
deterministic planners can be used to solve many formalisms of planning, including
determinism, and an effective non-deterministic planner must be robust to both. Non-
can always reach goal states. Available planners struggle with either task size or non-
that might realistically occur and guarantees that all trajectories that follow the policy
a solution for non-deterministic planning is a policy that takes into account all outcomes

 In non-deterministic planning, transitions have non-deterministic outcomes. Thus,

that do not fail due to memory restrictions.
ners. Memory-restricted search is a sub-area that aims to develop fast search algorithms
functions. Thus, algorithms that better use the available memory will result in better plan-
available memory are required. Also, state-of-art planners use memory-based heuristic
fore, planners struggle in memory-restricted scenarios, and algorithms that better use the
are imperfect and planners have to store all generated parts of the state-space. There-
the most promising parts of the state-space first. However, in general, heuristic functions
required to produce effective search algorithms – heuristic functions guide the search to

 Since planning tasks have exponentially larger state-spaces, heuristic functions are

there is no need to change the planner, just the model of the task.
as a planning task and then select a general planner to solve it. If the problem changes,
cost-effective software engineering approach since one can model the problem of interest
problems can be modeled as planning tasks. The development of general planners is a
gorithms capable of solving goal-directed tasks of several domains since many real-life
initial state to one of the goal states (with minimal cost). Planning aims to develop al-
non-negative cost. An (optimal) solution is a sequence of transitions that connects the
These state-spaces have an initial state, goal states, and deterministic transitions with
have compact descriptions that generate exponentially larger state-spaces and solutions.
of these problems, called planning tasks, are usually PSPACE-complete because they
Planning is an Artificial Intelligence area that solves goal-directed problems. Instances
1. Introduction

for non-deterministic planning tasks that outperforms comparable algorithms.
this class of algorithms. Finally, we propose a new depth-first search algorithm
of memory-restricted algorithms helping to better understand the landscape of
same class. Second, we present a complete theoretical and experimental analysis
heuristic search algorithm called PEA∗+IDA∗ that outperforms algorithms of the
algorithms for planning tasks. First, we propose a hybrid memory-restricted
the most effective methods to solve them. In this work, we study heuristic search
generate exponentially larger state-spaces, and heuristic search algorithms are
to solve goal-directed tasks. Planning tasks have compact descriptions that
Abstract. Planning is a long-standing area of Artificial Intelligence that aims

 {frederico.messa,agpereira}@inf.ufrgs.br

 1Federal University of Rio Grande do Sul, Brazil

Frederico Messa, André G. Pereira

 Artificial Intelligence
A Study of Heuristic Search Algorithms for Planning in

general planning and temporal planning. An important application of non-deterministic
planners is to solve goal-directed Markov Decision Processes (MDPs) with compact de-
scriptions (also known as stochastic shortest path (SSP) planning). These planners are, in
general, more effective for goal-directed MDPs with compact descriptions than traditional
reinforcement learning methods because they can provide a solution without evaluating
the entire state-space [Hansen and Zilberstein 2001].

Contribution 1: A New Hybrid Memory-Restricted Heuristic Search Algorithm We
present the algorithm PEA∗+IDA∗ that runs Partial Expansion A∗ (PEA∗) until the mem-
ory limit is reached, and then runs Iterative Deepening A∗ (IDA∗). IDA∗ has an extremely
low memory consumption. Thus, PEA∗+IDA∗ does not fail by memory limits. We then
compare it with a state-of-the-art memory-restricted algorithm, observing that our ap-
proach is faster and solves many more tasks. We theoretically analyze both algorithms and
explain aspects that impact the algorithms’ performance. Published at the AAAI 2022,
Qualis A1.

Contribution 2: A Study of Memory-Restricted Heuristic Search Algorithm We ex-
tended our previous contribution by presenting formal proofs and a theoretical model
of many search algorithms that explain their strengths and weakness in many memory-
restricted scenarios. We experimentally show that our proposed algorithm PEA∗+IDA∗

improves the state-of-the-art in practical settings. To be submitted to a journal.

Contribution 3: A Robust Heuristic Search Algorithm for Non-Deterministic Planning
We propose a new iterative depth-first search (IDFS) algorithm with theoretical guaran-
tees. IDFS outperforms other algorithms for non-deterministic planning, showing a robust
performance concerning task size and non-determinism. Published at the ICAPS 2022,
Qualis A2.

