
A Game Theory-Based Vehicle Cloud Resource Allocation
Mechanism

Henrique Andrews Prado Marques1, Rodolfo I. Meneguette1

1Institute of Mathematics and Computer Science - University of São Paulo (USP)
São Carlos, SP – Brasil.

henrique.andrews.marques@usp.br, meneguette@icmc.usp.br

Abstract. The vehicle cloud aims at efficient cooperation in communication,
task allocation, and sharing of resources in VANETs since computational re-
sources embedded in the vehicle can be used to offer resources for the provision
of cloud services. This requires efficient resource management mechanisms that
allocate these resources to maximize their use. Thus, in this paper, we propose
a resource allocation mechanism based on Game Theory to maximize the use of
resources made available by vehicles. The results obtained showed greater use
of the resources made available by the vehicles compared to other works in the
literature.

1. Introduction
With each passing year, there is a significant increase in the number of vehicles around
the world. As a result, the number of connected vehicles circulating on the streets among
us also grows, sharing more data than ever before. It is estimated that by 2025 there could
be nearly 2 billion vehicles connected to roads around the world [CISCO 2020]. Accom-
panied by this growth, the automotive industry, in partnership with technology industries,
has been investing considerably in the addition of more and better technological resources
in vehicles, such as sensors and chipsets specific to the scenario. There is greater proces-
sing power, communication, and variety of use cases [Qualcomm 2020], thus contributing
to an expansion and creation of new concepts.

One of the new concepts that emerged was vehicular clouds (VCs), which aim
to coordinate communication, task allocation, and sharing resources in vehicles with or
without an accommodation infrastructure[Lieira et al. 2021]. Such computational resour-
ces as processing, storage and communication can be used for decision making without
the need for traditional cloud computing for such [Brik et al. 2019, Pereira et al. 2021].

By adding the excess of resources that are at the edge of the network, a set of ser-
vices is created that is made available to vehicles, which can be used in static and dynamic
environments [Hagenauer et al. 2019, Correa et al. 2014]. Thus, vehicles become critical
components as they start to act in providing services and decision-making. Therefore,
mechanisms that make efficient use of VC resources are essential to use these services in
the best possible way.

The main challenges involving resource allocation mechanisms in vehicular
clouds for the provision of services and applications revolve around the dynamic na-
ture of vehicular networks [Meneguette et al. 2019a]. The allocation and processing of
tasks with delay-intolerant requirements, such as accident detection, or tasks that require
high computational power, as traffic image processing and other multimedia applicati-
ons in general, ends up being quite challenging due to the high mobility of the vehicles
[Meneguette et al. 2019b].

Thus, to better take advantage of the resources made available by the vehicles,
this work proposes a resource allocation mechanism based on Game Theory to maximize
their use and then compare this approach with others known in the literature and verify its
performance about other metrics. Evaluation beyond the use of resources.

The rest of the article is organized as follows: Section 2 presents works related
to the allocation of resources and tasks. In Section 3 the formulation of the problem, the
application scenario, and the developed algorithm are discussed. In Section 3.4 the results
obtained through the evaluations are presented and discussed, and finally, in Section 4 the
conclusions and guidelines for future work are presented.

2. Trabalhos Relacionados
There are works in the literature that address the problem of resource allocation in VCs.
For example, in the work of [Pereira et al. 2019], a policy for allocation of resources
in VCs in a road environment is proposed. The proposed policy aims to maximize the
availability of resources in VC. Connected vehicles must cooperate to create a reservoir
of resources to know the available resources, which will be provided by the vehicles and
the set of fogs where more resources will be generated and services allocated.

In [da Costa et al. 2020] they propose a mechanism for task allocation in VCs
based on combinatorial optimization and compare it with three other approaches. The
results obtained show both more effective use of available resources and a more signi-
ficant number of tasks allocated and greater gain than the other methods. A real-time
urban scenario is simulated where tasks are generated throughout the execution and are
allocated in VCs that are recomputed every minute due to the mobility of vehicles. For
the generation of VCs and aggregation of resources, a clustering technique well known in
the literature is used, the DBSCAN Density Based Spatial Clustering of Application with
Noise [Ester et al. 1996].

