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Abstract 
Teaching computing in K-12 is often introduced focusing on algorithms and programming concepts using block-

based programming environments, such as App Inventor. Yet, learning programming is a complex process and 

novices struggle with several difficulties. Thus, to be effective, instructional units need to be designed regarding not 

only the content but also its sequencing taking into consideration difficulties related to the concepts and the 

idiosyncrasies of programming environments. Such systematic sequencing can be based on large-scale project 

analyses by regarding the volition, incentive, and opportunity of students to apply the relevant program constructs 

as latent psychometric constructs using Item Response Theory to obtain quantitative ‘difficulty’ estimates for each 

concept. Therefore, this article presents a more detailed analysis and the interpretation of the results obtained in 

earlier research of a large-scale data-driven analysis of the demonstrated use in practice of algorithms and 

programming concepts in App Inventor based on the CodeMaster rubric as well as its error measurement. Based on 

a dataset of more than 88,000 App Inventor projects assessed automatically with the CodeMaster rubric, we perform 

an analysis using Item Response Theory. The results demonstrate that the easiness of some concepts can be explained 

by their inherent characteristics, but also due to the characteristics of App Inventor as a programming environment. 

These findings are discussed with regard to curricular guidelines for computing education in K-12, especially 

concerning the adequacy of their proposed learning sequence. These results can help teachers, instructional and 

curriculum designers in the sequencing, scaffolding, and assessment design of computing education in K-12 using 

programming environments. 

Keywords: Algorithms and Programming; App Inventor; Item Response Theory; Sequencing; Rubric 
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1 Introduction 

The importance of computing nowadays for anyone regardless of the area of expertise is widely 

recognized. Consequently, computing education is making its way into K-12 worldwide, ranging 

from online MOOCs, extracurricular activities to courses fully integrated into the curriculum 

(Grover & Pea, 2013; Hubwieser et al., 2015; Lye & Koh, 2014). Several countries have 

developed guidelines and curricula for K-12 computing education (Webb, Davis, & Bell, 2014). 

Among those, one of the most prominent models is the K-12 Computer Science Framework 

(CSTA, 2016) defining a set of core computing concepts and practices to be covered in K-12. The 

core concepts represent major content areas in the field of computer science, including computing 

systems, networks, data and analysis, algorithms & programming as well as the impacts of 

computing. Core practices represent behaviors that computationally literate students should use 

to engage with the concepts of computing, such as recognizing and defining computational 

problems and creating computational artifacts. The standard also defines the sequencing of these 

concepts and practices describing how the students’ conceptual understanding and practice of 

computing should become more sophisticated over time and across educational stages in K-12. 

Other guidelines and curricula, such as Computing at School (CAS, 2015) or the Brazilian 

Computer Society Guidelines for Computing Education in K-12 (SBC, 2018), cover similar basic 

concepts and practices. 

There are several approaches to teach computing, yet, in practice, they typically focus on 

algorithms and programming concepts and related practices as being one of the main knowledge 

areas of computing (Grover & Pea, 2013; Grover, Basu, & Schank, 2018; Turbak et al., 2014). 

This comprises the competency to develop algorithms to solve problems in a language that 

computers can understand including basic programming concepts such as control (e.g., loops and 

conditionals), modularity, variables, etc. (Figure 1). 

 

Figure 1: Core practices and sub-concepts related to the core concept algorithms & programming concepts (CSTA, 2016). 

Variables refer to storing and manipulating data from computer programs. Control concepts 

specify the order in which instructions are executed within an algorithm or program (e.g., using 

loops and/or conditionals). Modularity involves dividing complex tasks into simpler tasks and 

combining them to create something complex. Program development represents the software 

engineering process that is repeated until acceptance criteria are met. In addition, several core 

practices are related to algorithms & programming as presented in Figure 1. 

In order to introduce programming in K-12, typically visual block-based environments are 

used. These environments allow to choose and drag-and-drop commands providing visual cues to 

         

       

          

                   

          

                        

                          

                             
                      

                         
            

                         
         

                         
                       

            
                         
         

                           
                 

                        
         

 
 
 
 
 
  
  
 
 
 
  
  
  
 
  
 



Alves et al.                                                                                                                                          RBIE v.29 – 2021 

 

1379 

 

the user as to how and where commands may be used reducing the cognitive load for novices 

(Papadakis et al., 2017; Weintrop, 2019). A prominent example is App Inventor 

(appinventor.mit.edu), an online platform for the development of mobile applications for Android 

devices. It is used by a wide range of people of all ages and backgrounds with more than 1 million 

unique monthly active users from 195 countries who created almost 35 million mobile apps as of 

January 2021. App Inventor projects can be shared via the App Inventor Gallery (MIT, 2020) 

under the creative commons license. App Inventor is also widely used to teach computing through 

the development of mobile applications (Wolber, Abelson, & Friedman, 2014) adopting diverse 

instructional strategies, ranging from well-defined interactive tutorials to open-ended ill-

structured activities in a constructivist context following a problem-based learning approach 

(Patton, Tissenbaum, & Harunani, 2019). These typically aim at teaching students to create their 

mobile applications to solve real-world issues applying a computational action strategy to make 

computing education more inclusive, motivating, and empowering for young learners (Fee & 

Holland-Minkley, 2010; Tissenbaum, Sheldon, & Abelson, 2019). More and more also adaptive 

learning systems are being adopted (Khosravi, Sadiq, & Gasevic, 2020) providing personalized 

instruction and feedback tailored to the needs of individual learners. 

Yet, learning to program is a highly complex process and novices struggle with a wide range 

of difficulties (Bennedsen & Caspersen, 2007; 2019). It involves diverse cognitive activities and 

mental representations concerning the analysis of requirements, design, program understanding, 

modifying and debugging, as well as the construction of conceptual knowledge on basic 

operations (such as loops, conditional statements, etc.) (Rogalski & Samurçay, 1990). Learning 

programming can be considered an exploratory process in which software artifacts are created 

through an incremental problem-solving process using multiple competencies, i.e., computational 

concepts, practices, and perspectives (Brennan & Resnick, 2012; Pea & Kurland, 1984; (Resnick 

et al., 2009). 

