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Abstract. Given a (vertex)-coloring C = {C1, C2, ...Cm} of a digraph D and
a positive integer k, the k-norm of C is defined as |C|k =

∑m
i=1min{|Ci|, k}.

A coloring C is k-optimal if its k-norm |C|k is minimum over all colorings. A
(path) k-pack Pk is a collection of at most k vertex-disjoint paths. A coloring
C and a k-pack Pk are orthogonal if each color class intersects as many paths
as possible in Pk, that is, if |Ci| ≥ k, |Ci ∩ Pj| = 1 for every path Pj ∈ Pk,
otherwise each vertex of Ci lies in a different path of Pk. In 1982, Berge con-
jectured that for every k-optimal coloring C there is a k-pack Pk orthogonal to
C. This conjecture is false for arbitrary digraphs, having a counterexample with
odd cycle. In this paper we prove this conjecture for bipartite digraphs. In ad-
dition we show that the conjecture cannot hold for perfect graphs by exhibiting
a counterexample.

1. Introduction
Given a graph G, we denote its set of vertices by V (G) and its set of edges by E(G).
The order of G is the cardinality of V (G), denoted by n. Given two vertices u, v ∈
V (G), we say u and v are adjacent if (u, v) ∈ E(G) and non-adjacent otherwise. An
independent (vertex)-set in G is a set of pairwise non-adjacent vertices. We denote as
α(G) the cardinality of a maximum independent set of a graph G. A vertex cover of a
graph G a subset V ′ of V (G) such that every edge e ∈ E(G) has at least one end in
V ′. We denote the cardinality of the minimum vertex cover as τ(G). In the celebrated
paper [Gallai 1959] the existence of a relation between the cardinalities of a maximum
independent set and a minimum vertex cover was observed for graphs in general, as stated
below:
Theorem 1 (Gallai). For every graph G, the equality α(G) + τ(G) = n holds.

We say that G′ is a subgraph of a graph G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G).
Given a subset S ⊆ V (G), we define the subgraph of G induced by S, denoted G[S], as
the subgraph having S as its set of vertices and such that whenever uv is an edge of G
with both ends in S, then uv is also an edge of G[S].

A graph G is (X, Y)-bipartite if V (G) = X ∪ Y,X ∩ Y = ∅ and the induced
subgraphs G[X] and G[Y ] are independent sets. A matching in a graph G is a subset
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M ∈ E(G) where, for every vertex v ∈ V (G), at most one arc of M is incident with
v. We denote the cardinality of a maximum matching by α′(G). Another celebrated
theorem proved in paper [König 1931] establishes an equivalence between cardinalities
of the maximum matching and of the minimum vertex cover in bipartite graphs:
Theorem 2 (König). If G is a bipartite graph, then τ(G) = α′(G).

We deduce, from these two theorems, the following Corollary:
Corollary 1. If G is a bipartite graph then α′(G) + α(G) = n.

Given a digraph D, we denote its set of vertices by V (D) and its set of arcs by
A(D). The order of D is the cardinality of V (D), also denoted by n. Given two vertices
u, v ∈ V (D), we say u and v are adjacent if either (u, v) ∈ A(D) or (u, v) ∈ A(D)
and non-adjacent otherwise. This paper is focused on the study of properties of digraphs.
However, in order to state the problem and present our contribution, we need concepts
that are usually defined for graphs, such as the ones already defined. In order to avoid
confusion and also frequent repetitions of definitions, we will establish that, whenever
a concept defined for graphs is applied to a digraph D, we are actually applying that
concept to the underlying undirected graph G(D) of D, i. e., the graph obtained from D
by identifying V (G) = V (D) and interpreting every ordered pair (u, v) ∈ A(D) as an
unordered pair (u, v) ∈ E(G).

A path P = (v1, v2, . . . , vp) in a digraph D is a sequence of vertices such that
arc (vi, vi+1) ∈ A(D) for 1 ≤ i < p. The cardinality of a path P , denoted as |P |, is
the number of vertices p in the sequence, which is an unusual definition in graph theory,
since most authors define cardinality of a path as being its number of edges. We denote
by λ(D) the cardinality of a maximum path in D. A path P is called trivial if |P | = 1
and hamiltonian if |P | = n.

A tournament in a digraphD is a subdigraphD′ such that for every pair of vertices
x, y ∈ V (D′), x and y are adjacent. Paper [Rédei 1934] presents an important property
of a tournament.
Theorem 3 (Rédei). Every tournament has a hamiltonian path.

