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Abstract
Contextualized in the teaching of computer programming in Computing courses, this research investigates aspects
and strategies for automatic source code assessment. Continuous on-time assessment of source codes produced
by students is a challenging task for teachers. The literature presents different methods for automatic assessment of
source code, mostly focusing on technical aspects, such as functional correctness assessment and error detection. This
paper presents the A-Learn EvId method, having as the main characteristic its focus on the assessment of high-level
skills instead of technical aspects. Automatically assessing high-level skills gives insights into the thought process
students used to elaborate their responses, contributing to quality and timely feedback generation. The method is
characterized by three fundamental steps: (1) inserting students’ source code as input data; (2) identifying evidence
of skills through automatic strategies; and (3) representing identified skills through a student model. The following
contributions are highlighted: updating the state of the art on the topic; a set of 37 skills identifiable through 9
automatic source code assessment strategies; construction of datasets totaling 8651 source codes.
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1 Introduction

Computer programming is one of the very first topics in Computer Science courses and, some-
times, one of the most complex from students’ point of view (Ullah et al., 2018). Learning how
to program computers requires students to understand a new set of concepts and to develop new
thinking strategies very different from what they are used to.

Research and Development of computer programming teaching support tools is a widespread
topic in the literature, typically aiming to provide resources to support teachers’ activities. Among
these activities, two of the major difficulties faced are assessing students’ programming exercises
(Souza et al., 2016) and providing individualized timely feedback (Ihantola et al., 2010; Ullah et
al., 2018).

Assessing large amounts of source code developed by a large number of students is a
complex and exhausting task for teachers (Ullah et al., 2018; Rahman & Nordin, 2007). This
situation is even more critical in the current pandemic times where much of our educational
systems have migrated to online environments: while teachers still have to deal with classes,
exercises, and student assessments, several new tasks and responsibilities have been added to
their workload, including mastering different online systems and preparing interactive material
for students (Pimentel & Carvalho, 2020). Therefore, investigating methods and developing
supporting tools is a way to help teachers in their work, especially by reducing their workload
with repetitive tasks and offering resources for them to provide personalized tutoring.

Although the automatic source code assessment has come under investigation for decades
(Liang et al., 2009; Rahman & Nordin, 2007; Souza et al., 2016; Ullah et al., 2018), identifying
evidence of computer programming skills is still a challenge. Several source code aspects can be
assessed via different strategies (Souza et al., 2016), not always automatically possible, and such
a diversity of aspects leads to a dispersed literature in which numerous methodologies are applied
to problem-specific scenarios.

A systematic mapping of the literature (Porfirio, 2020) revealed many works dealing with
automatic assessment, usually focusing on technical aspects only, such as functional correctness
(Jackson & Usher, 1997; Morris, 2003) and error detection (Wilcox et al., 1976; Ahmed et al.,
2018). Initial programming courses, however, usually have their syllabi focused on concepts and
desired skills, not on technical aspects, which are often conveyed through classes and assessed in
specific situations in which students are supposed to succeed only if they have mastered certain
programming skill.

For this research, the definition of skill is grounded in DeKeyser’s skill acquisition theory
(VanPatten & Williams, 2015, p. 95), which accounts for how people progress in learning skills.
The theory holds that knowledge is initially acquired by the apprentice, who subsequently starts
to manifest it through behavioral changes. In the computer programming context, we consider
that students acquire knowledge through learning concepts, and later manifest it by applying
different programming resources in source codes. Therefore, we consider that behavioral changes
are marked by using previously unreported programming resources, thus suggesting evidence of
new skills development.

When it comes to automatic source code assessment, Hettiarachchi et al. (2013) presents two
main types: knowledge-based and skill-based. Knowledge-based assessment is described by the
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authors as a simplified form of assessment, usually easy to apply, but with a limited scope that may
lead to just a quiz of facts about the area of study. Skills-based assessment, in turn, is described
as more authentic and capable to assess higher-order cognitive skills, however, hard to apply.
Also, while knowledge-based assessment is related to simple aspects and rarely gives any insight
into the thought process students used to elaborate their responses (analogous to technical aspects
assessment previously mentioned), skills-based assessment can be applied to evaluate high-level
cognitive skills (Hettiarachchi et al., 2015).

The central problem addressed in this research is focused on the teacher’s point of view:
the challenge of assessing students’ source codes and providing feedback in a continuous and
timely manner and, with this, identifying the manifestation of programming skills. Therefore,
the main objective of this research is to investigate a method for the automatic and continuous
assessment of programming skills via source code analysis. To achieve the main objective, the
following activities were established:

• Identify the state of the art and elaborate a literature mapping;

• Identify programming skills candidate to automatic assessment;

• Identify a programming skill-set able to be automatically assessed;

• Investigate strategies to automatically assess the identified skills;

• Implement strategies as algorithms that receive student source codes as input and returns
the identified skills as output;

• Implement a learner model to represent student knowledge based on a predefined skill-set;

• Apply strategies results as input data to feed the learner model;

• Provide resources to track student progress through the learner model; and

• Evaluate the proposed method regarding its automatic assessment capacity.

This paper summarizes the main results from the first author’s doctoral thesis (Porfirio,
2020), defended at the Federal University of Paraná (UFPR). The paper is an extended and
revised version of the paper (Porfirio et al., 2020) published and awarded in the “Alexandre
Direne Contest of Theses in Computers in Education (CTD-IE) 2020”, promoted by the Special
Committee of Computers in Education of the Brazilian Computer Society. It extends the original
version by further developing the research foundation, method and discussion, and by presenting
details of the A-Learn EvId method, from the skills-set definition process to the student model
that represents the method’s output, covering the automatic strategies responsible for identifying
evidence of skills manifestation.

2 State of Art

A systematic literature mapping (Porfirio, 2020) was conducted to identify what aspects of source
code have been assessed automatically, and what strategies have been adopted. Based on 126
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papers selected from databases ACM, IEEE, Scopus, Scielo, and CEIE, until 2019, our analysis
revealed 43 different aspects of source code identified automatically via 25 different strategies.

The literature mapping revealed different initiatives to use automatic strategies for source
code assessment. Data revealed that the most popular aspects addressed are the ones dealing with
automatic assessment of source code as a whole, pointing to generic results such as Functional
Correctness assessment and detection of Semantic and Compilation Errors. Table 1 presents the
main aspects identified and the number of papers (total) and percentage related to them.