In [Lieira et al. 2020] we propose an algorithm that adopts the meta-heuristic te-
chnique known as Grey Wolf Optimization [Mirjalili et al. 2014] to choose the best Edge
when allocating the resources of the vehicle. In this work, it is considered that vehicles
have processing, storage, time, and memory resources. The algorithm makes use of these
resources to compute the adequacy of each Edge and decide which one to allocate to, if
possible. This approach is compared with two other policies and obtained a lower number
of refused services and presented a low number of locks while searching for a Edge.

3. A Game Theory-Based Vehicle Cloud Resource Allocation Mechanism
This section will describe the AVR - A Game Theory-Based Vehicle Cloud Resource
Allocation Mechanism, which aims to use idle vehicle resources plus the computational
resources available by RSUs (roadside units) to offer services to VCs. For this, we consi-
der that vehicles traveling in the city form VCs through clustering. When a vehicle does
not belong to any VC but needs to perform the processing of some task and its computa-
tional resources are not sufficient, AVR is asked for the resources necessary to fulfill the
task.

A scenario composed of v vehicles is considered, where each vehicle vi has a
unique identification (i ∈ [1, x]) and is equipped with an OBU On-Board Unit that allows
both communications between vehicles and between vehicles and MSW. RSUs collect
information from vehicles in real-time and when they request resources to allocate their
tasks. Through the intercommunication of the RSUs, it is possible to perform the AVR,
whose role is to define, given a set of available VCs, which one can meet a certain task
that requires a certain amount of computational power.

AVR executes the game theory-based mechanism to select some of the available
VCs to meet the resource request and allocate the task, as quickly as possible and use the
maximum VC’s idle computational resources.

3.1. Problem Definition
Considering a set of tasks T with {t = 1, ..., n}, where each task t is represented by a
tuple (idt, pt, gt), where idt corresponds to the unique identifier of each task, pt the task

weight (amount of resources needed to be allocated) and gt the gain/reward for successful
allocation. In this scenario, the VCs are vehicles formed from a clustering process based
on some pre-established criteria. Each VC corresponds to the sum of the resources shared
by each vehicle that is part of the respective cloud.

In this work, the focus of the allocation policy based on Game Theory will be on
maximizing the use of computational resources from vehicular clouds within the limita-
tions of the game model proposed. The game type is non-cooperative, which focuses on
predicting the actions and rewards of individual players and analyzing Nash’s equilibrium,
and simultaneous, where players act without knowing what action others will take. Thus,
players seek to maximize their profits or minimize their losses. Therefore, the problem is
intended to:

max
n∑

t=1

ptαt ≤ Ωj

3.2. Game Modeling
A vehicle that demands a service can choose between consuming or not the offered service
(allowing or not the allocation of a particular task) given the cost for such. At the same
time, VC also has two options, whether or not to offer the necessary computing resources
to execute the task.

The main idea of the proposed game model is that both parties involved (consumer
vehicles and VCs/provider vehicles) have some gain, be it money when offering a service
in which there is a cost involved or added value by providing the service requested. The
secondary idea is for the game to operate according to the supply of computational resour-
ces and the weight of the tasks, thus making the cost vary at the expense of these factors.
For example, if few resources are available, the price per resource increases, and if there
is a large availability of resources, their price decreases.

Below are the winning equations for each combination of players’ strategies:

• Do not consume & Offer :
X21 = −2 · gt

Y21 = −pt · c(pt, Ωj)

• Consume & Offer :
X11 = gt − pt · c(pt, Ωj)

Y11 = pt · c(pt, Ωj)

• Do not consume & Does not offer r:

X22 = 0

Y22 = 0

• Consume & Do not offer :
X12 = −gt

Y12 = −2 · pt · c(pt, Ωj)

? Xij e Yij represent the earnings of consumers and providers respectively.
? c(pt, Ωj)is a cost per resource as a function of the amount of available computati-

onal resources Ωj in the VC with the highest offer and pt the weight of the task in
question.

To find the Nash Equilibrium, we analyze each strategy combination:

− Strategy combination (Do not consume & Offer)
In this third case, in which the actions are not to consume and offer, the consumer
has a double negative reward (X21) as a form of penalty, and the provider has a
negative reward (Y21) for not have their computing resources used. As with the
previous combination, this is not a Nash equilibrium for the same reasons that
both players could increase their earnings by changing their actions.

