
Revista Brasileira de Informática na Educação – RBIE

Brazilian Journal of Computers in Education

(ISSN online: 2317-6121; print: 1414-5685)

http://br-ie.org/pub/index.php/rbie

Submission: 31/May/2021; 1st round notif.: 19/Jul/2021; New version: 22/Sep/2021; 2nd round notif.: 28/Oct/2021;

Camera ready: 10/Nov/2021; Edition review: 23/Nov/2021; Available online: 01/Dec/2021; Published: 01/Dec/2021;

Cite as: Vahldick, A., Marcelino, M. J., & Mendes, A. J. (2021). Analyzing novices’ fun and programming behaviors

while playing a serious blocks-based game. Revista Brasileira de Informática na Educação, 29, 1337-1355.

DOI: 10.5753/rbie.2021.2069

Analyzing novices’ fun and programming behaviors while

playing a serious blocks-based game

Adilson Vahldick

UDESC

ORCID: 0000-0002-0442-3735

adilson.vahldick@udesc.br

Maria José Marcelino

Universidade de Coimbra

ORCID: 0000-0002-1989-5559

zemar@dei.uc.pt

António José Mendes

Universidade de Coimbra

ORCID: 0000-0001-6659-660X

toze@dei.uc.pt

Abstract
Blocks-based environments have been used to promote programming learning mostly in elementary and middle

schools. In many countries, isolated initiatives have been launched to promote programming learning among

children, but until now there is no evidence of widespread use of this type of environment in Brazil and Portugal.

Consequently, it is common that many students reach higher education with little or no programming knowledge and

skills. NoBug’s SnackBar is a game designed to help promote programming learning. This study examined students'

behavior and attitudes when playing the game on their initiative. It used a sample of 33 undergraduate students

enrolled in an introductory programming course. The variables studied were students' performance and engagement,

satisfaction, and problem-solving strategies. The main findings were (1) better performing students had a high level

of perceived learning, (2) all the students had similar perceptions about their fun while playing, (3) the leader board

was the most used game element not directly related to learning and (4) the top-ranked students access previous

solutions to help them solve a new mission, while the others often use a trial-and-error approach.

Keywords: computer programming learning; blocks-based approach; serious games.

http://br-ie.org/pub/index.php/rbie
https://orcid.org/0000-0002-0442-3735
https://orcid.org/0000-0002-1989-5559
https://orcid.org/0000-0001-6659-660X

Vahldick et al. RBIE v.29 – 2021

1338

1 Introduction

New generation students, used to games and other electronic media, are not motivated by exercises
to calculate and print numbers on the console or in a window but are used to consume animations,
graphics and sounds, and probably these are the types of media they would like to produce (Razak
et al., 2019). The use of games has been integrated with the curriculum to simulate real-life
activities (Johnson et al., 2015) and to provide meaningful learning opportunities in the hope of
increasing students’ interest in educational content (Weintrop & Wilensky, 2016b). With games
students can learn in a personalized way, games can adjust themselves according to the player,
and in a self-supervised way, players are aware of their mistakes when they fail in the tasks of the
game, which in turn instructs the player on how to perform a certain action (Prensky, 2001).
Serious Games are designed to have instruction as the primary goal (Arnab et al., 2012), allowing
students to develop new skills, learn new knowledge, and strengthen existing competencies
(Boller & Kapp, 2017).

A good way to promote programming learning is to have a disciplined and intensive practice
(Robins, 2019). However, students often lack the motivation to engage in programming tasks.
Practicing problem-solving in games can be more motivating than using traditional exercises, as
it promotes confidence through experience in building sets of solution patterns that will be very
useful when students encounter problem-solving situations using real programming languages
(Shabalina et al., 2017).

Vahldick et al. (2014) studied about 40 games designed to support programming learning.
They concluded that most of the analyzed games had no game elements to promote extrinsic
motivation through fun. Also, most games didn’t include typical game elements, such as points
or bonuses. However, Koster (2014) points out that earning points makes players more committed
to the game, and Prensky (2001) mentions that fun allows students to accomplish their tasks more
easily, even if they require more effort. Based on these ideas, we developed a serious game called
NoBug's Snack Bar (Vahldick et al., 2020). The game includes some common elements, such as
point scoring, player’s leader boards, and even the customization of player’s avatars, intending to
increase the feeling of belonging, satisfaction, and motivation to overcome the challenges of the
game (Mazlan & Burd, 2011).

One of the problems in introductory programming learning is syntax errors (Bosse &
Gerosa, 2017). Therefore, like many of the games analyzed in Vahldick et al. (2014), a Block-
Based Programming (BBP) approach was adopted, because the goal is not learning an actual
programming language, but rather the development of computational problem-solving skills and
competencies. Environments that follow this approach present program execution as animations
(Sorva et al., 2013) and use graphical notations to produce solutions (Ben-Ari, 2013). The actions,
variable manipulation, and control structures are represented by colored blocks that fit together
following the Lego metaphor (Weintrop & Wilensky, 2016a). In these environments, the student
should use a notation focused on logic and solution building than to be concerned with the
language grammar rules (Kelleher & Pausch, 2005). An ideal environment for introductory
programming learning should provide a simple interface that supports viewing objects, has a
block-based editor, reports simple error messages and instructs how to correct them, and can
execute a program step-by-step (Xinogalos et al., 2017).

The development of NoBug's Snack Bar was carried out within four iteration cycles,
involving novice students, where they could play anytime and anywhere. This paper reports the
last cycle where students were organized into two groups according to their performance. The
research aimed to identify students’ behavior and opinions while solving programming problems
using this serious game. This led to the definition of four research questions:

Vahldick et al. RBIE v.29 – 2021

1339

RQ1. What is the difference between the groups regarding the feelings about their learning?

RQ2. What is the difference between the groups regarding the feelings about fun?

RQ3. What is the most used game element not directly related to learning?

RQ4. What is the student's behavior when solving problems in the game?

2 Pedagogical background

Computers can enhance learning when students can see the concrete results of their efforts (Papert,
1980). In the constructionist approach of education, students coordinate their learning by
constructing, manipulating, and testing concepts in a microworld (Laurillard et al., 2013). A
microworld is a space with assumptions and constraints that provides a context for the learner to
construct knowledge through experimentation (Papert, 1980). Students learn by exploration and
construction in this world, where the effects of their actions are reflected in what is correct or
incorrect in their beliefs. Learning results occur through active practice.

Constructionist games bring ideas like student-directed learning, meaningful personal
constructions, emphasizing meaningful ideas into their design (Weintrop & Wilensky, 2014). In
the last decade, programming environments and games have materialized the constructionist
learning approach. To learn abstract programming concepts, students need to build them by hands-
on experience. Constructionist environments allow the development of two essential skills for
programming learning: procedural reasoning and debugging. Thinking procedurally involves
breaking a problem down into smaller parts and recognizing patterns that can actually repeat
themselves (Papert, 1980). Debugging involves systematically trying to adjust a piece of code to
identify and correct errors to keep the system running properly (Holbert & Wilensky, 2011).