Table 1: Aspect, total of papers and percentage.

Aspect Total Percentage
Functional Correctness 66 42.31
Semantic Errors 21 13.46
Compilation Errors 17 10.90
Syntactic Errors 12 7.69
Complexity, Efficiency, Style 10 6.41
Execution Errors 9 5.77
Other, Simulation 6 3.85
Antipatterns, Concurrency, Methods, Computational Thinking 5 3.21
Conditionals, Problem Solving Strategy, Originality, Tests, Variables 4 2.56
Classes, Lexical Errors, Loops, Types 3 1.92
Abstraction, Constructors, Input and Output, Scope, Inheritance,
User Interface, Recursion

2 1.28

Algorithm, Constants, Enumerators, Heterogeneous Structures, Ho-
mogeneous Structures, Events, Exceptions, Functions, Interfaces,
Polymorphism, Procedures, Code Reuse, Strings

1 0.64

Regarding the strategies employed for the automatic assessment process, we identified Test
Cases and Unit Tests as popular approaches. The majority of studies (96.03%) focused on applying
three or fewer strategies (59.52% applied only one), providing specialized solutions to assess
specific source code aspects. While approaches focused on specific aspects can be powerful for
specific purposes, they become limited for more complex contexts such as programming teaching
where all the possible aspects may coexist and even influence each other. Therefore, using
hybrid approaches to mix different strategies and assess multiple code aspects simultaneously
was identified as a gap in the literature.

The systematic mapping suggested that the more aspects are assessed in a source code the
richer the feedback possibilities could be and, consequently, more clues about students’ program-
ming skills could be provided. Results suggested that, although specialized solutions are adequate
for specific contexts, methods combining multiple strategies to assess multiple aspects and to
provide detailed and holistic feedback is a research gap. The A-Learn EvId method conceived
in this research contributes to addressing this gap, improving our capacity to identify evidence of
students’ programming skills by automatically analyzing the source code they produce. The A-
Learn EvId method is capable to identify evidence for 37 different skills by applying 9 automatic
source code assessment strategies. In comparison to the analyzed literature, it was found that
92.06% of the papers deal with four or fewer aspects, usually applying less than four strategies.
Also, the analyzed literature points out a maximum of 10 aspects evaluated in a single study
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(Rajala et al., 2016).

3 A-Learn EvId: Automatic Learning Evidence Identification Method

The Automatic Learning Evidence Identification (A-Learn EvId) method adopts a hybrid approach
that employs static and dynamic source code analysis strategies to identify learning evidence,
valuate programming skills, and feed a learner model. While the static approach consists of
assessing source codes without performing their execution, the dynamic approach requires the
source code to be executed. To conceive the method we take advantage of literature experiences
regarding aspects automatically identifiable, strategies employed, as well the results and learned
lessons about limitations and possibilities.

Figure 1 presents a scheme for the method. Source code serves as input to assessment, where
different strategies are applied to identify evidence used for feeding a skill-based learner model
(output). Evidence can be identified from single or multiple strategies, as well as from inference
through combinations of previously assessed skills.

learner model

source code

#include <stdio.h>

int main()
{
    printf("hello");
    return 0;
}

...
skill 1

strategy

strategy

evidence

strategy

evidence

skill 2

strategy

evidence

skill N

strategy

evidence

Input Evidences Identification Output

skill 3

Inference

evidence

Figure 1: A-Learn EvId Method overview.

Figure 2 presents examples of skills and their respective valuation sources (when automati-
cally identifiable). Skills are valuated by one or more evidence; evidence can be implemented with
one or more automatic strategies; and, finally, each strategy analyses a source code and returns a
valuation regarding certain programming aspects (e.g., a percentage of success regarding the use
of a specific programming resource).
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Skills Evidences Strategies Valuation

analysis (not implemented)

structuring and
composition syntax error check compilation analysis

test cases
[boolean]
has error: 0% | no error: 100%

effectuation

structuring and
composition inference [value from prev. skill]

functional correctness
check test cases [float]

tests passed / tests executed

Figure 2: Skills valuation sample.

3.1 Skill Set Definition

Ideally, the A-Learn EvId method should use as much information as possible to realistically
assess students’ skills. The main challenge at this point concerns which aspects should be con-
sidered in our method implementation. Previous literature mentions the existence of desired skill
sets related to training students in programming. Research from Maschio (2013) and analysis of
real-world programming courses syllabus were used to define a Full Skill Set containing aspects
candidates to be implemented via strategies for automatic skills identification.

Situated on the imperative paradigm, Maschio (2013) presents a subset of 41 programming
skill categories organized in the form of an overlay graph (genetic graph). The graph models
knowledge from initial concepts, such as variables and constants, to conditionals and repetition
structures. In addition, interconnections between skills, such as prerequisites, dependencies,
analogies, and generalizations, are also represented.

Considering the many skills presented by Maschio (2013), defining which are candidates
for automatic assessment can be a challenging task. There may be different views and approaches
to introduce students to programming, however, there are basic concepts in programming that
must be mastered regardless of the adopted approach. To identify basic concepts, the syllabus
of ten introductory programming chairs from different Brazilian universities were analyzed. The
analysis was organized as follows:

1. Two federal universities from each of the 5 Brazilian regions were selected: North, North-
east, Central-West, Southeast, and South;

2. For each university, select an undergraduate course in Computing area, prioritizing bache-
lors in Computer Science;

3. For each course, extract the syllabus of the first course to teach Algorithms/Programming
offered to students; and

4. Summarize the programming topics, counting their occurrences.

For the analysis, universities were selected based on the RUF 2018 Ranking1 for Computing
courses. Results are shown in Table 2.

1RUF - Ranking Universitário Folha, website: http://ruf.folha.uol.com.br/2018/ranking-de-cursos/computacao/
Last access: 30 January 2021.
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Table 2: Selected universities.

