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Abstract. This study presents a novel scalable method to forecast the numbers
of cases and deaths by SARS-CoV-2 according to the influence that certain (mi-
cro) regions exert on others, predicting for specific regions while generalizing
for general extents. By exploiting graph convolutional networks with recurrent
networks, our approach maps the main access routes to municipalities in Brazil
using the modals of transport, and processes this information via neural net-
work algorithms. We compared the performance in forecasting the pandemic
daily numbers with three baseline models, with the forecasting horizon vary-
ing from 1 to 25 days. Results show that the proposed model overcomes the
baselines, being specially suitable for forecasts from 14 to 24 days ahead.

1. Introduction

Since the appearance of the SARS-CoV-2 pandemic, in December 2019, many re-
searches have been conducted, with epidemiological control playing a central role as
it allows to project future scenarios and support predictive containment policies. How-
ever, planning when, where, and for how long to apply each action is only possible upon
monitoring and understanding how the pandemic spreads and evolves [Han et al. 2020,
da Silva et al. 2021], which have shown to be very hard.

The literature provides ways to predict the number of cases or deaths caused by
the Covid-19, such as by exploiting the theoretical background of statistical methods
[Espinosa et al. 2020, Siqueira et al. 2020], or by applying Machine Learning methods
[Lima et al. 2022, Da Silva et al. 2020, Pereira et al. 2020]. These approaches focus es-
sentially on anticipating the numbers for macro-regions [da Silva et al. 2021], such as
states or countries. Although this benefits general planning, it is ineffective to capture
the internal features of smaller regions, such as municipalities, which face peculiar and
heterogeneous situations. Moreover, they do not fully model the dynamics of contagions
since the virus spreading at the local level depends not only on its past state but also on
the neighborhood context. In this sense, it is essential to consider that every region is
influenced, to some extent, by its past state and the connections it may have, and that the
choices made in one place influence the surroundings.

Recent studies about influenza A (H1N1) suggest that the speed in which this type
of virus spreads is related to the road map that interconnects different places to the virus
epicenter [Xu et al. 2019]. Similarly, distinct transport modals may play different roles



in the virus dissemination [Cai et al. 2019]. Therefore, it is reasonable to suppose that
similar conditions also apply to the case of Covid-19 spreading, enforcing the relevance
of considering the spatial and temporal relationships.

This study proposes a Graph Neural Network (GNN)-based single-model archi-
tecture to forecast the daily spatio-temporal dynamics of the pandemic, in terms of cases
and deaths by SARS-CoV-2, according to the influence that certain regions exert on oth-
ers. Our proposal consists in mapping the main access routes to the Brazilian cities by
four transport modals: roads, railways, waterways, and air; and processing it by a convo-
lutional GNN integrated with a recurrent network with an input time window.

2. Problem Statement
To model the problem, we consider a weighted undirected graph to represent the relation-
ship among the 5,570 Brazilian municipalities and their particular features. Municipalities
and their features are vertices, and the existing connections among them are edges. The
difficulty behind setting the dataset relies on defining an appropriate neighboring criterion
to connect municipalities. Human mobility should be a natural option, but this is not so
easy to be established. Thus, we opted by defining mobility based on the main transport
modals available between locations.

Two databases from the Brazilian Institute of Geography and Statistics (IBGE)
were integrated: a cartographic map [IBGE 2019], and a logistics map [IBGE 2014].
From them, four connectivity meshes were constructed: roadway, railway, waterway, and
air routes. Table 1 shows the coverage map.

Table 1. Municipalities covering of the meshes.

Mesh Initials Edges Covering
Roadways ROD 12186 5554 mun. 99.71 %
Railways FER 1272 1209 mun. 21.71 %
Waterways HID 1240 925 mun. 16.61 %
Air routes AER 876 149 mun. 2.68 %

2.1. Feature selection
The time series of cases and deaths by Covid-19 were collected in the Brasil.io website
[Brasil.io 2020]. They support daily bulletins informed by state health departments, per
municipality, since 02/25/2020, when Brazil recorded its first contagion. In this work,
records of imported cases were discarded, and we do not extend the analysis to records
beyond January 25th, 2021 (336th pandemic day), because after that the vaccination of
priority groups has started, possibly causing a concept drift [SE/UNA-SUS 2021].