A path partition P is a collection of vertex-disjoint paths of D such that⋃
{V (P ) : P ∈ P} = V (D). We denote by π(D) the size of an optimum path par-

tition of a digraph D, that is, a path partition that covers the vertex set of the digraph
using the smallest possible number of paths. An m-(vertex)-coloring (or simply a color-
ing) C = {C1, C2, ..., Cm} is a collection of disjoint independent sets, also called color
classes, where

⋃
{Ci : Ci ∈ C} = V (D). The chromatic number of D, denoted by χ(D),

is equal to the size of an optimal coloring of D.

1.1. Path Partitions and Stable Sets

Dilworth was the pioneer in the study of the relation between minimal path par-
tition and maximum independent sets having proved the following theorem in pa-
per [Dilworth 1950]:
Theorem 4 (Dilworth). Every acyclic and transitive digraph D satisfies π(D) = α(D).

Later, in paper [Gallai and Milgram 1960] the authors showed that the size of the
minimum path partition π(D), is less than or equal to the size of the maximum indepen-
dent set α(D).



Theorem 5 (Gallai-Milgram). Every digraph D satisfies π(D) ≤ α(D).

Few decades later, Linial tried to investigate ways to generalize Gallai-Milgram’s
Theorem. To do so, he tried to associate a path partition with a collection of k independent
sets for a fixed integer and positive k. This idea demanded the definition of a new metric
of minimality of path partitions and maximality of collections of independent sets.

A partial k-coloring of a digraph D is an assignment of k colors to a subset of its
vertices where adjacent vertices must have distinct colors. It implies that in any partial
k-coloring of a graph, the set of vertices having the same color is an independent set. The
weight of a partial k-coloring is the total number of colored vertices. A partial k-coloring
is maximum if there is no other partial k-coloring in which more vertices are colored.
We denote by αk(D) the weight of a maximum partial k-coloring. Figure 1a shows a
digraph D and a coloring using four colors (white, light gray, dark gray and black). In
fact χ(D) = 4, but since the coloring presented is such that there is a unique white vertex,
all but one vertex can be colored with 3 colors, i. e., α3(D) = 7.

The k-norm of a path partition P is denoted by |P|k and defined in the following
way:

|P|k =
∑
P∈P

min{|P |, k}.

A path partition that minimizes the k-norm of a digraph is called k-optimum. The k-norm
of a k-optimum path partition of a digraph D is denoted by πk(D). The path partition
P3 = {P1, P2, P3} depicted in Figure 1a is 3-optimum, thus π3(D) = 3 + 3 + 1 = 7.

Based on the definitions of k-norm of a k-optimum path partition and weight of
a maximum partial k-coloring, in paper [Linial 1981] the author proposed the following
conjecture, which later became known as the Weak Path Partition Conjecture:
Conjecture 1 (Linial). Let D be a digraph and k a positive integer. Then,

πk(D) ≤ αk(D).

It is not hard to see that when k = 1 Linial’s Conjecture is exactly Gallai-
Milgram’s Theorem; therefore valid. Verify that, for the digraph D depicted in Figure 1a,
π4(D) = |V (D)| = α4(D), π3(D) = α3(D) according to our previous discussion, and
5 = π2(D) < α2(D) = 6.

Almost concurrently, Berge, who was also seeking for a generalization of Gallai-
Milgram’s Theorem, proposed a different conjecture. Berge introduced the concept of
orthogonality between path partitions and collections of disjoint independent sets of a
digraph in order to propose his conjecture. We say that a path partition P and a partial k-
coloring C, for a positive integer k, are orthogonal if each path of P meets the maximum
number of colors in C, that is, if a path has cardinality less than k, then all its vertices
must have different colors, otherwise, there is at least one vertex of each of the k colors
in the path. The statement of Berge’s Conjecture, presented in paper [Berge 1982b] is as
follows:
Conjecture 2 (Berge). Let D be digraph and k be a positive integer. Then, for every
k-optimum path partition P of D there is a partial k-coloring orthogonal to P .