Region University
Central-West UFG - Universidade Federal de Goiás (Federal University of Goias)

UnB - Universidade de Brasília (University of Brasilia)
Northeast UFCG - Universidade Federal de Campina Grande (Federal University of Campina Grande)

UFPE - Universidade Federal de Pernambuco (Federal University of Pernambuco)
North UFAM - Universidade Federal do Amazonas (Federal University of Amazonas)

UFPA - Universidade Federal do Pará (Federal University of Pará)
Southeast UFMG - Universidade Federal de Minas Gerais (University of Minas Gerais)

UFRJ - Universidade Federal do Rio de Janeiro (Federal University of Rio de Janeiro)
South UFRGS - Universidade Federal do Rio Grande do Sul (Federal University of Rio Grande do Sul)

UFSC - Universidade Federal de Santa Catarina (Federal University of Santa Catarina)

By analyzing the syllabus of each computing course from the selected universities, a ranking
of the most cited topics was elaborated. Because of variations in the spelling of concepts (e.g.,
“conditional structures” can be called “decision structures”, or can even be generalized as “con-
trol structures”), equivalences of different concepts and synonyms were manually analyzed and
grouped.

Table 3 shows the most common topics found in the introductory programming chairs, only
topics cited in more than five syllabi were considered2. Also, related skills (from Maschio’s
41 skills) are highlighted. In this case, a skill refers to the ability to understand a concept and
apply it appropriately in the code – or manifest it, as stated by VanPatten & Williams (2015,
p. 95). From the 10 syllabus common topics, 7 have related skills, however, 3 of them were out of
Maschio’s research scope and, consequently, not represented on his skill-set: arrays3, functions,
and matrices. Considering the popularity of these unrelated topics in syllabus analysis, they were
included for further analysis.

“Introduction to Programming” was cited as a syllabus topic, however we considered this
topic as the main objective that is achieved by mastering the other ones. Therefore, we consider
that students must develop abilities related to different topics and that the more developed their
skills are in such topics, the more skilled students tend to be in basic programming activities. In
the end, developing skills related to all the topics means the student masters the introduction to
programming. The resulting 44 skills were then classified regarding their potential and priority
for identification through automatic source code analysis, results are shown in Figure 3.

From the 44 skills present in our full skill set, 37 skills were selected for automatic as-
sessment/strategy application. Skills classified as challenging/not feasible were not selected due
to the following reasons: (1) algorithm and analysis were considered abstract skills, strongly
dependent on the interpretation of student thinking; (2) value changes, loss of value, pipelining
(conditionals) and pipelining (loops) were considered problem-dependent skills, hard to assess
without knowing the program execution context and objectives4; (3) counters and accumulators
were also considered problem-dependent skills, however, Gerdt & Sajaniemi (2006) suggests

2Full table data and supplementary research files are available online at http://bit.ly/doc_syllabus.
3Arrays refer to one-dimensional homogeneous structures, also called vectors.
4For Maschio (2013), the loss of value skill concerns to overlap and consequent loss of stored values. No strategy

has been identified that can accurately assess this type of skill because it is difficult to know whether the loss of value
was a student mistake or an intentional act, for example by reusing the same variable for another purpose
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it is possible to identify Pascal programming language role variables, including the location of
“counters” through flow analysis strategy. Counters and accumulators were not explicitly listed
as common topics in the analyzed syllabi and left as future work for our method.

Table 3: Programming topics ranking.

Syllabus Topic Occurrences Related Skills

Conditional structures 10

Control structures
Conditional structures
Multiple selection conditional
Simple and compound conditionals

Repetition structures 10

Repetition structures
Infinite loops
Counted loops
Conditional loops
Pre-evaluated
Post evaluated

Data types 9
Types compatibility
Types of literals

Variables 8 Variables

Input and output 8
Output
Input

Operators and expressions 8

Arithmetic expressions
Relational expressions
Boolean expressions
Compound expressions

Arrays 8 *
Functions 8 *
Introduction to programming 8 Algorithm
Matrices 7 *

output

input

types of literals

variables

arithmetic expressions

relational expressions

boolean expressions

multiple selection conditional

simple and compound conditionals

infinite loops

counted loops

pre evaluated

post evaluated

arrays

matrices

functions

structuring and composition

effectuation

attribution

constants

division by zero

nesting (conditionals)

nesting (loops)

simple instructions

input vs output

types compatibility

variables vs constants

compound expressions

control structures

expressions in control structures

conditional structures

simple and compound vs multiple selection

nesting vs pipelining (conditionals)

repetition structures

conditional loops

conditional loops vs counted

nesting vs pipelining (loops)

algorithm

analysis

value changes

loss of value

pipelining (conditionals)

counters and 

accumulators

pipelining (loops)

Automatically Identifiable Challenging/Not Feasible

Full Skill Set

Inference

Priority Complementary

Specific Strategy

Figure 3: Skills categorized by their potential and priority for automatic identification.
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3.2 Strategies Implementation

For each aspect representing a skill, automatic strategies were defined and implemented. Detecting
evidence for different skills requires different strategies, some with easy automatic detection
and others not viable for practicing. Considering the automatically identifiable skills previously
defined, 9 of the 25 strategies from our systematic mapping were selected to compose the method:
AST (Abstract Syntax Tree), Code Mutation, Compilation Analysis, Debug Analysis, Execution
Traces Analysis, Parser, Regular Expressions, Software Metrics, and Test Cases. Hybrid systems
employing two or more of the selected strategies were also applied. Strategies were selected
according to: (1) source code aspect it was capable to analyze; (2) type of analysis (static or
dynamic); (3) availability of implementation documentation; and (4) adaptation possibility.

AST and Parser: static analysis can be applied for inspecting and identifying internal
source code details and small knowledge units (Kautzmann & Jaques, 2020). A common approach
to performing static analysis consists of applying a Parser to decompose a source code and output
details in an organized structure, such as an AST. According to Cui et al. (2010), these trees
represent source code instruction hierarchy and are constructed from a process involving: (1)
source preprocessing; (2) lexical analysis; (3) parsing; and (4) generation of the tree.

AST and Parser strategies are demonstrated in Figure 4. The source code is written in C
language, where it is possible to notice two functions: test and main. Each function has internal
elements, which can be: (1) variable declarations or (2) function calls. Executing parser strategy in
the listed source code generates the AST briefly represented in the referred figure. Each function
of the source code is stored in a tree node, whose children are instructions and blocks that compose
it. Furthermore, the parser’s ability to detect attributes of each element, such as names, arguments,
and literal types of each variable/function is highlighted.

AST root

FunctionDef
type: Function
return type: void
name: "test"

Block

Variable

ExpressionStatement
expr: Call

name: "printf"
Args

FunctionDef
type: Function
return type: Int
name: "main"

Block

ExpressionStatement
expr: Call

Declaration
type: Int

Variable
name: "test"

Declarator
name: "a"
init: IntLiteral
val: 2

StringLiteral
val: "test"

source code

void test(){
  printf("test!");
}

int main(){
  int a = 2;
  test();
}

Figure 4: Source code and AST resulting from parser execution.