Thus, in order to be effective, instructional units aimed at teaching programming need to be 

systematically designed taking into consideration not only the content to be taught but also the 

sequencing of instruction and the idiosyncrasies of programming environments. This becomes 

even more important, when there are many types of environments, text-based as well as block-

based, which may have different features of cognitive dimensions. Each environment has a strong 

relationship among its components in such a way that the notation typically cannot be used outside 

the environment (Green, 1989). As the order and organization of learning activities affect the way 

information is processed and retained (Patten, Chao, & Reigeluth, 1986), it is important to 

sequence the content in a way it can be most easily grasped by the student using a particular 

programming environment (Bruner, 1966) to improve the learners’ understanding and to help 

them to achieve the objectives (Morrison, Ross, & Kemp, 2010). If inadequately sequenced, a 

learner may be overloaded, which can negatively affect learning, performance, and motivation 

(Sweller, van Merrienboer, & Paas, 1998). How content is sequenced is determined by the 

developmental level and current comprehension of the student, the instructional method, and the 

evolutionary structure of the knowledge on the given subject (Dede, 1986). There are many 

different ways to sequence content elements (Vainas et al., 2019), as, for example, by adopting a 

simple to complex sequence strategy according to the main types of knowledge structure 

(Reigeluth, 1999). 

Thus, finding an optimal learning sequence is difficult, especially for different programming 

environments used to teach algorithms and programming concepts. Therefore, it is important to 

investigate the factors that lead to students learning difficulty in programming. Several studies 

already examine the learning of specific concepts when developing apps with App Inventor, 

including procedural abstraction concepts (Turbak & Mustafaraj, 2017), events (Turbak et al., 

2014), programmatic sophistication (Xie, Shabir, & Abelson, 2015), effectiveness (Park & Shin, 
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2019), or appropriateness (Papadakis et al., 2017) of App Inventor as an educational environment. 

Others study the learning progression of students in computing courses in K-12, e.g., Xie and 

Abelson (Xie & Abelson, 2016), who analyze the relationship between the progression of skill in 

using App Inventor functionality and in using computational thinking concepts as learners create 

more apps. Other research aiming at investigating the difficulty of content in computing education 

analyzing how students learn to program is mostly related to higher education (Piech et al., 2012), 

other block-based languages, such as Scratch (Grover & Basu, 2017; Moreno-León, Robles, & 

Román-González, 2020; Rich et al., 2017; Rich et al., 2018; 2019; Seiter & Foreman, 2013), 

LaPlaya (Franklin et al., 2017), and SNAP! based environments (Lytle et al., 2019), object-

oriented programming (Krugel et al., 2020), etc. 

The assumption in many of these studies is that student progress can be understood through 

difficulties with specific programming constructs. Thus, the analysis of code created can provide 

insights concerning the ‘difficulty’ of learning certain concepts. Depending on the activities (well-

defined or ill-defined) the programming ability of a person can be influenced by the volition, 

incentive, and opportunity to apply computing concepts in a programming environment and those 

factors should be taken into account. 

An alternative is to regard those constructs as latent psychometric constructs and use Item 

Response Theory (IRT) (De Ayala, 2009) to obtain quantitative ‘difficulty’ estimates for each 

content element (De Ayala, 2009). IRT refers to a family of mathematical models that attempt to 

explain the relationship between latent traits (unobservable characteristics or attributes such as 

volition, incentive, and opportunity to apply computing concepts, including loop, conditional 

concepts, etc. in a programming project) and their manifestations (i.e., observed outcomes, 

performance such as using loop and conditional blocks in App Inventor projects). Typically 

applied for testing, IRT establishes a link between the properties of the items on an instrument, 

individuals responding to these items, and the underlying trait being measured. IRT assumes that 

the latent trait and items of a measure are organized in an unobservable continuum. Therefore, its 

main purpose focuses on establishing the individual’s position on that continuum. IRT is widely 

used for large-scale assessments (Carlson & van Davier, 2017), such as PISA 

(https://www.oecd.org/pisa/) or TOEFL (https://www.ets.org/toefl). 

Yet, it can also be used to obtain systematic information about the ‘difficulty’ of concepts 

and the distribution of the respective competencies among students. This can be done based on 

the code created by the students as an outcome of the learning process, regarding certain attributes 

of the code as manifestations of latent psychometric constructs according to the principles of IRT 

(Berges & Hubwieser, 2015; Kramer, Tobinski, & Brinda, 2016; Santos et al., 2020). The 

occurrence of certain concepts like loops or conditional statements can be considered as 

satisfiability on certain items (e.g., “the existence of loops”). Consequently, the probability of 

such satisfiability depending on the item ‘difficulty’, the estimated person abilities, and the 

volition, incentive, and opportunity to apply computing concepts, can be described by certain 

psychometric models, e.g., the Rasch or Graded Response Model. For example, Berges and 

Hubwieser (Berges & Hubwieser, 2015) used IRT for assessing coding abilities by analyzing the 

source code created as an outcome of the learning process in the context of a freshman course at 

university for text-based object-oriented programming. Similarly, Kramer et al. (Kramer, 

Tobinski, & Brinda, 2016) used IRT for assessing students' abilities in text-based object-oriented 

programming in an introductory programming course. Both studies focused on the Java 

programming language. 

Several studies analyze some aspects of algorithms and programming using block-based 

programming environments, including e.g., Xie and Abelson (2016) analyzing skill progression 

of students using App Inventor, or other works comparing different block-based programming 

environments, such as Scratch and App Inventor for example, with regard to their effectiveness 

https://www.oecd.org/pisa/
https://www.ets.org/toefl
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(Park and Shin, 2019) or such as Aivaloglou and Hermans (2016) focusing on Scratch as another 

popular block-based environment. Yet, so far, no research focusing on the analysis of the 

difficulty of concepts specifically concerning the block-based programming environment App 

Inventor considering also practical limitations, such as measurement errors, has been found. 

