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Abstract 
Computational systems based on ubiquitous and pervasive technology present several challenges related to the 

interaction of people with scenarios constituted by sensors and actuators, changing the mindset of what we used to 

understand as interaction with a computer. This also has influence in the ways of considering the design of systems 

based on contemporary technology for the educational context. To cope with the challenges of ubiquitous computing, 

the concept of socioenactive system is being constructed as a system in which human and technological aspects are 

coupled together in a cycle of perceptually guided actions of people interacting with elements of the physical 

environment and with other people in the same scenario. In this work we address the design of a socioenactive system 

as an evolution of two previous systems designed and experimented with 5-year-old children in an educational 

context. The contribution of this paper is twofold: 1. We present an analysis of two different systems tested in 

educational scenarios, pointing out the lack of elements that should be present in a complete cycle of socioenactive 

systems, suggesting requirements for a third system; 2. We present an architecture for the third system and a 

simulation of its usage. Results of the third system and its simulation inform the next activities of bringing it to real 

life in a practice proposed for the same audience and context as the previous systems.  
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1. Introduction 

Ubiquitous computing involves the design of systems with sets of sensors and pervasive devices 

that consider adaptability in everyday tasks and invisibility, such as wearables with informational 

devices or sensors that help to inform something about the environment or the user (Weiser, 1999). 

This type of technology is also used in the construction of an enactive system, recursive by nature, 

that involves the feedback loop in which technology has impact on the human agent as well as 

receives the effect of the human experience on the system, as the system adaptability and behavior 

changes (Kaipainen et al., 2011). This relationship that transforms the system through people’s 

actions coupled to the system usually should consider not only the individual aspects of this 

coupling, but the social aspects as well.  

From this requirement, the concept of socioenactive systems (Baranauskas, 2015) emerges 

drawing on the ubiquitous computing paradigms added to the enactivism approach to cognition 

(Rodriguéz et al., 2014; Varela et al., 1992; Maturana & Varela, 1992; Kaipainen et al., 2011), 

considering the aspects of actions and social behavior altogether (Baranauskas, 2015; Caceffo et 

al., 2019; Valente et al., 2020; Valente et al., 2021; Baranauskas et al., 2021). In the socioenactive 

view, more than one system is affected by a social group who in turn have their behavior affected 

by the systems.  

Some challenges present in socioenactive systems are in the construction of an open system, 

which can be changed dynamically based on the user's behavior and the construction of a database. 

Brochado and Carvalho (2021) argue that active methodologies combine the concepts of 

educational theories with the need to renew the subject, objects and teaching environments 

(Brochado & Carvalho, 2021), highlighting learning through problems and learning through 

teams. These concepts are present in socioenactive systems and can serve as educational tools that 

work through human actions and social experiences (Valente et al., 2021). 

The socioenactive systems presented in the literature still lack some features of enactive 

design such as the dynamic evolution of the system at runtime and the influence of users directly 

through data such as physiological readings or tracking and identification of behavior, emotions, 

among other features tracked from users. These features are important to ensure an experience 

based on the human dimension that considers social behavior promoting learning through actions 

in a dynamic way through pattern recognition and computational intelligence. According to 

Gimenez and Merino the knowledge acquired “doing” in enactive systems is more motivating and 

fun than traditional learning methods and is retained during more time (Jiménez & Merino, 2017).  

This research is part of a larger project that aims at designing socioenactive systems 

(Baranauskas, 2015). In this work, two workshops within an educational scenario are analyzed, 

as instances of socioenactive systems, according to the concept proposition. From the design of 

these two workshops, this work presents a proposal to build a next scenario that evolves the results 

obtained so far and meets the characteristics of a complete cycle of a socioenactive system. This 

cycle considers that people's interactions change the system that integrates the effects of their 

actions into its processing. Likewise, the behavior of the system enables changes in people's 

actions, creating an organic environment and fostering social interactions.  

The socioenactive system S1 (Valente et al., 2020) is part of a robot-based workshop that 

instantiates a proposal for a socioenactive system; in the scenario of S1children, based on the 

"Little Red Riding Hood" adapted narrative, had to interact among themselves and coordinate 

their actions to help a robot to find a goal spot in the environment. They wore boots that were 
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used to interact with the robot, a customized mBot1, developed based on the co-design 

methodology (Baranauskas et al., 2013). The study with the children was conducted using the 

action-research method, implemented in a school setting with kindergarten students. The 

workshop results show that this activity was able to engage children and demonstrate how they 

behaved as a group to solve a particular task in a socioenative environment. 

A second socioenactive system, S2, designed to identify factors and system elements that lead 

to a socioenactive environment, was instantiated through a practical workshop (Caceffo et al., 

2019). This system was based on the definition of a behavior ontology matrix that supports the 

generation of real-time feedback. This workshop also uses the mBot and a wide range of sensors 

in order to detect and track participants’ behavior.  