− Strategy combination (Consume & Offer)
In this first case, the reward of the person who consumes the service is given by
X11, where gt, as defined above, is the value added by the execution of the task t
and pt its weight in the number of resources needed for processing. The reward
of the vehicular cloud vcj that provides the computational resources to fulfill the
task t is given by Y11, where c(pt, Ωj) is a function that varies from according to
the weight pt of the task t and the number of available resources Ωj of the VC.
Depending on the result of X11, neither player can increase their win by switching
strategy, as the other wins are neutral or negative, so this combination is a possible
Nash equilibrium.

− Strategy combination (Do not consume & Do not offer)
In the latter case, as neither party is interested in consuming or offering the service,
there is no need for the penalty, and the gain for both is neutral (X22 = Y22 = 0).
Similar to the first case, in this combination, none of the players can raise their
reward by choosing the other strategy, then configuring it as a Nash equilibrium.

− Strategy Combination (Consume & Don’t Offer)
In this second case, where there is a choice to consume but not to offer, the con-
sumer’s gain (X12) is negative since his task is not fulfilled. The provider will
be penalized with a double negative gain (Y12) because before the formation of
the game, it is considered that there are enough resources to fulfill the task t with
weight pt. This combination does not represent a possible Nash balance as either
the X player could increase their reward by choosing not to consume as the Y
player choosing to offer.

3.3. Implementation of the allocation mechanism

In the source code 1 it is possible to see how the mechanism works. The list of VCs W
and the set of tasks T are passed as function parameters.

The policy works as long as there are tasks in the list, sorted by weight pt in
descending order. This is done to ensure that the most significant amount of resources is
used, as if lighter tasks are serviced first, there may not be enough resources for heavier
ones later. If the most resource-abundant VC has enough resources to fulfill the task at
hand, then the game is set up, and the policy continues to work. Otherwise, it moves on
to the next task.

Each game generated in the implementation follows the model described in the
Game Modeling subsection. A game is created for each task and amount of resources in
the most abundant VC, as each reward matrix and the players’ strategy gain varies with
the task value gt, weight pt, and cost per resource c(pt, Ωj).

For each game, the strategy combination(s) that make up a Nash equilibrium is
found. If the combination of strategy Consume & Offer is a Nash equilibrium, the task al-
location is performed. Therefore, the resources used are subtracted. Then, the task weight
is added to the accumulated weight, the task value to the accumulated value, and the task
is included in the list of allocated ones. At the end of the code, the total accumulated
value, the number of tasks attended, and the total accumulated weight is returned.

Algorithm 1: Implementation of AVR
1 VCC=[]
2 for i,j in W.items() do
3 VCC.append(j)
4 Tasks allocated = []
5 weight accumulated = 0
6 value accumulated = 0
7 Tasks = sorted(T, key=weight, reverse=True)
8 while len(Tasks) > 0 do
9 tasks = Tasks.pop(0)

10 index max = VCC.index(max(VCC))
11 max resource = max(VCC)
12 if max resource >= weight(tasks) then
13 p1 11 = value(tasks) - (weight(tasks) * cost per weight unit(weight(tasks),

max resource))
14 p1 12 = -value(tasks)
15 p1 21 = -2*value(tasks)
16 p1 22 = 0
17 player1 = np.array([[p1 11, p1 12], [p1 21, p1 22]])
18 p2 11 = weight(tasks) * cost per weight unit(weight(tasks), max resource)
19 p2 12 = -2 * weight(tasks) * cost per weight unit(weight(tasks), max resource)
20 p2 21 = -weight(tasks) * cost per weight unit(weight(tasks), max resource)
21 p2 22 = 0
22 player2 = np.array([[p2 11, p2 12], [p2 21, p2 22]])
23 Array of Reward = nash.Game(player1, player2)
24 eqs =Array of Reward.support enumeration()
25 nash equilibrium = list(eqs)
26 if (nash equilibrium[0][0] == [1., 0.]).all() and (nash equilibrium[0][1] == [1.,

0.]).all() then
27 Tasks allocated.append(tasks)
28 VCC[index max] -= weight(tasks)
29 weight accumulated += weight(tasks)
30 value accumulated += value(tasks)

31 else
32 continue

33 return value accumulated , len(Tasks allocated), weight accumulated

3.4. Simulation and Results
The simulation was performed using SUMO Simulation of Urban Mobility1 version 1.4.0,
an open source urban mobility simulator. The algorithms presented were implemented in
the language Python2 and the connection with SUMO made through TraCITraffic Control
Interface3. In order to make the urban traffic scenario as realistic as possible, the mobility
trace Luxembourg SUMO Traffic (LuST) [Codeca et al. 2017] was used.