Thus, it is possible to perceive the parser strategy as a powerful tool able to identify internal
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code construction details. Considering the parser’s resulting tree, it is possible to implement
heuristics to search for evidence of programming skills, such as to verify if students are capable of
creating and initializing variables, declaring simple and compound conditional structures, loops
among other programming instructions.

Test Cases: AST and Parser strategies are limited to analyzing source code structural
elements and cannot assess programs’ execution. Dynamic analysis, in turn, can provide runtime-
based assessments. Test cases, although being a fairly simple strategy, are widely used and provide
good results when assessing programs’ execution output. Assessing a program with test cases
requires the prior specification of input and expected output value sets. Strategy application is
performed by executing programs with the predefined input values, followed by a comparison of
the produced outputs.

Considering a previously compiled executable program, operating systems allow redirect-
ing5 input data to the program’s process through the standard input stream. Input data can be
sent as raw text files. Values specified in the input text file are automatically entered in place of
keyboard input commands. Subsequently, outputs generated are captured by the standard output
stream, allowing plain text comparison with the outputs expected in test cases. The program is
functionally correct when outputs match, and wrong otherwise. Using multiple test cases ensures
accurate assessments.

Figure 5 shows a C-Language program, which requires the user to enter two numbers and
print the double of the first and triple of the second, and exemplifies the execution of a test case-
based assessment on the referred program. Test cases strategy was applied to all skills assessed
in our method. Preliminary assessment of functional correctness ensures any evidence found by
other strategies (such as parser) refers to a functionally correct source code. Thus, gathering
evidence from different strategies contributes to the accuracy of our method.

input file

2
5

source code

#include <stdio.h>

int main()
{
    int number, number2;
    scanf(" %d", &number);
    printf("double:%d\n", number*2);
    scanf(" %d", &number2);
    printf("triple:%d\n", number2*3);
    return 0;
}

expected output

double:4
triple:15

student output

double:4
triple:15

comparison

correct!==

Figure 5: Test case application example.

Functional correctness assessment is an important aspect to be evaluated in students’ source
codes, however, its capacity does not go beyond comparing program’s output. Checking pro-
grams’ internal execution behavior, such as the valuation of variables during the execution process,
is unfeasible with Test Cases. Such analysis requires a different strategy capable of performing

5Also known as I/O Redirection and Pipes.
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deep runtime inspections.

Compilation and Debug analysis: Compilation and debugging tools such as GCC (GNU
Compiler Collection) and GDB (GNU Project Debugger) are commonly used in teaching com-
puter programming, specifically as support tools to teach C-Language. These applications are part
of a tool-set6 focused on transforming source codes into executable objects and can be configured
so that messages can be displayed in case of failures. Compilation messages can point to where a
fault was detected, usually signaling the type of error occurred and the corresponding line in the
source code. Similarly, a debugger running a faulty program will interrupt when unexpected or
erroneous behaviors are encountered.

GCC compiler logs can be exemplified with the C-Language source code shown in Figure
6, where a failure while printing the value of the variable a is present. The stored value is of
floating-point type, however, the print command has been set to integer values, which will result
in output’s precision error. The referred figure gives a snippet of the output log generated while
trying to compile the source code. GCC has detected the failure and issued a warning message
indicating the given data type is floating-point but the printout is waiting for an integer argument.

source code

#include <stdio.h>

int main() {
  float a = 10.5;
  printf("float value:%d\n", a);
  return 0;
} GCC output log

source.c: In function 'main':
source.c:5:10: warning: format '%d' expects argument of type 'int', 
but argument 2 has type 'double' [-Wformat=]

   printf("float value:%d\n", a);
            ^

Figure 6: Source code with output precision error and GCC output log.

There are also cases where a source code can be compiled correctly but give incorrect results
during execution. Such situations are not detectable by the compiler, which can generate an
executable object without accusing any error. Some of these situations can be detected through a
debugging process, usually done manually, where the programmer executes the program step-by-
step to find the error source.

Automating GDB debugging process provides resources to identify learning evidence through
programs’ runtime analysis. The C-Language code shown in the Figure 7 exemplifies the use of
debugging process as an evidence location strategy. There is an arithmetic failure in the listed
code where a division by zero occurs during the assignment operation of variable c. When
submitting the program for execution through GDB, an output log is generated indicating the
type of error occurred and its exact location. The figure shows a snippet of the debugging log,
where an “Arithmetic exception” error is pointed out in the operation performed in line 7.

Analyzing compilation and debug logs can be a challenging task as, most of the time, going
through all the returned output lines is necessary to identify the desired information. Regular
expressions strategy was employed to support data localization both in static mode (i.e., looking

6The Gnu Project, website https://www.gnu.org/gnu/thegnuproject.en.html.
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source code

#include <stdio.h>

int main() {

  int a = 10;
  int b = 0;
  int c = a/b;

  return 0;
}

GDB output log

Program received signal SIGFPE, Arithmetic exception.
0x00000000004004ec in main () at source.c:7
7   int c = a/b;

1
2
3
4
5
6
7
8
9
10

Figure 7: Sample source code that generates execution error due to division by zero and GDB output log.

for data in the source code itself) and dynamic mode (i.e., acting on execution logs).

Although the cases presented suggest a potential for using isolated strategies, techniques
such as debug analysis and test cases may suffer from some limitations, for example, the challenge
to differentiate two situations: has a student become expert on a particular topic or has simply
stopped using the feature that caused the error? This kind of situation requires the strategy
mechanism to be able to distinguish correct codes using certain programming features from codes
that simply compiles and executes without errors but use improper solution subterfuges.

Considering the arithmetic exception identification shown in Figure 7 as an example: the
absence of division by zero errors cannot indicate success if students do not perform any division
operation in their source codes. Debug analysis strategy must consider a pre-evaluating step
where the presence of such operations is validated, e.g., by searching through regular expressions
or traversing a parser generated AST. Thus, featuring a hybrid system between these strategies.
Hybrid associations were extensively employed in our method, the strategy test cases is present
in all associations and was used as a determinant of functional correctness, ensuring any evidence
identified by other strategies is guaranteed to belong to a functionally correct program. Parser
and AST strategies were also a quite common association, being used to validate whether given
programming resources were present or not in students’ source codes.