2. A New Hybrid Memory-Restricted Heuristic Search Algorithm.

Scope The undergrad student started and led this research during his undergraduate stud-
ies, resulting in his undergraduate final work.

Summary A∗ [Hart et al. 1968] is one of the most popular best-first heuristic search al-
gorithms due to its capability to time-efficiently solve state-space tasks optimally while
being intuitive and simple to understand. It expands first nodes with better estimates
and stores all generated nodes until expanding and replacing the stored nodes with their
children. Since the node estimates given by efficient heuristic functions are imperfect, A∗

often fails to solve challenging state-space tasks, even in scenarios with large memory lim-
its. Iterative Deepening A∗ (IDA∗) overcomes the memory limitations of A∗ [Korf 1985],
as it is a heuristic search algorithm with low memory requirement, linear in the depth
of the search. However, IDA∗ has no duplicate detection without using extra memory.
Thus, it may frequently expand nodes with the same states. Also, it requires multiple
re-expansions of the same nodes due to its iterative behavior, especially those close to the
root node. Thus, pure IDA∗ needs, frequently, orders of magnitude more expansions than
A∗ to solve optimality challenging state-space tasks.

Many algorithms were proposed to solve state-space tasks using less memory than
A∗ and making fewer node expansions than IDA∗, such as MREC [Sen and Bagchi 1989],
SMA∗ [Russell 1992], AL∗ [Stern et al. 2010], and PEA∗ [Yoshizumi et al. 2000]. Some

of them have a high polynomial-time overhead per node expansion or generation com-
pared to A∗. Some have the performance depending on the quality of hyper-parameter
values that are hard to define, such as the AL∗ algorithm. Others like PEA∗ cannot be re-
stricted to a specific memory limit. Finally, many are relatively difficult to understand or
implement. Because of these issues, these algorithms are less frequently used in practice.

Bu and Korf [2019] presented a new algorithm combining A∗ and IDA∗ in a hybrid
algorithm with two phases called A∗+IDA∗. Their new approach does not have the men-
tioned disadvantages since it is simple to understand, easy to implement, has low overhead
per node, and limits the required memory. A∗+IDA∗ achieves speed-ups of around five
times over IDA∗ for specific domains. However, although A∗+IDA∗ avoids failing due to
memory limits, its second phase still has the drawbacks of the pure IDA∗ algorithm.

2.1. Background

A state-space task is a tuple Θ = 〈S,A, T, c, s0, SG〉 [Sturtevant and Helmert 2019] where
S is a finite set of states, A is a finite set of actions, T : S × A ⇀ S is partial function
of transitions between states, c : A → R≥0 is a cost function that maps actions to non-
negative real costs, s0 ∈ S is the initial state and SG ⊆ S the set of goal states. A
state-space task Θ is the explicit representation obtained from the compact representation
of a planning task Π. A solution of Θ is a path of transitions 〈s0

a1−→ s1, s1
a2−→ s2, . . . ,

sn−1
an−→ sn〉 with sn ∈ SG and T (si−1, ai) = si,∀i ∈ [1, n]. It is optimal if its cost∑n

i=1 c(ai) is minimal. A heuristic function h : S → R≥0 ∪ {∞} maps all states to
their h-values. The h-value of a state s estimates the minimal cost path from s to any
goal state. The perfect heuristic function h∗ estimates that cost correctly for all states,
assigning h∗(s) = ∞ to states s for which no such path exists. A heuristic is admissible
if and only if h(s) ≤ h∗(s) for all s ∈ S. The f -value of a state s estimates the cost of a
solution going through s and is defined as f(s) = g(s) + h(s), where g(s) is the current
cost from s0 to s. A search node n is a data structure that contains a state s, its g and f -
values, and its parent node (⊥ for the root node). Function succ(n) generates all nodes n′

such that n′.state is children of n.state (i.e., nodes n′ such that T (n.state, a) = n′.state).
When succ(n) is invoked, the node n is expanded and all its children are generated.