This scenario contains 24 hours of urban mobility with up to approximately 5000
vehicles circulating during peak hours. The chosen time range was from 11:00 am to
12:00 pm, when low vehicular density was low. Consequently, there is a greater scarcity
of shared computing resources in the VCs to assess how allocation policies operate when
the situation is more challenging.

The clustering interval defined was the 60s due to the dynamics of the network
and recurrent changes in the VCs. Tasks are generated when the vehicles are grouped,
and then the policies allocate them to the available VCs. The occurrence of Tasks in
the system, independent of each other, is defined following a Poisson distribution with

1https://sumo.dlr.de/docs/
2https://www.python.org/
3https:// sumo.dlr.de/docs/TraCI.html

an average of Tasks λ = 25. The chosen communication radius was 100 meters and a
minimum of 2 vehicles per vehicle cloud. There was also variation in the average weight
pt of Tasks generated in the simulations with µ = {1, 5, 10, 15, 20}, the allocation gain
gt varied with 2 × µ and the amount of shareable computational resources per vehicle in
ωi = {1, 2, 3}. All these parameters used are summarized in Table 1

Tabela 1. Simulation Parameters

Parameter value
Scenery area 155.95 km2

Simulation time 1h of LuST Scenario (11h-12h)
Clustering Interval 60s

Clustering Algorithm DBSCAN
Occurrence of Tasks Poisson Distribution

Average number of Tasks (λ) 25
Average weight of Tasks {1, 5, 10, 15, 20}
Average Earning of Tasks 2× {1, 5, 10, 15, 20}

Amount of resources per vehicle {1, 2, 3}

Below are the metrics used to evaluate the performance of the algorithms:
1. Task service

Represents the percentage of successfully allocated tasks.

service =

∑n
t=1 αt | αt ∈ S
|T |

· 100

2. Resource usage
Represents the percentage of VC computational resources used.

usage =

∑n
t=1 pt | pt ∈ S∑m

j=1 Ωj

· 100

3. Allocation gain
Represents total value added by task allocation.

gain =
n∑

t=1

gt | gt ∈ S

? S represents the set of Tasks that were successfully allocated.

To evaluate the performance of the allocation policy of this work, there is a comparison
with others, which are an approach involving dynamic programming which will be re-
ferred to in the results as DP Dynamic Programming, a greedy referred to as Greedy in
which the algorithm considers only one VC and finally a greedy referred to as Greedy-N
where the algorithm considers all available VCs.

Tables 2, 3 and 4, shows the percentage of tasks served by each algorithm. Task
fulfillment results have similar behavior to gain, as these two metrics are somewhat rela-
ted. The more tasks a policy fulfills, the trend is that the greater the total allocation gain.
There may be situations in which few high value-added tasks are met and result in a high
gain, which is the case with AVR as it prioritizes the attendance of heavier tasks, which
tend to have a greater reward. Still, this approach ends up showing itself as not the best
possible since the Greedy-N algorithm got better results.

The tables 5, 6 and 7 show the percentage of resources used by each algorithm
in its allocations. When observing the results, AVR fulfills its main objective, which is

Tabela 2. Task fulfillment percentage by average task weight λ and shared re-
sources ωi = 1

Algoritmo λ = 1 λ = 5 λ = 10 λ = 15 λ = 20
Greedy 5,41% 5,41% 5,41% 2,78% 2,78%

DP 4,88% 4,88% 4,88% 2,9% 2,9%
Greedy-N 16,48% 12,38% 7,12% 8,58% 3,03%

AVR 12,66% 9,22% 6,59% 8,71% 3,15%

Tabela 3. Task fulfillment percentage by average task weight λ and shared re-
sources ωi = 2

Algoritmo λ = 1 λ = 5 λ = 10 λ = 15 λ = 20
Greedy 10,82% 8,04% 8,04% 5,41% 5,26%

DP 9,63% 6,85% 4,88% 4,88% 4,07%
Greedy-N 32,71% 20,43% 12,38% 11,07% 2,88%

AVR 24,94% 12,66% 9,22% 8,56% 1,69%

Tabela 4. Task fulfillment percentage by average task weight λ and shared re-
sources ωi = 3