The previously developed systems (S1 and S2), focused on specific aspects of the 

socioenactive model, such as those that enable interactions between participants and the use of 

pervasive technology. Nevertheless, they do not meet completely the requirements of a 

socioenactive system, mainly in relation to its system adaptability and the technologies involving 

biological inputs and the feedback based on user data, as responses based on user behaviors and 

actions at runtime. The expected contribution of this work is to fill this gap with the proposal of a 

Socioenative system that contemplates both sides of the enactive cycle, followed by simulations 

of the proposed architecture.  

The text is organized as follows: Section 2 presents the background and main concepts 

underlying this study; Section 3 presents the analysis of S1 and S2 to evolve into S3; Section 4 

presents the S3 and its simulations in order to validate the proposed architecture and discusses the 

preliminary results. The work ends with a conclusion and directions for future works in Section 

5. 

2. Background and Method   

The methodology used to build socioenative systems in educational environments is based on the 

Socioenactive Educational System (SEES) Framework, that draws on the socioenactive theory, 

learning theories, and experimentation to enable the design and development of socioenactive 

educational systems (Imamura et al., 2019). The framework representation is based on Peirce’s 

sign representation (the concepts of object, representamen and interpretant) and the three levels 

of systems (informal, formal and technical) (Stamper et al., 2000). To build systems based on the 

SEES framework, nine steps are suggested, as shown in Figure 1: 1-learning objective; 2-

pedagogical methodology/practice in a culture; 3-activity for target audience; 4-collective 

behavior; 5-enactive environment; 6-physical-virtual setting; 7-interactions; 8-multimedia 

content; 9-physical-virtual environment. The first three steps, learning objective, pedagogical 

methodology and activity, represent the informal system of the SEES. Most of the concerns are 

related to the general context of the educational system in its culture, beliefs and commitments. 

The solution should start at this level.  

Steps 4 to 6 represent the formal system of the SEES. They encompass the bureaucracy and 

norms of the infrastructure that will be provided to SEES. The questions related to those steps will 

address the process of knowledge construction among people and the theoretical aspects of socio-

enactivism in the system. The last steps, from 7 to 9, represent the technical system of the 

envisaged solution. They are concrete and tackle the prototyping design process and how it will 

 
1
 mBot is a STEAM education robot for beginners, that helps in teaching and learning robot programming. Retrieved 

from https://www.makeblock.com/mbot in 03/05/2021  

https://www.makeblock.com/mbot
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materialize the solution. In this paper, as we deal with the evolution of previously experimented 

systems, we inherit some of these steps from the two previous workshops and systems S1 and S2, 

to focus on the S3 system. 

 

Figure 1. SEES Framework (Imamura et al., 2019). At the three edges of the diagram, the object, the representamen and the 

interpretant of the semiotic triangle. Among them, the nine steps of the model. 

 

We can also look at the steps from the Peirce’s sign perspective. The steps that are related to 

the interpretant, object, and representamen can be grouped, as they have similarities. For example, 

Steps 1, 4, and 7 (interpretant edge) start a new system layer of each cycle, while Steps 2, 5, and 

8 (object edge) are the steps to consider information structure and how it can be turned into action; 

and, Steps 3, 6, and 9 (representamen edge) can use HCI evaluation and designing tools to raise 

more information about the materialized system in different levels (informal, formal and 

technical). 

Taking specifically the work related to the representamen (steps 3, 6 and 9), the categories 

that consider physical aspects can be added to an environment based on ubiquitous computing 

systems through physiological reading sensors that allow to consider human aspects in an 

involuntary way, guiding changes in the systems of the environment. Social systems usually use 

physiological reading sensors to indicate to the technological environment information such as 

people's affective state or behavioral variations due to interaction with the technological 

environment (Fortenbacher et al., 2017; Lugmayr & Bender, 2016).  

Regarding the enactive environment (step 5), Kaipainen et al. (2011) organized objectives 

that could be used to lead the development of enactive systems into guidelines, based on the 

definition of enactive systems, as follows: 

G1: Definition of a database or rule set to support the generation of behavior in real time;  
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G2: Definition of technologies supported by sensors to detect and track participants 

behavior;  

G3: Mapping between psycho-physiological dimensions of content; 

G4: An algorithm to manage the narrative montage in real time. 

The next section will present two scenarios based on socioenative design applied to the 

educational environment, from which we are evolving a new system. 

3. The Systems Developed for the Workshops Scenarios 

Based on enactivist concepts (Varela et al., 1992; Maturana & Varela, 1992) and enactive systems 

presented (Kaipainen et al., 2011), two socioenative systems were developed in the educational 

context (Caceffo et al., 2019; Valente et al., 2020), named here S1 and S2, respectively. 

