduction of lambda
expressions, the better the comprehension of the code ac-
cording to the developers opinion—independently of reduc-
ing the cyclomatic complexity or not. Therefore, tool devel-
opers could use SLOC to automatic learn good situations to
suggest transformations that introduce lambda expressions.

Regarding the second research question (Does the intro-
duction of lambda expressions reduce source code complex-
ity?), after assessing the impact of introducing lambda ex-
pressions in 158 pairs of code snippets (66 of the first phase
and 92 from the second phase of this research), we found
that introducing lambda expressions (a) reduces the size of
the code (SLOC) in 70% of the cases and (b) reduces the cy-
clomatic complexity in 40% of the cases. Only in a few cases,
the introduction of lambda expressions increased SLOC. We
did not find any case in which a transformation increases cy-
clomatic complexity. Considering our third research ques-
tion (What are the most suitable situations to refactor code
to introduce lambda expressions?), we found that replacing
anonymous inner class by a lambda expressions might be
considered the killer application to introduce lambda expres-
sions in legacy Java code. In addition, scenarios replacing for
loops having internal conditional with an anyMatch opera-
tor often improved the readability of the code and makes the
intention of using the lambda expression more clear. Differ-
ently, just replacing a simple for over a collection statement
with a collections.forEach() did not bring any benefit,
according to the participants of our surveys. We also found
that the chaining of stream methods and the introduction of
recursive patterns (e.g., filter and map) hinders debugging

Walter Lucas et al. 2020

activities according to the developers.

Regarding our fourth research question (How do practi-
tioners evaluate the effect of introducing lambda expressions
into a legacy code?), developers agreed that the introduc-
tion of lambda expressions improve the quality of the code
(in particular when removing the boilerplate code related to
anonymous inner classes), though it might introduce some
challenges to debugging activities in general. Developers
would actually accept most of the RJTL, NetBeans, and In-
telliJ transformations (72%), and they considered worth the
existence of automated support to introduce lambda expres-
sions and thus rejuvenate Java legacy code.

Finally, with respect to our last research question (What is
the practitioners’ opinion about the recommendations from
automated tools to introduce lambda expressions?), the re-
sults suggested that the use of automated tools to rejuvenate
Java programs is promising. Again, considering only recom-
mendations from NetBeans IDE, RITL, and IntelliJ IDE, de-
velopers agreed that transformations replacing anonymous
inner class by lambda expressions improve program com-
prehension. Still, the feedback from the participants revealed
several weaknesses of these tools, and thus we found some
space to improve these refactoring engines, as we discuss in
the next section.

6.2 Lessons Learned

Need for reviewing comprehensibility models. The state-
of-the-art models for estimating code readability could not
capture the benefits of introducing lambda expressions, as
the participants of our survey report. We believe that a fur-
ther investigation is necessary, in order to understand if these
models fail to capture the benefits of fine-grained transfor-
mations similar to the introduction of lambda expression, or
ifthey also fail when evaluating general transformations such
as more popular refactorings. Nonetheless, both models are
sensitive for code formatting decisions, including the number
of blank characters. Similar conclusions have been reported
in a recent research work Fakhoury et al. (2019).

Recommendations for Refactoring Tools. We found that
transforming anonymous inner class into lambda expres-
sions is the scenario that brings more benefits for code com-
prehension. We also found that replacing for loops having
an internal conditional by an anyMatch and filter pat-
terns improves the code readability. Nonetheless, we con-
sider that it is not recommended to blindly apply automatic
transformations from simple for loop statements into a
collections.forEach() statement. This kind of transfor-
mations does not improve code readability. Several features
might also help to identify the situations where introducing
a lambda expression do not improve the code. For example,
according to the participants, we should avoid combining the
functional and imperative styles in the same method. Simi-
larly, several transformations led to pieces of code with a
wrong indentation (e.g., comprising long lines or unneces-
sary curly braces). According to the practitioners, some rec-
ommendations decreased the readability of the code due to
indentation issues.

Understanding the Impact of Introducing Lambda Expressions in Java Programs

6.3 Threats to Validity

There are two main threats to our work. First, our results de-
pend on the representativeness of the code snippets used in
the investigation. Although we used a sample from real sce-
narios that introduce lambda expressions in legacy code, this
sample might not correspond to a representative population
that would be recommended to conclude our quantitative as-
sessment. We evaluated nine pairs of code snippets in the first
survey. To circumvent such a threat, we replicated the study
and evaluated 92 pairs of code snippets. This number is sim-
ilar to the number of code snippets evaluated in a previous
study (Posnett et al., 2011).