Algoritmo λ = 1 λ = 5 λ = 10 λ = 15 λ = 20
Greedy 16,23% 13,6% 13,45% 13,45% 5,41%

DP 14,38% 7,65% 6,85% 11,6% 4,88%
Greedy-N 48,93% 28,9% 19,26% 17,94% 5,66%

AVR 37,22% 13,97% 12,66% 14,78% 4,47%

to maximize the use of available computational resources, having a better result than all
other algorithms. However, it is visible that greater use of resources does not directly
imply greater service or greater gain, since, in the other two metrics, AVR had a lower
performance than Greedy-N. When prioritizing heavier Tasks, AVR inevitably ends up
serving a smaller number of Tasks. Even though they are heavier, it is not guaranteed that
they have a considerably higher aggregate value than other Tasks that require a smaller
amount of resources from the VCs.

Tabela 5. Resource utilization percentage by average task weight λ and shared
resources ωi = 1

Algoritmo λ = 1 λ = 5 λ = 10 λ = 15 λ = 20
Greedy 25% 25% 25% 16,67% 16,67%

DP 22,92% 25% 25% 18,75% 16,67%
Greedy-N 75% 79,17% 58,33% 54,17% 16,67%

AVR 62,5% 81,25% 66,67% 56,25% 16,67%

Tabela 6. Resource utilization percentage by average task weight λ and shared
resources ωi = 2

Algoritmo λ = 1 λ = 5 λ = 10 λ = 15 λ = 20
Greedy 25% 16,67% 25% 12,5% 8,33%

DP 22,92% 25% 25% 25% 8,33%
Greedy-N 75% 91,67% 75% 56,25% 18,75%

AVR 62,5% 100% 79,17% 57,29% 23,96%

In the tables 8, 9 and 10, the reward values that each algorithm obtained according
to the tasks that were allocated by them are presented. It is observed that in general,
AVR obtained greater gains than the Greedy and DP approaches, which only use VC
with a greater abundance of computational resources, but obtained smaller gains when

Tabela 7. Resource utilization percentage by average task weight λ and shared
resources ωi = 3

Algoritmo λ = 1 λ = 5 λ = 10 λ = 15 λ = 20
Greedy 25% 22,22% 19,44% 25% 19,44%

DP 22,92% 25% 25% 25% 20,83%
Greedy-N 75% 86,11% 73,61% 72,22% 31,94%

AVR 62,5% 100% 93,75% 73,61% 34,03%

compared to the approach Greedy-N, which makes use of all available VCs to perform
task allocation. It is also worth emphasizing that as the average weight of tasks increases,
the gain of policies becomes closer due to the difficulty of meeting increasingly heavy
tasks in VCs with the same amount of resources as before.

Tabela 8. Task reward by average task weight λ and resources per vehicle ωi = 1

Algoritmo λ = 1 λ = 5 λ = 10 λ = 15 λ = 20
Greedy 2 2 2 1 1

DP 1,75 1,75 1,75 1 1
Greedy-N 6 4,5 2,5 3 1

AVR 4,5 3,25 2,25 3 1

Tabela 9. Task reward by average task weight λ and resources per vehicle ωi = 2

Algoritmo λ = 1 λ = 5 λ = 10 λ = 15 λ = 20
Greedy 4 3 3 2 2

DP 3,5 3,5 3,5 3 1,5
Greedy-N 12 9 7 5,5 1

AVR 9 5,875 5 4 0,5

Tabela 10. Task reward by average task weight λ and resources per vehicle ωi = 3

Algoritmo λ = 1 λ = 5 λ = 10 λ = 15 λ = 20
Greedy 6 5 5 6 2

DP 5,25 5,25 4,75 5,25 1,75
Greedy-N 18 12,5 11 9 2

AVR 13,5 11,125 8,25 7,25 1,5

4. Conclusion
In this article, he presented and detailed several essential elements of the resource alloca-
tion mechanism, starting with the system model and description of the problem in which
the project is inserted, then discussing the activities carried out to reach the proposed solu-
tion. The gains in the adopted strategies and rationality in their decisions, better adapting
to a reality where there is a cost involved in the use of resources and services provided
in ITS and VANETs. This work also proves that greater use of computational resources
is not necessarily accompanied by a more significant allocation gain or a greater number
of Tasks fulfilled, a fact highlighted in the analysis of the results, meaning that there is
still plenty of room for improvement and work to be done developed in this policy. As
future works, we intend to improve the players’ strategy to better the system to gain more
significance.