Constructionist games have two design principles: their tools and resources must be
expressive, and the goals need to encourage exploration (Weintrop et al., 2012). The size of the
building blocks should allow students to express ideas and strategies that are meaningful in their
learning context: not so large that the game is too easy, and not so small to avoid boredom or very
difficult tasks. Games can reward a variety of findings and are not limited to a single or a small
set of winning strategies. Creation activities can take many forms, but the resulting artifacts must
be identifiable and useful. Furthermore, the typical interaction and response cycle for
programming learning (Kazimoglu et al., 2013) is suitable for any constructionist game: (1)
students develop, execute, or debug the solution, (2) the game performs the actions based on the
submitted solution, and (3) the game provides the results, answers, and support to the student.
This iterative and interactive cycle provides powerful possibilities for students to try, correct and
repeat their attempts and improve their abilities.

3 Related work

In order to find other experiences involving games that have used the BBP approach in higher

education, a literature review was carried out over the last five years publications (2016-2021).

We only considered papers that report experiences in teaching programming in higher education.

Some papers describe new components such as automated testing or automated feedback, but with

experiments limited to component evaluation, not classroom experiments. Many papers focus on

elementary and middle school students, while the number of papers related to higher education is

much more limited. After analyzing the articles, only a small number was found that can be

compared with the present study in the experimentation of the BBP approach in higher education.

It can be noted that none of them were experienced in undergraduate courses in computer science.

Vahldick et al. RBIE v.29 – 2021

1340

Parsons problems are code-completion problems, which require students to rearrange mixed

up blocks of code to create the correct solution to a programming problem. Zhi et al. (2019)

presented a study that evaluates the effectiveness of Parsons problems for block-based

programming. To investigate this impact, they designed and integrated Parsons problems into

Snap!1 . The participants were non-STEM major undergraduate students, with minimal prior

programming experience, enrolled in a CS0 course at a U.S. research university over 6 semesters

(Fall 2016 through Spring 2019). The study analyzed 6 assignments. In the last semester, students

solved assignments with Parsons problems, rather than traditional problem solving by writing

code. To identify problem-solving behaviors, the authors investigated three potential

unproductive behaviors: searching for blocks to use, editing block inputs, and testing irrelevant

blocks. They concluded that although Parsons problems prevented these unproductive behaviors

during the lab, they would not disproportionately increase these unproductive times during the

homework. They found Parsons problems saved students a significant amount of total problem-

solving time, without reducing performance on subsequent problems.

BlockPy is a block-based editor for the Python programming language (Bart et al., 2020).

It is a dual block/text editor that allows students to switch at any time between a block or a text

representation of their code. BlockPy has an embedded data science context, so inputs are the data

available in the Python library (weather, stocks, earthquakes, crimes and books) and the outputs

of the programs are graphs. BlockPy has been used in a non-Computer Science majors

introductory Computational Thinking course for four semesters. Most students had no prior

programming experience and a limited understanding of the field. In the first 6 weeks of the

course, students created their algorithms using natural language and flowcharts. After they had 3

classes over 2 weeks where they used BlockPy in blocks mode, addressing common topics like

variables, conditionals and loops. On the last day, students were encouraged to use text mode in

order to become familiar with writing code in text format. The evaluation pointed out that many

students remained almost entirely in blocks mode, even during the final problems, while a small

number of students used text mode almost exclusively, having even expressed that they found the

text interface more understandable than the blocks interface. The authors also found that many

students got confused in the transition from BlockPy text mode and Python.

Crescendo, is a self-paced programming practice environment that combines the block-

based and visual, interactive programming of Snap!, with structured practices commonly found

in Drill-and-Practice Environments (Wang et al., 2020). It organizes small programming tasks

into challenges based on programming concepts such as loops and conditionals. Each concept

may have multiple challenges and each challenge covers a single learning objective of a concept.

In each challenge, students accomplish three programming tasks following the Use-Modify-

Create (UMC) scaffolding (Lee et al., 2011). Crescendo was used to implement two mandatory

and one optional challenge focused on loops. The study involved 50 students enrolled in an

undergraduate CS0 course. Within each challenge, progression tasks were designed following

the UMC framework that provided engaging and objective activities with a slowly increasing

level of difficulty. The main conclusions of this work were that interactive programs can maintain

engagement even when problems are small and objective. Also, the system immediate feedback

allows students to progress independently.

1 https://snap.berkeley.edu/

Vahldick et al. RBIE v.29 – 2021

1341

4 Materials and methods

4.1 Research methodology

The game research and development process followed the steps indicated in Figure 1. This model
is an adaptation of Design-Based Research (DBR) and the serious games project by Marfisi-
Schottman et al (2010).

Figure 1: Model of development and research process.

Design-Based Research (DBR) is characterized by an iterative and interventionist (Brown,
1992; Gravemeijer & Cobb, 2006) process in which the goal is to achieve useful, practical and
reproducible educational artifacts and learning theories in the real world (Cocciolo, 2005; Choi et
al., 2017). The first iterations usually present few and fragile results. However, the iterative nature
of the methodology allows the theories to evolve, be adjusted and optimized during interventions
(DBRC, 2003; Akker et al., 2006). Researchers experiment with theories through prototypes until
they mature their ideas into a more robust theory. The evolution of the prototype, and
consequently of the underlying theories, contributes to the understanding of the actions that can
lead or not to learning (Walker, 2006; Majgaard et al., 2011). This understanding happens
exclusively through experiences, which produce and are produced by new theories (DBRC, 2003),
and happen, above all, in a real world context (Choi et al., 2017).

In addition to the iterative and incremental cycles proposed by DBR, the model considered
the serious games development process proposed by Marfisi-Schottman et al. (2010), which is
suitable for minimalist teams and explores pedagogical theories applied to games in order to create
the best teaching and learning conditions.

This research was developed in four cycles, each in a different semester. The experiences
did not limit students either in time or space, as they were conducted considering free use of the
game at any time and place, allowing us to possibly evaluate results closer to reality in terms of
flow and learning. This paper presents the main findings of the last cycle, which took nine weeks
at University of Santa Catarina State (Brazil) in an introductory programming course, included in
the first semester of the Software Engineering bachelor’s degree. The whole development process
is described in Vahldick et al. (2020).

Vahldick et al. RBIE v.29 – 2021

1342

4.2 Participants

The participants were 33 undergraduate students of University of Santa Catarina State (Brazil)

enrolled in an introductory programming course of the first semester of the Software Engineering

bachelor’s degree. The sample was composed of 87.9% of males and 12.1% of females (mean age

= 22.5, SD = 4.66). 81.8% of the students reported that they had no previous programming

experience. In addition, 33.3% of them declared that they play digital games every day and 24.2%

of them declared that they do it seldom.

4.3 NoBug’s Snack Bar: a blocks-based serious game to support programming learning

When NoBug’s Snack Bar design and development process was initiated, a few decisions were

made. It was designed as a web-based game inspired by time management games. The player

should control the attendant of a snack bar using programming commands. Customers are

controlled by the game, and they make requests that are combinations of foods and drinks. The

attendant should perform the necessary steps to fulfill the requests. Each mission ends when the

player fulfills a certain number of requests.

The game frontend was coded in HTML5 and Blockly (Fraser, 2015) was used for the
construction of resources with blocks. It transforms blocks into Javascript code, allowing it to be
executed in a browser without the need for compilation and execution on the server side, thus
reducing latency by avoiding the transmission between client and server. The features of the game
and its functionality are presented in detail in Vahldick et al. (2020). Figure 2 illustrates the main
interface of the game. Although the game was used in Brazil and Portugal, it was developed to
support a multilingual interface. Menus and buttons are shown according to the language selected.
Only the blocks kept their names in English, so that students get used to them when they program
in real programming languages.