As well as Linial’s Conjecture, Berge’s Conjecture also generalizes Gallai-
Milgram’s Theorem. However, instead of only trying to generalize the statement of the



theorem, Berge sought to generalize the orthogonality concept, which already appeared
in the proof of Gallai-Milgram’s Theorem. It is not hard to see that Berge’s Conjecture
implies Linial’s Conjecture. Thus, Berge’s Conjecture is known as Strong Path Partition
Conjecture. In the same paper where Berge proposed the conjecture [Berge 1982b], he
showed that the conjecture holds for some classes of digraphs, including the bipartite di-
graphs. The partial 3-coloring for the digraph of Figure 1a composed by color classes
black, dark gray and light gray is an example of a partial 3-coloring orthogonal to the
3-optimum path partition P3 = {P1, P2, P3}.

P1

P2

P3

(a) 3-optimum path partition
and a maximum partial 3-
coloring.

R1

R2

(b) 2-optimum coloring and a
maximum 2-pack.

Figure 1. Example of colorings and path partitions

1.2. Dual Relation

For each one of the theorems that relates a path partition and a collection of indepen-
dent sets, there is an analogue theorem where the roles of paths and independent sets are
changed. This analogy between the two concepts is called duality and in this section we
will show what is known about the dual problems.

The first theorem proved for a dual relation dualizes Gallai-Milgram’s Theorem.
It is known as Gallai-Roy’s Theorem and it shows that the size of a minimum independent
set partition (optimum coloring) is less than or equal to the size of the longest path of D.
Theorem 6 (Gallai-Roy). Every digraph D satisfies χ(D) ≤ λ(D).

Roy and Gallai gave independent proofs for this Theorem in papers [Roy 1967]
and [Gallai 1968]

Shortly after Gallai-Roy’s Theorem, but more than two decades after Dilworth’s
Theorem, the dual version of Dilworth’s Theorem was proved in paper [Mirsky 1971].
Theorem 7 (Mirsky). Every acyclic and transitive digraph D satisfies λ(D) = χ(D).

In order to dualize Linial’s Conjecture, it is necessary to redefine the metrics now
associated to a positive integer k. Given a coloring C = {C1, , C2, ..., Cm} and a positive
integer k, the k-norm of C is defined by

|C|k =
m∑
i=1

min{|Ci|, k}.



A coloring C of D is k-optimum if there is no coloring B of D such that |B|k <
|C|k. We denote by χk(D) the k-norm of a k-optimum coloring of D. Figure 1b shows
that the digraph D we have previously analyzed also has a coloring using four colors such
that each color class has two vertices; thus χ2(D) = 8 = χ3(D) = χ4(D).

A k-pack Pk is a family of, at most, k vertex-disjoint paths. Let V (Pk) =⋃
{{V (P ) : P ∈ P}}, the weight of a k-pack is defined by ||Pk|| = |V (P k)|. A k-pack
Pk of a digraph D is optimum if there is no k-packQk in D such that ||Qk|| > ||Pk||. We
denote by λk(D) the weight of an optimum k-pack. LetR2 = {R1, R2} be the 2-pack of
the digraph D presented in Figure 1b. The weight of such 2-pack is 7, since it covers all
vertices except one. Note that such 2-pack is optimum since λ(D) = 4 and every path of
cardinality 4 has the same initial vertex. The dual version of Linial’s Conjecture, stated
below, was also stated in paper [Linial 1981].
Conjecture 3 (Linial’s Dual). Let D be a digraph and k a positive integer. Then,

χk(D) ≤ λk(D).

It is not hard to see that when k = 1 Linial’s Dual Conjecture is exactly Gallai-
Roy’s Theorem; therefore valid. Verify that, for the digraph D depicted in Figure 1a,
χ4(D) = χ3(D) = |V (D)| = λ3(D) = λ4(D) and, according to our previous discussion,
7 = χ2(D) < λ2(D) = 8.

In order to dualize Berge’s Conjecture, it is also necessary to redefine the concept
of orthogonality. A coloring C = {C1, C2, ..., Cm} and a k-pack Pk are orthogonal if each
color class Ci ∈ C meets min {|Ci|, k} distinct paths of Pk. Note that, by definition of
orthogonality, if C and Pk are orthogonal, then each color class of C meets as many paths
as possible in Pk. Berge’s Dual Conjecture is stated below; it is, however, known to be
false in general.
Conjecture 4 (Berge’s Dual - false). For every k-optimum coloring C of a digraph D,
there is a k-pack orthogonal to C.