3.1 Brief description of S1  

Figure 2 presents the relations among the elements of the S1 system. Wearing the boots (a), the 

children (b) managed to change the direction of the robot (c), based on the narrative of guiding 

the Wolf (robot customization) in grandma's laboratory (a target within the environment floor) 

(d). An algorithm and a laptop (hidden from the scenario) (e) control the robot’s behavior and the 

sound effects of the narrative. The researchers (f) had different roles: as facilitators in the relation 

of children with the scenario, as observers taking notes of the whole experience, and as managers 

of technological settings. The children’s teacher (g) provided support for their organization during 

the workshop (Valente et al., 2020). 

 
Figure 2. Elements and dynamics of system S1 used in the first workshop. 

 

The system S1 was used in the workshop, which was attended by 26 children between 4 and 

5 years old, besides their teachers, and the researchers. The activities were video-recorded and 

analyzed using the Grounded Theory methodology. The children’s behavior was categorized in 

terms of 4 categories: Awareness, Predictability, Collaboration, and Type of Interaction. This 
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workshop had important results reinforcing how systems with these characteristics promote group 

work and learning (Valente et al., 2020). 

3.2 Brief description of S2  

The S2 system was built aiming to evolve S1 to include an ontology matrix capable of feedbacking 

the computational system, based on the socioenactive concepts. Figure 3 presents the 

socioenactive elements of S2 that composed the scenario: a robot (a); a “telepathic” box (b) for 

entering a facial expression of a child (c) which would be communicated to the robot; cards 

embedded with RFID tags, for children to choose what they guess about the emotion the child 

expressed in the telepathic box (d). Additionally, the computational system (e) based on an 

ontology matrix (f), was responsible for feedbacking the system. The researcher (g) in a Wizard 

of Oz style, decided which action the robot would make based on the child’s expression and in 

the ontology matrix.  

A group of 25 children, aged 4 to 5 years old participated in the workshop (Caceffo et al., 

2019). The ontology matrix informs the probability of the expressed action to be interpreted by 

the children, as an ontological solution to represent knowledge about the emotional expressions 

and a set of behaviors that can be performed by the robot. The system was designed to shape the 

robots’ behavior according to feedback from children’s responses in iterative sessions. This entails 

a complete cycle, where the robot impacts the children and is affected by their experiences. 

 
Figure 3. Elements and dynamic of system S2 used in the second workshop. 

From a given input, the system analyzes the behavior matrix, processes the data, and 

provides the appropriate output. Although it presents important results in terms of answering how 

to integrate ontologies in socioenactive scenarios and the integration of dynamics with real time 

feedback, S1 and S2 still fail to represent some features of enativism, which led to the proposal 

of S3. 
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3.3 Analyzing S1 and S2 under the Socioenactive Dimensions  

As explained in section 1, the socioenactive systems S1 and S2 focus on specific aspects of the 

socioenactive model, whose dimensions are indicated below. Each dimension is composed of a 

set of requirements, marked in italic in the text. 

● Autonomy: a socioentactive system must be able to be redefinable by the stakeholders; 

i.e., each part involved (users and system designers) can set up and adjust parameters and 

other variables that change how the system works. Another requirement is that the 

socioenactive system must be able to evolve by itself; i.e., somehow its behavior/internal 

programming can be affected by the environment, which in response would also affect the 

environment, leading to a process called the socioenative feedback cycle. 

● Coupling: the coupling concept in a socioenative system relates to how the input sensors 

and data are organized and how it affects the system. A requirement is that the system 

must have multiple input ways, i.e., in order to correctly understand the environment that 

surrounds the system, it needs a set of sensors to retrieve the appropriate data. 

Additionally, the system must support physiological human input, i.e., be able to 

automatically read data from the system’s users (e.g., through EMG, ECG or EEG sensors, 

etc.). In a similar way, the system must support environmental data input, i.e., be able to 

retrieve data from the surroundings (e.g., sounds, luminosity, proximity of objects, etc.). 

In either case, a requirement is that the system’s inputs and outputs are coupled; i.e., that 

the input data affects what and how the output data will be perceived.  

● Embodiment: this dimension relates to the embodied interaction; i.e., the approach in 

which the users rely on gestures, motion or other ways of embodiment expression to 

support their communication with the system. 

● Social: the social element is a key concept in a socioenactive system. A requirement within 

this dimension relates to the social interaction among participants, in which they talk, 

discuss, collaborate and cooperate when using the socioenactive system. In an educational 

context, this interaction can support a collaborative knowledge construction, in which the 

group of users realizes some information, strategy or approach that supports a better and 

more efficient interaction with the system.  

Table 1 shows, for each dimension and respective requirements, whether they are covered by 

S1 and S2 and its justification The requirements analysis comes from discussions about the 

systems (Valente et al., 2021). In order to measure whether a requirement is covered or not (and 

to what degree this occurs), the authors discussed the systems based on their own experience using 

the systems and also considering the related publications. As adherence to a certain requirement 

is not dichotomic (i.e., the requirement can be partially covered), a scale ranging from 0 

(requirement not covered at all) to 1 (requirement totally covered) was adopted. Table 1 illustrates 

the results of this analysis. 
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Table 1. Requirements related to each socioenactive dimension. The Table Indicates, for each dimension, whether 

S1 and S2 cover that requirement and to what extent. 