The infinite loop problem: as a proof of concept, the infinite loops problem was chosen
as a particular case to demonstrate the potential of our automatic learning evidence identifica-
tion method. Multiple techniques were implemented to act together on evidence identification,
showing hybrid systems can be applied even for complex problems. Infinite loops occurrence is
a situation related to the Halting Problem, regarding the completion of a program in a finite time
given an arbitrary input. The Halting Problem was introduced by Turing (1936) just as it was
proved to be unsolvable, however, without a general solution, the search for evidence of halting
condition is plausible in specific scenarios. A scenario is shown concentrating on two runtime
aspects:

• Execution timeout: programs developed by students, such as classroom activities in intro-
ductory programming courses, often have short execution time. Thus, very long unfinished
executions (e.g., excessively above reference solutions execution time) may be an indication
of an infinite loop;

• Loop iteration count: monitoring programs’ execution by counting iterations performed in
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loop statements allows identifying evidence of halted executions. A repetition structure that
iterates excessively above expected can be considered an indication of an infinite loop.

The first aspect concerns a Software Metric strategy. A host process is responsible for initial-
izing and monitoring student program execution, specifically in this case managing the execution
time and providing commands for killing the program’s process if necessary. Execution time is a
critical factor to consider, some programs can take long execution times (or even unpredictable)
and still provide the correct result. However, in this scenario, exercises developed by students
in introductory courses generally have a short execution. Thus, the execution time metric should
consider a period long enough not to impair correct time-consuming operations, but not so long to
impact the performance of the evidence detection system.

To identify an adequate maximum execution time for our method, a ten-round benchmark
was executed on 84 C-Language exercises solutions7. The resulting average execution time was
2.35 milliseconds; no execution exceeded 3.2 milliseconds. Thus, the arbitrary value of 5000
milliseconds (5 seconds) was considered a secure value for our experiments since correct exercises
(based on our references) securely cannot reach it. Students’ programs that exceed the secure
period are then killed and considered potentially halted (evidence of infinite loop)8.

The time-based software metric employed in the first aspect provides a clue about the student
program’s behavior, however, it is not possible to know exactly why the execution did not end.
There are situations where a program is not necessarily in an infinite loop situation but may have
similar symptoms, as Figure 8 exemplifies. The presented source code wrongly asks for two input
values, and test cases are configured to provide only one. In this case, the input stream ends, but
the program still waits for data causing an execution halt and being mistakenly categorized as an
infinite loop by automatic mechanisms such as the timeout strategy previously described.

input file

22

source code

#include <stdio.h>

int main()
{
    int n1,n2;
    scanf(" %d", &n1);
    scanf(" %d", &n2);

    while(n1 > 0)
        printf("down count:%d\n", n1-- );

    return 0;
}

Figure 8: False-positive on infinite loop timeout strategy.

An alternative to avoid false positives on halt by input situations leads to the second as-
pect of assessment: identification of repetition loops and iterations counting. Iteration counting
provides a hint that goes beyond program halt information, allowing loops behavior analysis
from the program’s execution to start the process termination (kill by timeout). Loop iteration

7Reference solutions relating to the seventh experiment mentioned in Section 4.
8Execution time is hardware dependent, a new benchmark is recommended when changing the execution

environment.
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counter implementation presented here is based on Code Mutation and Execution Traces Analysis
strategies, executed as the following methodology:

1. Convert student code to an intermediary representation by applying a parser to generate an
AST;

2. Traverse tree looking for C-Language repetition structures (consider for, while and do-while
statements);

3. For each repetition structure, mutate the code by adding a global controller variable decla-
ration (before and outside the loop) and an increment instruction (inside the loop);

4. Optionally: mutate the code by adding output print instructions inside the loop (permits
analyzing execution traces through stdout logs);

5. Convert the AST intermediary representation into a compilable code (parser’s reverse pro-
cess);

6. Execute the mutated code inspecting the counter variables values. Timeout strategy can be
applied to avoid getting stuck on halted processes. Mutated code execution can be done
in two ways: (a) by running the program normally, capturing stdout output and searching
for mutated print logs (e.g., with regular expressions); (b) by running the program through
a debugger, adding breakpoints on control variables increment instructions, and inspecting
memory to get variables valuation;

7. Apply a metric to classify potential infinite loops, e.g., student process was killed by timeout
and at least one loop iterated more than a threshold value.

To exemplify our strategy, Figure 9 presents a sample source code and the corresponding
mutated variation. In both original and mutated codes, the first repetition structure iterates forever
while the second loop is never reached. The variable i on while statement should be decreased to
avoid this condition. In the mutated code, it is possible to see the injection of two global control
variables (l_control_0 and l_control_19). An increment instruction is added inside each loop,
in this example associated with a standard output printing instruction (printf ). These additions
allow inspecting the program’s runtime behavior both by collecting standard output or through a
debugging process. Thus, a potential infinite loop metric can be applied.

To apply our strategy and inspect control variables valuation, the mutated program must be
executed. Two conditions can be reached: the program’s execution finishes in an adequate time
(no infinite loop), and halting. When the second condition is reached, the halted process needs to
be interrupted. Timeout logic can be applied to measure execution time and trigger process killing,
however, this strategy is hardware dependent: faster computers can perform more iterations than
slower ones in a determined period.

In most cases, hardware differences may be slight and irrelevant, but in favor of the method’s
invariance, an alternative strategy can be considered: analyzing execution traces analysis through

9Control variable names were simplified for this example, longer unique names are automatically generated to
avoid override student variables.
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source code

#include <stdio.h>

int main()
{
    int i = 10;

    while(i > 0)
    {
        printf("%d ", i);
        i++;
    }

    for(i=-10;i<0;i++)
    {
        printf("%d ", i);
    }

    return 0;
}

mutated code

#include <stdio.h>

int l_control_0 = 0;
int l_control_1 = 0;

int main() 
{
    int i = 10;

    while (i > 0) 
    {
        printf("l_control_0=%d\n", l_control_0++);
        printf("%d ", i);
        i++;
    }

    for (i = -10; i < 0; i++) 
    {
        printf("l_control_1=%d\n", l_control_1++);
        printf("%d ", i);
    }

    return 0;
}

Figure 9: Code mutation example.

an automated debugging process. By using mutated source code information, the GDB debugger
is configured to add breakpoints at each control variable increment instruction. A controlled debug
process is then conducted to execute the mutated program until a certain number of breakpoints is
reached (time-invariant metric). The breakpoints reached threshold corresponds to the number of
loop iterations achieved in the whole program’s execution.

