
Efficiently Finding Useless Mutants
Beatriz Souza1 and Rohit Gheyi1

1 Departamento de Sistemas e Computação
Universidade Federal de Campina Grande (UFCG) – Campina Grande, PB – Brazil

{beatriz.souza@ccc.ufcg.edu.br,rohit@dsc.ufcg.edu.br}

Abstract. Mutation analysis is a popular but costly approach to assess the qua-
lity of test suites. Equivalent and redundant mutants contribute to increase costs
and are harmful to the design of test suites. We propose a lightweight technique
to identify equivalent and redundant mutants based on theorem proving with Z3
in the context of weak mutation testing. The experiments reveal that our tech-
nique detects all equivalent mutants detected by TCE and we have an average
reduction of 72.52% of mutants, when considering entire programs. We also ap-
ply our technique on HOMs. When considering both FOMs and HOMs, 91% of
the mutations could be discarded on average. The results found by our approach
may help to make mutation testing less expensive and more accurate.

1. Introduction
Mutation analysis is a powerful technique to assess quality of test sui-
tes [DeMillo et al. 1978, Offutt 2011, Papadakis et al. 2019]. The technique introduces
variations in code and checks if those variations are observable through test execution.
Applying a mutation to a program yields a mutant. A mutant is said to be killed if a test
case in the test suite fails on a given mutant; a mutant is said to survive otherwise. Just
et al. [Just et al. 2014] empirically identify a statistically significant correlation between
mutant detection and real fault detection.

The high cost of mutation testing creates an entry barrier to its use in the software
industry, but the effectiveness of mutation testing in assessing the quality of the test sui-
tes makes it attractive. Therefore, there is an incentive to carry out cost-saving studies
and alternative ways to use mutation, such as the approach used by Google, where only
one mutant per target is chosen by a software engineer manually during the code quality
inspection [Petrovic and Ivankovic 2018].

However, some mutants are equivalent or redundant, that is, they may not
be necessary for the effectiveness of mutation analysis and thus we may discard
them [Papadakis et al. 2016]. Equivalent mutants have the same behavior as the ori-
ginal program [Budd and Angluin 1982, Jia and Harman 2011, Madeyski et al. 2014].
Redundant mutants are killed when other mutants are also killed [Kintis et al. 2010,
Papadakis et al. 2016]. Then, the generation of these mutants increases the total cost and
does not help to improve the test suite.

Madeyski et al. [Madeyski et al. 2014] report that the rate of equivalent mu-
tants might lie between 4% and 39%. In addition, manually checking mutant equi-
valence is error-prone (people judged equivalence correctly in about 80% of the ca-
ses [Acree 1980]) and time consuming (approximately 15 minutes per equivalent mu-
tant [Schuler and Zeller 2013]). Ammann et al. [Ammann et al. 2014] empirically iden-
tified that almost 99% of the generated mutants are redundant. Also, Papadakis et

al. [Papadakis and Malevris 2010] identified that such redundant mutants inflate the mu-
tation score and that 68% of recent research papers are vulnerable to threats to validity
due to the effect of these mutants.

Weak mutation testing is a modification to mutation testing that is computationally
more efficient, and can be applied in a manner that is almost as effective as mutation
testing [Offutt and Lee 1994]. Weak mutation testing requires that a test case causes a
mutated program component to compute a different value than the program component.
Mutation testing, on the other hand, requires that a test case causes a mutated program to
compute a different value than the program [Offutt and Lee 1994].

We propose a lightweight technique consisting of six steps to discover equiva-
lent and redundant mutants using theorem proving in the context of weak mutation tes-
ting [Howden 1982]. We encode a theory of equivalence and redundancy in Z3 and use
its theorem prover [de Moura and Bjørner 2008] to automatically identify equivalent and
redundant mutants (Section 2). Our technique is lightweight, we do not need to create
mutants, compile them, create test suites, and execute them.

We apply our technique to 40 mutation targets, considering most of the method
method-level mutation operators available in MUJAVA. Our technique identifies 13 equi-
valences for seven mutation targets and, removing redundant mutations, reduces 59% of
the mutations on average in the context of weak mutation testing.