2.2. The PEA∗+IDA∗ Algorithm

We propose the use of the Partial Expansion A∗ (PEA∗) as the first phase algorithm,
creating the PEA∗+IDA∗ algorithm. Partial Expansion A∗ is an algorithm based on A∗

that avoids storing all generated children of expanded nodes, thus reducing its mem-
ory requirements. PEA∗+IDA∗ is a new hybrid algorithm that is as simple and intuitive
as A∗+IDA∗. With the trade-off of possibly having more expansions in the first phase,
PEA∗+IDA∗ generally reduces the number of IDA∗ iterations and expansions in the sec-
ond phase. We now present a high-level description of PEA∗+IDA∗ (Algorithm 1).

2.2.1. High-Level Description

First Phase (lines 3–21) PEA∗+IDA∗ removes from Open first a node nwith least F -value
(line 4). The F -value of a node has the same purpose as the f -value, to estimate the cost
of a solution going through the node, but it can be updated throughout the execution of

the algorithm. When expanding the node n, the algorithm divides the generated children
nodes from succ(n) into two sets Children≤ and Children>. The set Children≤ (line
7) stores nodes with F -values lower or equal to n.F . The set Children> (line 8) stores
nodes F -values greater than n.F . PEA∗+IDA∗ terminates the first phase (lines 9–11) if the
memory (Open size) required to expand the node n is greater than the predetermined limit.
Line 13 invokes the typical method of A∗ that processes generated nodes in Children≤.
Lines 14–21 process Children>. If there is more than one node in Children>, they are
discarded, and the node n is re-inserted in Open with F -value updated to the minimum
F -value of the discarded nodes. Otherwise, no node children of n is discarded, and n is
then closed.

Algorithm 1: PEA∗+IDA∗

1 Open := {make root()}
2 Closed := ∅
// First Phase: Restricted PEA∗

3 while Open 6= ∅ do
4 Remove node n from Open with minimum n.F
5 if is goal(n) then
6 return extract path(n)

7 Children≤ := {n′ | n′ ∈ succ(n) ∧ n′.F ≤ n.F}
8 Children> := {n′ | n′ ∈ succ(n) ∧ n′.F > n.F}
9 if |Open|+ |Children≤|+min(|Children>|, 1) >

MEMORY LIMIT then
10 Insert n in Open
11 break loop

12 foreach n′ ∈ Children≤ do
13 process child(n′)

14 if |Children>| = 0 then
15 Insert n in Closed
16 else if |Children>| = 1 then
17 process child(n′) | n′ ∈ Children>
18 Insert n in Closed

19 else
20 n.F := min{n′.F | n′ ∈ Children>}
21 Insert n in Open

// Second Phase: IDA∗

22 while Open 6= ∅ do
23 Remove node n from Open with minimum n.F
24 solution path,new F limit := IDA∗(n, n.F)
25 if solution path 6= ⊥ then
26 return solution path

27 if new F limit =∞ then
28 Insert n in Closed

29 else
30 n.F := new F limit
31 Insert n in Open

32 return ⊥ // UNSOLVABLE

33 Method process child(n′):
34 if n′.state 6= n.state then
35 if n′.state ∈ Open then
36 if n′.g < Open(n′.state).g then
37 Open(n′.state).update(n′)

38 else if n′.state ∈ Closed then
39 if n′.g < Closed(n′.state).g then
40 Remove n′.state from Closed
41 Insert n′ in Open

42 else
43 Insert n′ in Open

Second Phase (lines 22–31) PEA∗+IDA∗ again removes from Open first a node n using
the same order from the first phase. Line 24 invokes a standard iteration of IDA∗ starting
from the node n and using as F -limit its F -value. At the end of the iteration, if IDA∗ finds
a solution, the algorithm returns it. If the new F -limit returned by the IDA∗ iteration is
infinite, the node n is inserted in Closed. Otherwise, it is re-inserted in Open updating its
F -value to the new F -limit defined by IDA∗.

2.2.2. Empirical Analysis

In this subsection, we aim to better understand A∗+IDA∗ and PEA∗+IDA∗. Thus, we com-
pare them using three different memory limits, measuring time as the number of expanded
nodes because it avoids differences that result from implementation details and memory
consumption as the number of nodes stored in Open because it is the main source of these
algorithms’ memory consumption. We use the STRIPS optimal benchmark of 1877 tasks
of the International Planning Competition (IPC) and remove from our experiments the

Table 1. Coverage and expansions of hybrid algorithms at three memory limits.