For the particular example depicted in Figure 1b, Berge’s Dual Conjecture holds.
Note that for the 2-optimum coloring given the 2-pack R2 = {R1, R2} presented is or-
thogonal since each of R1 and R2 has one vertex of each color class of the coloring. In
graphs for which Berge’s Dual Conjecture is valid, Linial’s Dual Conjecture must also
hold. That is because λk(D) is at least the size of the set of vertices covered by the k-
pack orthogonal to the coloring, which in turn is exactly χk(D). However, Berge’s Dual
Conjecture is known to be false for arbitrary digraphs. A counterexample is depicted in
Figure 2; three colors (white, black and gray) are necessary. An arbitrary coloring of this
digraph with three colors is an 1-optimal coloring, but there is no path able to meet every
color in the coloring shown on Figure 2.

On the other hand, it was not known so far whether the conjecture was true for
bipartite digraphs. Note that the underlying undirected graph of the counterexample is an
odd cycle, and bipartite digraphs are free of such structure. Moreover, Berge’s Conjecture
(Conjecture 2) is known to be valid for bipartite digraphs. Those observations motivated
us to investigate Berge’s Dual Conjecture for this particular class of digraphs.

It is also important to mention that, due to the falsehood of Berge’s
Dual Conjecture for general digraphs, Aharoni, Hartman, and Hoffman proposed
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Figure 2. Berge’s Dual Conjecture Counterexample (k = 1) - General Case

in [Aharoni et al. 1985] an alternative conjecture which also generalizes Linial’s Dual
Conjecture:
Conjecture 5 (Aharoni-Hartman-Hoffman). Let D be a digraph and k be a positive inte-
ger. Then for every optimum k-pack Pk there is a coloring C orthogonal to Pk.

Aharoni-Hartman-Hoffman’s Conjecture is also known to be valid for bipartite
digraphs; the proof is presented in [Hartman et al. 1994]. Such result served as one more
evidence for the potential validity of Berge’s Dual Conjecture for bipartite digraphs.

A comprehensive survey on both primal and dual versions of these problems can
be found in [Hartman 2006].

2. Berge’s Dual Conjecture for Bipartite Digraphs

In this section, we show that for bipartite digraphs the problem of finding a k-pack orthog-
onal to the given optimal coloring reduces to the problem of finding a k-pack composed by
a selection of min{α′(D), k} arcs of a maximum matching of D together with k−α′(D)
unmatched vertices of D which must be selected with some criteria. This implies that,
in the bipartite case, the directions of the arcs are not relevant to the proof of Berge’s
Dual Conjecture. Moreover, the fact that the digraphs are bipartite, and, thus, admit a
2-coloring, implies that for every coloring C the k-norm of C is at most 2k, since each
color class can count at most k. Then, χk(D) ≤ 2k. Therefore, if there is a k-optimal
coloring with two color classes of size at least k, then these two classes must be the only
two in the k-optimal coloring.
Theorem 8. Let D be a bipartite digraph and C a k-optimal coloring of D. Then, there
is a k-pack P orthogonal to C.

Proof. Let C = {C1, C2, ..., Cm} be a k-optimal coloring of D. We may assume, without
loss of generality, that |C1| ≥ |C2| ≥ ... ≥ |Cm|.

We will prove that there always is a k-pack P composed by a matching and un-
matched vertices that meets min{|Ci|, k} vertices for each Ci. If P meets min{|Ci|, k}
vertices for every Ci ∈ C the only missing restriction to claim that orthogonality holds is
the assurance that each color class meets different paths. But since an arc in a matching
can only connect vertices from different color classes and unmatched vertices form differ-
ent trivial paths, this condition is immediately satisfied. Thus, P is a k-pack orthogonal
to C whenever it has the described structure.



Consider first the case in which α(D) ≤ k. In this case, min{|Ci|, k} = |Ci| for
each Ci. Therefore, by definition of orthogonality, every vertex must be in some path of
an orthogonal k-pack. LetM be a maximum matching ofD and let I be the set of vertices
of D not matched by M . If α′(D) + |I| ≤ k, the arcs in M together with the trivial paths
with vertices of I form the k-pack we are seeking. But this inequality is always valid
since n = 2α′(D) + |I| and, by Corollary 1,

α′(D) + α(D) = 2α′(D) + |I|
α(D) = α′(D) + |I|

≤ k.