Dimension Requirement Is it covered 

in S1? 

Is it covered 

in S2? 

Justification 

Autonomy 

 

 

Redefinable by 

stakeholder 
0.5 0.5 

In both S1 and S2, the system designers were able 

to, if necessary, modify in real time system 

variables (e.g., in S1, the scratch program could be 

adjusted, and in S2 the initialization of the ontology 

matrix could be updated). 

 

However, the users (children) were not able to 

customize the system (e.g., in S1 they were not able 

to change the mBot speed, and in S2, the mBot 

sequence of actions related to each expression). 

system Evolves 
0 

 

0.75 

 

In S1, the system does not evolve, i.e., every time 

a group of children start a round (children guiding 

the mBot to its goal) the system behavior is the 

same, being only dependent on the children’s 

actions. 

 

In S2, after each iteration the system updates an 

internal ontology matrix considering the children’s 

choices about which expression, they believed the 

child in the telepathic box had performed. 

Therefore, each iteration is affected by the previous 

ones, also affecting the next. An issue of this 

approach is that it lacks automatism, i.e., the input 

that updates the ontology matrix comes from each 

child individual voting, which takes time.  

Coupling 

 

Multiple inputs 
 

0 

 

1 

In S1 the only input is the mBot’s proximity sensor. 

In S2 there are two inputs: the facial expression 

performed by the child in the telepathic box and the 

voting carried out by the children through RFID 

sensors. 

Physiological 

human input 

 

0 

 

0 

There are no physiological sensors in either S1 or 

S2. 

Environmental 

data input 

 

0 

 

0 

There is no environmental data input in S1 and S2. 

Inputs and outputs 

are coupled 

 

1 

 

1 

In both S1 and S2, the inputs and outputs are 

coupled, so the input data affects what and how the 

output would be. For example, in the S1 when a 

child puts their boot in front of the mBot, the mBot 

stops and the system executes a specific algorithm. 

On its turn, in S2, the expression performed by the 

child in the telepathic box is the input used to 

determine (through the ontology matrix) which 

action would be performed by the mBot.  

Embodiment 
Embodied 

interaction 

 

1 

 

0.25 

In the S1, in the whole iteration, children wore 

boots to interact with the mBot. The interaction was 

spontaneous, guided by the children’s perception 

and the immediate feedback observed in the 

mBot’s actions. 

 

In S2, the children's facial expressions were 

stimulated (not spontaneous), and also the mBot's 
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reactions took time to happen, not being 

immediately noticed by the children. 

Social 

 

Collaborative 

knowledge 

construction 

1 0.25 

In S1 it was identified in some iterations that the 

children were able to organize themselves, defining 

a strategy to guide the mBot to its goal, which 

suggests collaborative knowledge construction.  

 

In S2 children’s actions were individual, either 

reacting to the mBot’s actions as well as voting. 

There was a natural social interaction between the 

children after the robot performed its action, and 

when voting. 

Social Interaction 1 0.25 

In S1 children cooperated with each other to reach 

the goal, also fraternizing when it was achieved and 

also sharing the emotions of the other moments, 

even if negative (e.g. the mBot left the forest and 

hit the trees that surrounded it). 

 

On its turn, in S2, although the children had a 

moment to share their opinions with each other, by 

the end of each iteration each child individually 

voted which facial expression he/she believed the 

child in the telepathic box had performed.  

Figure 4 shows how each socioenactive system (S1 and S2) is positioned in relation to 

each one of the socioenactive dimensions. The data in Figure 4 was calculated considering, for 

each dimension, the average score of its requirements. For example, in the coupling dimension 

the S1 average is (0+0+0+1)/ 4 = 0.25, and the S2 average is (1+0+0+1)/4 = 0.50. 

 

Figure 4. How each socioenactive system (S1 and S2) is positioned in relation to each one of the socioenactive 

dimensions. 

As shown in Figure 4, the system S1 has higher social and embodiment scores, and S2 a 

higher autonomy. Both systems have a low coupling score, indicating that future socioenactive 
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systems should have more sensors, including physiological human input sensors and also 

environmental sensors. 

4. Design proposal for a socioenactive system (S3) 

This section presents the design proposal for a socioenactive system that contemplates the entire 

feedback cycle with users and the technological architecture necessary to initiate a workshop with 

the expected elements of embodiment, ubiquitous computing, enation, and that considers 

interactions and social activities, shown in section 4.1. Section 4.2 presents a simulation and initial 

results of the construction of S3 following the proposed model, while Section 4.3 proposes a 

narrative for experiencing S3 system in a workshop with children. 

4.1 S3 System Proposal  

In systems based on social environments, we can consider human interaction through 

physiological readings (Thomas et al., 2017) that provide unconscious data entry, a type of input 

needed in the socioenative systems cycle. These data can indicate behavior changes concerning 

emotional states, such as excitement, or physical interactions, through involuntary time series. 