10% 50% 90% 100%

A∗+IDA∗ PEA∗+IDA∗ A∗+IDA∗ PEA∗+IDA∗ A∗+IDA∗ PEA∗+IDA∗ A∗

Airport (2⁄50) 550 188 203 223 357 223 225
Blocks (10⁄35) 240,000 303,167 80,140 88,138 68,379 88,138 65,289
Data (5⁄20) 8,337 9,325 761 354 365 354 199
Depot (3⁄22) 510,071,912 586,146,642 13,285,410 149,088 5,919,570 149,088 97,433
Driverlog (7⁄20) 353,027 355,316 37,090 3,870 13,384 3,870 3,058
Floortile (5⁄40) 9,305,927 105,582,631 212,129 52,701 38,791 52,701 27,077
Ged (2⁄20) 18,111,171 55,838,776 9,253,283 2,045,180 3,707,632 2,045,180 2,166,322
Grid (1⁄5) 331,728 477,407 89,609 109,367 83,421 109,367 77,087
Logistics (3⁄63) 22,907,130 951,837 22,699,231 373 15,519,334 373 375
Miconic (93⁄150) 168 183 168 186 187 186 185
Mprime (7⁄35) 2,523 1,538 1,455 940 1,280 940 1,180
Mystery (3⁄30) 3,796 2,571 2,737 2,412 1,609 2,412 1,605
Nomystery (6⁄20) 24,014 45,142 8,657 4,295 5,164 4,295 3,605
Organic (6⁄40) 3,793 4,028 2,627 2,444 1,908 1,769 1,216
Parcprinter (11⁄50) 338 235 179 63 142 63 58
Parking (5⁄40) 81,800 143,550 38,201 29,698 29,176 29,698 24,404
Pipesworld (8⁄150) 1,178,042 1,334,954 187,688 54,576 143,275 54,576 43,619
Rovers (2⁄40) 127,806,277 404,719,675 9,457,675 22,380 4,270,004 22,380 19,372
Satellite (3⁄36) 416,021 93,621 130,167 8,935 53,908 8,935 7,999
Scanalyzer (10⁄50) 15 15 15 14 15 14 14
Sokoban (4⁄50) 15,289 15,289 4,392 4,390 1,262 1,262 458
Spider (2⁄20) 2,618,834 1,627,121 357,970 101,673 217,938 101,673 95,344
Storage (1⁄30) 6,235,135 13,994,290 857,116 215,483 447,060 215,483 155,763
Tidybot (8⁄40) 344,327 351,201 60,675 49,727 31,632 27,813 20,395
Trucks (3⁄30) 396,319 4,267,495 125,631 14,434 39,035 14,434 13,201
Visitall (5⁄40) 1,040,799 1,125,316 269,693 347,120 212,046 231,582 177,030
Woodworking (16⁄50) 349,931 20,803 82,080 2,131 39,288 2,131 1,564
Zenotravel (6⁄20) 623,588 21,778 411,994 8,192 189,333 8,192 8,628

Avg. Expansions 149,628.33 132,823.20 40,284.94 7,815.38 23,554.71 7,133.72 5,698.35
Coverage 247 249 267 306 275 318

tasks that are either too “hard” or too “easy”, i.e., not solved by pure A∗ with hLMCut in 10
minutes with 2 GB of memory, or solved by pure A∗ with blind heuristic function with the
same limits. We use hLMCut in all the remaining experiments and compare the algorithms
using the remaining 332 tasks, limiting the Open size to 10%, 50%, and 90% of the A∗’s
Open size peak to solve each task. We ran all experiments with a Ryzen 3900X, and all
algorithms use as tie-breakers for Open first lower h-value followed by the greater depth
and finally lower generation order. We use the Fast Downward [Helmert 2006] framework
to implement all our algorithms. Our code is available to the community 1.

