
Algorithms for Transforming Strings by Reversals*

Gustavo da S. Teixeira1, Carla N. Lintzmayer1

1Center for Mathematics, Computing and Cognition – Federal University of ABC
Santo André, São Paulo, Brazil

teixeira.gustavo@aluno.ufabc.edu.br, carla.negri@ufabc.edu.br

Abstract. A reversal is an operation that cuts a segment of a string and reverses
it. The problem of Transforming Strings by Reversals (TSbR) consists of, given
two strings, finding the minimum number of reversals that transform one string
into the other. TSbR is NP-hard and there are not many algorithmic results for
it. In this work, we propose eight practical algorithms for TSbR and compare
them, experimentally.

1. Introduction
To estimate the evolutionary distance between two organisms, due to the principle of
parsimony, it is common to use the minimum number of large-scale mutations that affect
the genome of one organism and transform it into the genome of another. One such
possible mutation is a reversal, which is a well-studied genome rearrangement operation.

We can represent a genome as a sequence of integers. When genes are not re-
peated, we represent it as a permutation. Otherwise, the representation is given by a
string. Also, when the orientation of the genes is known, each element has a “+” or “−”
sign, and the permutation or string is called “signed”.

A reversal is a rearrangement operation that reverses the order of a segment in a
string. Sorting Permutations by Reversals (SbR) and Transforming Strings by Reversals
(TSbR) consist of finding the minimum number of reversals that sort a given permutation
and that transform one given string into another, respectively.

Signed SbR is polynomial [Hannenhalli and Pevzner 1999], while the un-
signed SbR is NP-hard with a 1.375-approximation [Berman et al. 2002] as best re-
sult. As for TSbR, it is NP-hard [Chen et al. 2005], and there exists a Θ(k)-
approximation [Kolman and Waleń 2007] for when each symbol occurs at most k times
derived from a Θ(k)-approximation for the Minimum Common String Partition prob-
lem (MCSP) [Chen et al. 2005]. A simple greedy heuristic for the MCSP when each
symbol occurs at most k times has approximation ratio Ω(n0.43) and O(n0.67), for any k
and strings of size n [Chrobak et al. 2004]. [Siqueira et al. 2020] compared the Θ(k)-
approximation with some heuristics of their own to deal with TSbR only in the particular
case of k = 2. The approximation algorithm obtained the worst results in their tests.

To the best of our knowledge, apart from these algorithmic results, no other are
known. Note, specially, the lack of existence of algorithms that directly handle TSbR.
The approximations algorithms (which are primarily for MCSP), despite having linear
time, are not so simple to implement. Our goal, therefore, is to find good practical algo-
rithms for TSbR. We present eight algorithms, and compare all of them through practical
experiments, considering sets of strings in which each symbol can occur more than twice.

*The authors thank the São Paulo Research Foundation, FAPESP, proc. 2019/13312-7.

The rest of this text is organized as follows: Section 2 presents important def-
initions and notations; Section 3 describes each of the proposed and implemented al-
gorithms; Section 4 presents the experimental results and a comparative analysis of the
algorithms; Section 5 concludes the work and gives suggestions for future work.

2. Definitions and notation

A permutation is a tuple π = (π1, π2, . . . , πn), of length |π| = n, with πi ∈ {1, 2, . . . , n}
and |πi| 6= |πj| ⇐⇒ i 6= j. In a signed permutation, each element has an associated “+”
or “−” sign. In an unsigned permutation, signals are omitted. The identity permutation is
given by ι = (1, 2, 3, . . . , n) and is the goal of the sorting problems.

A string S = s1s2 . . . sn is a sequence of (possibly repeated) elements of an al-
phabet Σ = {0, 1, 2, . . . , k − 1}. In a signed string, each element has an associated “+”
or “−” sign. In an unsigned string, signals are omitted. Note that, by definition, a permu-
tation is a string in which the elements do not repeat. The length of a string S, denoted by
|S|, is the number of positions for symbols it has.