As high concentration of people tends to accelerate the virus spreading, we add the
demographic density (inhabitants per km2) to the dataset, which is calculated based on the
estimated population per municipality in 2020 [IBGE 2019]. Another relevant parameter
is the municipal capacity to care for sick people, which we measured by the total number
of hospital beds installed by December 2019 [IBGE 2020].

2.2. Graph composition
Consider a weighted undirected graph G = (V , E ,X ) in which spatial relations are ex-
pressed by the set of edges E , the municipalities are listed as a set of vertices V , and



the local attributes (including time series) are organized as a set of features X . In these
structures, a graph G can be represented simply as adjacency A and feature X matrices.

For the feature matrix, we further split the vertices attributes into two categories.
The static attributes include population, demographic density, and number of hospital
beds, and are modeled by Xs ∈ R|V|×3. The dynamic attributes are the time series of
cases and deaths, modeled by Xd(t) ∈ R|V|×2, with t = 1, 2, . . . 336 e |V| = 5570.
Then, the general feature matrix, for a given time t, is defined as a concatenation of terms
Xt = [ Xs | Xd(t) ] ∈ R|V|×5 .

The set of edges E can be defined as the union of the connectivity meshes from
each road mode (EROD, EHID, EFER, and EAER). The edge weights are given by a proxim-
ity function f(i, j,m), which considers the distance between two adjacent municipalities
i, j and the referred mesh m, since the physical distance is related to the delays in the
spatial propagation of the virus [Xu et al. 2019] and different means of transport can play
different roles in the pandemic [Cai et al. 2019]. Let e(m)

i,j ∈ Em be an weighted edge
that connects two distinct vertices vi, vj ∈ V through the modal m, and cm be a posi-
tive real number referred to m. The weight of this edge then is given by the proximity
function f(i, j,m) = cm · dist(vi, vj)−1/2 . And, as the distance dist(vi, vj) does not
depend on m, we can generate a global proximity matrix P : pi,j = dist(vi, vj)

−1/2

if i ̸= j, or 0 otherwise. For the binary adjacency matrix A(m) ∈ N|V|×|V|, of a modal
m ∈ {ROD,HID, FER,AER}, we define the weighted adjacency matrix Â ∈ R|V|×|V|

as the sum of the element-wise product between P and A(m), i.e. Â = P⊙
∑

cmA
(m) .

3. Proposed Methodology
In this section, we show how a Spatial-Temporal Graph Neural Network (STGNN), using
convolutional GNN, can be used to design spatial and temporal dependence.

The model receives as input the general feature matrix Xt−1 from the last time
step and the weighted adjacency matrix Â; aggregates the signals passed through the
neighborhood in Mt−1; and generates a trend matrix Zt−1 ∈ R|V|×2, which can be seen
as a representation of the influence of regional situations in the municipalities. The func-
tions F (Equation 1), and G (Equation 2), define the aggregation and update operators,
respectively. As G considers the current local state Xt−1 in order to update and set the
new local state, the equations 1 and 2 define the spatial recurrence stage. The results of
the last T days, i.e., Zt−1, · · · ,Zt−T , are then concatenated on the feature axis to form
the expanded matrix Ut−1 (Equation 3), with dimension proportional to the time window
T . This matrix serves as input to the temporal recurrence stage, formed by a recurrent
network (Equation 4) and a dense layer (Equation 5). The output is then the forecasted
values for the next day, i.e., Yt = Xd(t).

Mt−1 = F
(
Xt−1, Â

)
; (1)

Zt−1 = G (Xt−1,Mt−1) . (2)

Ut−1 = [ Zt−1 Zt−2 . . . Zt−T ] ∈ R|V|×2T . (3)

Ht = rec (Ut−1,Ht−1) ; (4)

Yt = dense (Ht) . (5)



Figure 1 shows the proposed STGNN model for one day ahead forecasting with a
time window of T days. The inputs are the adjacency matrix and the feature matrices of
T ′ past time steps, with T ′ ≥ T to allow gathering sufficient historical values. The output
is the forecasting for the next day, and can be concatenated with the static feature matrix
to retro-feed the model, when considering bigger forecasting horizons.

Xt−1 F G concat rec dense Yt

Â

Mt−1

Spatial Recurrence

Zt−1 Ut−1

Zt−2 . . .Zt−T

HtHt−1

Temporal Recurrence

Figure 1. Schematic of the STGNN with time window.