They are a relevant attribute used as input data for dynamic changes in the behavior of the 

technological system conducting the experience.  

Physiological sensors are commonly present in wearables with embedded technologies, the 

most common being heart rate-based readers such as: Electrocardiogram (ECG), Heart-rate and 

Heart-rate-variability (HR, HRV), or Electrodermal activity (EDA), Skin conductance level 

(SCR), and Skin conductance resistance (SCL) (Brady et al., 2016) (Rahim et al., 2019) (Lazar, 

2017). This type of data capture sends signals as numerical list data indicating timestamps and 

untreated values of the biological reading itself. The treatment of these readings depends on the 

type of dataset or storage that is sought to be structured, following conventions in a notation 

language with labels for each different reading and their respective values. These data might 

include in the system the Physiological human input requirements of the Coupling dimension (cf. 

Table 1).  

Machine learning techniques such as Support Vector Machines (SVM) and Convolutional 

Neural Networks (CNN) are often used to analyze physiological data. Brady et al. (Brady et al., 

2016) use an adapted CNN for Emotion Prediction based on physiological data (Wang et al., 

2015). Rahim et al. (Rahim et al., 2019) present a method for emotion recognition with CNN 

using HR and GSR sensor signals through a scalogram of images generated by physiological 

inputs, resulting in a good classification rate. In general, these algorithms work by identifying 

similar sequences and labeling them, updating the hypothesis of Euclidean variation (timestamp 

and biological reading), classifying the numerical sequence pattern until defining a set of 

examples.  

A simplified model can associate these two types of data (timestamp and variation), 

classifying patterns in the signals and comparing them with the emotion most present in an action. 

This type of technique can be used by an algorithm as part of the socioenactive system, generating 

responses based on the participants' dynamic reactions, respecting the guidelines proposed for 

enactive systems (cf. Section 2). The analysis of emotions can be useful in a later analysis of the 

socioenactive scenario, identifying which interactions worked to promote well-being among the 

participants. In this way, the requirement of the Coupling dimension where inputs and outputs are 

coupled is present, as well as the dynamic system evolution requirement of the Autonomy 

dimension (cf. Table 1).  
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The social element in this case would involve bringing together more than one input from 

different participants generating responses from the environment for each labeled pattern. This is 

important to meet the requirements of multiple inputs of the Coupling dimension and the 

requirement for social interactions of the social dimension (cf. Table 1). Other useful inputs that 

require a parser similar to physiological signals would be the capture of sounds from the 

environment like clapping, identifying more expressive variations and triggering system 

responses. 

Another important element in a socioenactive system is the integration of computational 

intelligence into the management algorithm. This is important because it enables the environment 

responses to the participants to be less programed and linear, adding an important factor in the 

cycle of socioenative systems, which is social feedback changing the behavior of the system. For 

this, it is possible to integrate simplified artificial intelligence techniques that use the patterns 

trained in the classification of signals to generate changes in the environment, such as changes in 

sound or ambient light (Larradet et al., 2019), or in the devices involved, such as in the robot's 

behavior. Thus, the system is redefinable by stakeholder, meeting the requirements of the 

Autonomy dimension and the requirements for environmental data input of the Coupling 

dimension (cf. Table 1). 

The narrative may include a more complex behavior for the robot, which considers the 

participants' physiological signals, to appear as less trained and closer to something alive. An 

example for these components could be the narrative of taking a wild animal to a point in the 

environment with voice commands. In this narrative, physiological inputs such as Heart Rate (HR) 

could be used by the robot, subtly altering its direction, as well as the audio intensity of the 

spectating participants, also considering involuntary signals. With this, the system integrates 

embodied interaction, with the actions of the participants using wearables with the physiological 

reading sensors, meeting the requirement of the Embodiment dimension. Still, collaborative 

knowledge construction may emerge from the resolution of group tasks such as taking the robot 

from one point to another in the scenario, as suggested in the social dimension and in the S1 

scenario (Table 1). 

Figure 5 shows how the technological communication in this proposed scenario can be 

constructed where the sensors with physiological reading of the participants dynamically defines 

a dataset with classified patterns based on the description of the robot's actions and on the labeled 

signals. These signals would trigger behaviors in the robot and the environment promoting social 

behavior and generating an ontological description of the system. The focus in this architecture is 

on the elements of autonomy integrated into the digital dimension. The parser process will receive 

the raw signals and classify them using Machine learning (ML) to label the significant changes in 

signals by triggering responses through the robot and environment elements. 
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Figure 5. socioenactive system based on physiological sensors with integrated computational intelligence. 
 

For the parser system of the physiological readings, data processing is necessary first, which 

serves to resize the dataset where the information from the readers or other relevant stakeholder 

data is stored. Commonly, the time series of sensors such as HR and GSR return lists of numerical 

vectors corresponding to the frequencies associated with a time value referring to the sequential 

position of the data. If there is any data other than those returned by the sensors, such as user id, 

or some descriptive value important to the system, the reduction of attributes can be done using 

algorithms such as Principal Components Analysis. The stored data, in this case, is converted in 

a standardized way organized in a simplified sequence of values. 