Moreover, we investigate whether our results hold in the context of strong muta-
tion testing. To evaluate our approach, we apply MUJAVA [Ma et al. 2005], a tool that
generates mutants for programs written in Java, to 20 mutation targets in 5 real large pro-
jects. Then, we ran Trivial Compiler Equivalence (TCE) [Kintis et al. 2017], which is a
sound tool to find equivalent mutants, against the mutants generated by MUJAVA. Our
technique detects all equivalent mutants detected by TCE, but with less effort. We also
modified MUJAVA to include our results for 24 mutation targets. We call MUJAVA-M
this new version of MUJAVA. Then we apply MUJAVA and MUJAVA-M to 5 real large
projects. MUJAVA generated 7,386 mutants and MUJAVA-M generated 2,041 mutants.
We have an average reduction of 72.52% of mutants, when considering entire programs.

Based on the types of faults seeded, mutants can be classified as First Order Mu-
tants (FOMs) and Higher Order Mutants (HOMs). First order mutants seed only simple
faults, generated by a single syntactic change to the original program. Higher order muta-
tion testing (HOMT) [Jia and Harman 2009], an approach that generates mutants by ap-
plying mutation operators more than once, is one of the attempts to reduce the expensive-
ness associated to mutation testing [Nguyen and Madeyski 2014]. However, the costs of
creating HOMs are also high, since the large number of possible fault combinations crea-
tes a set of candidate combinations that is exponentially large [Jia and Harman 2009]. We
also investigate equivalence and redundant relations among mutations for HOMs using
our approach. We create 233 FOMs and 438 HOMs for 27 mutation targets. When consi-
dering both FOMs and HOMs, 91% of the mutations could be discarded on average.

The results found by our approach may help to build better mutation testing tools
that will allow to reduce the mutation testing costs and help testers to evaluate more
accurately the strength of their test suites.

2. Technique

We propose a technique using the Z3 [de Moura and Bjørner 2008] API for Python, which
has a theorem prover, to identify equivalent and redundant mutations using weak mu-
tation testing. We focus on two types of redundant mutations: duplicate and subsu-
med. Duplicate mutations are semantically equal mutations [Marcozzi et al. 2018]. A
mutation m1 subsumes a mutation m2 if whenever m1 is detected, m2 is also detec-
ted [Guimarães et al. 2020]. For each mutation target, the main steps of our approach
are the following:

1. Declare variables;
2. Specify a program;
3. Specify a list of mutants;
4. Identify and remove equivalent mutants;
5. Identify and remove duplicate mutants;
6. Identify subsumption relations.

A mutation target is a language expression or statement in which it is possible
to apply a set of mutations of one or more mutation operators (e.g., a + b, a > b,
exp++, etc) [Guimarães et al. 2020].

Steps 1 and 2 are required to instantiate a mutation target in the
Z3 [de Moura and Bjørner 2008] API for Python. In Step 3, we specify a list of mutations
for the instantiated target. For Steps 4-6, we encode a theory in Z3 to detect equivalent,
duplicate, and subsumed mutants. We use the latest version of Z3 after fixing the bugs
found by Winterer et al. [Winterer et al. 2020].

Listing 1 specifies how to prove a theorem using the Z3 Python API. It can yi-
eld three answers: the theorem is valid or invalid, or it does not know the answer. The
command Solver creates a general purpose solver in Z3 [de Moura and Bjørner 2008].
Constraints can be added using the add function. The check method solves the cons-
traints. The result is sat (satisfiable) if a solution was found. The result is unsat (un-
satisfiable) if no solution exists. Finally, a solver may fail to solve a system of constraints
and unknown is returned. Z3 does not yield unknown in our study.

Listing 1. Proving a theorem in Z3.

def prove (theorem) :
s = S o l v e r ()
s . add (Not (theorem))
r = s . check ()
i f r == u n s a t :

re turn 1 # theorem i s v a l i d
e l i f r == unknown :

re turn 2 # Z3 doesn ’ t know t h e answer
e l s e :

re turn 0 # theorem i s i n v a l i d

The identifyEquivalentMutants function, presented in Listing 2, returns
equivalent mutants of a program.