3.1. Implementation details

The network layers are formed by a GatedGraphConv module [Li et al. 2017] with 1-hop
in the spatial recurrence stage and one GRU module followed by an 3 layered Multi Layer
Perceptron (MLP) in the temporal recurrence stage, using ReLU activation function in all
hidden layers and Tanhshrink at the output one. This configuration, using convolutional
GNN architecture and Gated Recurrent Unit (GRU) modules for recurrence in both spa-
tial and temporal axes, was called Double Gated GCN. Also, the constant cm was set to
one, as this value showed to be the most stable during the training cycle.

The selected time window to compose the expanded matrix Ut−1 was T = 14
days (t − 1, . . . t − 14), which returned the best results among the tested range (1 to 21
days). This number corresponds to the average time of the events related with the disease:
SARS-CoV-2 virus incubation period [Lauer et al. 2020] and time between the first symp-
toms and respective death [Galzo 2021, Garcia 2020, Ruan et al. 2020, Baud et al. 2020].
Also, this last one can still vary between 10 and 28 days, depending on the patient state,
medical treatment conditions, and demographic features. It is important to highlight that
the choice of the time window impacts on the network learning capacity.

The inputs Xd(t) and Xs were normalized by z-score, with an additional 2-day
moving average smoothing at the time axis, in order to eliminate noisy signal components
without altering the intrinsic periodical characteristics of the curves.

3.2. Model selection and evaluation

To perform the model selection and evaluation we employ 3-way time series split cross
validation. This method is a variation of k-fold which returns first k-folds as train set
(τ

[k]
train) and the (k + 1) fold as test set. The size of each k-th training subset varies in size,

starting with 66 days when k = 1, and reaching 291 days when k = 10. The validation
(τ

[k]
valid) and testing (τ

[k]
test) subsets have fixed size of 20 and 25 days per fold, respectively.

As the performance of the models can be analyzed from different perspectives (by
municipality, forecasting horizon, fold, state), it will be defined two strategies to compute
the errors. First, we define the error by region: the average error through time computed
for a given place or a set of places that share common characteristics (like being from



a same state), which evaluates the quality of the models to forecast the local curves, re-
gardless of the pandemic period. Secondly, the error by period: the average error among
the country computed for a given time interval (like the h-th day from a forecasting hori-
zon), which evaluates the quality of the models to forecast a specific day, regardless of the
place. The models are evaluated, by region and period, with the following metrics: Mean
Absolute Error (MAE), Symmetric Mean Absolute Percentage Error (sMAPE), and Nor-
malized Root Mean Square Error by the Standard Deviation (NRMSEsd). The selection
of these metrics took into account the comparability with similar works in the literature
and a more embracing analysis to exploit different points of views.

3.3. Baselines

Implementing dedicated forecast models (i.e., specific to each locality) requires exhaus-
tive and impracticable computational processing due to the inherent time complexity. For
example, the two time series from all municipalities require at least 11,140 distinct mod-
els. Furthermore, this counting grows much more when considering that the simple task of
updating the model with a new known day retrains the model from the beginning, which
implies that the training/validation cycle with ten folds trains the same amount of distinct
models. Finally, tuning the hyper-parameters for all models with grid search methods
or other techniques becomes impracticable due to the large of models that need to be
built. For illustration purposes, we implemented the models Naive Forecaster, Exponen-
tial Smoothing, and Autoregressive Integrated Moving Average (ARIMA). Grid Search
selected the hyper-parameters in some selected state capitals – those for which the pan-
demic was more intense and yet had more regular records without significant distortions.

3.4. Experiment setup

The neural network was trained with τtrain and evaluated with τvalid to adjust the learning
rate and determine the early-stopping point. Then, it was trained in subsets τtrain and τvalid

using the estimated hyper-parameters, and evaluated in the test subset τtest. The baselines
were trained directly with τtrain ∪ τvalid and evaluated with τtest, as they do not benefit from
the validation step. Also, the baselines were fitted to the non-normalized data, and we had
to sum up a constant before the data input to avoid inconsistencies with some models of
the [Sktime 2020] library, which does not handle zeros. The training and validation steps
use the ADAM optimizer with Mean Square Error (MSE) for the back-propagation step.
For all models, the errors computation considers the non-normalized time series.