A∗+IDA∗ vs. PEA∗+IDA∗ We now compare the hybrid algorithms. In addition to the
previously defined limits, the algorithms could not solve some tasks within six hours. For
PEA∗+IDA∗ the number of failures is respectively 83, 26, and 14 at 10%, 50%, and 90%
memory limits, while for A∗+IDA∗ is respectively 85, 65, and 57. Table 1 shows the
coverage of both hybrid algorithms for the memory limits. Since both hybrid algorithms
have a very similar cost per expansion in the first phase and the same cost per expansion in
the second phase, the higher coverage of PEA∗+IDA∗ shows that it is generally superior.

To compare expansions, we remove tasks that failed to be solved by any experi-
ment, remaining 237 tasks. Table 1 shows as (x/y) the total number y and the number x
of the remaining tasks of each domain. Table 1 shows per-domain average expansions for
each algorithm and memory limit. It also shows the expansions of pure A∗ for reference.
We use a geometric mean in all average calculations since it avoids overweighting hard
domains, reduces the effect that some domains have more remaining tasks than others.
We deal with zero values by incrementing the values before the mean, and decrement-

1https://github.com/Frederico-Messa/PEAstar-plus-IDAstar

Table 2. Mean second phase information for hybrid algorithms, and A∗+IDA∗↑.

A∗+IDA∗ A∗+IDA∗↑ PEA∗+IDA∗

10% 50% 90% 10% 50% 90% 10% 50% 90%

Avg. IDA∗ Phase Exp. 145,201.08 73,442.10 35,506.81 30,306.27 220.13 3.29 8,093.42 60.60 0.47
Avg. IDA∗ Iterations 1,062.78 722.83 210.76 938.31 46.48 1.25 265.14 18.63 0.18

ing afters. In per-domain expansions, at 10% memory limit, the hybrid algorithms are
comparable. At 50% and 90% memory limits, PEA∗+IDA∗ wins in almost all domains
respectively 23 vs. 5 and 21 vs. 6.

PEA∗+IDA∗ requires the second phase in few tasks at higher memory limits. Ta-
ble 2 displays geometric mean second phase information over domains and tasks of Ta-
ble 1 for the hybrid algorithms, showing that PEA∗+IDA∗ dramatically reduces the aver-
age number of second phase expansions and iterations. Outliers often occur for A∗+IDA∗.
In some tasks, it required more than 10,000 times more expansions than PEA∗+IDA∗,
while the opposite does not occurred.

We present lower bounds to the mean number of expansions in the 257 tasks that
at least one of the two algorithms solved at all three memory limits. The lower bounds
consider the number of expansions made up to the time limit of six hours. For the limits
of 10%, 50%, and 90%, PEA∗+IDA∗ has a respectively lower bound on the number of
expansions of 207,149.27, 11,794.65, and 9,638.18, while A∗+IDA∗ has a respectively
lower bound of 421,773.34, 98,566.23, and 55,575.52. Thus, an estimate of the speed-up
of PEA∗+IDA∗ for the respective limits is 2.04, 8.36, and 5.77.

Better Open Composition PEA∗+IDA∗ has a more homogeneous Open when memory
reaches the limit and it also has a higher starting F -limit to the IDA∗ iterations. Thus, the
higher starting F -limit could explain the better performance of PEA∗+IDA∗. However,
PEA∗+IDA∗, besides reducing the number of IDA∗ iterations, also reduces (at 50% and
90%) the number of expansions of each iteration. The number of second phase expansions
per iteration for PEA∗+IDA∗ and the three limits is respectively 168.47, 2.63, and 2.61,
while for A∗+IDA∗ is 136.62, 32.30, and 30.53. Thus, the better Open composition of
PEA∗+IDA∗ is partially responsible for its performance.

Higher Initial F-Limit To evaluate the effect of the higher F -limit of PEA∗+IDA∗, we
artificially modified A∗+IDA∗ into what we call “A∗+IDA∗↑”. A∗+IDA∗↑ runs A∗ as
A∗+IDA∗, but, when memory reaches the limit and before the second phase begins, all
nodes in Open with F -values lower than a value F ↑ have their F -values updated to F ↑.
We define F ↑ as the minimal F -value in the Open of PEA∗+IDA∗ at its first IDA∗ iteration
if it required the second phase to solve the task, and as h∗(n0.state), otherwise.