Therefore, aiming at understanding the difficulty related to different concepts, we performed an 

analysis of the ‘demonstrated difficulty’ in App Inventor projects as part of earlier research (Alves 

et al., 2021). We analyzed algorithms & programming items based on the CodeMaster rubric 

(Alves et al., 2020a; Gresse von Wangenheim et al., 2018) by extracting them automatically from 

the code of App Inventor projects and, adopting IRT, we obtained first results on the 

‘demonstrated difficulty’ of the concepts application and their distribution among the App 

Inventor projects (Alves et al., 2021). The objective of this article is to further detail this analysis 

and the interpretation of the results. In addition, we perform an analysis on the test information as 

well as aspects such as the standard error of measurement of the CodeMaster rubric (Alves et al., 

2020a; Gresse von Wangenheim et al., 2018). Thus, the research question is: how the 

‘demonstrated difficulty’ of algorithms & programming concepts is perceived in App Inventor 

projects? We also enhance the discussion of the results relating them to proposed curricular 

guidelines for computing education in K-12 and revising the adequacy of the proposed learning 

sequence based on the systematic data-based analysis. The results of this study can be used by 

instructional and curriculum designers in order to guide the sequencing of programming education 

in K-12. Furthermore, the results are also expected to guide further research regarding the 

development and evolution of the block-based programming environment App Inventor. 

2 Background 

In this section, we present the MIT App Inventor programming environment as well as its 

characteristics. We also present the mathematical definition and interpretation of the Graded 

Response Model of the Item Response Theory and the standard error of measurement and test 

information. 

2.1 App Inventor 

One of the most prominent block-based programming environments for computing education is 

App Inventor that allows creating mobile applications (MIT, 2020). It was originally provided by 

Google and it is currently run by the Massachusetts Institute of Technology. The current version 

2.0 of App Inventor runs on a web browser (Figure 2), replacing App Inventor Classic. App 

Inventor is used by a wide audience, from K-12 to higher education, including end-user developers 

who write programs to support their primary job or hobbies (Ko et al., 2011; Wolber, Abelson, & 

Friedman, 2014). 

A mobile app can be created in two stages with App Inventor. First, using the Designer 

Editor, user interface components, such as buttons, labels, etc. are configured (Figure 2). The 

designer also allows to specify non-visual components such as sensors, social, and media 

components that access mobile device features. The app's behavior is programmed in a second 

stage by connecting visual programming blocks in the Blocks Editor. Each block corresponds to 

abstract syntax tree nodes in traditional programming languages. 
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Figure 2: App Inventor Designer and Blocks Editor. 

Blocks can represent standard programming concepts like loops, procedures, conditionals, 

etc., or conditions, events, and actions for a particular component of the app or any component. 

App Inventor blocks are divided into two categories: built-in blocks and component blocks. Built-

in blocks are available for use in any app and refer to overall programming concepts. Component 

blocks include events, set and get, call methods, and component object blocks that are available 

for specific design components added to the app (Table 1). 

Table 1: Overview of App Inventor blocks. 

Type Category Description Examples 

Built-in 

block 

Control Blocks responsible for control commands including 

important blocks like loops, conditionals, and screen 

actions. 

controls_while 

controls_if 

controls_closeScreen 

Logic Blocks responsible for logic operations on variables 

including relational and Boolean. 

logic_compare 

logic_operation 

Math Blocks responsible for creating numbers and 

performing basic and advanced math operations. 

math_add 

math_cos 

Text Blocks responsible for creating and manipulating 

original strings. 

text 

text_length. 

Lists Blocks responsible for creating and manipulating 

original lists. 

lists_create_with 

lists_add_items 

Colors Blocks responsible for creating and manipulating 

colors. 

color_red 

color_blue 

Variables Blocks responsible for creating and manipulating 

original variables. 

global_declaration 

lexical_variable_set 

Procedures Blocks responsible for definition and call of original 

procedures. 

procedures_defnoreturn 

procedures_callnoreturn 

Component 

blocks 

Events Blocks responsible for specifying how a component 

responds to certain events, such as a button has been 

pressed. 

component_event 

Set and Get Blocks responsible for changing components' 

properties. 

component_set_get 

Call 

Methods 

Blocks responsible for calling component methods to 

perform complex tasks.  

component_method 

Component 

object 

Blocks responsible for getting the instance 

component. 

component_component_

block 

 

The source code files of the App Inventor project can be exported as AIA files. An AIA 

file is a compressed file collection that includes a project properties file, media files that the app 

uses, and two files are generated for each screen in the app: a BKY file and a SCM file (Figure 

3). The BKY file wraps an XML structure including all the blocks of programming used to define 

the behavior of the app, and the SCM file wraps a JSON structure that contains all the used visual 

components in the app (Mustafaraj, Turbak, & Svanberg, 2011). This AIA file can be 
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automatically assessed with the algorithms & programming rubric (Table 2) by the CodeMaster 

tool. 

 

Figure 3: AIA file structure. 

2.2 Item Response Theory – Graded Response Model 

Item Response Theory (IRT) is a powerful tool in the quantitative processes of educational 

assessment as it allows analyzing item properties using falsifiable models. There are many 

mathematical models and to choose the adequate model the number of item response categories 

must be taken into account. Typically, for polytomous items, such as the CodeMaster rubric with 

three or more performance levels, the Graded Response Model (GRM) proposed by Samejima 

(Samejima, 1969) is used. The GRM assumes that an item's response categories (denoted by k) 

are ordered among themselves and are arranged in order from smallest (1) to largest (m_i+ 1), 

where m_i+ 1 is the number of categories of the i-th item. Thus, the probability (P) of an individual 

j with the latent trait θ to satisfy the k-th category from item i is given by the expression: 

𝑃𝑖,𝑘(𝜃𝑗) = 𝑃𝑖,𝑘
+ (𝜃𝑗) − 𝑃𝑖,𝑘+1

+ (𝜃𝑗) 

In order to get the probability𝑃𝑖,𝑘
+ (𝜃𝑗) an expression from the 2-parameter logistic model 

can be used: 

𝑃𝑖,𝑘
+ (𝜃𝑗) =

1

1 + 𝑒−𝑎𝑖(𝜃𝑗−𝑏𝑖,𝑘)
 

Where: 