Once the input data has been redimensioned, a characteristic of a socioenative system is the 

use of multiple physiological inputs, as inputs from more than one person. These inputs can define 

a merged mapped pattern that can generate an environment response such as commands in mBot 

behavior.  

Also, performing automatic emotion recognition in at least one of the children can indicate 

whether the workshop is positively affecting him-her. The classification of emotions can be used 

for further analysis, as important information regarding how activities and interactions influenced 

the participants' well-being. 

Finally, changes in the environment can be activated as actions to respond to user inputs, 

such as changes in background music or ambient lighting. Changes in ambient lighting, for 

example, can influence emotional expressiveness and cognitive performance (De Ruyter & 

Dantzig, 2019), as well as changes in ambient music can influence the emotional state or 

engagement of the participants (Thomas et al., 2017). These triggers associated with the input 

patterns, can also be mapped as direct commands to mBot, that could be executed from patterns 

read from physiological sensors. 

This proposal of S3 meets the dimensions where S1 and S2 presented weaker results, as 

pointed out by Figure 4, in the dimensions of Coupling and Autonomy, resulting in a direct 

evolution of the S1 and S2 design complementing the requirements of a Socioenative system 

construction integrating the user feedback cycle through physiological inputs and dynamic system 

actions based on these inputs. 
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4.2 Preliminary Results of the S3 System Simulation 

Considering preliminary testing based on the S3 proposal, a simulation was developed, 

considering generation of the inputs of untreated physiological data and classifying them as 

outputs for the mBot and the system manager. This simulation aims to implement part of the 

system communication proposed by the architecture presented in Section 4.1, serving as an initial 

result for the logical system that can be applied to socioenactive scenarios for educational 

contexts.  

The simulation was built using the Linux environment and the Python programming 

language, as well as libraries for hardware events and machine learning packages. The next 

experiments still suggest mBot responses that can be implemented using the Scratch language. 

Elements such as environment outputs, robot actions using sensors, or real time behavior tracking 

and classification were not included in this simulation since they require a pilot experiment in a 

real scenario. Thus, the experiments in this section focus on the logical process that involves the 

dimensions of the system's autonomy with the integration of an input processing that simulates 

physiologically reading data from the coupling dimension.  

An algorithm was implemented that sequentially generates numerical lists with a structure 

similar to HR readings, which are sent as a running signal and converted into keyboard events 

using the Pynput library2, responsible for mapping keyboard outputs. The parser of these data is 

simple, and it is only necessary to calculate more significant variations in predefined timestamp 

intervals. This protocol should be built along with a workshop narrative that would define 

activities for the glove of users that could stimulate changes in HR readings. A similar process 

can be used to read and process information from the environment, such as children's claps, that 

generate numerical lists with varying intensities. 

With these variations in the HR inputs, mBot commands can be triggered, using keyboard 

mapping. These keyboard commands are fundamental to creating dynamic responses in mBot, 

since actions can be mapped with triggers for keyboard commands. In this way, the readings can 

generate commands for the robot, which will go through a classification of patterns in order to 

associate variations of social behavior with actions of the robot. These interactions are part of the 

proposed user feedback cycle where people change the behavior of the system, which dynamically 

also affects people's behavior. 

Thus, physiological signals data are dynamically stored that trigger commands on the 

keyboard that can be mapped as mBot actions. These actions can be subtle behaviors such as 

changes in the direction in which the robot walks, giving a more lively and unpredictable aspect 

to the artifact, which combined with the narrative, encourages new reactions from the children 

who participate in a workshop that implements this strategy.  

In addition to the simulated HR sensor signals, an emotion recognition process was tested 

based on the Support Vector Machine (SVM) pattern recognition algorithm that classifies the 

basic emotions, based on the technique presented in (Gonçalves et al., 2017). This technique uses 

facial feature tracking for landmarks extracted from a bounding box referring to user faces using 

Local Binary Pattern (LBP) and Principal Components Analysis (PCA). Figure 6 shows the parser 

process used in the simulation where the data generated by simulating an HR sensor are treated 

and classified in order to generate behavioral outputs for the robot. 

 
2
 Moses Palmér. (2021). Pynput [Online]. Available at: https://www.https://pypi.org/project/pynput/ (Accessed: 11 

April 2021). 
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Figure 6. Parser process of simulated physiological data. 

 

The technique uses facial action units (AUs) that track landmarks using a calculation based 

on POI (Points of Interest) displacement and a facial expression analysis, focusing on recognizing 

emotional states as happy, angry, fear, sadness, disgust and surprise. Figure 7 presents an example 

of the result obtained by applying the algorithm to recorded videos from S2 workshop, where we 

can observe the automatic recognition of emotion after tracking and identifying the face of one or 

more children. This process could be applied with a webcam as an input, following protocols that 

frame the face of at least one child. This type of algorithm is especially useful for further analysis, 

due to its high computational cost in training and classification, such as neutral, happy, sad, 

fearful, etc. 