Table 2 shows that A∗+IDA∗↑ has a dramatic reduction of IDA∗ phase expansions
and iterations when compared to A∗+IDA∗ in all memory limits. This indicates that higher
F -limits have a considerable impact on the second phase of the algorithm, although the
last two layers of IDA∗ iterations dominate the number of expansions. We also used
A∗+IDA∗↑ to measure the impact of the Open node composition of PEA∗+IDA∗ against
the one of A∗+IDA∗ when memory reaches the limit. Since A∗+IDA∗↑ has a F -limit at
first IDA∗ iteration greater or equal to PEA∗+IDA∗, and approximately the same Open

size due to the memory limits, we could expect that the former would perform at least as

better as the latter in the second phase. However, Table 2 shows otherwise, PEA∗+IDA∗

is still superior concerning second phase expansions and IDA∗ iterations, due to its better
Open composition.

3. A Study of Memory-Restricted Heuristic Search Algorithm.
Scope The undergrad student started, led this research during his undergraduate studies,
and continues to work on this contribution.

Summary We present formal proofs of the soundness and completeness for PEA∗+IDA∗

and a more in-depth theoretical model of five algorithms: PEA∗+IDA∗, A∗+IDA∗, pure
A∗, pure PEA∗, and pure IDA∗. This theoretical model shows how PEA∗+IDA∗ can per-
form better than A∗+IDA∗ although pure PEA∗ usually makes more expansions than pure
A∗. We also perform empirical experiments using other heuristic functions and compare
our approach in practical settings, showing that it improves the state-of-the-art in plan-
ning. Here we present a simplified version of this contribution.

3.1. Soundness and Completeness

We show that PEA∗+IDA∗ with an admissible heuristic function h always terminates re-
turning an optimal solution if the task is solvable, and, terminates proving unsolvablity
if the task is unsolvable. The main argument of the proof of the Theorem 1 is that
PEA∗+IDA∗ always has the possibility of choosing an a node n for expansion that is
part of the an optimal solution.

Theorem 1. For a state-space task Θ, PEA∗+IDA∗ with an admissible heuristic
function h returns an optimal solution if one exists and ⊥ otherwise.

3.2. Open Size and Composition Model

We now present a simplified model of the size and node composition of the A∗+IDA∗ and
PEA∗+IDA∗’s Open lists when the minimum node F -value transitions from x to x+ 1. In
this work, the F -value of A∗+IDA∗ is always equal to the f -value. The model of Korf and
Reid [1998] serves as inspiration for our model. In this model, h-values range from l−

to l+, the root node has h-value equals to h(n0.state) and the transitions have unitary cost.
In addition, a node n generates γ1 non-duplicated children with h-value equals to n.h−1,
γ2 with h-value equals to n.h, and γ3 with h-value equals to n.h+ 1. With the model, we
can compute the number of nodes with g-value g and h-value h using Equation 1.

|Ng,h| =


γ1 · |Ng−1,h+1|+ γ2 · |Ng−1,h|+ γ3 · |Ng−1,h−1| if g > 0 ∧ l− ≤ h ≤ l+;
1 if g = 0 ∧ h = h(n0.state); and
0 else.

(1)

Suppose the hybrid algorithm does not require its IDA∗ phase yet. Then, we can
determine what nodes are in Open at the instant of the transition of minimum node F -
value, i.e., when Open starts to only contain nodes with F -values equal to at least x + 1.
For PEA∗+IDA∗, the nodes in Open are the ones with f -values (original F -values) at
most x that have children nodes with f -values at least x + 1, since nodes with f -values
greater than x would still not be generated without being discarded, and since nodes
without children nodes with f -values at least x + 1 would have already been inserted in
Closed. For the A∗+IDA∗ algorithm, the nodes in Open are the ones with f -values at

1 2

2 21 1 4 3

4 1 12 2 16 31 0 16 4

6 0 24 1 56 2 96 3 96 4

36 0 128 1 304 2 512 3 576 4

200 0 704 1 1632 2 2816 3 3200 4

1104 0 3840 1 8896 2 15360 3 17664 4
(a) Example state-space task.

PEA∗+IDA∗ PEA∗+IDA∗

4→ 5 5→ 6

A∗+IDA∗ A∗+IDA∗

4→ 5 5→ 6

(b) Illustration of the Open of the hybrid algorithms.

