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Abstract. When songs are composed or performed, there is often an intent by
the singer/songwriter of expressing feelings or emotions through it. For humans,
matching the emotiveness in a musical composition or performance with the
subjective perceptiveness of an audience can be quite challenging. Fortunately,
the machine learning approach for this problem is simpler. Usually, it takes a
data-set, from which audio features are extracted to present this information to
a data-driven model, that will, in turn, train predicting the highest probability
of an input song matching a target emotion. In this paper†, we studied the most
common features and models used in recent publications to tackle this problem,
revealing which ones are best suited for songs a cappella.

1. Introduction

Music is art, and art is a form of expression. By the time it reaches an audience, a spec-
trum of emotional reactions can be provoked, in account that music emotion recognition
(MER) is a process that is highly intertwined with people’s life experiences and cognitive
capacities. In contrast, as a sub-field of music information retrieval (MIR), MER deals
with classification of music according to affective computing [Kim et al. 2010].

Currently, the importance of MER can be justified by the dependency of search
and recommendation engines on metadata, which, in simple terms, is just data about data.
When a person uses a smartphone to take a picture of a cat, for instance, the data is the
picture itself. However, a series of other information about that data is also recorded,
e.g., the time, date, and geographical coordinates where it was shot etc. All of which are
metadata that can be used to tag the data itself, to either retrieve it in the future or find
similar content. Likewise, song metadata, e.g., genre, composer, artist, album, year of
release etc., are commonly used by streaming services to help users find what they may
be prone to like, or even recommend songs based on their listening history. However, the
mood of a song is also an interesting metadata, that could be used to relate a certain song
to similar content.

†This work was partially supported by the São Paulo Research Foundation (FAPESP), grants
#2019/22795-1 and #2019/22945-3. The opinions, hypothesis and conclusions or recommendations ex-
pressed in this material are the authors’ responsibilities, and not necessarily reflect FAPESP’s views.



In this paper, we studied various articles with state-of-the-art results published
on MER, for both song and instrumental music. Our findings reveal that, usually, tim-
bral features, e.g., Mel spectrogram, Mel-frequency cepstral coefficients (MFCC) etc.,
are employed as front-ends, whilst regarding artificial neural network (ANN) models,
the multi-layer perceptron (MLP) and convolutional neural network (CNN) architectures
are most commonly employed as back-end. However, when comparing the performance
of different audio features and ANN models, our experiments showed that the chroma-
gram, which is a harmonic feature, combined with either one-dimensional (1-D) or two-
dimensional (2-D) CNN architectures yields even better results.

The remainder of this paper is organized as follows: Section 2 details our findings
on what are the most commonly used audio features to represent music samples to the
most commonly used machine learning (ML) model architectures. Section 3 describes our
experiment, in which different ANN models were synthesized based on the information
retrieved from the previous section. Section 4 shows our results, comparing it to previous
state-of-the-art works that used a same data-set as we did. Finally, Section 5 presents
some pertinent considerations to conclude this study.

2. Features and Models
According to [Panda et al. 2020], musical dimensions can be related to emotions by a set
of high-level features, namely: melody, harmony, rhythm, dynamics, tone color (timbre),
expressivity, texture, form, and vocals. On the other hand, computational features are con-
sidered low-level, because they only provide primitive descriptions by which individual
high-level ones may be identified.

2.1. Audio features
By reviewing the works of [Flamia Azevedo and Bressan 2018], [Gao et al. 2020],
[Casper 2020], [Russo et al. 2020], [Kim 2020], [Pandrea et al. 2020], [Du et al. 2020],
[Ospitia Medina et al. 2020], [Rajesh and Nalini 2020] and [Cunningham et al. 2020],
we found 47 different low-level computational features being used separately or concate-
nated, to better represent training data-sets, depending on different ML architectures used.
All these features are available off-the-shelf on Python libraries and MATLAB toolboxes,
and 6 of them were found to be used on 76.6% of the publications reviewed (each):

• Chromagram: relates to harmony, i.e., the sound produced by the combination of va-
rious pitches, and indicates energy distribution along a 12-dimensional vector (one for
each semitone in the super-just harmonic scale, i.e., from A to G#.);

• Mel spectrogram: relates to tone color, i.e., timbre, and decomposes an audio signal
into a series of frequency channels inspired by the human cochlea, enabling to study
the signal’s frequency distribution into so-called critical bands;

• Mel-frequency cepstral coefficients (MFCC): also relates to tone color and measures
spectral shape. Can be derived from a log magnitude Mel spectrogram based on the
discrete cosine transform (DCT). Typically, only the first 8 to 13 MFCCs are used for
voiced signals;

• Spectral centroid: also relates to tone color and represents the mean of the magnitude
spectrum of the short-time Fourier transform (STFT);

• Spectral roll-off : also relates to tone color and indicates the frequency below which
approximately 85% of the magnitude spectrum distribution is concentrated;



• Zero-crossing rate (ZCR): also relates to tone color and represents the number of times
a waveform changes sign in a window, indicating change of frequency and noisiness.

As for the other 41 audio features (which were used on the other 23.4% of the publications
reviewed), 13 of them were related to rhythm, 10 were related to tone color, 6 were related
to harmony, 5 were related to melody and dynamics (each), and only 1 was related to
texture, musical form and vocals (each).