 

Figure 7. SVM-based automatic emotion recognition algorithm and landmark tracking by facial units applied to an educational 

environment video. 

 

As data read directly from sensors such as HR and GSR, facial expressions are considered 

involuntary data, which can be used as a behavioral pattern to trigger changes in the environment 

or in the robot, making the system experience more enactive. With the HR signals and an 

automatic emotion classification process, the system has multiple inputs and different patterns, 

which offer several possibilities to build outputs based on user data. The environment light could, 
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for example, change depending on the classified emotions of the children, and simultaneously the 

robot could trigger actions based on more significant changes in the HR signals. 

The system can consider reading more than one file referring to an HR sensor, for example, 

or combining other input patterns, such as clap sounds. As artifacts, low-cost sensors can be used 

in order to change the environment; for example, iterating the ambient music depending on the 

input classifications, or activating a color sensor controlled by an Arduino. So, through the 

narrative and outputs present in the experience, new behaviors may emerge from people, 

promoted by group task resolution. The system then receives numerical readings similar to values 

from a simple HR sensor, classifying the patterns by identifying more significant variations that 

trigger behaviors in the robot. In parallel, the system can classify the emotions of one child, which 

triggers changes in the environment. With this process, the system's autonomy is present with the 

automatic classification process using machine learning and the coupling is strong since the inputs 

are based directly on the users' actions and behaviors.  

4.3 A Narrative proposal for S3 based scenario 

A scenario based on S3 can be implemented with different types of narrative for socioenactive 

systems, since the inputs and outputs contemplate the entire expected user feedback cycle. This 

section presents a succinct example of a narrative that could be integrated into a S3-based 

workshop. 

Considering that the focus of the S1 and S2 workshops was designing environments for 

children, the narratives consider playful elements and integrated wearables and ubiquitous 

technologies in fun tasks that foster social interaction. 

In this way, the mBot could represent a wild animal, such as a rabbit, in a task of taking the 

animal to a point in the scenery, which would represent a safe area. The physiological sensors of 

HR or ECG could be integrated in children in the four corners of the scene, with gloves that attract 

the rabbit, depending on the child's excitement. The interaction actually causes the patterns read 

to indicate changes in breathing or heart-beats and to indicate which corner the mBot should turn 

to. 

Another group of children can wear boots that direct the rabbit elsewhere. These boots would 

be coupled with presence sensors that would indicate changes in direction to the mBot, also 

considering the influence of other children with the embedded gloves with HR or ECG sensors. 

This dynamic would promote social interactions and group work, since the children must act 

together, both the group within the arena with mBot and the group in the audience, with the gloves. 

Still, the sensors can generate behaviors in mBot, making the system responsive to social 

behavior. Readings and classifications of children's emotions will indicate to the system the 

changes in feelings, which, associated with the interactions, will indicate to the system that mBot 

behaviors are improving fun and can adapt these behaviors to be more frequent, for example. 

With these interactions, the entire enaction cycle will be present in the workshop that uses 

and evolves the concepts used in S1 and S2, making S3 a complete socioenactive system. Figure 

8 shows the elements in the dimensions: Physical as the mBot (a), safe area (b), gloves (c), boots 

(d), physiological sensor (f) and environment effect (j); Digital as the laptop (g); Social as children 

(e), researchers (h) and children’s teachers (i). 
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Figure 8. Elements and dynamic of the proposed system S3.  

In future work, a pilot should test the narrative and these logic elements with sensors and 

physical artifacts in order to identify the efficiency and feasibility of a workshop following this 

model. 

5. Discussion 

This work proposes a workshop design for a socioenactive system that meets all the guidelines 

and dimensions expected in the recent literature. The presented architecture advances the concepts 

for complete enative systems predicted by Rodríguez et al. (Rodriguéz et al., 2014) and 

Baranauskas (Baranauskas, 2015) representing a next step in socioenactive systems for 

educational environments. The S3 model offers all the technological structure necessary for the 

feedback cycle of the Social-Digital-Physical dimensions present in socioenactive systems.  

In order to propose a solution for the socioenactive system gaps applied to educational 

environments, this work introduces the implementation of AI and embedded sensors that allow 

the feedback loop between the human and technological aspects expected in an enactive 

interaction. The signals captured from the physiological reading sensors allow the definition of a 

database or rule set to support the generation of behavior in real time, making the experience 

emerging from this scenario enactive, and responding to guidelines G1 and G2 (cf. section 2).  

The extracted patterns of the participants' behavior, which might have labels extracted from 

physiological sensors, or the automatic recognition of emotions, categorize the definition of 

technologies supported by sensors to detect and track participants behavior (G2). 