4. Results
This section presents the performance measures of proposed and compared models, by
municipality size and forecasting horizon. Also, graphical analysis of the similarities of
pandemic numbers in neighboring municipalities are shown.

4.1. Performance evaluation by municipality size

The analysis of the model performance by municipality size is presented in Table 2. The
first column represents the size category, while the second shows the number of munic-
ipalities in that group. We classify a municipality as small size when having fewer than
15 thousand people, medium-sized when having a population between 15 and 150 thou-
sand people, and large size if the population if equal to or greater than 150 thousand. The



Table 2. Performance of the models to forecast Covid-19 numbers for one-day-
ahead, grouped by municipality sizes.

Size |V | Model MAE sMAPE NRMSEsd

cases deaths cases deaths cases deaths

Large 201

ARIMA 47.146 1.527 0.325 0.162 0.685 0.557
Double Gated GCN 35.002 1.166 0.318 0.203 0.509 0.561
Expon. Smoothing 55.332 1.851 0.330 0.202 0.929 0.691
Naive Forecaster 48.844 1.644 0.308 0.166 0.684 0.614

Medium 2119

ARIMA 4.515 0.135 0.274 0.037 0.919 0.961
Double Gated GCN 2.987 0.096 0.295 0.067 0.568 0.628
Expon. Smoothing 5.525 0.189 0.299 0.047 1.479 2.737
Naive Forecaster 4.842 0.149 0.259 0.039 0.993 1.146

Small 3250

ARIMA 0.879 0.024 0.134 0.007 0.976 1.041
Double Gated GCN 0.776 0.030 0.242 0.026 0.679 0.769
Expon. Smoothing 1.227 0.039 0.159 0.011 2.510 2.271
Naive Forecaster 1.029 0.027 0.141 0.008 1.126 1.313

All 5570

ARIMA 3.932 0.121 0.194 0.024 0.647 0.542
Double Gated GCN 2.852 0.096 0.265 0.048 0.474 0.536
Expon. Smoothing 4.814 0.161 0.218 0.031 0.897 0.749
Naive Forecaster 4.205 0.132 0.192 0.025 0.651 0.601

other columns show the error by region – in this case, the region is defined by a set of
municipalities with the same size category.

As the population grows, the MAE also increases. The same behavior can be seen
in the sMAPE measure, which gives a normalized result. On the other hand, as more
populous locations have distinct curves with significant cases and deaths, bigger is the
standard deviation, explaining why the NRMSEsd metric tends to decrease as the popula-
tion grows. In general, the proposed model performs well to capture the dynamics of the
pandemic, evidencing better values for medium to large municipalities, which reinforces
the choice for graph-based modeling, as it can be checked in the first and third metrics.
When comparing the error concerning the local average values, using the second metric,
the dedicated baseline models seem to perform better, which is expected since them were
fit specifically to each municipality, curve (cases or deaths), and period (fold).

4.2. Neighborhood virus propagation

We now analyze the real and predicted curves for some municipalities in the Metropolitan
Region of São Paulo (from Portuguese, RMSP), and how adjacent locations have similar
dynamics. For illustration we use the curves of Covid-19 cases, but the same analysis
applies to the death curves.

In the left column pictures of Figure 2, see that the curves follow a M shape before
the day 250, and diverges in behavior after that. In São Paulo (state capital), the numbers
started to increase after the 25th day, achieving stability between the pandemic days 100
and 130, followed by a valley and a peak between 150th and 175th. After that, it decreases
continuously until reaching the lowest levels around 240th, followed by a quick uptrend
and an apparent new wave after 280th day. The surrounding municipalities share similar
behavior, with an average delay of one week in the main events. Despite the different
scales between the neighboring municipalities, it is possible to observe that São Paulo



Figure 2. Daily (continuous line) and accumulated (dashed line) numbers of
Covid-19 cases for RMSP (left) and southwestern Paraná (righ).

had the first growing of cases and remained at the peak of the first wave for more days,
comparatively. Also, its cumulative curves show an acceleration at the 300th day, which
can only be seen in the other municipalities after one week or two. For comparison, see
that São Bernardo do Campo shows a slight distinct scenario, with a shrunken and abrupt
first wave and a relatively smoother second wave. Santo André evidences curves similar
to São Paulo, and the only apparent difference is the fact that Santo André does not have
any acceleration of the cases after the 260th day, staying at a plateau – according to the
almost constant slope of the cumulative curve.