The longest common prefix (resp. suffix) between two strings S and T is the maxi-
mal substring L = sisi+1 . . . sf−1sf such that i = 1 (resp. f = n), and, for all i ≤ j ≤ f ,
sj = tj , and its length is denoted by lcp(S, T) (resp. lcs(S, T)).

We denote by f(S, x) the number of occurrences of a symbol x in the string S.
Also, f(S, S ′) denotes the number of occurrences of substring S ′ in S.

Two strings S and T are balanced if |S| = |T |, they are described over the same
alphabet Σ, and f(S, x) = f(T, x) for all x ∈ Σ. We only consider balanced strings.

A reversal ρ(i, j), with 1 ≤ i < j ≤ n, is an operation that transforms a
string when applied to a string S = s1s2 . . . sn into the string S · ρ(i, j) = s1 . . . si−1

sj sj−1 . . . si+1 si sj+1 . . . sn. If the string is signed, the reversal also changes the sign of
each element of the reversed segment.

The reverse string of S is the string SR = S · ρ(1, n). Two strings S = s1 . . . sn
and T = t1 . . . tn are identical, denoted by S = T , if si = ti for all i ∈ {1, . . . , n}. They
are congruent, denoted by S ∼= T , whether S = T or S = TR. We say thatR is a common
substring, with respect to the equivalence relation (=), if R is a substring of S and is a
substring of T . Also, R is a common substring, with respect to the congruence relation
(∼=), if R is a substring of S and there is a substring R′ of T , or if R is a substring of T
and there is a substring R′ of S, such that R ∼= R′.

The problem of Transforming Strings by Reversals (TSbR) consists of, given two
strings, finding the minimum number of reversals that transform one string into the other.
This value is called the (reversal) distance and it is denoted by dρ(S, T). For example,
for S = 01021323 and T = 02321310, we have dρ(S, T) = 3, as the sequence of strings
01021323, 02312013, 02312310 show, where each reversed segment is underlined.

The concept of reversal breakpoints, widely used in permutations, was adapted
for strings considering their duos, which are substrings of length 2. The idea is
to count duos that appear in different amounts in the strings. Let δ(x) = x,
if x > 0, and δ(x) = 0, otherwise. Consider special elements w < 0 and
z > |Σ| − 1, added to the beginning and end, respectively, of both strings. The

number of reversal breakpoints between two strings S and T , denoted by bρ(S, T),
is given by bρ(S, T) =

∑
w≤x<y≤z δ (f(S, xy) + f(S, yx)− f(T, xy)− f(T, yx)) +∑

x∈Σ δ (f(S, xx)− f(T, xx)).

For example, for S = 01021323 and T = 02321310, we have bρ(S, T) = 2, since
S has one occurrence of duo 01/10 and one of duo 3z/z3 more than T , and T has one
occurrence of duo 13/31 and one of duo 0z/z0 more than S.

A partition of a string S = s1 . . . sn is a sequence P = (P1, P2, . . . , Pm) of strings
whose concatenation P1P2 . . . Pm results in S. Each Pi, with 1 ≤ i ≤ m, is called part of
P , and the number of parts in a partition is its size, denoted by |P|.

Given a partition P = (P1, . . . , Pm) of a string S and a partition Q =
(Q1, . . . , Qm) of a string T , we say that the pair π = (P ,Q) is a common partition of S
and T , with respect to the relation Rel ∈ {=,∼=}, if there is a permutation σ of (1, . . . ,m)
such that (Pi, Qσ(i)) ∈ Rel, for each i ∈ {1, . . . ,m}. For example, for S = 30132210
and T = 30231021, one possible common partition with respect to the relation ∼= is
π = (P ,Q), with P = (3, 0132, 21, 0) and Q = (3, 0, 2310, 21).

The Minimum Common String Partition Problem (MCSP) consists of, given two
unsigned strings S and T , finding a common partition of minimum size between S and T
with respect to the relation =. The Reverse MCSP (RMCSP) has the same objective, but
with respect to the relation ∼=.