 𝑖 (item) = 1, 2, …, I 

 𝑘 (category) = 0, 1, …, m_i 

 𝑗 (individual) = 1, 2, …, n 

 𝜃𝑗  represents the latent trait of an individual j 

 𝑃𝑖,𝑘
+ (𝜃𝑗) is the probability of an individual 𝑗 with the latent trait 𝜃 to satisfy the k-th 

category or higher from item 𝑖 

 𝑎𝑖 represents the slope parameter of item i 

 𝑏𝑖,𝑘 is the position parameter of the k-th category from item i, measured on the same scale 

as the latent trait (θ) 
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From the definition as categories are arranged in order from smallest to largest, the b’s 

values representing the position parameter should be: 

𝑏𝑖,1 ≤ 𝑏𝑖,2 ≤. . . ≤ 𝑏𝑖,𝑚𝑖
 

Samejima (Samejima, 1969) also defined that 𝑃𝑖,0
+ (𝜃𝑗) — the threshold parameter for the 

lowest category, equals 1, and 𝑃𝑖,𝑚+1
+ (𝜃𝑗) — the probability of answering above the highest 

category, is zero: 

𝑃𝑖,0
+ (𝜃𝑗) = 1 

𝑃𝑖,𝑚+1
+ (𝜃𝑗) = 0 

As a result, the b parameters representing position can be interpreted as the threshold of 

passing from a lower to a higher performance level (Figure 4). 

 

Figure 4: Position parameters (b’s) for items with 4 adjacent difficulty performance levels (as in the CodeMaster rubric) (Alves 

et al., 2021). 

The position of items and their categories can be analyzed using the estimated values of b 

parameters on the same scale. Therefore, items that present b parameter values far below the 

average are considered “easy” as they result in a high probability of an average individual to 

satisfy the item’s category. Similarly, items that present high b parameters far above average are 

considered “difficult”, because of the low probability of an average individual to satisfy the item’s 

category. 

2.3 Standard error of measurement and test information 

A measure typically used with the ICC is the item's information function. The item's 

information function allows analyzing how much an item (or test) contains information for the 

latent trait measure. The information function of an item is given by: 

𝐼𝑖(𝜃)  =
[

𝑑
𝑑𝜃

𝑃𝑖(𝜃)]2

𝑃𝑖(𝜃)𝑄𝑖(𝜃)
 

Where, 

𝐼𝑖(𝜃) is the “information” provided by item i at latent trait level θ 

𝑃𝑖(𝜃) = 𝑃(𝑋𝑖𝑗 = 1|𝜃) and 𝑄𝑖(𝜃) = 1 − 𝑃𝑖(𝜃) 

The information provided by the test is the sum of the information provided by each test’s 

item: 

𝐼𝑖(𝜃) = ∑ 𝐼𝑖(𝜃)

𝐼

𝑖=1

  

Another way of representing the test information function is via the standard error of 

estimation: 

𝐸𝑃(𝜃) =
1

√𝐼(𝜃)
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The standard error of estimation is defined as how accurate is the measure of a and b 

parameters. In Classical Test Theory, the standard error does not differ. With Item Response 

Theory the standard error differs depending on the region of the scale, which depends on the 

amount of information there exists for each region of the scale. For example, on the one hand a 

test composed of difficult items is expected to be excellent for differentiating top students, but, 

on the other hand, for the lower half of students its performance on differentiating students will 

be poorer because they will be confused and lost. Following this idea, an easy test will not help 

to discriminate knowledgeable from less knowledgeable students. 

3 Research Methodology 

Adopting the Goal Question Metric approach (Basili, Caldiera, & Rombach, 1994), the objective 

of this study is defined as to detail the results of the ‘demonstrated difficulty’ of algorithms & 

programming concepts of App Inventor projects based on the CodeMaster rubric (Alves et al., 

2020a; 2021). Here the term ‘demonstrated difficulty’ is defined as the volition, incentive, and 

opportunity to apply programming concepts in an App Inventor project shared via App Inventor 

Gallery, on which no further background information on the authors is provided. 

 

 

Figure 5: Research methodology process. 

Adopting a case study design, in which we analyze 88K apps from the App Inventor Gallery, the 

research methodology includes the following steps (Figure 5). 

3.1 Definition of the research question and analysis questions  

The research question is defined as: How is the ‘demonstrated difficulty’ of algorithms & 

programming concepts perceived in App Inventor projects? 

From this research question the following analysis questions are derived: 

Analysis question 1. How is the ‘demonstrated difficulty’ of operators, variables, strings, 

naming, lists, data persistence, events, loops, conditional, synchronization, procedural abstraction, 

sensors, drawing and animation, maps, and screens perceived in App Inventor projects? 

Analysis question 2. What is the standard error and test information of the estimated 

‘demonstrated difficulty’? 
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3.2 Operationalization of the measurement 

In accordance with the analysis questions, data has been collected based on the source code of 

App Inventor projects using the CodeMaster rubric. The CodeMaster rubric has been developed 

based on a systematic mapping study (Alves, Gresse von Wangenheim, & Hauck, 2019) following 

an instructional design process (Branch, 2010) and the procedure for rubric definition proposed 

by Goodrich (1997). The rubric is based on the K-12 Computer Science Framework (CSTA, 2016) 

as well as other rubrics and frameworks, including (Brennan & Resnick, 2012; Grover, Basu, & 

Schank, 2018; Sherman & Martin, 2015).  

Table 2: CodeMaster rubric for assessing algorithms and programming based on the analysis of App Inventor projects (Alves et 

al., 2021). 

Criterion Performance Level (categories) 

 0 1 2 3 

1. Operators No operator blocks 

are used.  

Arithmetic operator 

blocks are used.  

Relational operator 

blocks are used.  

Boolean operator 

blocks are used. 

2. Variables No use of variables. Modification or use of 

predefined variables. 

Creation and 

operation with 

variables. 

-- 

3. Strings No use of strings.  Use of string block to 

change the text of 

design components. 

Creation and 

operation with strings. 

-- 

4. Naming Few or no names 

are changed from 

their defaults. 

10 to 25% of the 

names are changed 

from their defaults. 

26 to 75% of the 

names are changed 

from their defaults. 

More than 75% of the 

names are changed 

from their defaults. 

5. Lists No lists are used.  One single-

dimensional list is 

used. 

More than one single-

dimensional list is 

used. 

Lists of tuples are 

used. 