Figure 2: Main interface of the game.

The game covers the initial topics usually included in introductory programming courses.

They are organized in ten levels with a total of 74 missions: levels 2 to 4: Variable manipulation

(19 missions); levels 5 to 7: Conditionals (22 missions); levels 8 to 10: Loops (24 missions: for

loop, while loop and the two together). The initial level, level 1 (9 missions), is an introductory

level to learn to play the game. Although students had freedom to choose their next mission after

Vahldick et al. RBIE v.29 – 2021

1343

level 1, the suggested learning sequence is illustrated in Figure 3. Each circle represents a level,

the arrows represent the prerequisites between levels, and within parenthesis is indicated the

number of missions in each level. White levels include the essential missions. Students should

learn the basic concepts at these levels. Light grey levels are enhancement levels and dark grey

levels are mastering levels. Students can practice new and more complex situations in

enhancement levels. Mastering levels have very challenging missions adequate to the better

performing students.

Figure 3: Main interface of the game.

In addition, within each level, the types of tasks asked in the missions were organized

considering Bloom's Taxonomy of educational objectives in the cognitive domain (Anderson et

al., 2001). The idea was to get a better alignment between the mission’s activities and desired to

learn outcomes. The more gradual increase in difficulty could also make the game more

interesting to the students (Lameras et al., 2017). The first type of task is multiple-choice mission,

where a solution is provided and a question about it is presented with four answer options. The

student selects one of the options. The game runs the solution and verifies the student's answer.

After, a solution is provided with some errors. Students must fix the errors to accomplish the

mission. The types of errors can be incorrect use of comparison or logical operators, erroneous

references of variables, or wrong sequence of blocks. The student must correct the mistakes by

changing operators, variables or the order of the blocks. Next, all the solution blocks are provided

but dispersed in the workplace. The student must sort the blocks in the right order. Then, a partial

solution is provided with some blocks missing. The student must complete the solution. And

finally, the student creates her/his own solution from scratch, sometimes with a started code.

4.4 Instruments and procedures

This section describes the instruments and procedures used to answer the previously mentioned

four research questions. The process and instruments describe below are illustrated in Figure 4.

The students were informed that in that semester they would be using a game being developed as

a research resource by another teacher from University. This game would serve as content and

practice for the first contact with computer programming activities. It was explained to the

students that the whole experience was monitored by the other teacher, who would even serve as

a support for their difficulties. Finally, the students were informed that the results and conclusions

of this research could be published in journals and conferences, respecting their anonymity.

Vahldick et al. RBIE v.29 – 2021

1344

Figure 4: Instruments and process of the last cycle in the research

RQ1. What is the difference between the groups regarding the feelings about their learning?
Students were encouraged to play during the first three weeks of the course. After that period, a
questionnaire was applied (Table 1) using a 5 points Likert scale (1- totally disagree and 5-totally
agree) to measure students' feelings about their learning. Perceived learning is a set of beliefs and
feelings regarding the learning that has taken place and reflects the student's sense that some new
knowledge has been acquired and some new understanding has been reached, even if this
subjective knowledge and understanding contrasts with academic performance (Caspi & Blau,
2011). The perceived learning represents the degree of confidence that the student has regarding
his/her mastery of a given topic. Although question 07 was not directly related to the evaluation
of perceived learning, the opportunity was taken to ask students’ opinions on the continued use of
the game in classes.

Table 1. Questionnaire to measure the perceived learning.

Question

01 I learned from the game

02 I learned from the game as using variables

03 I learned from the game as using conditionals

04 I learned from the game as using loops

05
I learned from the game that it makes my job easier to divide the problem into smaller

parts

06 I learned from the game as is important to debug to fix errors

07 I recommend using the game in the next semester

RQ2. What is the difference between the groups regarding the feelings about fun? Then

students were submitted to the first test. Before the start of the test an adapted version of the
EGameFlow instrument (Fu et al., 2009) was used to assess students’ views about their experience
playing the game. Originally there were 42 questions distributed among eight dimensions. Two
dimensions have been removed: social interaction and knowledge improvement (11 questions).
The social interaction dimension presented questions regarding multiplayer games, player
interactions, and community formation, all issues not addressed in this research. Knowledge
improvement was evaluated using the questionnaire shown in Table 1. In addition, some
ambiguous questions were removed and the wording of other questions was adapted to refer to
learning programming. The 26 questions used are included in Table 2.

Vahldick et al. RBIE v.29 – 2021

1345

Table 2. EGameFlow adapted.

Factor Question Factor Question

Concentration

Most of the gaming activities are
related to the programming task

Challenge

The difficulty of challenges increased
as my skills improved.

I am not burdened with tasks that
seem unrelated

The difficulty of challenges was
compatible with my knowledge of
programming

Workload in the game is adequate
The difficulty between one mission
and the next are adequate

Goal Clarity

Overall game goals were presented
clearly

Autonomy

I feel a sense of control over the game

Intermediate goals were presented
clearly

I understand the type of action
performed by each block type.

Feedback

I receive feedback on my progress in
the game

Immersion

I can become involved in the game

I receive immediate feedback on my
actions

I feel emotionally involved in the
game

I receive enough feedback to solve
the missions.

I experience an altered sense of time

I understand the error messages the
game shows me

The context of the game (snack bar)
is attractive

I understand what goals I can't
accomplish that the game shows me

I get unmotivated by the graphic
quality of the game

The game provides “hints” in text that
help me overcome the challenges

The background music helps set the
pace of my work

The emails sent with “hints” helped
me to solve the problems in the
missions.

I get motivated to play for points that
allow me to access avatar
customization

 I get motivated to be in the best
positions on the leaderboards

 The emails sent with “hints”
motivated me to keep playing

The test was a conventional, classroom, paper-based test, including 5 questions: (Q1)
indicate the output of a given code; (Q2) answer a multiple-choice question about a given code;
(Q3) correct a given code that had two errors; (Q4) complete a code; (Q5) create a solution from
scratch. The questions were common to many introductory programming tests, namely factorial
calculus (Q3), Body Mass Index calculation (Q4), and number division using successive
subtractions (Q5). Students did not use the NoBug’s context during the test, but they were
expected to answer using the representation of the block. After this test, students had five weeks
of classes using Java and were submitted again to another test. The Java lessons used the
knowledge learned from the game, even getting some students to play again. This second test
included five questions that asked for Java code creation. Again, none of them used any NoBug’s
specific commands or context.

RQ3. What is the most used game element not directly related to learning? Three elements
in the game are not directly related to learning. They aim to keep students’ motivated to continue
playing to win points: achievement system, leader board and avatar customization. To assess these
elements' usefulness, we considered how often the students accessed each of them. It was also
interesting to verify if there was any preference between the three items within the two groups to

Vahldick et al. RBIE v.29 – 2021

1346

better explore motivation and learning in the future. The following students’ interactions were
considered: when the student opens the avatar customization window or the achievements points
window; or when the student manipulates the leader boards guides. Analyzing the logs, it was
possible to know in how many sessions each of these resources was accessed by students.