Listing 2. Identifying equivalent mutants in Z3.

def i d e n t i f y E q u i v a l e n t M u t a n t s (p , muts) :
re turn [m f o r m in muts i f prove (p==m)==1]

2.1. Running Example

Next we show how to use our approach to identify some equivalence relations for the
lexp != rexp mutation target. For the integer expression lexp != rexp, we sim-
plify it to x != y and declare x and y as integer variables in the Z3 Python API (Step 1)
as shown in Listing 3. Then, in Step 2, we specify the program. In Step 3, we declare the
FOMs based on the method-level mutation operators available in MUJAVA. Moreover, we
declare the HOMs by combining the FOMs (See Listing 3).

Listing 3. Identify Equivalent Mutants for lexp != rexp target.

S tep 1
x = I n t (' x ')
y = I n t (' y ')

S t ep 2
p = x != y

S tep 3
muts = [x==y , x>y , x>=y , x<y , x<=y , True , F a l s e , Not (p) ,

Not (x==y) , Not (x>y) , Not (x>=y) , Not (x<y) ,
Not (x<=y) , F a l s e , True]

S tep 4
i d e n t i f y E q u i v a l e n t M u t a n t s (p , muts)

Notice that for the lexp != rexp mutation target, we can apply two muta-
tion operators, ROR and COI (see Table 1), and generate eight FOMs using MUJAVA:
ROR ==, ROR >, ROR >=, ROR <, ROR <=, ROR true, ROR false, and COI
!(!=). Moreover, combining ROR and COI we can generate seven HOMs: COI
ROR !(==), COI ROR !(>), COI ROR !(>=), COI ROR !(<), COI ROR
!(<=), COI ROR !(true), COI ROR !(false).

To identify all equivalent mutants in Step 4, we have to call the
identifyEquivalentMutants function passing p and muts as parameters. For
the lexp != rexp mutation target, our script indicates that the COI ROR !(==)
mutant is equivalent.

3. Evaluation

To evaluate our approach, we consider the following research questions:

RQ1 How many equivalent mutants does our approach detect using weak mutation tes-
ting? How does our approach compare with Trivial Compiler Equivalence, which
is one of the best techniques available to detect equivalent mutants?

RQ2 How many subsumed mutants does our approach detect using weak mutation tes-
ting? To what extent our results hold for complete programs?

RQ3 How many mutants could be discarded when considering both FOMs and HOMs?

3.1. RQ1: Number of Equivalent Mutants

We evaluate our technique, considering Steps 1-4, in 40 mutation targets applying most
MUJAVA method-level mutation operators [Ma et al. 2005], such as operators that mutate
arithmetic, relational, and logical expressions, and variable assignment statements. We
do not focus on the object-oriented ones, i.e., the class-level mutation operators.

Table 1. It presents mutation targets, method-level mutations that each operator
is able to create in the corresponding target, the set of equivalent mutants
for each target identified in our approach, and the percentage of equivalent
mutants.