6. Data 

persistence 

Data is stored only 

in variables or UI 

component 

properties, and does 

not persist when the 

app is closed. 

Data is stored in files. Local database is 

used. 

Web database is used. 

7. Events No type of event 

handlers is used. 

One type of event 

handlers is used. 

Two or three types of 

event handlers are 

used. 

More than three types 

of event handlers are 

used. 

8. Loops No use of loops.

 Simple 

loops are used. 

‘For each’ loops with 

simple variables are 

used. 

’For each’ loops with 

list items are used. 

-- 

9. 

Conditional 

No use of 

conditionals. 

Uses ‘if’ structure. Uses one ‘if then else’ 

structure. 

Uses more than one 

‘if then else’ 

structure. 

10. 

Synchroniza

tion 

No use of timer for 

synchronization. 

Use of timer for 

synchronization. 

-- -- 

11. 

Procedural 

Abstraction 

No use of 

procedures. 

One procedure is 

defined and called. 

More than one 

procedure defined. 

There are procedures 

for code organization 

and re-use. 

12. Sensors No use of sensors. One type of sensor is 

used. 

Two types of sensors 

are used.  

More than two types 

of sensors are used. 

13. Drawing 

and 

Animation 

No use of drawing 

and animation 

components. 

Uses canvas 

component. 

Uses ball component. Uses image sprite 

component. 

14. Maps No use of city 

maps. 

Use of a city map 

block. 

Use of city map 

markers blocks. 

-- 

15. Screens Single screen with 

visual components, 

whose state is not 

Single screen with 

visual components, 

whose state is 

Three screens with 

visual components of 

which at least one is 

Four screens with 

visual components of 

which at least two are 
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changed 

programmatically. 

changed 

programmatically. 

programmed to 

change state. 

programmed to 

change state. 

 

The CodeMaster rubric for assessing algorithms and programming concepts is composed of 

15 items (Table 2), including general algorithms and programming concepts, as well as, mobile 

algorithms and programming concepts, such as sensors, screens, etc. For each item performance 

levels are defined on ordinal scales, ranging from “item is not (or minimally) present” to advanced 

usage of the item. Aiming at the automation of the assessment, the performance levels are defined 

for automatically measurable characteristics based on the code of App Inventor projects. The 

CodeMaster rubric is considered reliable (Cronbach’s alpha α=0.84) and there also exists 

indication of convergent validity based on the results of a correlation and factor analysis (Alves 

et al., 2020a) enabling a valid assessment of algorithm and programming concepts of App Inventor 

programs.  

 

Figure 6: Assessing projects with CodeMaster. 

Using publicly available and accessible projects from the App Inventor Gallery obtained 

in June 2018 containing the source-code from 88,864 App Inventor projects, we automatically 

assessed these projects using the CodeMaster tool with respect to algorithms & programming 

concepts by extracting them from the source code through static code analysis. The analysis is 

done by counting the kind and the number of command blocks used in App Inventor projects with 

respect to algorithms and programming concepts as defined in the rubric (Figure 6). 

Out of the 88,864 projects, 88,812 were successfully assessed with the CodeMaster tool. 

52 projects failed to be analyzed due to technical difficulties. The collected data were pooled in a 

single sample to analyze the difficulty of the items.  

3.3 Data analysis and interpretation 

To analyze the item properties, we use the IRT Gradual Response Model proposed by Samejima 

(Samejima, 1969) as presented in Section 2. This analysis is done by estimating the 

correspondence between an unobserved latent trait (the volition, incentive, and opportunity to 
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apply computing concepts), and observable evidence (the assessed App Inventor projects). The 

dataset was analyzed using the mirt package from the R programming language (Chalmers, 2012). 

In order to use the unidimensional GRM, it is necessary to assure that the instrument can 

be analyzed by a single predominant dimension. Therefore, we performed a parallel analysis with 

scree plot and full information factor analysis beforehand for verifying unidimensionality (Figure 

7) (Alves et al., 2020a). Wwe used parallel analysis, which assumes that every dimension above 

the red line can be considered a relevant dimension. Thus, the results suggest that the instrument 

may contain three dimensions (Figure 7). However, there is a predominant dimension, indicating 

that the instrument can be analyzed by a single predominant dimension (Alves et al., 2020a). 

When performing the full information factor analysis (Alves et al., 2020a), we also observed that 

when considering a single dimension, all factor loadings were greater than 0.3, which indicates 

that the items are related to this predominant dimension, except by the item “Maps” which 

presented a 0.262 factor loading (Alves et al., 2020a). This can be explained by the fact that maps 

are a feature that has been added to App Inventor several years later, and, thus, may be 

underrepresented in our dataset. Despite the factor loading of this item being slightly less than 0.3 

we decided to keep it in the analysis as this item (Alves et al., 2020a). In addition, we calculated 

the test variance. For acceptable calibration, the first dimension should account for at least 20% 

of the test variance (Reckase, 1979). We obtained a variance explained by the first-dimension of 

53% characterizing the strong unidimensionality of the instrument as required by the IRT model 

used in this study. 

 

Figure 7: Parallel analysis (Alves et al., 2020a). 

In IRT, a and b parameters can theoretically assume any real value between −∞ and +∞. 

However, a negative value for a parameter is not expected. Typically values above 1.0 are 

considered good, as they indicate that the item discriminates well from learners with different 

abilities. In this study, b parameters are the main indicators to be analyzed, as they indicate the 

position of the item. For b parameters, values close to or within the range [-5, 5] are expected, 

with negative values indicating that an item is positioned below average and positive values 

indicating above average. 

4 Analysis 

In order to detail the properties of the items in the CodeMaster rubric, we use the Gradual 

Response Model (GRM) (Samejima, 1969) to estimate the slope (a) parameter and position (b’s) 

parameters for each item. The metric is established by setting population parameters to average = 

0 and standard deviation = 1. 



Alves et al.                                                                                                                                          RBIE v.29 – 2021 

 

1389 

 

4.1 Parameters estimation 

Since the CodeMaster rubric contains polytomous items, several b parameters are estimated (b2, 

b3, and b4) to differentiate the passage from one score to another. In this regard, b2 represents the 

difficulty of achieving score 1 on any item, b3 represents the difficulty of achieving score 2 on 

any item, and b4 represents the difficulty of achieving score 3 on any item. Consequently, items 

on a 2-point ordinal scale (without a description for category 3) also do not present a parameter 

b4 (e.g., item variables).  