RQ4. What is the student's behavior when solving problems in the game? Lastly, we

analyzed how the students used the game to solve problems. For this, five types of actions that

they could do in the game were considered:

1-Explanation (EXP): when the student accessed the mission explanation.

2-Depuration (DEB): when the student decided to execute her/his solution step by step.

3-Execution (RUN): when the student decided to execute her/his solution.

4-Development (DEV): when the student modified her/his solution, adding, removing, or

changing blocks.

5-Revision (REV): when the student left a mission that she/he did not finish, experimented

again other missions already finished, executed, or debugged them, and finally returned to the

original mission.

This information was obtained by analyzing the logs.

As mentioned before, we wanted to divide the students into two groups according to their

performance. We used the results of the first test, using a grade of 7.0 (the approval threshold in

the institution) as a passing score (G1 < 7.0 and G2 >= 7.0). Furthermore, we considered only

students that concluded at least 50% of the creation missions in the game, because the main goal

in programming learning is for students to develop their own solutions to the proposed problems.

As a result, G1 had 8 students and G2 had 9 students. The second half of the course (Java classes)

was considered to analyze the contribution that the game may have had in improving problem-

solving with programming.

4.5 Consensus measure

This section describes how the results of the two surveys (Perceived Learning and EGameFlow

adapted) were used.

One of the most used measures of central tendency for summarizing the results of

questionnaires given in a Likert scale is commonly called "average". However, from a

probabilistic/statistical point of view (i.e., considering each class of the scale as a possible event

of a random variable), the most coherent terminology is that of the expected value (E(x)), in the

sense of "what is expected with more and more replications of the questionnaires". This measure

is considered "fair" in the sense of considering all the plurality of responses, and not just the

position (like the median) or the frequency (like the mode).

The expected value (E(x)) is understood as the mean value to be obtained from a random

variable x when the number of its repetitions tends to infinity. For discrete random variables (such

as the Likert scale) it can be obtained by

𝐸(𝑥) =∑𝑃(𝑥𝑖). 𝑥𝑖

𝑘

𝑖=1

 (1)

where k is the quantity of classes, xi is the discrete value of the class i and P(xi) is the probability

of occurrence of xi, in this context approximated by the relative frequency of the classes. It

corresponds, arithmetically, to the average of the answers weighted by their respective frequency.

Vahldick et al. RBIE v.29 – 2021

1347

It is pointed out here that the Likert scale is of an ordinal qualitative nature, as there is a

natural order between the items in the scale (i.e., between totally disagreeing and totally agreeing).

To perform algebraic operations, the scale is transformed into a discrete quantity (for instance,

scoring it from 1 to 5). When this is done, it is incorrectly admitted that there is a linear relationship

between the levels of agreement. This linear relationship does not exist subjectively.

In this context, Tastle et al. (2005) propose a new measure to complement the interpretation
of the results obtained from questionnaires. It is the Consensus Measure (Cns(x)), calculated by:

𝐶𝑛𝑠(𝑥) = 1 +∑𝑃(𝑥𝑖) log2 (1 −
|𝑥𝑖 − 𝐸(𝑥)|

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
)

𝑘

𝑖=1

. (2)

Cns(x) should be interpreted as a percentage of internal agreement of the distribution

concerning E(x). As 0 ≤ Cns(x) ≤ 1, it is understood that the closer to 1, the more respondents

"agree" with the expected value for the question. A complementary concept to the Consensus is

Dissention (Dnt(x)). The Dissention is one minus the Consensus, 1-Cns(x). Dissention is defined

as a difference of opinion such that strife is caused within the group undertaking to decide.

5 Results

5.1 Classes performance evaluation

To verify the impact of the game experience in learning, we examined the Pearson correlation

among the two test’s grades, the number of missions the students completed in the game, and the

amount of time spent to complete those missions.

The average grade of the first test was 5.4 on a 0 to 10 scale (SD=2.33) and 33% of the

students (n=10) had a grade equal or higher than 7.0. Four students that finished all the missions

in the game had a grade equal or higher than 8.0.

The average grade of the second test was 6.0 (SD=2.48). In this test, 48% of the students

(n=12) had 7.0 or higher. Only 25 students took the second test, as 8 of the initial students dropped

out of the course.

Table 3 shows the correlation of the tests’ results with the game experience. Positive and

significant correlations among overall variables were found. There were moderate correlations

among total missions played and tests’ grades, and a weak correlation between time spent playing

and tests’ grades. Thus, students who played more had better performance in the course tests.

When considering the time, the numbers are less expressive. This can be explained by the fact

that some of the best students did not need much time to solve most missions.

Table 3. Pearson’s Correlation among exams and game experience.

 Test 1 Test 2
Total of

missions
Time spent

Test 1 - 0.77** 0.666** 0.452*

Test 2 - 0.641** 0.410*

Total of

missions

 -
0.767*

Time spent -

** p < 0.01 * p < 0.05

Vahldick et al. RBIE v.29 – 2021

1348

In the next results, students were organized into two groups considering only students that

concluded at least 50% of the creation missions and according to the results of the first test, using

7.0 as a passing score (G1 < 7.0 and G2 >= 7.0). As a result, G1 had 8 students and G2 had 9

students.

5.2 Perceived learning (RQ1)

To measure students' feelings about their learning, a questionnaire (Table 1) was applied before

the first test. So, it was possible to measure the confidence that the students had before taking the

test. Table 4 shows the expected value, consensus, and dissention measures for each of the two

groups in each question.

Table 4. Results of perceived learning measure.

 E(X) Cns(X) Dnt(X)

Q01
G1 4.00 0.67 0.33

G2 4.67 0.83 0.17

Q02
G1 4.38 0.82 0.18

G2 4.67 0.83 0.17

Q03
G1 4.38 0.82 0.18

G2 4.78 0.87 0.13

Q04
G1 3.60 0.70 0.30

G2 4.88 0.92 0.08

Q05
G1 4.13 0.82 0.18

G2 4.22 0.79 0.21

Q06
G1 4.25 0.77 0.23

G2 4.56 0.81 0.19

Q07
G1 3.13 0.61 0.39

G2 4.44 0.67 0.33

Analyzing the results for each question it is possible to say that there was consensus (the

qualified majority (3/5) of students, that is, over 60%) in most of them. Group 1 was not confident

to recommend the game in the next semester (E(Q07)=3.13). They strongly agreed that they

learned to use variables and conditionals (E(Q02)=E(Q03)=4.38). The weaker students could not

see the utility of the game. On the other hand, in group 2 (Cns(Q04)=0.92) students strongly

agreed (E(Q04)=4.88) that the game helped them to understand loops. They also strongly agreed

(E(Q03)=4.78) learned to use conditionals and learned to debug (E(Q06)=4.56) In general, it was

possible to observe that G2 students had a high level of perceived learning.

5.3 Perceived fun (RQ2)

To assess the level of students’ satisfaction with the game experience, they answered 26 questions

that are part of the EGameFlow adapted instrument (Fu et al., 2009). Non-parametric Mann-

Whitney tests were performed to assess in which items there were significant differences between

the groups. Only one item showed differences with p=0.011: "Overall game goals were presented

clearly". Analyzing the Mean Rank it was possible to conclude that G2 agreed more than G1 with

this statement. It can be concluded that regardless of academic performance, students had the same

perception about their fun, namely, the average EGameFlow score for G1 was 3.55 and for G2

was 3.64 on a scale from 1 to 5.