3. Implemented algorithms

In the following subsections, we describe the eight algorithms tested in this work.

3.1. Improved Selection Sort

The simplest algorithm for transforming a string into another compatible string is similar
to the Selection Sort algorithm. Given two strings S and T , of length n, the idea is to go
through the elements of S from the first position, i = 1, and, if si 6= ti, find the minimum
index j > i such that sj = ti and apply ρ(i, j) to S.

One can see that, in the worst case, n−1 reversals will be necessary to perform the
transformation. Note that this process is equivalent to saying that, each reversal applied
will increase by at least one the length of the longest common prefix between S and T .
The algorithm stops when lcp(S, T) = n, which implies S = T .

Note that we can have, in a given iteration, several reversals that increase the value
of lcp(S, T), but the algorithm applies the first one it finds. Instead, the algorithm could
choose, among all the reversals applicable to S, the one that most increases the value of
lcp(S, T). We can also look for reversals that instead of increasing the value of lcp(S, T),
most increase the value of lcs(S, T), since increasing the common suffix is also a way to
obtain identical strings. In addition, we do not need to apply reversals only to S during
transformation, but we can also apply reversals to T .

Thus, the final version of the algorithm will choose, at each iteration, the reversal
that most increases the value of lcp(S, T) + lcs(S, T), among all the reversals applicable
to S or T , and apply it in the respective string. This final version of the algorithm will be
called SELECTION.

For example, for S = 30132210 and T = 30231021, the SELECTION algorithm
would apply the following sequence of 3 reversals, where the reversed segments are un-
derlined: 30132210, 30231210, 30231201.

Each iteration takes time O(n2) to find and apply the reversal that most increases
the value of lcp(S, T) + lcs(S, T). In the worst case, n − 1 iterations will be required.
Thus, SELECTION takes time O(n3).

3.2. Removing breakpoints

Note that each reversal applied to a string can remove at most 2 break-
points [Chen et al. 2005]. Since S = T implies bρ(S, T) = 0, one strategy is to
successively eliminate breakpoints. However, one obstacle to this strategy is the fact
that bρ(S, T) = 0 does not imply S = T . Thus, if we eliminate breakpoints until
there are no more breakpoints between the strings, we will not necessarily have trans-
formed one string into the other. Furthermore, in permutations, we know that there
is an optimal sequence of reversals that never increases the number of reversal break-
points [Hannenhalli and Pevzner 1996], but this result is not valid for strings, as one can
see from S = 01021323 and T = 01321023, where bρ(S, T) = 0 and dρ(S, T) = 2.

Thus, the strategy of the second proposed algorithm consists of seeking, in S and
T , the reversal that most eliminates breakpoints between the strings and, if there is no
reversal that eliminates breakpoints, apply the reversal that most increases the value of
lcp(S, T) + lcs(S, T). This second algorithm will be called BREAKS.

For each iteration, finding the reversal that most eliminates breakpoints takes time
O(n2) and, if there is no reversal in this condition, looking for the reversal that most
increases the value of lcp(S, T) + lcs(S, T) takes time O(n2). In the worst case, the
algorithm will apply n reversals, thus the total time is O(n3).

3.3. Selection Sort from RMCSP

The third algorithm proposed here consists of, initially, finding a common partition
through the GREEDY algorithm, proposed by Chrobak et al. [Chrobak et al. 2004], for
the RMCSP. The idea is, from the common partition π = (P ,Q) found, sort the parts
using, again, an algorithm similar to the Selection Sort.

Starting with i = 1, whenever Pi 6= Qi, we have two possibilities, for some j > i.
Either Pj = QR

i , in which case one reversal over S places Pj in its correct position, or
Pj = Qi, in which case two reversals over S place Pj in its final position. In the end, we
will have P = Q and, consequently, S = T . This algorithm will be called MCSP1.