The second threat is related to external validity. Initially,
our research participants belonged to a relatively small group
of professional developers, who despite having great experi-
ence in Java, were a small group of developers in our cy-
cle. During the replication of the study, we were able to sig-
nificantly increase the number of participants from different
locations in the world. We believe that, with this variety of
participants, our results became more reliable, allowing us to
generalize our findings to this population.

Finally, we could have used other models to estimate read-
ability, which have been previously discussed in the litera-
ture (Scalabrino et al., 2016). However, we only found an
implementation of one of these models, the one by Buse and
Weimer (2010). We also implemented the computation for
an additional model by Posnett et al. (2011), but it would be
difficult to provide implementations for all models available
in the literature.

7 Final Remarks

In this paper we presented the results of a mixed-method
investigation (i.e., using quantitative and qualitative meth-
ods) about the impact on code comprehension with the adop-
tion of lambda expressions in legacy Java systems. We used
two state-of-the-art models for estimating code comprehen-
sion (Buse and Weimer, 2010; Posnett et al., 2011), and
found conflicting results. Both models (Posnett et al., 2011)
and (Buse and Weimer, 2010) suggested that the introduction
of lambda expressions does not improve the comprehensibil-
ity of the source code. Differently, the results of the quali-
tative studies (surveys with practitioners) indicated that the
introduction of lambda expressions in legacy code improves
code comprehension in particular cases (particularly when
replacing anonymous inner classes by lambda expressions).
After considering these conflicting results, we argue that (a)
this kind of source code transformation improves software
readability for specific scenarios and (b) we need more ad-
vanced models to understand the benefits on program com-
prehension after applying finer-grained program transforma-
tions.

Acknowledgements

We would like to thank the anonymous reviewers for their valu-
able comments, which helped us to improve the quality of this pa-
per. This work was partially supported by FAP-DF, research grant

Walter Lucas et al. 2020

05/2018.

References

Alqgaimi, A., Thongtanunam, P., and Treude, C. (2019). Au-
tomatically generating documentation for lambda expres-
sions in java. In Proceedings of the 16th International
Conference on Mining Sofiware Repositories, MSR 19,
pages 310-320, Piscataway, NJ, USA. IEEE Press.

Avidan, E. and Feitelson, D. G. (2017). Effects of variable
names on comprehension an empirical study. In Scan-
niello, G., Lo, D., and Serebrenik, A., editors, Proceedings
of the 25th International Conference on Program Compre-
hension, ICPC 2017, Buenos Aires, Argentina, May 22-23,
2017, pages 55-65. IEEE Computer Society.

Baggen, R., Correia, J. P, Schill, K., and Visser, J. (2012).
Standardized code quality benchmarking for improving
software maintainability. Software Quality Journal,
20(2):287-307.

Buse, R. P. L. and Weimer, W. (2010). Automatically doc-
umenting program changes. In Pecheur, C., Andrews, J.,
and Nitto, E. D., editors, ASE 2010, 25th IEEE/ACM Inter-
national Conference on Automated Software Engineering,
Antwerp, Belgium, September 20-24, 2010, pages 33—42.
ACM.

Carvalho, A., Luz, W. P., Marcilio, D., Bonifacio, R., Pinto,
G., and Canedo, E. D. (2020). C-3PR: A bot for fixing
static analysis violations via pull requests. In Kontogian-
nis, K., Khomh, F., Chatzigeorgiou, A., Fokaefs, M., and
Zhou, M., editors, 27th IEEE International Conference on
Software Analysis, Evolution and Reengineering, SANER
2020, London, ON, Canada, February 18-21, 2020, pages
161-171. IEEE.

Dantas, R., Carvalho, A., Marcilio, D., Fantin, L., Silva, U.,
Lucas, W., and Bonifacio, R. (2018). Reconciling the
past and the present: An empirical study on the applica-
tion of source code transformations to automatically re-
juvenate java programs. In Oliveto, R., Penta, M. D., and
Shepherd, D. C., editors, 25¢th International Conference on
Software Analysis, Evolution and Reengineering, SANER
2018, Campobasso, Italy, March 20-23, 2018, pages 497—
501. IEEE Computer Society.

dos Santos, R. M. and Gerosa, M. A. (2018). Impacts of
coding practices on readability. In Khomh, F., Roy, C. K.,
and Siegmund, J., editors, Proceedings of the 26th Con-
ference on Program Comprehension, ICPC 2018, Gothen-
burg, Sweden, May 27-28, 2018, pages 277-285. ACM.