Originally EGameFlow was a 7-point Likert scale. According to Krosnick & Presser (2010),

“Some studies have found the number of scale points to be unrelated to cross-sectional

Vahldick et al. RBIE v.29 – 2021

1349

reliability.”. Revilla et al. (2014) also point out that people can interpret the meaning of each

category in different ways, and when the number of options increases, the possibility of different

interpretations also increases. They concluded to offer 5 answer categories rather than 7 or 11

because of the latter yield data of lower quality. To simplify the students' interpretation, we

adapted the instrument to a 5-point Likert scale.

5.4 Measuring the fun of game elements (RQ3)

Table 5 shows the number of times students in each group had authenticated, accessed the avatar

customization window, leader boards guides, and the achievements points window.

Table 5. Elements of game measured.

Groups
Number of

Authentications
Avatar Leader board Achievements

1 383 52 (13,6%) 61 (15,9%) 26 (6,8%)

2 475 48 (10,1%) 130 (27,4%) 56 (11,8%)

p-value - 0,115 0,000* 0,013*

*p-value < 0.05

To verify if there were significant differences between the two groups, chi-square tests were

performed to check if the proportions were the same between the two groups. The proportion of

each item was calculated concerning the number of authentications. The most used feature by G2

students was the visualization of the leader boards, followed by the view of the achievements and

the customization of the avatar. In G1, the leader boards were also the most used, followed by the

avatar customization and achievements. Both groups had the leader boards as the most used

element. However, G2 had a higher level of use than G1. This may indicate the intrinsic

motivation of G2 students to stay in better positions, and for this they need to perform better in

the game.

5.5 Problem-solving behaviors (RQ4)

The previous subsections presented statistical analyses comparing perceptions, preferences and

use of game features between two groups defined based on students’ academic performance. This

section aims to analyze the sequence of actions that each group of students performed within the

game.

Table 6 shows the number of times the transition between one action (From) and another

(To) happened in each group. Chi-square tests were performed to check the proportions between

the two groups. A particular behavior of a group is considered when the proportions are different

(p-value < 0.05). Based on the transitions that presented significant differences, a graph was

developed for each group trying to identify the most common behaviors in each one (Figure 5).

For example, from the EXP action going to the RUN action was identified a difference in

proportion (p=0.032). Since G2 has a higher percentage than G1 (1.5% > 0.5%), we can conclude

that this transition is more characteristic of G2. These behaviors represent what students did after

their first failed execution in a mission.

When observing the G1 graph, it becomes evident that after a failed RUN, these students

tend to modify (DEV) the solution and then use the debugging resources (DEB). This can be

understood as that from the execution they already trust to know what is necessary to correct the

solution (or are using a trial-and-error approach). After the change, they prefer to use the

debugging features. Regarding G2, after rereading the explanation (EXP) they usually execute it

(RUN), probably to try to identify the error not noticed even after reading it. After the failed run,

this group prefers to use more debugging (DEB), indicating higher care in identifying the error(s),

Vahldick et al. RBIE v.29 – 2021

1350

instead of going right away to change the solution. While they are developing (DEV) the solution,

these students still use previous solutions (REV), trying it many times. It is interesting to verify

the difference between G1 and G2 after modifying the solution: G1 prefers to use more debugging,

and G2 prefers more execution. In future work, the monitoring environment can incorporate the

identification of these patterns so that the teacher can intervene suggesting to the student the

adoption of adequate learning behaviors.

Table 6. Transitions between two actions.

From To G1 % G2 % Total p-value

EXP

DEV 719 78.2 788 76.1 1507 0.253

RUNb 5 0.5 16 1.5 21 0.032

DEB 22 2.4 36 3.5 58 0.160

REVa 3 0.3 3 0.3 6 -

EXP 170 18.5 193 18.6 363 0.941

Total 919 47.0 1036 53.0 1955

DEB

DEV 432 72.2 501 72.8 933 0.816

RUNa 1 0.2 4 0.6 5 -

DEB 67 11.2 77 11.2 144 0.994

REVa 1 0.2 5 0.7 6 -

EXP 97 16.2 101 14.7 198 0.445

Total 598 46.5 688 53.5 1286

DEV

DEV 432 72.2 501 72.8 933 0.816

RUNa 1 0.2 4 0.6 5 -

DEB 67 11.2 77 11.2 144 0.994

REVa 1 0.2 5 0.7 6 -

EXP 97 16.2 101 14.7 198 0.445

Total 598 46.5 688 53.5 1286

REV

DEV 432 72.2 501 72.8 933 0.816

RUNa 1 0.2 4 0.6 5 -

DEB 67 11.2 77 11.2 144 0.994

REVa 1 0.2 5 0.7 6 -

EXP 97 16.2 101 14.7 198 0.445

Total 598 46.5 688 53.5 1286

RUN

EXP 46 22.8 51 20.3 97 0.527

RUNa 1 0.05 4 1.6 5 -

DEBb 8 4.0 36 14.3 44 0.000

DEVb 147 72.8 160 63.7 307 0.041

REV 0 0.0 0 0.0 0 -

Total 202 44.6 251 55.4 453

Figure 5. Students' problem-solving behaviors.

Vahldick et al. RBIE v.29 – 2021

1351

6 Limitations of the study

This study has several limitations that could pose threats to the validity of our results.

First, our analysis considers only one university in a specific course. Although students study

under similar conditions, the results may not be generalized to all students due to their

characteristics, for example, the school they came from. As it is common in this type of study,

some variables could not be fully controlled, such as the background and previous knowledge of

students.

One important limitation is the small scale of the study, 17 students in the main findings.

However, capturing and analyzing the experiences of seventeen students through four weeks,

allowed us to understand how and why they play the game. In addition, by collecting repeated

interactions the limitation of the small sample size was minimized.

Another limitation of the study is that it only used questionnaires to collect students’ opinions.

Possibly other instruments could have allowed the collection of more rich information about

students’ feelings and opinions. Furthermore, the eight students who dropped out were not asked

about their impressions of the game.

7 Discussion and conclusions

This paper presented a study about the use of a blocks-based game to support the learning of

programming skills. The students were not limited either in time or space to play, as they could

use the game at any time and place, allowing them to evaluate the results closer to reality in terms

of fun and learning.

Moderate positive correlations were found between students' scores in the tests and the

number of missions completed in the game. In the future, this result has to be further explored and

confirmed, eventually leading to the development of a prediction model, to alert both the students

and the teacher about situations that may lead to failure or dropout in the courses.

Below are answered the four research questions that lead this study.

RQ1. What is the difference between the groups regarding the feelings about their learning?

Overall, students with passing grades in the course (>= 7.0) felt more confident in learning

with the game. This group strongly agreed that the game helped them to understand loops.

However, the other group of students (grade < 7.0) agreed that the game helped them to understand

variables manipulation and conditionals and was not so useful for learning loops.

RQ2. What is the difference between the groups regarding the feelings about fun?

The perceived fun was similar regardless of the performance in the course. Only one item

presented some differences among the groups. G1, students agreed less than G2 students that the

game explains clearly the tasks. This feeling was possibly caused by the difficulty these students

felt to fulfil the missions. The average EGameFlow score was identical (G1=3.55 and G2=3.64)

on a scale from 1 to 5. This scale serves as a comparison between games or groups of players in

the same game.