We may thus assume that α(D) > k. If |C1| ≤ k, then min{|Ci|, k} = |Ci| for each
Ci and |C|k = V (D). In this case, an arbitrary coloring having a set of size α(D) as a
color class has smaller k-norm; a contradiction. Thus, |C1| > k. Consider first the case
in which n − |C1| ≤ k. We will now argue that |C1| = α(D) in this case. Assume the
contrary, that is, |C1| < α(D). Now let C ′ = {C ′1, C ′2, ..., C ′m′} be some coloring of D
such that |C ′1| = α(D). The k-norm of C ′ is thus at most k + n− α(D) < k + n− |C1|,
contradicting the fact that C is k-optimal. So, |C1| = α(D). By Corollary 1, α′(D) =
n − α(D) = n − |C1| ≤ k. One maximum matching M with α′(D) arcs cannot have
an arc with both ends in V (D) − C1 since that would imply that M would also have an
arc with both ends in C1, which is an independent set. Thus, every maximum matching
M has precisely one end in C1 and the other end in V (D) − C1. Since α′(D) ≤ k and
every color class Ci, i 6= 1 has size at most k, a k-pack P composed by some maximum
matching M together with k − α′(D) vertices of C1 as trivial paths is orthogonal to C.

Finally, consider the case in which n − |C1| > k. Since χk(D) ≤ 2k, we deduce
that C has precisely two color classes, both of size larger than k and χk(D) = 2k. Then,
an arbitrary subset of k arcs of some maximum matching M form a k-pack orthogonal
to C. It suffices thus to show that α′(D) ≥ k. By Corollary 1, α′(D) = n − α(D)
and if n − α(D) < k, then we may define a coloring C ′ = {C ′1, C ′2, ..., C ′m′} of D such
that |C ′1| = α(D) and whose k-norm would be smaller than 2k, a contradiction. Thus
α′(D) ≥ k indeed. And in every case considered there is a k-pack P orthogonal to C.

3. Berge’s Dual Conjecture for Perfect Digraphs
After proving Berge’s Dual Conjecture for bipartite digraphs we tried to find another
class of digraphs for which the conjecture could also hold. The counterexample shown
on Figure 2 already implies that the conjecture will not hold for arbitrary digraphs D with
χ(D) = 3 nor for those that contain one single odd cycle. We thus decided to investigate
the validity of the conjecture for perfect digraphs as those are free of certain odd cycles
such as that on Figure 2. Instead of proving, we found a counterexample for Berge’s Dual
Conjecture for perfect digraphs.

A clique W ⊆ V (G) in a graph G is a subset of vertices where for every pair
of distinct vertices u, v ∈ V (W ), u and v are adjacent. We denote by ω(G) the car-
dinality of a maximum clique in G. A graph G is perfect if χ(G′) = ω(G′) for every
induced subgraph G′ of G. In [Chudnovsky et al. 2006] a long standing conjecture, today



known as the Strong Perfect Graph Theorem, was proved. The statement of the theorem,
a characterization of perfect graphs, is given below:
Theorem 9 (Chudnovsky et al). A graph G is perfect if and only if neither G nor G
contains an induced odd cycle with five or more vertices.

Graph G is the complement of G, i. e. V (G) = V (G) and E(G) = {(u, v) :
(u, v) 6∈ E(G))}. Therefore, G is perfect if and only if G is perfect. A digraph D
is perfect if its underlying undirected graph G(D) is perfect. Thus, the Strong Perfect
Graph Theorem guarantees that the digraph in Figure 2 will not be an induced subgraph
of any perfect digraph.

It’s easy to see that Berge’s Dual Conjecture is valid for k = 1 for perfect digraphs,
as has already been noted by Berge in [Berge 1982a]:
Theorem 10 (Berge). Let D be a perfect digraph, and let C be an 1-optimal (or simply
optimal) coloring of D. Then, there is a path P of D, orthogonal to C.

Proof. Let H be a maximum clique of D. We know that |H ∩ Ci| = 1 for every Ci ∈ C.
As C is an optimal coloring then |H| = |C|. By Rédei’s Theorem, there is a path P that
meets every color in H . Path P is orthogonal to C.

During our study of Berge’s Dual conjecture for perfect digraphs we attempted
a similar approach to the one used in the case of bipartite digraphs. The problem was
divided in subcases based on different sizes of the maximum independent set. For the
subcase when the size of the maximum independent set is less than or equal to k, Berge’s
Dual Conjecture does hold, as we show below.
Theorem 11. Let D be a perfect digraph, and let C be a k-optimal coloring of D, for a
positive integer k. If α(D) ≤ k, then there is a k-pack Pk of D orthogonal to C.