For example, for S = 30132210 and T = 30231021, the common partition given
by GREEDY is π = (P ,Q), where P = (3, 0132, 21, 0) and Q = (3, 0, 2310, 21). The
first reversal applied places part 0 of P in the second position, that is, 30132210. Then,
we have P ′ = (3, 0, 12, 2310). Now, we must place the part 2310 of P ′ in the third
position, which requires 2 reversals. That is, 30122310 and 30013221. Now, we have
P ′′ = (3, 0, 2310, 21) = Q, so the algorithms stops after 3 reversals.

The GREEDY algorithm takes time O(n3) to find a common partition between
strings. From the common partition, the algorithm that places the parts in the correct
positions takes time O(n2). Thus, MCSP1 has total time O(n3).

3.4. Signed permutations from RMCSP

The fourth algorithm again starts with a common partition π = (P ,Q) returned by the
GREEDY algorithm, and then transforms each one into a signed permutation. Each partQi

fromQ is renamed to +i (which will result inQ being equal to the identity permutation),
and one part Pj in P is renamed to +i if Pj = Qi, or to −i if Pj = QR

i .

Consider the same example of strings S = 30132210 and T = 30231021 as before
and their common partition π = (P ,Q) given by GREEDY. After converting π into a pair
of signed permutations, we will have the identity permutation ι = (+1,+2,+3,+4) for
Q and permutation π = (+1,−3,+4,+2) for P .

After this process, we will have an instance of the signed SbR problem, which we
can solve optimally [Hannenhalli and Pevzner 1999]. We then return such distance. This
algorithm will be called MCSP2.

Renaming the common partition as a signed permutation takes time O(n2). Cal-
culating the reversal distance for signed permutations, without the optimal sequence of
reversals itself, takes time O(n). Therefore, MCSP2 also has total time O(n3) due to the
GREEDY algorithm.

3.5. Mapping strings into permutations

Let S = s1 s2 . . . sn be a string described over an alphabet Σ, with |Σ| = k, such that
f(S, i) = ai for all i ∈ Σ. A mapping m of S can be represented by a set of k sequences
mi, with 0 ≤ i < k, each one being a permutation of the set [ai] = {1, 2, . . . , ai}. The
element at position j of a sequence mi, denoted by m(i,j), represents the label of the j-th
occurrence of the symbol i in S. The permutation resulting from applying the labels of m
to S will be denoted by Sm. A trivial mapping m of S is a mapping where each element
m(i,j) = j, which is equivalent to saying that each sequence mi increasingly ordered.

For example, one possible mapping m for S = 12323013 could be such that
m0 = (1), m1 = (2, 1), m2 = (1, 2), m3 = (2, 3, 1). The resulting permutation will be
Sm = (12, 21, 32, 22, 33, 01, 11, 31) = (3, 4, 7, 5, 8, 1, 2, 6). For this same string S, the triv-
ial mapping z would be such that z0 = (1), z1 = (1, 2), z2 = (1, 2), z3 = (1, 2, 3),
and the permutation resulting from it would be Sz = (11, 21, 31, 22, 32, 01, 12, 33) =
(2, 4, 6, 5, 7, 1, 3, 8).

For two strings S and T , if the reversal distance between the permutations Sp and
T q is d(Sp, T q), then we know that d(S, T) ≤ d(Sp, T q), for any mappings p and q. Also,
there is at least one pair of mappings p and q such that d(S, T) = d(Sp, T q).

Finally, the algorithm consists of, given two strings S and T and an integerN , gen-
eratingN random mappings for S and a trivial mapping t for T , and calculating, using the
greedy 2-approximation for SbR, which we call KS95 [Kececioglu and Sankoff 1995],
the number of reversals that transforms each of the permutations generated from S into the
permutation T t. From the N solutions, the algorithm returns the one with the minimum
cost. This algorithm will be called MAPS1 and it was given by [Siqueira et al. 2020].

Generating each of the random mappings takes time O(n) and, for each mapping,
calculating a solution with KS95 takes time O(n2).