These captured and treated patterns, usually analogue, are identified by their variations and 

generally indicate the physical stakeholder actions, ranging from commands to the mBot or 

gestures. Likewise, automatic emotion recognition, with CNN applied to 3D masks, is an 
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indication of which children are having fun, serving as a response for mBot triggers that motivate 

group work and encourage everyone to participate in the task.  

With a narrative that promotes group actions and an ontological description that unites the 

narrative with the technological systems involved, it is possible to create a mapping between 

psycho-physiological dimensions of content, responding to guidelines G3 and G4. In the proposed 

workshop design, multiple interactions can be used as inputs, such as physiological readings 

referring to the recognition of emotions or direct readings such as heartbeat, triggering actions in 

the robot or environment. Pedagogical elements inserted in the narrative that justify the resolution 

of group tasks must support physical-virtual based activities and interactions.  

In this way, the proposed technological structure has interaction between the Physical, Digital 

and Social dimensions: the participants interact with each other through coordinated actions, and 

with the system through the scenario objects (e.g., the gloves, the boots); reading of physiological 

data is taken by the system which processes input data directing new actions through its digital 

and physical outputs, on the robot. Also, interactions between the participating children and the 

artifacts trigger new actions and feelings in the social dimension. 

Following the SEES framework, it is possible to point out all model steps suggested by the 

model: the learning objective of S1 evolves through the resolution of group tasks based on the 

new narrative; the pedagogical methodology/practice will be present in the proposal of S3 that 

integrates a playful narrative that will be built together with the teaching staff responsible for the 

children’s education; in the same way, activities for target audience follows the same educational 

context environment to which S1 and S2 were applied; social behavior is present in the whole 

experience, which promotes the solution of tasks in group; the environment is enactive since it 

comprises the entire feedback loop with the user where the system and people affect and are 

affected by the interactions; physical-virtual setting, is as proposed in the architecture of section 

3.2; interactions are provided by the artifacts proposed and their coupled outputs and inputs, as 

well as the emerging social interactions among the group; multimedia content are proposed in the 

Digital layer of S3; physical-virtual environment are as proposed in section 3.2, where the scenario 

and the artifacts are integrated in a dynamic social environment that unites the Social, Digital and 

Physical dimensions. 

The use of machine learning for facial expression classification can incorporate ontological 

changes in the system's behavior that fine-tune the parameters of mBot actions according to 

participant behavior. Still, the use of sensors incorporates social layer patterns that feed the dataset 

for system behaviors according to people's actions. These characteristics guarantee the system's 

socioenactivity. 

This socioenactive system design is redefinable by stakeholder since there are software 

changes in the system execution that will be based on intelligently processed physiological inputs. 

The feedback cycle, input and output coupled, that affects system and people behavior, will 

happen through sensors integrated into wearables (HR integrated into gloves, for example) and 

the interactions.  

The main contribution of this work is the proposal of an S3 system that refines socioenative 

systems presented in recent literature with the potential to promote a collective knowledge 

construction through the resolution of group tasks using embodied interaction, which might lead 

to learning and cognition through action. The features incorporated in S3 allow participants' 

interactions, through artificial intelligence and pattern recognition, to affect the sensory responses 

of the environment such as messages embedded in artifacts, changes in ambient outputs such as 

lighting and sound, and especially changes in robot actions and the system. It is expected to build, 
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in future works, workshops based on the S3 architecture where emerging social aspects can be 

observed and their impact on real educational environments evaluated. 

6. Conclusion 

This work analyzed socioenactive systems in the recent literature, identifying requirements that 

allow evolving the concepts of system autonomy and users coupling, in order to define a system 

that fills the lack of a complete cycle of socioenactive system, illustrated in the educational 

environment. These results point to a model for building a socioenactive system based on group 

task resolution, which promotes learning through actions and considers, through artificial 

intelligence and pervasive sensors, a dynamic behavior of the system based on the social 

dimension. This proposal considers physiological inputs and transforms them into dynamic 

responses of the system, applied to interactions that promote the social side of experiences with 

mBot, for children in an educational environment.  

A simulation of part of the proposed S3 system was presented, where the model of inputs and 

interactions with the user is considered through data of physiological reading, classification of 

emotions, and evolution of interaction models used in recent socioenactive systems. The method 

of automatic emotion classification can point out further analysis as socioenactive systems can 

positively affect the emotional state through social experiences. The simulation shows how the 

proposed architecture can be implemented, using a succinct narrative presented. 

The S3 promotes children's high degree of embodied peer collaboration and initiative to 

accomplish the tasks through the full cycle of enactive physical/social feedback. These results 

contribute to inform the design and construction of future socioenactive systems. 

As further work, the proposed system can be put into action in a real scenario to promote 

social interactions, to solve tasks in an educational environment, and to create conditions for 

learning with experience of interacting with mBot and the other elements. Still, other narratives 

can use the proposed S3 system generating different socioenactive experiences. 
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