As well as mentioned for the first aspect implementation, defining a “secure” threshold is
challenging. We performed a manual analysis to find out the average and the maximum number
of iterations executed in our reference solutions. Analyzing 32 source codes containing repetition
loops, an average of 14.8 iterations per execution was identified, having 99 as the highest count.
Thus, we chose to use the arbitrary value of 1000 iterations (about 10 times the highest value) as a
threshold for distinguishing potential infinite loops. Applying our strategy in the mutated program,
considering the established threshold, indicates the control variable l_control_0 is probably inside
an infinite loop, and l_control_1 is never reached (0 iterations).

Given the strategy presented, two considerations are pointed out: (1) assessed program must
be compilable and parseable, so Compilation Analysis and Parser are set as prerequisites; (2)
a kill by timeout situation is also a prerequisite for the iterations count method, so programs
that finish correctly are not penalized. Thus, as presented, the infinite loops case used multiple
complementary strategies acting together, characterizing a hybrid system.

3.3 Learner Model

The strategies presented in the last section provide resources to identify evidence of programming
skills. As the final step in our method, identified evidence are used to feed the learner model. For
our research, the learner model is established to organize and present characteristics representing
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skills, developed or not by students, necessary for the proper execution of programming tasks.
Computer programming is an abstract domain where not all the skills required to be a good
programmer are measurable quantitatively, e.g., there is no universal metric that can claim that
someone has developed expertise in the “algorithm” concept.

Thus, measuring skills in the computer programming domain depends on elaborating a set
of capacities to be used as a metric. In our context, the skill set presented in Figure 3 is employed.
Characteristics of the knowledge representation mechanisms identified through our systematic
literature review, as well as related research, were analyzed to define our learner model. Our
analysis is described in the following.

Maschio (2013) already defined a skill visualization model in the form of an overlay graph,
where the student’s knowledge (the acquired skill subset) is highlighted over the entire domain
(the whole skill set). Considering the automatic evidence identification method proposed in the
present research, an analysis of Maschio’s representation guided by features found on literature
mechanisms was conducted and some improvements made are pointed out in the following.

Per source code detailed skill visualization: Distinguishing skills already developed from
those that are yet to be worked on is essential for measuring student knowledge. The overlay graph
permits to know (booleanly) if a particular skill has been developed or not, however, knowing
details such as the exact programming exercise (or even more accurately the exact code snippet)
where the student developed the skill can be of great value. The Heat Maps technique applied by
Edmison & Edwards (2019) focuses on highlighting source code fragments. This feature inspired
us to implement a complementary detailed log in which every identified evidence can point to a
code snippet responsible for the skill assessment. Figure 10 shows an example log returned by
our strategies to assess functions. It is possible to see the student’s source code and a detailed log
pointing to the identified evidence, the code snippet, and a function call analysis about parameters
and return statement presence and correctness (e.g., void functions are not supposed to have a
return).

source code

#include <stdio.h>

void print_year(int year)
{
   printf("hello time traveller, we are on %d.", year);
}

int main()
{
   int year;
   scanf(" %d", &year);
   print_year(year);
   return 0;
}

evidence evaluation result log

Evidence Found: function declaration (print_year)

  void print_year(int year) {
      printf("hello time traveller, we are on %d.", year);
  }

return type: void, return provided: false, correct: true
params count: 1
function call: print_year(year)
params provided: 1, correct: true

Evidence evaluation correct? true

Figure 10: Per source code detailed skill visualization.
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Skill valuation on multiple source codes: Considering that students may submit several
source codes to be assessed, identifying the same skill in multiple source codes is common,
especially when the submitted source code set refers to a specific programming topic. In such a
situation, the automatic system needs to decide which assessment to take into account (especially
because results may be discordant). Koh et al. (2014) approach a similar situation: the maximum
value of each skill is considered when multiple activities are selected. The maximum value metric
is employed as the decision criterion on our learner model, so each skill is valuated with the higher
result identified by strategies on the selected source code subset.

Timeline-based exercises subset selection: A selection mechanism is necessary as the model
can be fed with information from multiple source codes. A method similar to that employed by
Yamashita et al. (2017) was implemented: a timeline presents all source codes submitted by a
given student and provides resources for selecting subsets. Timeline changes affect the valuation
of the skills represented in the model.

Uncertainty treatment: Assessed aspects often have abstract nature, being challenging to
accurately provide automatic assessment through source code analysis only. Students’ are also
unpredictable, sometimes following teachers’ guidelines, and sometimes achieving solutions us-
ing uncommon programming resources and techniques. Unexpected behaviors can be challenging
(and even impossible) to deal with in the automatic assessment environment – e.g., importing
incompatible libraries, using unsupported/legacy syntax, submitting source code with incompat-
ible encoding, and using operating system dependent resources. These issues make automatic
assessment uncertain where accurate evaluation is not always possible. The learner model ideally
should consider this limitation. According to Neapolitan (2003), Bayesian networks are graphical
structures for representing relationships between variables (skills, in our context) and are capable
of dealing with uncertainty by using probability theory.

Representing students’ skills also requires considering the temporal aspect. Students may
continuously submit new source codes along a course and evidence identified from different time
intervals must be represented accordingly. The student model representation extends then to the
concept of Dynamic Bayesian Networks10 detailed by Neapolitan (2003). Thus, for the explored
scenario, converting the graph model proposed by Maschio (2013) into a Dynamic Bayesian
Network contributes to a better problem representation due to the network’s capabilities to deal
with an uncertainty environment and to deal with temporal changes.

Thus, the learner model adopted for our research is supported by the representation shown
in Figure 11 and described as follows:

• Bayesian Network variables, also called “features” by Neapolitan (2003), model our full
skill set. Skills are represented as N1, N2, and N3 nodes;

• The edges represent direct influences between skills. These influences were extracted from
Maschio (2013) where directed arrows represent relationships between skills (e.g., A indi-
cates an analogy, G for generalization);

• Variable valuation (skill value) depends on evidence sets (e.g., the presence and correctness
of an if conditional on student’s code) resulting from automatic strategies application or

10Also known as Temporal Bayesian Networks.
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probabilistically calculated by inference (described below). Any evidence of a variable is
considered equally influential in the skill value calculation (e.g., “switch” and “data type
compat.” in Figure 11 have equal weights).

simple and
compound

conditionals

multiple
selection

conditional

simple and
compound

vs
multiple
selection

A

A

G G

if
if-else
multiple cond.