3.6. Mappings and breakpoints

Another proposed algorithm is a variation of the MAPS1 algorithm that, instead of cal-
culating a number of reversals for each mapping using KS95, calculates the number of
reversal breakpoints of the permutations generated by the mappings. At the end, it returns
the number of reversals calculated by KS95 for the permutation that has the minimum
number of reversal breakpoints.

This idea is based on the fact that fewer breakpoints, in general, imply shorter
distances, and that applying KS95 is more time consuming than calculating the number
of breakpoints. This algorithm will be called MAPS2.

Generating each of the random mappings takes time O(n) and, for each mapping,
calculating the number of breakpoints takes time O(n).

3.7. BRKGA implementation for TSbR

The next algorithm consists of the implementation of the metaheuristic Biased Random-
Key Genetic Algorithm (BRKGA) [Gonçalves and Resende 2010] for TSbR.

The proposed implementation receives as input a pair of strings S and T , the
population size p, the number g of generations, the number qe of individuals in the elite
population, the number qt of mutants in the population, and a real number ρe ∈ (1

2
, 1),

representing the probability that a descendant will inherit parts of his parent belonging to
the elite in the crossover process.

Decoder and Initial Population. Initially, the algorithm will generate p trivial
mappings for the string S and a single trivial mapping for T . For each element m(i,j)

of each sequence mi of each trivial mapping m generated for S, a random key will be
assigned, represented by a real number in the interval [0, 1]. The decoder will work by
sorting the elements of each of the mi sequences of each mapping m in non-decreasing
order of the random keys associated with each element. This process is analogous to
shuffling the elements of each of the trivial mapping sequences, and we can see that
the mapping resulting from this process remains a valid mapping for S. Each resulting
mapping will represent an individual in the initial population.

Fitness Function. For a decoded mapping m of S, a solution is calculated using
KS95 with the permutation Sm and the permutation generated by the trivial mapping of
T as input. Thus, the lower the value of the solution, the greater its fitness value.

Elite. The elite of the current generation is formed by the qe individuals with the
highest fitness values. They are copied to the next generation.

Mutation. We randomly generate qt individuals (mutants) for the next generation.

Crossovers. The number qc of individuals that must be generated by crossover is
p−qe−qt. To generate each one, we randomly select an elite parent and a non-elite parent
and, to form each sequence mi of the descendant, we draw a real number r in the [0, 1]
range. If r ≤ ρe, the sequence inherited by the descendant will be the sequence mi of the
elite parent. Otherwise, the descendant will inherit sequencemi from the non-elite parent.
Note that we chose to inherit each sequence mi, and not each element m(i,j). The reason
for this is the fact that the decoder, as proposed, rearranges the elements m(i,j) of each
sequence mi of individuals. Thus, if we chose to draw a number for each element m(i,j),

the decoder could transform one of the sequences mi of the descendant into a sequence
that would not represent the inheritance of characteristics from either parent.

After creating g generations of p individuals, the algorithm will return as the so-
lution for the TSbR the lowest value (or highest fitness value) of the solutions associated
with individuals of generation g. This algorithm will be called BRKGA1. Note that
creating one individual takes time O(n), while calculating its fitness value (the solution
calculated by KS95) takes time O(n2).

3.8. BRKGA and breakpoints

In the same way that we did with the mappings, we proposed a variation, less time con-
suming, for the BRKGA1 algorithm. It consists of changing the fitness function so that
the fitness value is the number of reversal breakpoints from the associated S mapping.
The smaller the number of reversal breakpoints, the greater the individual’s fitness value.

The rest of the algorithm remains unchanged, except that it returns the number of
reversals calculated by KS95 for an individual with the highest fitness value, i.e., the least
number of reversal breakpoints. This algorithm will be called BRKGA2. Now, note that
calculating the fitness value of an individual takes time O(n).