Fakhoury, S., Roy, D., Hassan, S. A., and Arnaoudova, V.
(2019). Improving source code readability: Theory and
practice. In Proceedings of the 27th International Confer-
ence on Program Comprehension, ICPC *19, pages 2—12,
Piscataway, NJ, USA. IEEE Press.

Favre, J.-M., Lammel, R., Schmorleiz, T., and Varanovich,
A. (2012). 101companies: A community project on soft-
ware technologies and software languages. In Furia, C. A.
and Nanz, S., editors, Objects, Models, Components, Pat-
terns, pages 58-74, Berlin, Heidelberg. Springer Berlin
Heidelberg.

http://www.fap.df.gov.br/

Understanding the Impact of Introducing Lambda Expressions in Java Programs

Godfrey, M. W. and German, D. M. (2008). The past,
present, and future of software evolution. In 2008 Fron-
tiers of Software Maintenance, pages 129—138.

Gopstein, D., Iannacone, J., Yan, Y., DeLong, L., Zhuang,
Y., Yeh, M. K.-C., and Cappos, J. (2017). Understanding
misunderstandings in source code. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software En-
gineering, ESEC/FSE 2017, pages 129-139, New York,
NY, USA. ACM.

Gyori, A., Franklin, L., Dig, D., and Lahoda, J. (2013).
Crossing the gap from imperative to functional program-
ming through refactoring. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pages 543-553, New York, NY, USA.
ACM.

Khatchadourian, R., Tang, Y., Bagherzadeh, M., and Ahmed,
S. (2019). Safe automated refactoring for intelligent par-
allelization of java 8 streams. In Proceedings of the 41st
International Conference on Software Engineering, ICSE
’19, pages 619-630, Piscataway, NJ, USA. IEEE Press.

Landman, D., Serebrenik, A., Bouwers, E., and Vinju, J. J.
(2016). Empirical analysis of the relationship between
CC and SLOC in a large corpus of java methods and C
functions. Journal of Software: Evolution and Process,
28(7):589-618.

Lehman, M. M. and Ramil, J. F. (2001). Rules and tools for
software evolution planning and management. Annals of
software engineering, 11(1):15-44.

Lott, S. F. (2018). Functional Python Programming: Dis-
cover the power of functional programming, generator
functions, lazy evaluation, the built-in itertools library,
and monads. Packt Publishing Ltd.

Lucas, W., Bonifacio, R., Canedo, E. D., Marcilio, D., and
Lima, F. (2019). Does the introduction of lambda expres-
sions improve the comprehension of java programs? In
do Carmo Machado, I., Souza, R., Maciel, R. S. P., and
Sant’Anna, C., editors, Proceedings of the XXXIII Brazil-
ian Symposium on Software Engineering, SBES 2019, Sal-
vador, Brazil, September 23-27, 2019, pages 187-196.
ACM.

Mazinanian, D., Ketkar, A., Tsantalis, N., and Dig, D. (2017).
Understanding the use of lambda expressions in java.
Proc. ACM Program. Lang., 1(OOPSLA):85:1-85:31.

Mukaka, M. M. (2012). A guide to appropriate use of cor-
relation coefficient in medical research. Malawi medical
journal, 24(3):69-71.

Overbey, J. L. and Johnson, R. E. (2009). Regrowing a lan-
guage: Refactoring tools allow programming languages to
evolve. In Proceedings of the 24th ACM SIGPLAN Con-
ference on Object Oriented Programming Systems Lan-
guages and Applications, OOPSLA 09, pages 493-502,
New York, NY, USA. ACM.

Parr, T. and Vinju, J. J. (2016). Towards a universal code
formatter through machine learning. In van der Storm,
T., Balland, E., and Varrd, D., editors, Proceedings of
the 2016 ACM SIGPLAN International Conference on
Software Language Engineering, Amsterdam, The Nether-
lands, October 31 - November 1, 2016, pages 137-151.
ACM.

Walter Lucas et al. 2020

Pennington, N. (1987). Stimulus structures and mental rep-
resentations in expert comprehension of computer pro-
grams. Cognitive Psychology, 19(3):295 — 341.

Posnett, D., Hindle, A., and Devanbu, P. T. (2011). A sim-
pler model of software readability. In van Deursen, A.,
Xie, T., and Zimmermann, T., editors, Proceedings of the
8th International Working Conference on Mining Sofiware
Repositories, MSR 2011 (Co-located with ICSE), Waikiki,
Honolulu, HI, USA, May 21-28, 2011, Proceedings, pages
73-82. ACM.