Figure 1. Each rectangle is a node-set that contains nodes with the same g and
h-values. The number at the right of a node-set is its nodes h-value, while
the number inside is its size. The depth of a node-set is its nodes g-value.
Node sets with nodes g-values greater than 6 are omitted.

least x + 1 that are children of nodes with f -value at most x, since nodes with f -values
lower than x + 1 would have already been expanded, and since children of nodes with
f -values greater than x would have not been generated yet as their parents’ nodes would
have not been expanded. We can compute the number of nodes in Open for x = x using
Equation 2 for PEA∗+IDA∗ and Equation 3 for A∗+IDA∗.

l+∑
h=l−

(|N(x−1)−h,h|+ |Nx−h,h|) (2) γ2·
l+∑

h=l−

|Nx−h,h|+γ3·
l+−1∑
h=l−

(|N(x−1)−h,h|+ |Nx−h,h|) (3)

Example Using the model we can create a state-space task that exemplifies the behavior
of the hybrid algorithms. Figure 1a shows a task from a model with l− = 0, l+ = 4,
h(n0.state) = 2, γ1 = 1, γ2 = 2, and γ3 = 4, i.e., a node n generates one non-duplicated
child node with h-value one less than its h-value, two with h-value equals to its h-value,
and four with h-value one more than its h-value. In this example, the optimal solution
cost is 6. This example aims to emulate a space-state with a heuristic that maps few states
to small h-values since generally few nodes are near goal states.

For x = 4, PEA∗+IDA∗ has nodes in Open with f -values equal to 3 and 4, thus
(6 + 4 + 2) + (36 + 24 + 12 + 4) = 12 + 76 = 88 nodes. Figure 1a shows these node-sets
in the second and third diagonals. For x = 5, PEA∗+IDA∗ has the nodes in Open with
f -values equal to 4 and 5, thus 76 + (200 + 128 + 56 + 16) = 76 + 400 = 476 nodes. The
Figure 1b shows in black, in the upper quadrants, the node-sets in PEA∗+IDA∗’s Open

respectively for x = 4 and x = 5.

For x = 4, A∗+IDA∗ has in Open the nodes with f -values 5 and 6 that are children
of nodes with f -values equal to 3 and 4, thus γ3 ·12+(γ2 +γ3) ·76 = 4 ·12+6 ·76 = 504
nodes. For x = 5, A∗+IDA∗ has in Open the nodes with f -values 6 and 7 that are children
of nodes with f -values equal to 4 and 5, thus γ3 · 76 + (γ2 + γ3) · 400 = 2704 nodes.
Figure 1b, in the lower quadrants, respectively shows for x = 4 and x = 5, the node-sets
entirely (in black) and partly (in gray) in A∗+IDA∗’s Open.

Note that, for a memory limit of 500 nodes in Open, A∗+IDA∗ would run out of
memory while still having a node with F -value equals to 4 in Open, while PEA∗+IDA∗

would only run out of memory after having in Open only nodes with F -values at least 6.
Thus, the IDA∗ phase of the former would have two more layers of iterations than the one
of the latter, providing an intuition of why the PEA∗+IDA∗ algorithm may overcome the
A∗+IDA∗ algorithm.

4. A Robust Heuristic Search Algorithm for Non-Deterministic Planning
Scope This contribution was a collaboration with the researchers Ramon F. Pereira and
Giuseppe De Giacomo, from Sapienza University of Rome. The undergrad student led
the theoretical analysis of the proposed algorithm and its theoretical proofs.

Summary Non-deterministic planning known as Fully Observable Non-Deterministic
(FOND) planning models uncertainty through actions with non-deterministic outcomes.
Existing FOND planners are effective and employ a wide range of techniques. However,
such planners struggle with either task size or non-determinism, because they usually
either do not use traditional sources of information for search or are designed to solve
a problem that requires more guarantees, addressing the non-deterministic aspect in a
non-explicit way. We developed a novel iterative depth-first search algorithm, called
IDFS, that address the previously mentioned limitations, being robust to both increases
on task size and non-determinism. We compared our proposed algorithm to well-known
FOND planners [Muise et al. 2012, Geffner and Geffner 2018], and showed that it has
robust performance over several types of FOND domains considering different metrics.