4. Experimental results
In order to compare, in practice, the quality of the solutions of the proposed algorithms,
described in the previous sections, 11 sets, each with 100 inputs, were generated for ex-
periments. Each input consists of two strings, S and T , randomly generated as follows:
an identity string S is created and its elements are shuffled uniformly (all possible per-
mutations of the elements in this string are equally likely to occur); after shuffling, we
copy the resulting string S to the string T , now obtaining two identical strings; finally,
dest reversals are randomly applied to the string S, where dest is an integer defined for
each of the sets of 100 inputs.

It is worth mentioning that, since dest reversals were applied to create each of the
inputs, we know that the optimal reversal distance between the strings of each pair will
necessarily be less than or equal to dest.

Let n be the length of the strings S and T , described over an alphabet Σ, where
|Σ| = k. In all sets defined for the tests, each pair of strings S and T will have the same
number of occurrences for each symbol, i.e., f(S, i) = f(S, j), ∀ i, j ∈ Σ. We will then
denote the number of occurrences of each symbol in each of the strings only by an integer
f . Consequently, for each of the eleven sets, we will have n = kf .

To form the 11 sets, we let f = 5 for nine of them, and f = 2 for the remaining
two sets. In the nine sets where f = 5, we define n ∈ {20, 30, 40, 50, 60, 70, 80, 90, 100}.
In the two sets where f = 2, we define n ∈ {50, 100}.

In the algorithms that receive additional parameters, apart from the pair of strings
S and T , we searched several sets of values for each of the parameters, in order to obtain
a configuration that returned, on average, better results. For MAPS1 and MAPS2, the
only additional parameter is the number N of random mappings generated for the string
S. We set N = 100000. BRKGA1 and BRKGA2 have five additional parameters,
set as follows: (p, g) ∈ {(100, 1000), (200, 500), (500, 200), (1000, 100)}, qe ∈ {0.15p,

Table 1. Experimental results of the proposed algorithms.

n k f dest SELECTION BREAKS MCSP1 MCSP2 MAPS1 MAPS2 BRKGA1 BRKGA2

20 4 5 10 6.76 9.35 11.14 7.86 7.37 8.49 5.67 6.85
30 6 5 10 11.10 15.36 16.29 11.38 14.04 15.50 8.48 9.80
40 8 5 15 17.04 24.46 24.40 16.78 21.87 24.15 12.97 14.99
50 10 5 15 20.73 28.87 27.37 18.94 29.87 32.00 14.87 17.51
60 12 5 20 28.45 40.30 35.73 24.52 38.57 41.43 19.98 23.13
70 14 5 20 31.48 42.21 38.39 25.82 46.76 49.87 21.16 24.21
80 16 5 25 38.99 52.76 47.37 32.08 55.65 59.00 27.21 30.65
90 18 5 25 41.23 55.94 48.39 32.18 64.23 67.06 28.90 31.42
100 20 5 25 44.23 56.96 51.30 33.60 72.89 75.81 31.56 33.71

50 25 2 15 21.96 19.33 26.89 18.18 17.96 19.36 14.61 15.74
100 50 2 25 42.49 32.99 49.85 32.02 44.52 46.93 25.61 27.71

ERROR AVERAGE (%) 40.38 76.24 77.90 20.27 86.78 99.55 −1.52 10.80

0.2p, 0.3p, 0.4p}, qt ∈ {0.15p, 0.2p, 0.3p, 0.4p} and ρe ∈ {0.55, 0.6, 0.65, 0.7}. All
combinations were tested in a set of 100 entries where n = 50, and the best one was
p = 1000, g = 100, qe = 0.3p, qt = 0.3p, and ρe = 0.6. For MCSP2, we used the
GRIMM tool [Tesler 2002] to calculate the optimal solutions for the signed SbR.