Table 3: CodeMaster rubric for assessing algorithms and programming based on the analysis of App Inventor projects (Alves et 

al., 2021). 

Item (i) a (SE) b2 (SE) b3 (SE) b4 (SE) 

1. Operators 3.08 (0.02) -0.06 (0.01) 0.21 (0.01) 0.47 (0.01) 

2. Variables 2.97 (0.02) -0.83 (0.01) -0.01 (0.01) n.a. 

3. Strings 1.66 (0.01) -0.57 (0.01) 0.94 (0.01) n.a. 

4. Naming 1.68 (0.01) -0.31 (0.01) 0.07 (0.01) 1.89 (0.01) 

5. Lists 1.24 (0.01) 1.49 (0.01) 2.00 (0.02) 5.20 (0.07) 

6. Data persistence 1.57 (0.02) 1.82 (0.02) 1.90 (0.02) 3.36 (0.04) 

7. Events 2.88 (0.02) -1.65 (0.01) -0.90 (0.01) -0.47 (0.01) 

8. Loops 1.77 (0.03) 2.14 (0.02) 2.29 (0.02) 2.57 (0.03) 

9. Conditional 2.32 (0.02) 0.34 (0.01) 0.80 (0.01) 1.57 (0.01) 

10. Synchronization 2.81 (0.03) 0.89 (0.01) n.a. n.a. 

11. Procedural Abstraction 3.18 (0.03) 0.99 (0.01) 1.08 (0.01) 1.19 (0.01) 

12. Sensors 1.53 (0.01) 0.64 (0.01) 2.77 (0.02) 4.39 (0.05) 

13. Drawing and Animation 1.32 (0.01) 0.82 (0.01) 1.25 (0.01) 1.45 (0.01) 

14. Maps 0.65 (0.14) 11.36 (2.41) n.a. 12.46 (2.66) 

15. Screens 1.19 (0.01) -2.53 (0.02) 0.89 (0.01) 1.10 (0.01) 

 

In general, most items were well estimated, with slope (a) parameter values above 1 (Table 

3). In addition, the values of the position parameters (b2, b3, and b4) are within the range [-5, 5]. 

Only the item lists and maps presented parameter b4 values above 5. Standard errors (SE) of each 

b parameter present similar results and are in low magnitude, therefore, presenting no estimation 

problem, with exception of the item maps, which presents standard errors in an order of magnitude 

higher than the standard errors of the parameters of all items. The reason may be that in our dataset 

map blocks are very rarely used (about 0,1% of the projects) as they had been added more recently 

to the App Inventor environment. Thus, the parameters of item maps cannot be used for the 

interpretation of positioning. 

Analyzing the results, it can be inferred that the easiest category to satisfy is the first 

category of item 15 (screens), as it presents the smallest b parameter (b2 = -2.53). On the other 

hand, obtaining three points for the item lists is more difficult than any other item as it presents 

the highest value for a b parameter (b4 = 5.20). And, although item 14 (maps) presents high b 

parameters, this item is not considered here as it presents an estimation problem with standard 

errors in an order of magnitude higher than all other items’ standard error. 

4.2 Placement of items on a scale 

Based on the estimated b parameters (b2, b3, and b4) presented in Table 3 the items are placed on 

a wright map with a (0.1) scale, i.e., with average = 0 and standard deviation = 1 (Figure 8). The 

scale is an “arbitrary” scale, where the relations of order and positions between its points are most 

important and not necessarily its magnitude. The wright map provides a general picture by placing 

the positioning of demonstrated difficulty of the items on the same measurement scale as the 

abilities with respect to algorithms and programming concepts based on assessed App Inventor 

projects used as observable evidence. The left side shows the distribution of the measured ability 
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in App Inventor projects from the most able ones at the top to the least able ones at the bottom. 

The right side shows items distributed from the most difficult ones at the top to the least difficult 

ones at the bottom (Figure 8). 

 

 

Figure 8: Wright map of the algorithms and programming items in App Inventor projects (Alves et al., 2021). 

4.2.1 Easy items 

From the placement of items on the scale, we can infer that an item with a b parameter estimated 

at 1.5 is 1.5 standard deviations above the average ability. Thus, such an item is more difficult 

than all items that are placed below point 1.5 on the scale. In the context of programming with 

App Inventor, among the easiest items are item 7 (events) and item 15 (screens) (Figure 8), as 

these items have negative b parameters far below zero. These results are semantically consistent, 

as App Inventor encourages unlimited use of events and creating screens that change 

programmatically as an essential functionality of a minimal useful mobile app (Figure 9) (Turbak 

et al., 2014). 

 

Figure 9: Screens and button events used in App Inventor. 
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4.2.2 Difficult items 

The most difficult items include lists, data persistence, loops, and sensors (items 5, 6, 8, and 12 

respectively). For example, achieving the 3rd category with respect to lists has the highest 

demonstrated difficulty parameter (b4), being the most difficult to achieve among all items. Item 

maps parameters are not presented because the values are out of range of the wright map [-2.5, 

5.5] and are not considered here. 

 

Figure 10: Lists, data persistence, loops, and sensors in App Inventor. 

Although the loops item is also considered difficult, it is noteworthy that loop blocks in App 

Inventor programs are rarely used (Figure 10), because many iterative processes that would be 

expressed with loops in other programming languages are expressed as an event that performs a 

single step of the iteration every time it is triggered (Turbak et al., 2014; Xie & Abelson, 2016). 

Thus, the demonstrated difficulty of loops may be poorly represented in the App Inventor dataset, 

as more than 94% of apps are assessed with 0 points regarding loops (see Figure 11). In other 

visual programming environments, such as Scratch, the usage of this concept and consequently 

the demonstrated difficulty may be different. 