Riaz, M., Mendes, E., and Tempero, E. (2009). A systematic
review of software maintainability prediction and metrics.
In 2009 3rd International Symposium on Empirical Soft-
ware Engineering and Measurement, pages 367-377.

Scalabrino, S., Linares-Vasquez, M., Poshyvanyk, D., and
Oliveto, R. (2016). Improving code readability models
with textual features. In 2016 IEEE 24th International
Conference on Program Comprehension (ICPC), pages 1—
10.

Shrestha, N., Botta, C., Barik, T., and Parnin, C. (2020). Here
we go again: Why is it difficult for developers to learn an-
other programming language? In Proceedings of the 42nd
International Conference on Software Engineering, ICSE.

Silva, D., Tsantalis, N., and Valente, M. T. (2016). Why
we refactor? confessions of github contributors. In Zim-
mermann, T., Cleland-Huang, J., and Su, Z., editors, Pro-
ceedings of the 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, FSE 2016,
Seattle, WA, USA, November 13-18, 2016, pages 858—-870.
ACM.

Storey, M. D., Wong, K., and Miiller, H. A. (2000). How do
program understanding tools affect how programmers un-
derstand programs? Sci. Comput. Program., 36(2-3):183—
207.

Stroustrup, B. (2013). The C++ Programming Language.
Addison-Wesley Professional, 4th edition.

Tilley, S. R., Paul, S., and Smith, D. B. (1996). Towards a
framework for program understanding. In WPC ’96. 4th
Workshop on Program Comprehension, pages 19-28.

Tsantalis, N., Mazinanian, D., and Rostami, S. (2017). Clone
refactoring with lambda expressions. In 2017 IEEE/ACM
39th International Conference on Software Engineering
(ICSE), pages 60-70.

Urma, R.-G., Fusco, M., and Mycroft, A. (2014). Java 8 in
Action: Lambdas, Streams, and functional-style program-
ming. Manning Publications Co.

von Mayrhauser, A. and Vans, A. M. (1995). Program com-
prehension during software maintenance and evolution.
IEEE Computer, 28(8):44-55.

Wilcoxon, F. (1945). Individual comparisons by ranking
methods. Biometrics Bulletin (JSTOR), 1(6):80-83.

Understanding the Impact of Introducing Lambda Expressions in Java Programs

A Taxonomy of Lambda Expression
Transformations
This appendix introduces a simple taxonomy used to classify

the lambda expression transformations. For each member of
the taxonomy, we present a brief description and an example.

Replacing anonymous inner class with lambda
expressions

A developer might use this transformation to convert an
anonymous inner class into a lambda expression. Figure 23
shows an example of this transformation.

Figure 23. Pair of code snippet 551. Replacing the Anonymous Inner Class.

Walter Lucas et al. 2020

Figure 25. Pair of code snippet 513. Replacing Loop to reduce.

public int countTestCases() {
int count = 0;
for (Test each : fTests) {

count += each.countTestCases();

}

return count;

(2)

public int countTestCases() {
int count = 0;
count = fTests.stream()
.map((each) —each.countTestCases())
.reduce(count, Integer::sum);
return count;

public void runTest() {
runBeforesThenTestThenAfters(new Runnable() {
public void run() {
runTestMethod();

(@)

public void runTest() {
runBeforesThenTestThenAfters(()— { runTestMethod();});
}

(b)

Replacing a for loop with the map pattern

A developer might use this transformation to convert a for
loop into a map recursive pattern of the stream API. Fig-
ure 24 shows an example of this transformation.

Figure 24. Pair of code snippet 495. Replacing loop to Map pattern.

(b)

Replacing a for loop with a for-each statement

A developer might use this transformation to convert a for
loop into a forEach statement. Figure 26 shows an exam-
ple of this transformation. Respondents of our survey do not
consider that this kind of transformation improves the quality
of the code.

Figure 26. Pair of code snippet 500. Replacing Loop to forEach pattern.

public List<String> getPotentialFixtureClassNames(Set<String> elements) {
List<String> candidateClassNames = new ArrayList<>();
if (lisFullyQualified()) {
for (String packageName : elements) {
addBlahAndBlahFixture(packageName + ”.”, candidateClassNames);
}
}
addBlahAndBlahFixture(””, candidateClassNames);
return candidateClassNames;

}

public void draw(Graphics2D g) {
for (Color ¢ : shapes.keySet()) {
g.setColor(c);
g.draw(shapes.get(c));
3

(a)