Table 1 shows the experimental results obtained for each of the 11 sets of strings,
one per line. The first four columns represent the values that define the equivalence class
of the strings in each set: the length n, the size k of the alphabet, the number of occur-
rences f of each of the symbols and the number of reversals dest applied to one of the
strings of each pair. The error of an algorithm is given by (dalg − dest)/dest, where dalg is
the average distance estimated by the algorithm for the strings of a given set, which is the
value in each cell. The average of the errors, given in the line ERROR AVERAGE, rep-
resents how far from dest the algorithm estimated the distance to the 1100 tested instances.
The lower the value in ERROR AVERAGE, the better the performance of the algorithm
in the tested sets, and a negative value in this line means that the algorithm returned, on
average, better solutions (of less value) than dest. Recall that negative values are possible
since dest can be indeed greater than the real distance value.

When analyzing the results of Table 1, we can see that MAPS1 and MAPS2 algo-
rithms were the ones that most distanced, on average, from the dest for the tested instances.
Although BREAKS and MCSP1 showed worse results than MAPS1 and MAPS2 for
some sets with strings of short length, this scenario was reversed in the sets with f = 5
and n ≥ 50. Even when generating 100 thousand random mappings for each instance,
the results showed that the growth of n and/or f values greatly increases the search space
for random mappings, i.e., the number of mappings m is very small compared to the total
number of possible mappings for the string being mapped.

For a string S such that f(S, i) = f for all i ∈ Σ, the number of possible mappings
M is given by M = f !f ! · · · f ! = (f !)k. Calculating this value for the tested sets with
the highest values of n and f = 5, we can see that 100 thousand mappings represents an
extremely small value in relation to the number of possible mappings.

The BREAKS and MCSP1 algorithms were the ones with the worst results after
MAPS1 and MAPS2, which indicates that the choices of reversals of these algorithms
have somewhat naive criteria. In the case of BREAKS, the problem may lie in the fact that
we are often unable to eliminate breakpoints and have to use criterion of increasing the

length of common extremes. In the case of MCSP1, the problem is clearer, as we wanted
to demonstrate the difference between the easiest choices of reversals (criterion of sorting
the parts of the common partition via Selection Sort) and the modeling of the common
partitions into signed permutations, which can be solved optimally.

The algorithm that follows, in ascending order of the average quality of the solu-
tions, is the SELECTION algorithm. An interesting fact observed in its results was that the
averages of the values of its solutions were not lower whenever the value of f was lower,
in the sets with n = 50 and n = 100, having occurred only in the last case.

Between the first two algorithms, SELECTION was much better than BREAKS
when f = 5. However, for both sets with f = 2, BREAKS algorithm took advantage of the
first. This result is interesting because removing breakpoints works better in permutations,
which we can see as strings where f = 1. An example of this is the KS95 algorithm,
which uses this strategy in permutations and has a well-defined approximation factor.

The use of the exact polynomial time algorithm for signed permutations was prob-
ably the reason why MCSP2 was the third best algorithm in our experiments, worse only
than the two BRKGA implementations.

The two versions of BRKGA took advantage over the other algorithms and, be-
tween the two, the first one returned shorter distances, as already expected, because the
fitness value is the solution itself by KS95.

It is important to highlight that the growth, even if not so expressive, in the val-
ues of n and f can dramatically increase the search space for mappings, as revealed by
calculating the total number of possible mappings for a string. Thus, for high values of
these two variables, even the BRKGA with a well-adjusted configuration may need many
generations to sufficiently explore the solution space, which can make this method unfea-
sible in terms of time consumption, when looking for quality solutions similar to those
returned in the tests performed in this work.

Precisely for this reason, it is worth mentioning that, for strings with many occur-
rences of each symbol, or of very long lengths, the second version of BRKGA may be
more interesting, since the lower cost in relation to time allows the number of generations
(and/or the size of the populations) created to be greater than what would be achieved
with the same time consumption of the first version.