 

Figure 11: Frequency of the performance level score for each item (Alves et al., 2021). 
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4.3 Item Characteristic Curves 

According to the estimated b parameters, the Item Characteristic Curves (ICC) for each item are 

plotted (Figure 12). While the theoretical range of a latent trait is from negative infinity to positive 

infinitive, for practical considerations the range of values can be limited from -4 (low) to +4 (high) 

on the x-axis. Thus, items with low demonstrated difficulty are placed closer to low latent trait 

values and high demonstrated difficulty items are placed closer to the high latent trait. Therefore, 

items that have high b parameters, which indicate high demonstrated difficulty, such as items 5 

(lists), 6 (data persistence), 8 (loops), and 12 (sensors) present the curves dislocated to the right 

(Figure 12). In the same way, items with low demonstrated difficulty, such as items 7 (events) 

and 15 (screens) present curves dislocated to the left. Although item 14 (maps) presented the 

highest difficulty parameters (Table 3), and the “curve” is hidden above latent trait 4.0, these 

parameters presented standard errors in a high order of magnitude (Table 3). Consequently, the 

ICC for maps cannot be used for difficulty interpretation purposes. 

Items with only three performance levels, such as item 2 (variables), 3 (strings), and 14 

(maps) have fewer curves than the other items (Figure 12). This is due to the impossibility of 

satisfying a fourth category as no such performance level has been defined for these items (see 

Table 2). This also applies to items with two performance levels, such as item 10 

(synchronization). 

 

Figure 12: Item Characteristic Curves for each item (Alves et al., 2021). 

The P0 curve refers to the probability of satisfying category zero (or achieving score 0) for 

any item given the latent trait in the x-axis (Figure 12). Similarly, the P1, P2, and P3 curves refer 

to the probability of achieving scores 1, 2, and 3 respectively given the latent trait in the x-axis 

(Figure 12). Thus, the P0 is close to 1.0 for low latent trait values, as projects assessed with a 

“low” latent trait (the volition, incentive, and opportunity to apply computing concepts) have a 

probability close to 100% of achieving score 0. For example, presenting a latent trait less than -

1.0 results in a bigger probability of achieving score 0 in item 3 (strings) than score 1. On the 

other hand, P0 is close to 0 for high latent trait values, as projects assessed with a “high” latent 
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trait have a probability close to 0% of achieving score 0. For example, presenting a latent trait 

greater than the average (0.0) results in having a bigger probability in P1 for item 3 (strings), 

which is related to achieving score 1, than in P0, which is related to achieving score 0 for the same 

item (Figure 12). 

Some items' curves are more attached than others, for example, the curves of item 2 

(variables) are more attached than the curves of item 3 (strings) (Figure 12). This occurs because 

b parameters of variables are less distant than b parameters of strings, as the distance between b2 

and b3, i.e., b3 - b2, of the item variables is 0.82, while their distance for the item strings is 1.51 

(Table 3). This means that is easier to progress from “modifying or using predefined variables” to 

“creating and operating with variables”, than progressing from “using string block to change the 

text of design component” to “creating and operating with strings”, as defined in the CodeMaster 

rubric (Table 2). This is expected as operating with variables is easier than operating with strings, 

as strings can be broken apart to make new strings, or put together and make longer strings 

(LEGO, 2018). Similarly, this can also be observed regarding item 1 (operators) and 11 (sensors). 

4.4 Standard error of measurement and test information 

In order to analyze standard error and test information of the CodeMaster rubric, we used 

the function testinfo from the mirt package from the R programming language (Chalmers, 2012). 

We considered all 15 items in the CodeMaster rubric and used a practical range of [-4, 4] on the 

x-axis (Figure 13). 

 

Figure 13: Test Information Curve and Standard Error. 

The test information curve is represented by the blue line, while the pink line represents 

the curve of the standard error (Figure 13). At the extremes of the θ (latent trait) levels, the test 

produces more information error than legitimate information, because the error curve exceeds the 

information curve. Below -2.0 and above +3.0 the error curve surpasses the information curve for 

the CodeMaster rubric (Figure 13). Thus, items that have b parameters estimated at latent trait 

levels out of the range [-2.0, 3.0] require careful analysis as they may not have real use considering 

that there may be a measurement error. This is reasonable and may be due to a lesser use of certain 

items (e.g., lists) not being required in particular App Inventor projects, resulting in fewer data 

for items considered difficult.  

In general, the CodeMaster rubric covers easy, medium and more difficult items with low 

standard error of measurement. The test information is not symmetric and it is dislocated to the 
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right - to the medium-difficult items (latent trait above 0.0). This is expected as most items have 

b parameters estimated above 0.0 (Table 3). 

5 Discussion 

These results of the analysis provide an insight into the degree of demonstrated difficulty 

concerning algorithms and programming in the context of the development of apps with App 

Inventor (Figure 14).  

 

Figure 14: Demonstrated difficulty level for each item in App Inventor projects. 

Variables, strings, naming, events, and screens (items 2, 3, 4, 7, and 15 respectively) are 

the easiest concepts when programming with App Inventor, as all probabilities curves are 

dislocated to the left (Figure 12). Items with medium demonstrated difficulty include operators, 

conditional, synchronization, procedural abstraction, and drawing and animation (item 1, 9, 10, 

11, and 13 respectively) as the probability curves are close to the average (0.0) latent trait. The 

most difficult items are lists, data persistence, loops, and sensors (item 5, 6, 8, and 12 respectively) 

as the probability curves are dislocated to the right (Figure 12). This also confirms results 

presented by Xie and Abelson (2016) indicating, for example, that apps that require data 

persistence (e.g., databases) represent more advanced artifacts. Some of the items with estimated 

high difficulty may be influenced by its infrequent use in App Inventor projects, e.g., loops rather 

than indicating the difficulty of understanding loops in general, and may be different when using 

other visual programming environments. 

These results can be used as a systematic basis supported by data for the sequencing of 

computing instruction in K-12 when teaching the development of apps with App Inventor. Rather 

than proposing such expected learning progression based on the opinions of stakeholders, the 

results of our analysis provide an evidence-based approach based on data from practice. Based on 

the results of the scale placement (Figure 8) and the detailed demonstrated difficulty ICC (Figure 

12), teaching algorithms and programming concepts with App Inventor should thus start with the 

creation of screens and events as well as the usage of strings, and variables and naming. Then on 

the next stage, the instructional design could cover operators and conditionals as well as 

synchronization and procedural abstraction, while only more advanced students should be 

presented with problems requiring lists, data persistence, and sensors, allowing them to follow a 

smooth pathway as they progress toward mastery of the skills with scaffolding support. 