Another interesting comparison can be revealed for Pato Branco, in the southwest-
ern Paraná (PR), quite far away from RMSP. This city locates within a rural region and
is surrounded by small municipalities, but it differs from its neighbors by having a large
federal university, which attracts an influx of people from all over the country. There,
the SARS-CoV-2 virus started to spread around the 100th day, with the first wave char-
acterized by a flat shape and extending till the 200th day. Between days 200 and 260,
one observes a stable curve, followed by a rapid increase in the number of cases. The
same behavior can be seen in Coronel Vivida and Vitorino, two neighbors cities with con-
stant interaction with Pato Branco (see right column pictures of Figure 2). However, they
clearly evidence a few weeks of delay with respect to Pato Branco, reinforcing our hypoth-



esis that there exists a propagation flow that could be intercepted to support authorities in
preventive measures.

In summary, it is reasonable to assume that the pandemic first hit the metropolis,
and gradually propagates across the country until reaching small cities. By using the ap-
proach in this study, it is possible to forecast the propagation of the virus and anticipate
some events, such as new waves and peak of local numbers, just by observing the sur-
roundings, and this information can help to isolate and protect certain regions of interest.

4.3. Forecasting weeks ahead
In addition to the ability of forecasting next-day indexes of Covid-19, it is equally essen-
tial to forecast for days or weeks later. Instead of training directly using weekly data, in
this study we benefit from the daily behavior of the pandemic, and forecast weeks in the
future by retro-feeding the proposed model itself with the last forecasted day. By repeat-
edly applying this method it is possible to predict more than one day ahead. Due to the
form of the adopted time series split, the maximum period that can be properly tested is
25 days, which corresponds to the length of the testing subset for a single fold.

In Figure 3 we present the progression of the MAE through the forecasting horizon
of 25 days. The curves follows the error computed by period, being the average of the
loss obtained across the 10 folds and the 5570 municipalities.

Figure 3. Average error in forecasting daily cases of Covid-19, by forecasting
horizon, with 95% confidence interval.

Despite eventual oscillations due to the respective momentum of the pandemic, the
computed error for the GNN shows a slight increase during the first week and decreases
until reach its lower level, after two weeks, when remains quite stable. The baseline
models follow other behavior, significantly increasing during the first five days and a
lower growing in the subsequent days. The same occurs for the death curve, and with
the NRMSEsd metric for both curves. For the sMAPE metric, the error of the proposed
method begins higher than the baseline ones, and they converges to an average value
between the 15th and 20th day. The performance improvement of Double Gated GCN in
forecasting more than one day ahead makes the model suitable for long range estimates,
being capable of keep stability when forecasting two weeks ahead for small, medium and
large municipalities.

Motivated by the performance of the Double Gated GCN in long-term forecasting,
we tested it over national-wide numbers for February 25th, 2021, one month after the last



day considered in the dataset, and 55 days after the last known day by the neural network
(i.e., present in the training and validation subset). By informing the 336 days of the
dataset, and retro-feeding the model with the following 30 days, we obtained a relative
error of the accumulated Covid-19 cases and deaths of 3.72% and −2.12%, respectively.

5. Conclusions
This work proposes a STGNN model to forecast the Brazilian curves of cases and deaths
by Covid-19 at a local level, based on a graph modeling of the transport modals as an
indicator for flow of people between municipalities. The model, named Double Gated
GCN, uses a convolutional graph neural network to capture the spatial dependencies and
learn how the the pandemic propagates through the graph, followed by a recurrent neural
network to handle the temporal dynamics along a time window.

The model has shown to be able to capture a wide range of pandemic scenarios,
forecasting pandemic time series for small, medium, and large municipalities. To some
extent, this reveals the appeal of graph-based approaches over real life problems. By
learning with data from distinct domains, without relying on previously known pandemic
dynamics, the model becomes useful for contexts where the epidemiological variables are
unknown or uncertain. Likewise, the use of transport meshes has proven to be a suitable
alternative for data sensitiveness and representativeness, besides to enabling analysis in
places where urban mobility data is not available. Future researches aim to improve the
edge weighting, filtering the meshes to remove possible invalid routes (i.e. disabled roads,
unnavigable rivers, etc.) and take into account the curve of vaccination.
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