Finally, we will comment on the execution time of the algorithms in practice.
Due to some difficulties we had, not all the results presented in Table 1 had their time
recorded. Thus, we performed some new tests in order to evaluate that, on a specific set
of 100 strings, with n = 50, f = 5 and dest = 15, and calculated the average time,
in milliseconds, that each one took to return its solution for each instance of this set:
SELECTION = 4.85 ms; BREAKS = 28.44 ms; MAPS1 = 129261.80 ms; MAPS2 =
564.36 ms; BRKGA1 = 103389.63 ms; BRKGA2 = 1153.40 ms; MCSP1 = 34.35 ms.
For MCSP2, because we used the GRIMM tool, we were unable to calculate its exact
execution time; however, when timing the approximate time spent to solve all instances
of the test set, we conclude that the time of this algorithm is close to that of MAPS2.

When analyzing the execution times in the test set, one can see that even for
strings with n = 50, MAPS1 and BRKGA1 take a long time to return their solutions,

when compared to the other algorithms, because they need a very large number of map-
pings/individuals to return good quality solutions, having to calculate an approximate
solution, using KS95, for each of these mappings/individuals, as already mentioned.

5. Conclusions
In this work, we proposed and compared several practical algorithms for the problem of
Transforming Strings by Reversals and the algorithm with the best results, on average,
was the implementation of the BRKGA metaheuristic. However, the BRKGA version
that returned the best solutions, BRKGA1, is very time consuming when strings are too
long. In the future, it would be interesting to study structural aspects of the problem,
in order to develop algorithms with well-defined and smaller approximation factors than
those already existing in the literature. In addition, this work considered only the unsigned
version of TSbR, and obtaining algorithmic results for the signed version of the problem
should also be one of the objectives for future work.

References
Berman, P., Hannenhalli, S., and Karpinski, M. (2002). 1.375-Approximation Algorithm for Sort-

ing by Reversals. In Möhring, R. and Raman, R., editors, Proceedings of the 10th Annual
European Symposium on Algorithms (ESA’2002), volume 2461 of Lecture Notes in Computer
Science, pages 200–210. Springer-Verlag, Berlin, Germany.

Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., and Jiang, T. (2005). Assignment of
Orthologous Genes via Genome Rearrangement. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 2(4):302–315.

Chrobak, M., Kolman, P., and Sgall, J. (2004). The Greedy Algorithm for the Minimum Common
String Partition Problem. In Jansen, K., Khanna, S., Rolim, J. D. P., and Ron, D., editors, Pro-
ceedings of the 7th International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX’2004), and 8th International Workshop on Randomization
and Computation (RANDOM’2004), pages 84–95, Berlin, Heidelberg. Springer.

Gonçalves, J. F. and Resende, M. G. C. (2010). Biased random-key genetic algorithms for combi-
natorial optimization. Journal of Heuristics, 17(5):487–525.

Hannenhalli, S. and Pevzner, P. (1996). To Cut ... or Not to Cut (Applications of Comparative
Physical Maps in Molecular Evolution). In Tardos, E., editor, Proceedings of the 7th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’1996), pages 304–313, Philadelphia,
PA, USA. Society for Industrial and Applied Mathematics.

Hannenhalli, S. and Pevzner, P. A. (1999). Transforming Cabbage into Turnip: Polynomial Algo-
rithm for Sorting Signed Permutations by Reversals. Journal of the ACM, 46(1):1–27.

Kececioglu, J. D. and Sankoff, D. (1995). Exact and Approximation Algorithms for Sorting by
Reversals, with Application to Genome Rearrangement. Algorithmica, 13:180–210.

Kolman, P. and Waleń, T. (2007). Reversal Distance for Strings with Duplicates: Linear Time
Approximation Using Hitting Set. In Erlebach, T. and Kaklamanis, C., editors, Proceedings of
the 4th International Workshop on Approximation and Online Algorithms (WAOA’2006), pages
279–289, Berlin, Heidelberg. Springer.

Siqueira, G., Brito, K. L., Dias, U., and Dias, Z. (2020). Heuristics for reversal distance between
genomes with duplicated genes. In International Conference on Algorithms for Computational
Biology, pages 29–40. Springer.

Tesler, G. (2002). GRIMM: Genome Rearrangements Web Server. Bioinformatics, 18(3):492–
493.