RQ3. What is the most used game element not directly related to learning?

Some game features intended to motivate students to play the game, such as customizing

the avatar, three leader boards, and an achievement system. Also, one gameplay element that has

been tested, and which is not often considered in the literature about this type of game, was point

Vahldick et al. RBIE v.29 – 2021

1352

winning. We found that most students enjoyed accessing the leader board. It can be concluded

that (1) even though scoring is not a primary goal of a serious game, its use can increase the

attractiveness of the game, and (2) adding a leader board in serious games is interesting to most

students. Serious game designers should consider including points and leader boards in their

projects.

RQ4. What is the student's behavior when solving problems in the game?

It was possible to identify a difference in the two groups' behavior when solving the

missions. This may indicate the same behavior when solving programming exercises without

using the game: the top-ranked students often accessed the solutions of previous missions to help

them solve a new mission, while the other students usually used a trial-and-error approach. In

future work, the game can evaluate this behavior and suggest that the student access a specific

previous activity, or even highlight part of the text of the statement that should be considered more

carefully to solve the mission.

Although we did not find block-based games applied to programming learning for

undergraduate computer science courses, the related work served to compare features in NoBug's.

Firstly, despite NoBug's does not apply the Parson Problems where students put code fragments

together to construct a program, there is one type of mission where lines of code are missing. So,

before the student reaches this type of assignment, and the following ones that are for creating

programs from scratch, she/he learns the concepts through examples, with assignments to solve

errors and put blocks in order. Crescendo provides the problems as challenges for the students to

solve, in a Use-Modify-Create sequence, very similar to the sequence of tasks in NoBug's, in

which initially the student observes, then modifies, and finally creates from scratch. Students learn

to use the programming structures independent of the language in NoBug's. On the other hand,

BlockPy is well integrated BBP with Python which can make it easier for students to learn when

they can see both representations simultaneously. It can even increase their belief in the usefulness

of the game and see a greater relation to the subjects studied in lectures. This idea can inspire us

to provide the same approach as future work.

All procedures performed in this study were following the ethical standards of the

institutional and/or national research committee and with the 1964 Helsinki declaration and its

later amendments or comparable ethical standards.

Acknowledgments

First author acknowledges the doctoral scholarship supported by CNPq/CAPES – Programa

Ciência sem Fronteiras – CsF (6392-13-0) and authorized retirement by UDESC (688/13). We

also want to thank the students that played the game and their teachers that allowed us to try it

with them.

References

Akker, J. van den, Gravemeijer, K., McKenney, S., & Nieveen, N. (2006). Introducing

Educational Design Research. In J. van den Akker, K. Gravemeijer, S. McKenney, & N.

Nieveen (Eds.), Educational Design Research (pp. 3–7). Routledge. [GS Search]

Anderson, L. W., Krathwohl, D. R., & Bloom, B. S. (2001). A taxonomy for learning, teaching,

and assessing: A revision of Bloom’s taxonomy of educational objectives. Allyn & Bacon.

[GS Search]

https://scholar.google.com/scholar_lookup?title=%22Introducing+Educational+Design+Research%22
https://scholar.google.com/scholar?q=A%C2%A0taxonomy%20for%20learning,%20teaching,%20and%20assessing:%20A%20revision%20of%20Blooms%20taxonomy%20of%20educational%20objectives

Vahldick et al. RBIE v.29 – 2021

1353

Arnab, S., Freitas, S. de, Bellotti, F., Lim, T., Louchart, S., Suttie, N., … Gloria, A. De. (2012).

Pedagogy-driven design of Serious Games: An overall view on learning and game mechanics

mapping, and cognition-based models. Research Report. DOI: 10.1111/bjet.12113 [GS

Search]

Bart, A. C., Tibau, J., Kafura, D., Shaffer, C. A., & Tilevich, E. (2020). Design and Evaluation of

a Block-based Environment with a Data Science Context. IEEE Transactions on Emerging

Topics in Computing, 8(1), 182–192. DOI: 10.1109/TETC.2017.2729585 [GS Search]

Ben-Ari, M. (2013). Visualization of programming. In Improving computer science education

(pp. 52–65). [GS Search]

Boller, S., & Kapp, K. (2017). Play to Learn: Everything You Need to Know About Designing

Effective Learning Games. ATD Press. [GS Search]

Bosse, Y., & Gerosa, M. A. (2017). Difficulties of Programming Learning from the Point of View

of Students and Instructors. IEEE Latin America Transactions, 15(11), 2191–2199. DOI:

10.1109/TLA.2017.8070426 [GS Search]

Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating

complex interventions in classroom settings. The Journal of the Learning Sciences, 2(2),

141–178. DOI: 10.1207/s15327809jls0202_2 [GS Search]

Caspi, A., & Blau, I. (2011). Collaboration and psychological ownership: How does the tension

between the two influence perceived learning? Social Psychology of Education, 14(2), 283–

298. DOI: 10.1007/s11218-010-9141-z [GS Search]

Choi, J., Lee, Y., & Lee, E. (2017). Puzzle Based Algorithm Learning for Cultivating

Computational Thinking. Wireless Personal Communications, 93(1), 131–145. DOI:

10.1007/s11277-016-3679-9 [GS Search]

Cocciolo, A. (2005). Reviewing design-based research. Retrieved February 14, 2014, from

<http://www.thinkingprojects.org/wp-content/dbr.doc>.

DBRC. (2003). Design-based research: An emerging paradigm for educational inquiry.

Educational Researcher, 32(1), 5–8. DOI: 10.3102/0013189X032001005 [GS Search]

Fraser, N. (2015). Ten Things We ’ ve Learned from Blockly. In IEEE Blocks and Beyond

Workshop (pp. 49–50). DOI: 10.1109/BLOCKS.2015.7369000 [GS Search]

Fu, F. L., Su, R. C., & Yu, S. C. (2009). EGameFlow: A scale to measure learners’ enjoyment of

e-learning games. Computers and Education, 52(1), 101–112. DOI:

10.1016/j.compedu.2008.07.004 [GS Search]

Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective.

Educational Design Research, 17–51. [GS Search]

Holbert, N. R., & Wilensky, U. (2011). FormulaT racing: Designing a game for kinematic

exploration and computational thinking. In 7th International Conference on Games +

Learning + Society. Madison, USA. [GS Search]

Johnson, L., Becker, S. A., Estrada, V., & Freeman, A. (2015). Horizon Report: 2015 Higher

Education Edition. Reading. Austin, Texas: The New Media Consortium. Retrieved October

10, 2021, from <https://files.eric.ed.gov/fulltext/ED559357.pdf>.

Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L. (2013). Understanding computational

thinking before programming: Developed guidelines for the design of games to learn

introductory programming through game-play. In P. Felicia (Ed.), Developments in Current

https://doi.org/10.1111/bjet.12113
https://scholar.google.com/scholar_lookup?title=%22Pedagogy-driven%20design%20of%20Serious%20Games:%20An%20overall%20view%20on%20learning%20and%20game%20mechanics%20mapping,%20and%20cognition-based%20models%22
https://scholar.google.com/scholar_lookup?title=%22Pedagogy-driven%20design%20of%20Serious%20Games:%20An%20overall%20view%20on%20learning%20and%20game%20mechanics%20mapping,%20and%20cognition-based%20models%22
https://doi.org/10.1109/TETC.2017.2729585
https://scholar.google.com/scholar_lookup?title=%22Design%20and%20Evaluation%20of%20a%20Block-based%20Environment%20with%20a%20Data%20Science%20Context%22
https://scholar.google.com/scholar_lookup?title=%22Visualization%20of%20programming%22
https://scholar.google.com/scholar_lookup?title=%22Play%20to%20Learn:%20Everything%20You%20Need%20to%20Know%20About%20Designing%20Effective%20Learning%20Games%22
https://doi.org/10.1109/TLA.2017.8070426
https://scholar.google.com/scholar_lookup?title=%22Difficulties%20of%20Programming%20Learning%20from%20the%20Point%20of%20View%20of%20Students%20and%20Instructors%22
https://doi.org/10.1207/s15327809jls0202_2
https://scholar.google.com/scholar_lookup?title=%22Design%20experiments:%20Theoretical%20and%20methodological%20challenges%20in%20creating%20complex%20interventions%20in%20classroom%20settings%22
https://doi.org/10.1007/s11218-010-9141-z
https://scholar.google.com/scholar_lookup?title=%22Collaboration%20and%20psychological%20ownership:%20How%20does%20the%20tension%20between%20the%20two%20influence%20perceived%20learning?%22
https://doi.org/10.1007/s11277-016-3679-9
https://scholar.google.com/scholar_lookup?title=%22Puzzle%20Based%20Algorithm%20Learning%20for%20Cultivating%20Computational%20Thinking%22
http://www.thinkingprojects.org/wp-content/dbr.doc
https://doi.org/10.3102%2F0013189X032001005
https://scholar.google.com/scholar_lookup?title=%22Design-based%20research:%20An%20emerging%20paradigm%20for%20educational%20inquiry%22
https://doi.org/10.1109/BLOCKS.2015.7369000
https://scholar.google.com/scholar_lookup?title=%22Ten%20Things%20We%20%E2%80%99%20ve%20Learned%20from%20Blockly%22
https://doi.org/10.1016/j.compedu.2008.07.004
https://scholar.google.com/scholar_lookup?title=%22EGameFlow:%20A%20scale%20to%20measure%20learners%E2%80%99%20enjoyment%20of%20e-learning%20games%22
https://scholar.google.com/scholar_lookup?title=%22Design%20research%20from%20a%20learning%20design%20perspective%22
https://scholar.google.com/scholar_lookup?title=%22FormulaT%20racing:%20Designing%20a%20game%20for%20kinematic%20exploration%20and%20computational%20thinking%22
https://files.eric.ed.gov/fulltext/ED559357.pdf

Vahldick et al. RBIE v.29 – 2021

1354

Game-Based Learning Design and Development. Hershey, PA: IGI Global. DOI:

10.4018/ijgbl.2011070103 [GS Search]

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming. ACM Computing

Surveys, 37(2), 83–137. DOI: 10.1145/1089733.1089734 [GS Search]

Koster, R. (2014). A Theory of Fun for Game Design (2nd ed.). O’ Reilly Media, Inc. [GS Search]

Krosnick, J. A., & Presser, S. (2010). Question and Questionnaire Design. In P. V. Marsden & J.

D. Wright (Eds.), Handbook of Survey Research (2nd ed., pp. 263–313). Bingley, UK:

Emerald Publishing Limited. DOI: 10.1007/978-3-319-54395-6_53 [GS Search]

Lameras, P., Arnab, S., Dunwell, I., Stewart, C., Clarke, S., & Petridis, P. (2017). Essential

features of serious games design in higher education: Linking learning attributes to game

mechanics. British Journal of Educational Technology, 48(4), 972–994. DOI:

10.1111/bjet.12467 [GS Search]

Laurillard, D., Charlton, P., Craft, B., Dimakopoulos, D., Ljubojevic, D., Magoulas, G., …

Whittlestone, K. (2013). A constructionist learning environment for teachers to model

learning designs. Journal of Computer Assisted Learning, 29(1), 15–30. DOI:

10.1111/j.1365-2729.2011.00458.x [GS Search]

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., … Werner, L. (2011).

Computational thinking for youth in practice. ACM Inroads, 2(1), 32–37. DOI:

10.1145/1929887.1929902 [GS Search]

Majgaard, G., Misfeldt, M., & Nielsen, J. (2011). How design-based research and action research

contribute to the development of a new design for learning. Designs for Learning, 4(2), 8–

27. [GS Search]

Marfisi-Schottman, I., George, S., & Tarpin-Bernard, F. (2010). Tools and Methods for

Efficiently Designing Serious Games. In 4th European Conference on Game-Based

Learning (pp. 226–234). Copenhagen, Denmark. [GS Search]

Mazlan, M. N. A., & Burd, L. (2011). Does an avatar motivate? In 41th Annual Frontiers in

Education Conference. Rapid City, USA. DOI: 10.1109/FIE.2011.6142700 [GS Search]

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic

Books, Inc. [GS Search]

Prensky, M. (2001). Digital game-based learning. New York: McGraw-Hill. [GS Search]

Razak, A. A., Abidin, M. I. Z., & Connolly, T. M. (2019). Transitioning to Digital Games-based

Learning: The Case of Scottish Universities. In A. Visvizi, M. D. Lytras, & A. Sarirete (Eds.),

Management and Administration of Higher Education Institutions at Times of Change (pp.

151–165). Emerald Publishing Limited. DOI: 10.1108/978-1-78973-627-420191009 [GS

Search]

Revilla, M. A., Saris, W. E., & Krosnick, J. A. (2014). Choosing the Number of Categories in

Agree-Disagree Scales. Sociological Methods and Research, 43(1), 73–97. DOI:

10.1177/0049124113509605 [GS Search]

Robins, A. V. (2019). Novice programmers and introductory programming. In S. A. Fincher & A.

V. Robins (Eds.), The Cambridge Handbook of Computing Education Research (pp. 327–

376). Cambridge, UK: Cambridge University Press. [GS Search]

Shabalina, O., Malliarakis, C., Tomos, F., & Mozelius, P. (2017). Game-based learning for

learning to program: From learning through play to learning through game development. In