Mutation Target Mutation Operators Equivalent Mutants Percentage
lexp + rexp AORB (2), VDL (2), CDL (2), ODL (2) - 0.0%
lexp - rexp AORB (2), VDL (2), CDL (2), ODL (2) - 0.0%
lexp * rexp AORB (2), VDL (2), CDL (2), ODL (2) - 0.0%
lexp ˆ rexp (bool) COR (4), ROR(2), COI (3), VDL (2), CDL (2), ODL (2) ROR(!=) 6.67%
lexp && rexp COR (4), ROR(2), COI (3), VDL (2), CDL (2), ODL (2) - 0.0%
lexp || rexp COR (4), ROR(2), COI (3), VDL (2), CDL (2), ODL (2) - 0.0%
lexp == rexp (bool) ROR (1), COI (3), VDL (2), CDL (2), ODL (2) - 0.0%
lexp != rexp (bool) ROR (1), COI (3), VDL (2), CDL (2), ODL (2) - 0.0%
lexp == rexp ROR (7), COI (1) - 0.0%
lexp != rexp ROR (7), COI (1) - 0.0%
lexp > rexp ROR (7), COI (1) - 0.0%
lexp >= rexp ROR (7), COI (1) - 0.0%
lexp < rexp ROR (7), COI (1) - 0.0%
lexp <= rexp ROR (7), COI (1) - 0.0%
lexp != rexp (obj) ROR (7), COI (1) - 0.0%
lexp & rexp LOR (2), VDL (2), CDL (2), ODL (2) - 0.0%
lexp | rexp LOR (2), VDL (2), CDL (2), ODL (2) - 0.0%
lexp ˆ rexp LOR (2), SOR (2), CDL (2), ODL (2) - 0.0%
lexp >> rexp LOR (3), SOR (1), VDL (2), CDL (2), ODL (2) - 0.0%
lexp << rexp LOR (3), SOR (1), VDL (2), CDL (2), ODL (2) - 0.0%
exp AOIS (4), AOIU (1), LOI (1) AOIS(exp–), AOIS(exp++) 33.33%
+exp AODU (1), LOI (1), ODL (1) AODU(exp), ODL(exp) 66.67%
-exp AODU (1), LOI (1), ODL (1) - 0.0%
++exp AORS (1), AODS (1), LOI (1), ODL (1) - 0.0%
exp++ AORS (1), AODS (1), LOI (1), ODL (1) AORS(exp), AODS(exp), ODL(exp) 75%
--exp AORS (1), AODS (1), LOI (1), ODL (1) - 0.0%
exp-- AORS (1), AODS (1), LOI (1), ODL (1) AORS(exp), AODS(exp), ODL(exp) 75%
!exp COD (1), ODL (1) - 0.0%
˜exp AODU (1), LOD (1), ODL (1) - 0.0%
lhs += rhs ASRS (2), ODL (1), SDL (1) - 0.0%
lhs -= rhs ASRS (2), ODL (1), SDL (1) - 0.0%
lhs *= rhs ASRS (2), ODL (1), SDL (1) - 0.0%
lhs <<= rhs ASRS (1), ODL (1), SDL (1) - 0.0%
lhs >>= rhs ASRS (1), ODL (1), SDL (1) - 0.0%
lhs &= rhs ASRS (2), ODL (1), SDL (1) - 0.0%
lhs |= rhs ASRS (2), ODL (1), SDL (1) - 0.0%
lhs ˆ= rhs ASRS (2), ODL (1), SDL (1) - 0.0%
lexp == rexp ROR (7), COI (1), ROR COI (7) COI ROR !(!=) 6.67%
lexp != rexp ROR (7), COI (1), COI ROR (7) COI ROR !(==) 6.67%
++exp ROR (7), COI (1), COI ROR (7) - 0.0%

Table 1 presents a number of method-level mutation targets in which MUJAVA is
able to apply a set of mutations from one or more mutation operators. Accordingly, for
each target, we specify the set of corresponding mutation operators able to apply muta-
tions into the target [Guimarães et al. 2020]. For each operator, we provide the number
of possible mutations (in parentheses) that such operator can apply into the target. For

example, the Logical Operator Replacement (LOR) operator can apply two mutations to
the lexp | rexp target.

For the 40 mutation targets presented in Table 1, our technique found equivalent
mutants for seven of them. We find 13 mutations that yield equivalent mutants in total.
For example, for the mutation targets exp++ and exp--, our approach classified the
following mutations as equivalent: AORS(exp), AODS(exp), and ODL(exp). We
manually analyze whether the equivalent mutants detected by our technique are indeed
equivalent. We do not find false positives.

TCE [Papadakis et al. 2015] is one of the best static analysis tools to detect
some types of equivalent mutants. A direct comparison of our approach with TCE
is not possible, as TCE aims at identifying strong mutant equivalences. However,
we can always assume that weakly equivalent mutants are also strongly equivalent
ones [Marcozzi et al. 2018].

To compare our approach with TCE, we apply MUJAVA to 5 real projects, which
are described in Table 2, and generate mutants for 20 mutation targets. MUJAVA genera-
tes 5,297 mutants. We executed TCE against the 5,297 mutants generated by MUJAVA.
TCE found 406 equivalent mutants in total. All of them created by the AOIS exp--
and AOIS exp++ mutations of the exp mutation target. In our approach using weak
mutation testing, we also find the same equivalent mutants for the exp mutation target.

Table 2. Five programs used in our evaluation.

Project Version LOC

joda-time 2.10.1 28,790
commons-math 3.6.1 100,364
commons-lang 3.6 27,267
h2 1.4.199 134,234
javassist 3.20 35,249

3.2. RQ2: Number of Subsumed Mutants
We evaluate our technique, considering Steps 1-6, in the 40 mutation targets presented
in Table 1. We have an average reduction of 59% of mutations in the context of weak
mutation testing.