Acknowledgment
The authors thank the Foundation for Research Support of the State of São Paulo (FA-
PESP) process number #2020/07162-0 for the financial support for the development of
this research.

Referências
Brik, B., Khan, J. A., Ghamri-Doudane, Y., and Lagraa, N. (2019). Publish: A distributed

service advertising scheme for vehicular cloud networks. In 2019 16th IEEE Annual
Consumer Communications Networking Conference (CCNC), pages 1–6.

CISCO (2020). Driving profits from connected vehicles. Technical report.

Codeca, L., Frank, R., Faye, S., and Engel, T. (2017). Luxembourg sumo traffic (lust) sce-
nario: Traffic demand evaluation. IEEE Intelligent Transportation Systems Magazine,
9(2):52–63.

Correa, C., Ueyama, J., Meneguette, R. I., and Villas, L. A. (2014). Vanets: An explora-
tory evaluation in vehicular ad hoc network for urban environment. In 2014 IEEE 13th
International Symposium on Network Computing and Applications, pages 45–49.

da Costa, J., Peixoto, M., Meneguette, R., Rosário, D., and Villas, L. (2020). Morfeu:
Mecanismo baseado em otimização combinatória para alocação de tarefas em nuvens
veiculares. In Anais do XXXVIII Simpósio Brasileiro de Redes de Computadores e
Sistemas Distribuı́dos, pages 505–518, Porto Alegre, RS, Brasil. SBC.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, page 226–231.
AAAI Press.

Hagenauer, F., Higuchi, T., Altintas, O., and Dressler, F. (2019). Efficient data handling
in vehicular micro clouds. Ad Hoc Networks, 91:101871.

Lieira, D. D., Quessada, M. S., Cristiani, A. L., and Meneguette, R. I. (2020). Resource
allocation technique for edge computing using grey wolf optimization algorithm. In
2020 IEEE Latin-American Conference on Communications (LATINCOM), pages 1–6.

Lieira, D. D., Quessada, M. S., da Costa, J. B. D., Cerqueira, E., Rosário, D., and Mene-
guette, R. I. (2021). Tovec: Task optimization mechanism for vehicular clouds using
meta-heuristic technique. In 2021 International Wireless Communications and Mobile
Computing (IWCMC), pages 358–363.

Meneguette, R. I., Boukerche, A., and Pimenta, A. H. M. (2019a). Avarac: An
availability-based resource allocation scheme for vehicular cloud. IEEE Transactions
on Intelligent Transportation Systems, 20(10):3688–3699.

Meneguette, R. I., Rodrigues, D. O., da Costa, J. B. D., Rosario, D., and Villas, L. A.
(2019b). A virtual machine migration policy based on multiple attribute decision in
vehicular cloud scenario. In ICC 2019 - 2019 IEEE International Conference on Com-
munications (ICC), pages 1–6.

Mirjalili, S., Mirjalili, S. M., and Lewis, A. (2014). Grey wolf optimizer. Advances in
Engineering Software, 69:46–61.

Pereira, R., Boukerche, A., da Silva, M. A., Nakamura, L. H., Freitas, H., Rocha Filho,
G. P., and Meneguette, R. I. (2021). Foresam—fog paradigm-based resource allocation
mechanism for vehicular clouds. Sensors, 21(15):5028.

Pereira, R. S., Lieira, D. D., da Silva, M. A., Pimenta, A. H., da Costa, J. B., Rosário, D.,
and Meneguette, R. I. (2019). A novel fog-based resource allocation policy for vehi-
cular clouds in the highway environment. In 2019 IEEE Latin-American Conference
on Communications (LATINCOM), pages 1–6.

Qualcomm (2020). Connecting vehicles to everything with c-v2x. Technical report.

	Introduction
	Trabalhos Relacionados
	A Game Theory-Based Vehicle Cloud Resource Allocation Mechanism
	Problem Definition
	Game Modeling
	Implementation of the allocation mechanism
	Simulation and Results

	Conclusion