Proof. As α(D) ≤ k, then |Ci| ≤ k for every 1 ≤ i ≤ m. As D is perfect, so is D. Thus,
there is in D a coloring with χ(D) = ω(D) = α(D) colors. Each color class in D is a
clique in D. So there is a partition of D into t = α(D) cliquesH = {H1, H2, ..., Ht}. By
Rédei’s Theorem, there is a hamiltonian path in each Hi ∈ H.

Let Pt be a t-pack composed by hamiltonian paths of each Hi ∈ H. As t =
α(D) ≤ k, then Pt is a k-pack orthogonal to C.

For the case when the maximum independent set has size greater than k, we found
a counterexample for Berge’s Dual Conjecture. Our counterexample is depicted in Fig-
ure 3.

The digraph D in Figure 3 is perfect. It is easy to check that the size of the largest
clique is always equal to its chromatic number for any subgraph D′ induced by D. The
3-coloring C of D shown in the figure has 2-norm equal to 6. As D has 9 vertices and
the size of its maximum independent set is 4, then the only way to construct a coloring C ′
with 2-norm smaller than 6, would be by having a 3-coloring with two color classes with
size α(D). However, it is not possible to have in D two disjoint maximum independent
sets. Thus, the coloring C is 2-optimal. To find a 2-pack orthogonal to C, it would be
necessary to have two disjoint paths such that each path contained each one of the three
colors, since every color class has size at least two. However, it is not possible to find two
disjoint paths able to meet every color of this digraph. Then, there is no 2-pack orthogonal
to C.



Figure 3. Berge’s Dual Conjecture Counterexample (k = 2) - Perfect Digraphs

4. Conclusion
In this paper we showed that Berge’s Dual Conjecture is valid for bipartite digraphs. Al-
though the problem has been defined for directed graphs, the solution presented only uses
trivial vertices and arcs of a maximum matching as paths to build the k-pack orthogonal
to a given k-optimal coloring. The problem was thus reduced to a maximum matching
problem where the orientation of the edges does not matter; a somewhat surprising fact.
This proof of Berge’s Dual Conjecture for bipartite digraphs presented in this paper has
been published in the 4th edition of the Encontro de Teoria da Computação (Meeting of
Computing Theory) of the XXXIX edition of the Congresso da Sociedade Brasileira de
Computação (Congress of the Brazilian Computer Society) [Silva et al. 2019].

Furthermore, we presented an attempt to extend the result for perfect digraphs.
Although Berge’s Dual Conjecture is valid for some subcases, a counterexample was
found. The existence of a counterexample for perfect digraphs suggests that it might be
hard to understand what is the structure present in a digraph that prevents it from satisfying
Berge’s Dual Conjecture.

5. Authors’ Contribution
Caroline Aparecida de Paula Silva was an undergraduate student at UFSCar until 2019.
She was advised in this work, developed during a bit more than one year, by Cândida
Nunes da Silva. Orlando Lee, professor at IC-UNICAMP, is a regular research partner of
Cândida and the two have been collaborating in the past years researching several prob-
lems related to Berge’s Dual Conjecture. The project was proposed to Caroline by both
Cândida and Orlando, who shared the curiosity of figuring out if, at least for a so well
structured class of digraphs such as bipartite digraphs, the Conjecture could hold. We did
not expect to have a full answer to this question, given the lack of information regarding
this specific Conjecture in the literature. Having an answer was quite a pleasant surprise.
In the initial development of the project Orlando and Cândida had some discussions as to
what would be the most promising strategy to attack the problem, how to best define the
cases to be analyzed and which one seemed simpler and should be attacked first. These
discussions where periodically reported to Caroline, who got deeply involved in the re-
search. Very soon, Caroline started to examine some examples, trying to find some sort of
algorithm to obtain the k-pack orthogonal to a given coloring. Her ideas, when presented
to Cândida, resembled too much augmenting path algorithms for matching problems. At
that moment Caroline was advised to study well known theorems and algorithms for max-



imum matching in bipartite graphs so as to have more tools to attack the problem. So did
Caroline. Not too long after that, Caroline figured out how to prove the Conjecture based,
in essence, on Gallai’s and König’s classic theorems. Thus, Caroline deserves a lot of
credit in this work.

Once the bipartite case was solved, it was published and presented at ETC-CSBC
in 2019. There, Caroline was asked if the result could be extended to perfect digraphs
or at least some subclass of those. There was no answer back then and, again, it did not
seem it was possible to obtain an answer quickly. Even so, intense curiosity motivated us
to at least start an investigation. To our surprise, we, again, obtained an answer quickly.
This time, however, it is a negative answer.
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