To evaluate our approach, considering entire programs, we modified MUJAVA to
include our results for 24 mutation targets. We call MUJAVA-M this new version of
MUJAVA. Then we apply MUJAVA and MUJAVA-M to the five projects presented in
Table 2. MUJAVA generated 7,386 mutants and MUJAVA-M generated 2,041 mutants.
We have an average reduction of 72.52% of mutants, when considering entire programs.

More details regarding this question and the results that we obtained are available
in our previous article [Gheyi et al. 2021].

3.3. RQ3: Higher Order Mutants
We apply our technique, considering Steps 1-6, in the 27 mutation targets presented in
Table 3. For each target, we encode HOMs of second order, combining two FOMs.

For the 27 mutation targets presented in Table 3, we create 233 FOMs and 438
HOMs. The fifth column of Table 3 presents the size of the subsuming mutants set found
in each mutation target by our approach. On average, the size of the minimal set of
mutations for each target is 9%. Which implies that, when applying both FOMT and
HOMT, 91% of all mutants could be discarded on average.

We found that HOMs compose just 16.67% of all the mutants present in the subsu-
ming mutants set on average (See the HOMs ⊂Minimal Set column in Table 3), whereas
FOMs compose 83.33% (See the FOMs ⊂ Minimal Set column in Table 3). HOMs are
present in the subsuming mutants set of six out of the 27 mutation targets, as can be seen
in Table 3. Only two of the mutation targets have the subsuming mutants set composed
uniquely by HOMs: ++exp and --exp. Therefore, to our study, FOMs seen to be harder
to kill than HOMs and only 11 HOMs are as hard to kill as FOMs.

Table 3. It presents the mutation targets, the amount of method-level first order
and second order mutations that the operators are able to create in the
corresponding target, the subsuming mutants set for each target identified
in our approach, the size of the subsuming mutants set compared to the
original set of mutants, and the amount of FOMs and HOMs in relation to
the total size of the subsuming mutants set. OP1: select CDL, ODL, or VDL.

Mutation Target # FOMs # HOMs Subsuming Mutants Set Size FOMs ⊂Minimal Set HOMs ⊂Minimal Set
lexp + rexp (for Z+) 8 12 AORB(*) 5% 100% 0%
lexp - rexp (for Z+) 8 12 OP1(lexp) 5% 100% 0%
lexp * rexp (for Z+) 8 12 AORB(+), OP1(lexp), OP1(rexp) 15% 100% 0%
lexp ˆ rexp (bool) 15 42 COI(lexp ˆ !rexp), COR(||), COI COR(lexp&&!rexp), COI COR(!lexp&&rexp) 7% 50% 50%
lexp && rexp 15 42 OP1(lexp), OP1(rexp), COR(False), ROR(==) 7% 100% 0%
lexp || rexp 15 42 OP1(lexp), OP1(rexp), COR(True), COR(ˆ) 7% 100% 0%
lexp == rexp (bool) 15 42 COR(&&), COI COR(!x||y), COI COR(x||!y), COI COR !(x||y) 7% 25% 75%
lexp != rexp (bool) 15 42 COR(||), COI COR(!x&&y), COI COR(x&&!y), COI COR !(x&&y), 7% 25% 75%
lexp == rexp 8 7 ROR(false), ROR(>=), ROR(<=) 2% 100% 0%
lexp != rexp 8 7 ROR(<), ROR(True), ROR(>) 2% 100% 0%
lexp > rexp 8 7 ROR(False), ROR(!=), ROR(>=) 2% 100% 0%
lexp >= rexp 8 7 ROR(True), ROR(==), ROR(>) 2% 100% 0%
lexp < rexp 8 7 ROR(False), ROR(!=), ROR(<=) 2% 100% 0%
lexp <= rexp 8 7 ROR(True), ROR(==), ROR(<) 2% 100% 0%
lexp != rexp (obj) 8 5 ROR(True), ROR(>), ROR(<) 2% 100% 0%
lexp & rexp 10 24 OP1(lexp), OP1(rexp), SOR(<<), SOR(>>) 11.8% 100% 0%
lexp | rexp 10 24 OP1(lexp), OP1(rexp), LOR(ˆ), SOR(>>) 11.8% 100% 0%
lexp ˆ rexp 10 24 LOR(|), SOR(<<), SOR(>>) 8.8% 100% 0%
lexp >> rexp 10 24 OP1(lexp), OP1(rexp), LOR(ˆ), LOR(|), LOR(&), SOR(<<) 17.6% 100% 0%
lexp << rexp 10 24 LOR(ˆ), SOR(>>), LOR(&) 8.8% 100% 0%
exp 6 9 AOIU(-exp), LOI AOIS ∼(++exp) 13.3% 50% 50%
+exp 3 2 LOI(∼exp) 20% 100% 0%
-exp 3 2 AODU(exp) 20% 100% 0%
++exp 4 3 LOI AODS(∼exp) 14.3% 0% 100%
exp++ 4 3 LOI(∼exp) 14.3% 100% 0%
--exp 4 3 LOI AORS(∼exp) 14.3% 0% 100%
exp-- 4 3 LOI(∼exp) 14.3% 100% 0%