The results can also be used to analyze the sequencing of the content proposed by 

frameworks, guidelines, etc. In this context, we analyzed the appropriateness of curricular 

guidelines proposed by the SBC (2018) as well as the K-12 Computer Science Framework from 

the CSTA (2016; 2017) regarding the sequencing of the learning objects proposed for K-12 (Alves 

et al., 2019; Alves et al., 2020b). The results demonstrate that the difficulty of some concepts can 

be explained by their particular characteristics, but may also be due to the characteristics of App 
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Inventor as a programming tool. Although the analysis demonstrates the alignment of the content 

sequencing of some items with their respective difficulty, we also observed that some concepts 

related to algorithms and programming are not explicitly covered by the CSTA framework (2016; 

2017) nor the SBC guidelines (2018). The CSTA framework (2017) presents a sequencing more 

aligned to the proficiency scale created according to the estimation of the content's difficulty. 

Different from the SBC guidelines, the CSTA framework (2016; 2017) proposes teaching items 

considered easier, such as variables and strings, before more difficult items, such as abstraction. 

Items considered complex, such as lists, are covered only in the final years of elementary school 

or in high school and not in the initial years of elementary school as proposed by SBC (2018). 

In this respect, the findings of this study provide a systematic basis for the review of 

curriculum guidelines in order to adjust the sequencing and placement of concepts in accordance 

to their observed difficulty in order to provide a better support for the student’s learning progress. 

The results can also be used in order to guide the development and evolution of the block-based 

programming environment as well as instructional units, improving support and guidance 

provided specifically for concepts observed as more difficult.  

5.1 Threats to validity 

Our study is subject to several threats to validity which have been handled in order to be 

minimized. One risk is related to grouping data as App Inventor projects come from various 

contexts in the worldwide App Inventor community, and no additional information about the 

creator history is available in the App Inventor Gallery. Another factor that may influence the 

usage of commands may be the tutorials and instructional units typically used as well as a 

considerable number of very simple App Inventor projects at the App Inventor Gallery. However, 

as typically App Inventor is used by novices and/or in the context of computing education in K-

12, we consider this acceptable considering the large-scale sample. Another threat regarding the 

possibility of generalizing the results is related to the sample size and projects from only one 

repository. Yet, this risk is minimized by using a significant number of apps (over 88,000) from 

the repository for App Inventor projects used by contributors from around the world. 

Another risk is that the analysis based on the created code does not only assess whether a 

learner is able to achieve a certain item of the rubric, but also whether the learner is willing to do 

so. Therefore, we also restrict the interpretation of the “difficulty” of items in this study to the 

“demonstrated difficulty” defined as the volition, incentive, and opportunity to apply 

programming concepts in an App Inventor project shared via App Inventor Gallery. For 

measurement we used the CodeMaster rubric that was systematically defined and validated using 

Classical Test Theory with results reported in Alves et al. (2020a), indicating the reliability and 

validity of the rubric for the assessment of algorithm and programming concepts of App Inventor 

projects. Automating the assessment of the App Inventor projects with the CodeMaster tool 

further reduced the risks of reliability issues which may have been caused through manual 

assessment. In order to mitigate threats concerning the research methodology, we adopted the 

GQM approach for measurement (Basili, Caldiera, & Rombach, 1994) and selected appropriate 

statistical techniques for the analysis (De Ayala, 2009), performing also necessary tests with 

respect to the characteristics of the dataset to assure their adequacy. 

6 Conclusions 

In this article we presented the results of an analysis of the demonstrated difficulty of general 

mobile algorithms and programming concepts based on App Inventor projects. Considering the 

difficulty of items, we identified that events and variables are the easiest items when programming 



Alves et al.                                                                                                                                          RBIE v.29 – 2021 

 

1396 

 

with App Inventor, while the most difficult items are loops, data persistence, and lists. Overall, 

App Inventor has proven effective for teaching development of mobile applications. However, 

several studies also indicate that good visual design is also important. Thus, besides teaching only 

algorithms and programming, concepts related to visual design can help students to create mobile 

applications in line with style guide guidelines (Solecki et al., 2020a; Ferreira et al., 2020). 

Comparing these results on algorithms and programming to analyses based on other block-

based languages, e.g., Scratch (Aivaloglou & Hermans, 2016), we can observe that the difficulty 

of achieving performance levels of certain items may depend on the specific programming 

language, and, thus, the programming environment to be adopted has to be explicitly considered 

in the instructional design of computing education. For example, there exists an expressive 

difference concerning loops in Scratch and App inventor, as many iterative processes that are 

expressed through loops in Scratch are represented using event blocks in App Inventor. In 

addition, the limitation of the use of App Inventor threads discourages frequent use of loops, as 

they may crash the application (Turbak et al., 2014). Consequently, loops may be easier to be 

taught using Scratch. 

The results of this analysis can be used to systematically discuss and improve the 

sequencing of instructional units for teaching algorithms and programming with App Inventor by 

adopting scaffolding techniques in future works. The findings can also support the decision on the 

selection of block-based programming environments as part of the instructional units depending 

on the intended learning objects.  

Furthermore, our results indicate improvement opportunities of existing curriculum 

guidelines. For example, some concepts related to algorithms and programming are not explicitly 

included in the SBC guidelines for K-12 computing education or are positioned too early, e.g., 

lists, being considered one of the most difficult items. Thus, adjusting curriculum guidelines 

accordingly may facilitate the student’s learning progress as well as improve the learning 

outcomes contributing positively to the popularization of computing knowledge in K-12.  

As future work we also plan to extend the analysis of the difficulty of learning to other 

knowledge areas and skills, including, for example, the learning of GUI design or Software 

Engineering concepts when developing mobile applications with App Inventor as well as soft 

skills such as creativity. In addition, similar studies using IRT can also be conducted with regard 

to other visual programming environments, such as Scratch and Snap!, enabling also a comparison 

of the demonstrated difficulty of concepts among different block-based environments. 
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