https://doi.org/10.4018/ijgbl.2011070103
https://scholar.google.com/scholar_lookup?title=%22Understanding%20computational%20thinking%20before%20programming:%20Developed%20guidelines%20for%20the%20design%20of%20games%20to%20learn%20introductory%20programming%20through%20game-play%22
https://doi.org/10.1145/1089733.1089734
https://scholar.google.com/scholar_lookup?title=%22Lowering%20the%20barriers%20to%20programming%22
https://scholar.google.com/scholar_lookup?title=%22A%20Theory%20of%20Fun%20for%20Game%20Design%22
https://doi.org/10.1007/978-3-319-54395-6_53
https://scholar.google.com/scholar_lookup?title=%22Question%20and%20Questionnaire%20Design%22
https://doi.org/10.1111/bjet.12467
https://scholar.google.com/scholar_lookup?title=%22Essential%20features%20of%20serious%20games%20design%20in%20higher%20education:%20Linking%20learning%20attributes%20to%20game%20mechanics%22
https://doi.org/10.1111/j.1365-2729.2011.00458.x
https://scholar.google.com/scholar_lookup?title=%22A%20constructionist%20learning%20environment%20for%20teachers%20to%20model%20learning%20designs%22
https://doi.org/10.1145/1929887.1929902
https://scholar.google.com/scholar_lookup?title=%22Computational%20thinking%20for%20youth%20in%20practice%22
https://scholar.google.com/scholar_lookup?title=%22How%20design-based%20research%20and%20action%20research%20contribute%20to%20the%20development%20of%20a%20new%20design%20for%20learning%22
https://scholar.google.com/scholar_lookup?title=%22Tools%20and%20Methods%20for%20Efficiently%20Designing%20Serious%20Games%22
https://doi.org/10.1109/FIE.2011.6142700
https://scholar.google.com/scholar_lookup?title=%22Does%20an%20avatar%20motivate?%22
https://scholar.google.com/scholar_lookup?title=%22Mindstorms:%20Children,%20computers,%20and%20powerful%20ideas%22
https://scholar.google.com/scholar_lookup?title=%22Digital%20game-based%20learning%22
https://doi.org/10.1108/978-1-78973-627-420191009
https://scholar.google.com/scholar_lookup?title=%22Transitioning%20to%20Digital%20Games-based%20Learning:%20The%20Case%20of%20Scottish%20Universities%22
https://scholar.google.com/scholar_lookup?title=%22Transitioning%20to%20Digital%20Games-based%20Learning:%20The%20Case%20of%20Scottish%20Universities%22
https://doi.org/10.1177%2F0049124113509605
https://scholar.google.com/scholar_lookup?title=%22Choosing%20the%20Number%20of%20Categories%20in%20Agree-Disagree%20Scales%22
https://scholar.google.com/scholar_lookup?title=%22Novice%20programmers%20and%20introductory%20programming%22

Vahldick et al. RBIE v.29 – 2021

1355

Proceedings of the 11th European Conference on Games Based Learning, ECGBL 2017 (pp.

571–576). Graz, Austria. [GS Search]

Sorva, J., Karavirta, V., & Malmi, L. (2013). A Review of Generic Program Visualization Systems

for Introductory Programming Education. ACM Transactions on Computing Education,

13(4), 15.1-15.64. DOI: 10.1145/2490822 [GS Search]

Tastle, W. J., Russell, J., & Wiermann, M. J. (2005). A new measure to analyze student

performance using the Likert scale. In Information Systems Education Journal. [GS Search]

Vahldick, A., Farah, P. R., Marcelino, M. J., & Mendes, A. J. (2020). A blocks-based serious

game to support introductory computer programming in undergraduate education.

Computers in Human Behavior Reports, 2(October), 100037. DOI:

10.1016/j.chbr.2020.100037 [GS Search]

Vahldick, A., Mendes, A. J., & Marcelino, M. J. (2014). A review of games designed to improve

introductory computer programming competencies. In 44th Annual Frontiers in Education

Conference (pp. 781–787). Madrid, Spain. DOI: 10.1109/FIE.2014.7044114 [GS Search]

Walker, D. (2006). Toward productive design studies. In J. van den Akker, K. Gravemeijer, S.

McKenney, & N. Nieveen (Eds.), Educational Design Research (pp. 9–19). Routledge. [GS

Search]

Wang, W., Zhi, R., Milliken, A., Lytle, N., & Price, T. W. (2020). Crescendo: Engaging students

to self-paced programming practices. In SIGCSE (pp. 859–865). DOI:

10.1145/3328778.3366919 [GS Search]

Weintrop, D., Holbert, N. R., Wilensky, U., & Horn, M. (2012). Redefining Constructionist Video

Games: Marrying Constructionism and Video Game Design. In Constructionism 2012 (pp.

645–649). Athens, Greece. [GS Search]

Weintrop, D., & Wilensky, U. (2014). Situating programming abstractions in a constructionist

video game. Informatics in Education, 13(2), 307–321. [GS Search]

Weintrop, D., & Wilensky, U. (2016a). Bringing Blocks-based Programming into High School

Computer Science Classrooms. In Annual Meeting of the American Educational Research

Association. Washington, USA. [GS Search]

Weintrop, D., & Wilensky, U. (2016b). Playing by Programming: Making Gameplay a

Programming Activity. Educational Technology, 56(3), 36–41. [GS Search]

Xinogalos, S., Satratzemi, M., & Malliarakis, C. (2017). Microworlds, games, animations, mobile

apps, puzzle editors and more: What is important for an introductory programming

environment? Education and Information Technologies, (22), 145–176. DOI:

10.1007/s10639-015-9433-1 [GS Search]

Zhi, R., Chi, M., Barnes, T., & Price, T. W. (2019). Evaluating the effectiveness of parsons

problems for Block-based programming. In ICER 2019 (pp. 51–59). DOI:

10.1145/3291279.3339419 [GS Search]

https://scholar.google.com/scholar_lookup?title=%22Game-based%20learning%20for%20learning%20to%20program:%20From%20learning%20through%20play%20to%20learning%20through%20game%20development%22
https://doi.org/10.1145/2490822
https://scholar.google.com/scholar_lookup?title=%22A%20Review%20of%20Generic%20Program%20Visualization%20Systems%20for%20Introductory%20Programming%20Education%22
https://scholar.google.com/scholar_lookup?title=%22A%20new%20measure%20to%20analyze%20student%20performance%20using%20the%20Likert%20scale%22
https://doi.org/10.1016/j.chbr.2020.100037
https://scholar.google.com/scholar_lookup?title=%22A%20blocks-based%20serious%20game%20to%20support%20introductory%20computer%20programming%20in%20undergraduate%20education%22
https://doi.org/10.1109/FIE.2014.7044114
https://scholar.google.com/scholar_lookup?title=%22A%20review%20of%20games%20designed%20to%20improve%20introductory%20computer%20programming%20competencies%22
https://scholar.google.com/scholar_lookup?title=%22Toward%20productive%20design%20studies%22
https://scholar.google.com/scholar_lookup?title=%22Toward%20productive%20design%20studies%22
https://doi.org/10.1145/3328778.3366919
https://scholar.google.com/scholar_lookup?title=%22Crescendo:%20Engaging%20students%20to%20self-paced%20programming%20practices%22
https://scholar.google.com/scholar_lookup?title=%22Redefining%20Constructionist%20Video%20Games:%20Marrying%20Constructionism%20and%20Video%20Game%20Design%22
https://scholar.google.com/scholar_lookup?title=%22Situating%20programming%20abstractions%20in%20a%20constructionist%20video%20game%22
https://scholar.google.com/scholar_lookup?title=%22Bringing%20Blocks-based%20Programming%20into%20High%20School%20Computer%20Science%20Classrooms%22
https://scholar.google.com/scholar_lookup?title=%22Playing%20by%20Programming:%20Making%20Gameplay%20a%20Programming%20Activity%22
https://doi.org/10.1007/s10639-015-9433-1
https://scholar.google.com/scholar_lookup?title=%22Microworlds,%20games,%20animations,%20mobile%20apps,%20puzzle%20editors%20and%20more:%20What%20is%20important%20for%20an%20introductory%20programming%20environment%22
https://doi.org/10.1145/3291279.3339419
https://scholar.google.com/scholar_lookup?title=%22Evaluating%20the%20effectiveness%20of%20parsons%20problems%20for%20Block-based%20programming%22