Evidence Value

Skill Value: 0%

0%
0%
0%

switch
data type compat.

Evidence Value

Skill Value: 100%

100%

100%

N1 N2

N3

inference N1
inference N2

Evidence Value

Skill Value: 50%

0%

100%

Figure 11: Dynamic Bayesian Network lerner model representation (subset extracted from conditionals-related skills).

Beyond the ability to handle uncertainties, variable valuation through inference is another
useful resource provided by Bayesian Networks. The inference technique allows to propagate
information from a variable through the network and use it as input for valuating subsequent
dependent variables. A value propagation is exemplified in Figure 11, considering the valuation
of three skills: (N1) domain over simple and compound conditionals; (N2) domain over multiple
selection structures; (N3) recognition of situations that favor using each structure.

In Figure 11, the Bayesian Network considers dependencies between learner’s skills, so the
probability of success in (N3) has a strong connection with the predecessors (N1) and (N2). Thus,
the evidence responsible for valuating skill (N3) assumes values from the predecessor nodes.
Considering the node (N1) is not valuated, the node (N2) is fully valuated, and the evidence
set has equal weights, (N3) valuation becomes 50%. Valuating network nodes by inference can
be applied exclusively, where all evidence of a node are results of inferences, or even part of a
hybrid mechanism, where an evidence of a node is the result of inferences while other evidence is
identified by external automatic strategies.

As a final result, the student model can provide resources for representing students’ skills in
different perspectives: starting from a general view, where all skills are presented on the screen,
followed by the visualization of the evidence used in each network node, and ending with the
details of the code snippets where the evidence was identified. Figure 12 presents an example of
visualization of these perspectives, emphasizing an evidence of using the multiplication arithmetic
operator, related to the skill that concerns the use of arithmetic expressions.

4 Experiments and Results

Seven experiments were conducted to investigate different aspects of the A-Learn EvId method.
Experiments were carried out both in controlled scenarios (source codes specifically designed for
testing purposes) and in real scenarios (dataset built from real-world exercise solutions, formally
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Figure 12: Different visualization perspectives in the Learner Model.

specified and collected). Table 4 summarizes our experiments according to the IMRaD format
(Wu, 2011), where the structure is represented by four questions: Introduction – why experiments
were elaborated? Method and Materials – how experiments were characterized? Results – what
have we found? and, Discussion – so what does it mean? Dataset size (number of source codes)
is shown in the first column. The complete data and discussion for each experiment can be found
in Porfirio (2020).

In addition, two highlights are presented regarding the Sixth and Seventh experiments. The
Sixth experiment specifically focused on analyzing student progress. Representing a more realistic
environment, the experiment used a skill set based on topics commonly covered in real program-
ming courses, showing that student progress can be monitored (e.g., between one exercise list
and another), and that it is possible to identify when each skill start to be detectable. Figure 13
exemplifies a progress analysis where the vertical axis represents programming topics coverage
and the horizontal axis represents ten exercise lists. The absence of learning evidence means the
student did not submit a specific list of exercises.

Table 4: Experiments summary (IMRaD structure).

Experiment Why? How? What? So What?
First (Pilot
Test) (1
source)

To investigate
preliminary
automatic source
code analysis
strategies.

AST and parser
strategies were
applied to a reference
source code, results
were then compared
to human assessment.

AST and parser
strategies can detect
learning evidence
of constants
programming topic.

Strategies presented
good results on
reference source
code. Application on
student-made source
codes still needed.
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Experiment Why? How? What? So What?
Second (29
sources)

To investigate
preliminary
automatic source
code analysis
strategies in a real
scenario.

AST and parser
strategies were
applied to student-
made source codes,
results were then
compared to human
assessment.

AST and parser
strategies can detect
learning evidence
of variables
and constants
programming topics.
Limitations were
identified.

Experiment suggests
automatic strategies
can be feasible.
Extended tests
covering more
programming topics
and strategies still
needed.

Third (Pilot
Test) (29
sources)

To investigate
static and dynamic
automatic strategies
to detect evidence
of learning of
input/output
commands with
different data types.

An experimental
environment was built
with four automatic
strategies. An
artificial dataset was
employed. Results
were then compared
to human assessment.

92.39% of human
cataloged learning
evidence was
also identified by
automatic strategies.
Implementation
limitations were
detected.

Static and dynamic
approaches were
successfully applied
to detect evidence.
Strategies worked
well on extended
programming topics
set.

Fourth (113
sources)

To investigate
whether strategies
from the third
experiment can also
be accurate in a real
scenario.

The third experiment
was replicated with
student-made source
codes extracted from
a real Intelligent
Tutoring System.

Evidence
identification
capabilities in the
real environment
were observed to
be similar to the
controlled scenario.

Strategies were
successfully applied
for detecting
learning evidence,
but implementation
limitations still exist.

Fifth (142
sources
mixing data
from Third
and Fourth
experi-
ments)

To investigate
using automatically
identified evidence
as data source for
feeding the learner
model.

A Dynamic Bayesian
Network was fed
with automatically
detected evidence. An
empiric analysis was
conducted to detect
changes in the model.

Student model
changes according to
evidence inserted in
the network.

Detecting evidence
from multiple source
codes and filtering
them in the network
permits monitoring
students’ skills
progress.

Sixth (3860
sources
+ 101
reference
solutions)

To investigate
evidence detection
and students’
progress monitoring
considering skills
commonly assessed
in real programming
courses.

A priority skill-set
was established
through syllabi
analysis, exercise lists
were applied to real
students. Students’
progresses were
compared between
exercise lists.

Student progress
between exercise
lists can be
monitored and
it was possible to
identify when each
skill began to be
manifested.

Detecting (the lack
of) progress can
offer useful insights
for both teachers and
Intelligent Tutoring
Systems as well
as for students and
their self-learning
monitoring.

Seventh
(4434
sources +
84 reference
solutions)

To demonstrate skill-
based assessment
using automatic
strategies as means
of identifying
functionally correct
but conceptually
incorrect solutions.

Desired skills were
defined for each
programming exercise
and then compared to
students automatically
detected skills.

Skill-sets
comparison
indicated source
codes that deviated
from reference
solutions.