4. Related Work

There are several veins of research that are related to this work. Fernandez et al.
developed various rules for Java programs to detect equivalent and redundant mu-
tants [Fernandes et al. 2017]. Marcozzi et al. proposed a sound and scalable technique to
prune out a significant part of the infeasible and redundant objectives produced by a panel
of white-box criteria [Marcozzi et al. 2018].

There has been a lot of focus on computational costs and the equivalent mu-
tant problem [Jia and Harman 2011]. There is much focus on avoiding redundant mu-
tants, which leads to increase of computational costs and inflation of the mutation
score [Just and Schweiggert 2015]. In our work, we use the Z3 theorem prover to de-
tect equivalent and redundant mutants.

5. Conclusion

In this work, we propose a lightweight technique to detect equivalent and redundant mu-
tants using Z3. Developers only need to specify the types and mutations in our encoding
to identify equivalent and redundant mutants. We do not need to create mutants, compile
them, create test suites, and execute them, as previous works [Fernandes et al. 2017].

The experiments reveal that our technique detects all equivalent mutants detected
by TCE and we have an average reduction of 72.52% of mutants, when considering entire
programs. We also apply our technique on HOMs. When considering both FOMs and
HOMs, 91% of the mutations could be discarded on average.

The results found by our approach may help to build better mutation testing tools
that will allow to reduce the mutation testing costs and help testers to evaluate more
accurately the strength of their test suites.

Note: The first author encoded and proved equivalences and redundancies for some FOMs
and all HOMs. Moreover, she also conducted the evaluation by applying MUJAVA to 5
projects to evaluate our approach in the context of strong mutation testing.

References

Acree, J. A. T. (1980). On mutation. PhD thesis, Georgia Institute of Technology.

Ammann, P., Delamaro, M. E., and Offutt, J. (2014). Establishing theoretical minimal sets
of mutants. In Proceedings of the 2014 IEEE International Conference on Software
Testing, Verification, and Validation, ICST ’14, page 21–30, USA. IEEE Computer
Society.

Budd, T. and Angluin, D. (1982). Two notions of correctness and their relation to testing.
Acta Informatica, 18(1):31–45.

de Moura, L. M. and Bjørner, N. (2008). Z3: an efficient SMT solver. In Proceedings of
the Tools and Algorithms for the Construction and Analysis of Systems, pages 337–340.

DeMillo, R. A., Lipton, R. J., and Sayward, F. G. (1978). Hints on test data selection:
Help for the practicing programmer. Computer, 11(4):34–41.

Fernandes, L., Ribeiro, M., Carvalho, L., Gheyi, R., Mongiovi, M., Santos, A., Caval-
canti, A., Ferrari, F., and Maldonado, J. C. (2017). Avoiding useless mutants. In
Proceedings of the Generative Programming: Concepts & Experiences, pages 187–
198.

Gheyi, R., Ribeiro, M., Souza, B., Guimarães, M., Fernandes, L., d’Amorim, M., Alves,
V., Teixeira, L., and Fonseca, B. (2021). Identifying method-level mutation subsump-
tion relations using Z3. Information and Software Technology, 132:106496.

Guimarães, M., Fernandes, L., Ribeiro, M., d’Amorim, M., and Gheyi, R. (2020). Op-
timizing mutation testing by discovering dynamic mutant subsumption relations. In
Proceedings of the International Conference on Software Testing, Verification and Va-
lidation, pages 198–208. IEEE.

Howden, W. (1982). Weak mutation testing and completeness of test sets. Transactions
on Software Engineering, 8(4):371–379.