(a)

public void draw(Graphics2D g) {
shapes.keySet().stream().map((c) — {
g.setColor(c);
return c;
}).forEachOrdered((c) — {
g.draw(shapes.get(c));
s

public List<String> getPotentialFixtureClassNames(Set<String> elements) {

List<String> candidateClassNames = new ArrayList<>();

if (lisFullyQualified()) {
elements.forEach((packageName) — {

addBlahAndBlahFixture(packageName + ”.”, candidateClassNames);

s

}

addBlahAndBlahFixture(””, candidateClassNames);

return candidateClassNames;

(b)

Replacing a for loop with the reduce pattern

A developer might use this transformation to convert a for
loop into a reduce pattern of the stream API. Figure 25
shows an example of this transformation. In this example,
there is a composition between a map and a reduce, though
the goal is to reduce a collection of test classes into the num-
ber of test methods.

(b)

Replacing a for loop with the filter pattern.

A developer might use this transformation to convert a for
loop into the filter recursive pattern of the stream API.
Figure 27 shows an example of this transformation. Respon-
dents in our survey consider that this type of transformation
improves the quality of the code.

Understanding the Impact of Introducing Lambda Expressions in Java Programs

Figure 27. Pair of code snippet 547. Replacing loop to Replacing a for loop
with the filter pattern recursive pattern.

Walter Lucas et al. 2020

Figure 29. Pair of code snippet 493. Replacing Loop to chain of stream
operators.

public ClassPath(List<ClassPath> paths) {
this.elements = new ArrayList<>();
this.separator = paths.get(0).getSeparator();
for (ClassPath path : paths) {
for (String element : path.getElements()) {
if (!elements.contains(element)) {
elements.add(element);

}

private void rememberAllOpenedDocuments() {
final List<String> docPath = new ArrayList<String>();
for (XJWindow window : XJApplication.shared().getWindows()) {
final XJDocument document = window.getDocument();
if(XJApplication.handlesDocument(document)) {
docPath.add(document.getDocumentPath());
}

}
AWPrefs.setAllOpenedDocuments(docPath);

(a)

(2)

public ClassPath(List<ClassPath> paths) {
elements = path.getElements().stream()
filter(e —!elements.contains(e)).collect(Collectors.toList());}

(b)

Replacing a for loop with the AnyMatch method.

A developer might use this transformation to convert a for
loop and conditional if into the anyMatch method. Fig-
ure 28 shows an example of this transformation. Respondents
in our survey consider that this type of transformation im-
proves the quality of the code.

Figure 28. Pair of code snippet 555. Replacing a for loop with the AnyMatch
pattern.

private void rememberAllOpenedDocuments() {
final List<String> docPath = new ArrayList<String>();
XJApplication.shared().getWindows().stream().map((window) —window.
— getDocument()).filter((document) —(XJApplication.
< handlesDocument(document))).forEachOrdered((document) — {
docPath.add(document.getDocumentPath());

s
AWPrefs.setAllOpenedDocuments(docPath);

private boolean isOverridenWithoutAnnotation(Method[] methods,
Method superclazzMethod, Class<? extends Annotation> annotation) {
for (Method method : methods) {
if (isMethodOverride(method, superclazzMethod)
&& (method.getAnnotation(annotation) == null)) {
return true;

}

return false;

(a)

private boolean isOverridenWithoutAnnotation(Method[] methods, Method
< superclazzMethod, Class<? extends Annotation> annotation) {
return methods.stream().anyMatch(method —isMethodOverride(method,
— superclazzMethod) && (method.getAnnotation(annotation) == null))
5

(b)

Replacing a for loop with a Chaining of opera-
tors.

A developer might use this transformation to convert a
for loop into the Chaining operators. Figure 29 shows
an example of this transformation where is addition a se-
quence of distinct patterns (Map and Filter) followed by
forEachOrdered statement.

(b)

	Introduction
	Background and Related Work
	Study Settings
	Research Questions
	Metrics of the Quantitative Study
	Code Snippets' Datasets
	Procedures of the Qualitative Study
	Data Analysis

	Results of the First Phase
	Quantitative Assessment
	Qualitative Assessment
	Improvements on Readability
	Source Code Preference

	Results of the Second Phase
	Quantitative Assessment
	Qualitative Assessment
	The Impact of Introducing Lambda Expressions
	How often would you perform this type of transformation?
	How important is the automated support for this kind of transformation?
	Synthesis of the Responses to the Open-ended Question

	Discussion
	Answers to The Research Questions
	Lessons Learned
	Threats to Validity

	Final Remarks
	Taxonomy of Lambda Expression Transformations