Skill-based
assessment proved
to be a valuable
resource for locating
conceptually
incorrect solutions
built with
subterfuges.

Finally, the Seventh experiment investigated the capabilities of skill-based assessment. Situ-
ations where subterfuges were used as means to achieve source code’s functional correctness have
been identified. Automatic search for learning evidence considering different programming skills
has proved to be an interesting and effective method, providing indicative of potentially incorrect

711



Porfirio et al. RBIE v.29 – 2021

0%

20%

40%

60%

80%

100%

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

Conditional Structures Repetition Structures Data Types

Variables Input and Output Operators and Expressions

Vectors Matrices Functions

Figure 13: Example of a single student progress across the ten exercise lists.

solutions where manual assessment is required. Figure 14 exemplifies the experiment with a
sample solution to the following problem: read an integer vector and a floating-point vector, each
with three positions. Subsequently, traverse the vectors with a single repeating loop and print
the sets in parallel (Int1:Float1, Int2:Float2, Int3:Float3). The assessment output points out the
student did not employ any loop-related resource, solving the exercise in a forced way (with hard-
coded vector indices). This type of solution would be accepted by simpler strategies such as Test
Cases, but specifications of a desired skills-set (e.g., a higher valuation of loop-related concepts)
prevents the solution from achieving a good score and indicates it for manual inspection.

#include <stdio.h>

int main (){
    int ua[3];
    float f[3];
    int valor_1;

    scanf("%d %d %d %f %f %f", 
          &ua[1], &ua[2], &ua[3], 
          &f[1], &f[2], &f[3]);
    
    printf("%d:%.2f %d:%.2f %d:%.2f",
           ua[1],f[1],ua[2],
           f[2], ua[3], f[3]);

    return 0;
}

student source
Assessment Output

Figure 14: Source code skill-based assessment inspection (low score).

In another perspective, an excessively high score can also lead to identifying concept fail-
ures, where students employ very complex solutions deviating from teachers’ goals – Figure 15
exemplifies this perspective. Initially, the student performed the initialization of two variables, w
and z, and, right after, overwrote their values with the scanf data read command. Next, an addi-
tional unnecessary conditional were employed (if and else are already mutually exclusive). These
flaws indicate the student, probably, used programming resources without fully understanding the
concepts, especially with the else clause of the compound conditional.

712



Porfirio et al. RBIE v.29 – 2021

#include <stdio.h>

int main (){
    int w=0;
    int z=0;
    scanf("%d", &w);
    scanf("%d", &z);
    if(w==z){
        printf("sao iguais!");
    } else if(w !=z){
        printf("sao diferentes!");
    }
    return 0;
}

student source

Assessment Output

Figure 15: Source code skill-based assessment inspection (high score.

5 Contributions

This doctoral thesis research produced conceptual, methodological and technical contributions.
The main ones are highlighted as follows:

• A Systematic Literature Mapping (Porfirio, 2020) providing an updated and rigorous panorama
of automatic programming source code assessment, presenting categorization schemes and
important concepts, therefore informing this thesis and future research;

• A set of 37 standardized computer programming skills relevant to automatic identification;

• A set of 9 strategies, as well as their implementation and assessment, responsible for auto-
matic identifying skill evidence from students’ source codes;

• A learner model capable of representing students’ knowledge (skills acquired) identified by
the automatic strategies and monitoring knowledge evolution;

• The A-Learn EvId: Automatic Learning Evidence Identification method;

• Seven source code datasets totalling 8651 C-Language programs (8436 from real-world
exercise solutions, formally specified and collected; 215 specifically designed for testing
purposes), as well as method and tools sharing11;

• Publications: Porfirio et al. (2016); Porfirio et al. (2017); Porfirio et al. (2018); Porfirio et
al. (2020) (national award).

11Supplementary data, such as datasets and tools, can be found online at: https://bit.ly/doc_ctd.
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6 Conclusion

Considering the central problem for this research, the challenge to provide assessment of the
students’ source codes in a continuous and timely manner and to identify the manifestation of
new skills, the A-Learn EvId method was proposed and evaluated. Seven experiments were
conducted, covering different aspects of the method, from the investigation of the automatic
strategies capabilities to the representation of results in the student model. Results showed our
method is promising, being able to automatically assess students’ source codes, identifying multi-
ple programming skills. Automatic strategies results were represented through our learner model,
which provided resources for monitoring students’ progress. The Dynamic Bayesian Network
model showed up adequate to the exposed scenario, as it was able to represent the uncertainty
environment generated by the automatic assessment, as well as to provide important resources for
valuating skills by inference and monitoring students’ progress. Therefore, experiments’ results
suggest that high-order cognitive skills can be automatically assessed in the computer program-
ming context. However, efforts and research expansion are still needed to improve method’s
accuracy and reliability.

This research was built on the results identified in the literature and extends the state of
the art by identifying more skills and applying more strategies, as well as hybrid systems, which
are capable of working on complex problems such as the identification of infinite loop evidence.
Also, the proposal, implementation, and demonstration of using automated strategies as a means
for high-level, skill-based, assessment can be seen as positive impacts over the existing methods,
especially when employing the resulting information to monitor the progress of students skills and
detect potential concept flaws. Lastly, the contributions extend to the general context of Computer
Science, where the acquisition of programming skills is a crucial activity for the vast majority of
professionals. Thus, the development of resources that support the teaching of this activity tends
to bring benefits and improve this process.

The A-Learn EvId method was applied to the computers programming domain, where inves-
tigating new strategies, elaborating new test scenarios, and performing application in real tutoring
systems (and courses) can contribute to the evolution and improvement of the method. Still consid-
ering the context of computer programming, future research may refine the learner model, stress-
ing the identification of evidence on relevant topics according to each course, methodology, or
even teachers’ preferences. Extending the learner model to include the object-oriented paradigm
and making the method compatible with other programming languages are also possibilities to be
explored. Intelligent Tutoring systems can also benefit from the contributions of our research by
offering on-the-fly feedback and suggestions to students according to their mistakes and progress.
Also, possibilities of generalization to other domains are pointed out. Theoretically, the method
can be implemented for any domain of which automatic strategies are feasible, by defining input
data, defining automatic strategies based on a skill-set relevant for the domain, and defining a
learner model, also based on the chosen skill-set. Thus, future research can investigate possible
applications and contributions of the method to other areas.
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