Jia, Y. and Harman, M. (2009). Higher order mutation testing. Information and Software
Technology, 51(10):1379 – 1393.

Jia, Y. and Harman, M. (2011). An analysis and survey of the development of mutation
testing. Transactions on Software Engineering, 37(5):649–678.

Just, R., Jalali, D., Inozemtseva, L., Ernst, M. D., Holmes, R., and Fraser, G. (2014). Are
mutants a valid substitute for real faults in software testing? In Proceedings of the
Foundations of Software Engineering, pages 654–665.

Just, R. and Schweiggert, F. (2015). Higher accuracy and lower run time: efficient mu-
tation analysis using non-redundant mutation operators. Software Testing, Verification
and Reliability, 25(5-7):490–507.

Kintis, M., Papadakis, M., Jia, Y., Malevris, N., Traon, Y. L., and Harman, M. (2017). De-
tecting trivial mutant equivalences via compiler optimisations. Transactions on Soft-
ware Engineering, 44(4):308–333.

Kintis, M., Papadakis, M., and Malevris, N. (2010). Evaluating mutation testing alter-
natives: A collateral experiment. In Proceedings of the 2010 Asia Pacific Software
Engineering Conference, APSEC ’10, page 300–309, USA. IEEE Computer Society.

Ma, Y.-S., Offutt, J., and Kwon, Y.-R. (2005). MuJava: an automated class mutation
system. Software Testing, Verification and Reliability, 15(2):97–133.

Madeyski, L., Orzeszyna, W., Torkar, R., and Jozala, M. (2014). Overcoming the equiva-
lent mutant problem: A systematic literature review and a comparative experiment of
second order mutation. Transactions on Software Engineering, 40(1):23–42.

Marcozzi, M., Bardin, S., Kosmatov, N., Papadakis, M., Prevosto, V., and Correnson, L.
(2018). Time to clean your test objectives. In Proceedings of the 40th International
Conference on Software Engineering, ICSE ’18, page 456–467, New York, NY, USA.
Association for Computing Machinery.

Nguyen, Q.-V. and Madeyski, L. (2014). Problems of mutation testing and higher order
mutation testing. Advances in Intelligent Systems and Computing, 282:157–172.

Offutt, A. J. and Lee, S. D. (1994). An empirical evaluation of weak mutation. Transac-
tions on Software Engineering, 20(5):337–344.

Offutt, J. (2011). A mutation carol: Past, present and future. Information and Software
Technology, 53(10):1098 – 1107.

Papadakis, M., Henard, C., Harman, M., Jia, Y., and Le Traon, Y. (2016). Threats to the
validity of mutation-based test assessment. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, page 354–365, New York,
NY, USA. Association for Computing Machinery.

Papadakis, M., Jia, Y., Harman, M., and Le Traon, Y. (2015). Trivial compiler equiva-
lence: A large scale empirical study of a simple, fast and effective equivalent mutant
detection technique. In ICSE, ICSE ’15, pages 936–946, Piscataway, NJ, USA. IEEE
Press.

Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y. L., and Harman, M. (2019). Chap-
ter six - mutation testing advances: An analysis and survey. Advances in Computers,
112:275–378.

Papadakis, M. and Malevris, N. (2010). An empirical evaluation of the first and second
order mutation testing strategies. In Proceedings of the 2010 Third International Con-
ference on Software Testing, Verification, and Validation Workshops, ICSTW ’10, page
90–99, USA. IEEE Computer Society.

Petrovic, G. and Ivankovic, M. (2018). State of mutation testing at google. In 2018
IEEE/ACM 40th International Conference on Software Engineering: Software Engi-
neering in Practice Track (ICSE-SEIP), pages 163–171.

Schuler, D. and Zeller, A. (2013). Covering and uncovering equivalent mutants. Software
Testing, Verification and Reliability, 23(5):353–374.

Winterer, D., Zhang, C., and Su, Z. (2020). Validating SMT solvers via semantic fusion.
In Proceedings of the Programming Language Design and Implementation, pages 718–
730.

	Introduction
	Technique
	Running Example

	Evaluation
	RQ1: Number of Equivalent Mutants
	RQ2: Number of Subsumed Mutants
	RQ3: Higher Order Mutants

	Related Work
	Conclusion