Theorem 2. Given a FOND task Θ and an admissible heuristic function h. If
Θ is unsolvable, then IDFS proves that. If Θ is solvable, then IDFS returns a policy by
searching to a depth of at most cv∗(Θ).

We introduced the concept of the critical value cv∗(Θ) to characterize the behav-
ior of IDFS by the structure of policies of the FOND task Θ. We prove that if a FOND
planning task Θ is unsolvable, IDFS identifies it correctly, and if Θ is solvable, IDFS re-
turns a policy by searching to a depth of at most cv∗(Θ). The proofs related to Theorem 2
are extremely sophisticated including many nested proofs by induction. Besides charac-
terizing IDFS, the proofs of the Theorem 2 help in understanding the structure of FOND
policies and the research for the development of new FOND planning task algorithms.

5. Conclusion
Summary This work resulted in two publications.
• Messa, F., Pereira, A. G. (2022). PEA∗+IDA∗: An Improved Hybrid Memory-Restricted

Algorithm. AAAI Conference on Artificial Intelligence (AAAI), Qualis A1.
• Pereira., R. F., Pereira, A. G., Messa, F., De Giacomo, G. (2022). Iterative Depth-First

Search Algorithms for Fully Observable Non-Deterministic Planning. International
Conference on Automated Planning and Scheduling (ICAPS), Qualis A2.

The undergrad student is first-author of the AAAI publication. AAAI is one of the two
most important and selective conferences of artificial intelligence. ICAPS is the main
conference of the automated planning and heuristic search research areas, being usually
the chosen venue for novel contributions of researchers of these areas. We expect to
submit Contribution 2 to the Artificial Intelligence Journal (AIJ) in the next month.

Impact In general, our contributions will help the community develop new memory-
restricted algorithms by providing a better understanding of this class of algorithms. The
experiments presented in Contribution 2 include the addition of our algorithm to one
of the best planners of the IPC 2018, which resulted in significant improvement in its
performance. Therefore, our contributions are also likely to impact many, practical, real-
world applications that apply planning.

Traditional reinforcement learning algorithms solve goal-directed MDP tasks with
compact descriptions by evaluating multiple times the entire state-space. IDFS and sim-
ilar heuristic search algorithms can find policies evaluating only part of the state-space.
IDFS is currently the most effective algorithm to solve FOND planning tasks. Thus, our
algorithm IDFS will likely impact applications that solve goal-directed MDP tasks with
compact descriptions.

Acknowledgments This study was financed by the Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior – Brasil (CAPES) – Finance Code 001, UFRGS, CNPq and
FAPERGS with projects 17/2551-0000867-7 and 21/2551-0000741-9.

References
Geffner, T. and Geffner, H. (2018). Compact policies for fully observable non-

deterministic planning as SAT. In International Conference on Automated Planning
and Scheduling.

Hansen, E. A. and Zilberstein, S. (2001). LAO*: A Heuristic Search Algorithm that Finds
Solutions with Loops. Artificial Intelligence, 129(1-2).

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2).

Helmert, M. (2006). The Fast Downward planning system. Journal of Artificial Intelli-
gence Research, 26.

Korf, R. E. (1985). Depth-First Iterative-Deepening: An Optimal Admissible Tree Search.
Artificial Intelligence, 27(1).

Muise, C., McIlraith, S. A., and Beck, J. C. (2012). Improved Non-deterministic Planning
by Exploiting State Relevance. In International Conference on Automated Planning
and Scheduling.

Russell, S. (1992). Efficient Memory-Bounded Search Methods. In European Conference
on Artificial Intelligence.

Sen, A. K. and Bagchi, A. (1989). Fast Recursive Formulations for Best-First Search
That Allow Controlled Use of Memory. In International Joint Conference on Artificial
Intelligence.

Stern, R., Kulberis, T., Felner, A., and Holte, R. (2010). Using Lookaheads with Optimal
Best-First Search. In AAAI Conference on Artificial Intelligence.

Sturtevant, N. and Helmert, M. (2019). Exponential-Binary State-Space Search.
arxiv.org/abs/1906.02912.

Yoshizumi, T., Miura, T., and Ishida, T. (2000). A* with Partial Expansion for Large
Branching Factor Problems. In AAAI Conference on Artificial Intelligence.