2.2. ML models

According to [Flamia Azevedo and Bressan 2018], what dictates which and how many
features can be used as front-end for an ML model is the architecture of the model it-
self. By reviewing the works of [Flamia Azevedo and Bressan 2018], [Gao et al. 2020],
[Casper 2020], [Russo et al. 2020], [Kim 2020], [Pandrea et al. 2020], [Du et al. 2020],
[Ospitia Medina et al. 2020], [Rajesh and Nalini 2020] and [Cunningham et al. 2020],
we found 12 different architectures being used, separately or combined. 3 of these were
found to be used on 17% of the publications reviewed (each), namely: support vector ma-
chine (SVM), multi-layer perceptron (MLP), and convolutional neural network (CNN);
and another 2 on 10% of the publications reviewed (each), namely: recurrent neural
network (RNN) with long short-term memory (LSTM) blocks, and random forest. Since
the initial purpose of our work was to compare the performance of ANN models, we opted
to leave out SVM and random forest, which are ML models that are not based on ANNs,
thus focusing on the remaining 3 models:

• MLP: is a type of ANN that models the relationship between a set of training data and a
group of known targets. Its architecture is based on a simplified understanding of how
the human brain responds to stimuli from sensory organs and is best suited to problems
where the relationship between input and output data is well understood, yet the process
that relates both is extremely complex;

• CNN: is a type of ANN based on convolutional operations that can extract high-level
features from 1-D or 2-D low-level ones. It can deeply extract underlying features
contained in each frame, while retaining time-series features in the same direction. In
classification problems, an MLP layer is usually employed at the end of a CNN archi-
tecture, to output its predictions;

• RNN-LSTM: is a type of ANN which commonly relies on sequential data, i.e., time-
series vectors. In the special case of an LSTM block, it can learn dependencies in the
time-dimension of time-frequency (T-F) features, incorporating local context in ANN
predictions. Hence, when trained on top of CNNs, for instance, the input data is no
longer an individual “image”, e.g., a spectrogram, but rather a sequence, more like in
a “movie”. Moreover, when using a bidirectional LSTM (Bi-LSTM) block, it can also
handle the forward and backward flow of information in ANNs.

As for the other 7 architectures, k-nearest neighbors (K-NN) was found to be used on 7%
of the publications reviewed, RNN with gated recurrent unit (GRU) blocks, decision tree
(CART and C4.5) and state vector regressor (SRV) were found to be used on 4% of the
publications reviewed (each) and logistic regression was found to be used on 3% of the
publications reviewed.



3. Experimental setup
To experiment with the aforementioned features and models, a portion of the Ryer-
son Audio-Visual Database of Emotional Speech and Song (RAVDESS) data-set was
chosen, which comprises 1, 012 audio-only files of song recordings, performed by
24 actors, singing 2 lexically matched statements, in a neutral North American ac-
cent. Song emotions include neutral, calm, happy, sad, angry, and fearful expressi-
ons [Livingstone and Russo 2018]. To extract audio features from this data-set, the
Python package for music and audio analysis Librosa (version 0.8.0) was used, and
all ANN models were synthesized using TensorFlow (version 2.2.0), compiled using
ADAM optimization, categorical cross-entropy as loss function, and trained using an
NVIDIA TITAN V graphics processing unit (GPU).

3.1. MLP model
Since an MLP model can have an input layer with as many neurons as necessary, all input
features could be concatenated and flattened into an 1-D input vector. After extracting all
6 audio features from the data-set, the principal component analysis (PCA) technique was
used, to visualize the minimum number of variables that keeps the maximum amount of
information about how each feature data is distributed, as illustrated in Figure 1.

Figura 1. PCA plots for all 6 audio features.

Since Mel spectrogram showed the worst clustering and the highest dimensiona-
lity compared to the other features, we chose to train an MLP model using the conca-
tenation of the other 5, i.e., chromagram, MFCC, spectral centroid, spectral roll-off and
ZCR. Hence, our MLP model consisted of an input layer with 11, 394 neurons, followed
by 2 hidden layers with 1, 024 and 128 neurons each, totaling over 141M free parameters.
Rectified Linear Unit (ReLU) was used as an activation function for all layers, except
for the output one, where softmax was used. For regularization, we used dropout, which
randomly ignores a percentage of neurons during training.

3.2. 2-D CNN model
For our 2-D CNN model, we selected the 2-D feature that showed the clearest clustering
in the PCA visualization in Figure 1, i.e., the chromagram. Thus, the input for this archi-
tecture had a shape of (12, 422, 1), followed by three convolutional blocks, with 24, 48,
and 48 filters respectively, kernel sizes of (5, 5), (2, 2), (3, 3), convolutional layers’ stride
sizes of (1, 1), and max pooling layers in the first two blocks, with (2, 4), (1, 3) pooling
sizes, and stride sizes of the same dimensions respectively. After the last convolutional
block, the data was flattened into a 1-D vector with 1, 536 elements, to be fed into 2 fully
connected (FC) layers, with 64 and 6 neurons, respectively, totaling almost 125k free pa-
rameters. For regularization, a dropout of 0.5 was used before each FC layer. ReLU was
used as the activation function for all layers, except for the output one, where softmax was
used, to obtain the probability associated with each emotion.

https://www.kaggle.com/datasets/uwrfkaggler/ravdess-emotional-speech-audio
https://zenodo.org/record/3955228#.YrIMLHbMJPY
https://www.tensorflow.org/


3.3. 1-D CNN model

To assess the performance of 1-D CNN architectures, we reshaped the chromagram fe-
ature to match a model with an input length of 5064 samples. Following this, 3 convo-
lutional blocks were added, with 16, 32 and 32 filters respectively, and kernel size of 4.
The max pooling operation was implemented for all blocks with a pooling size of 3, and
a stride of 1. The data outputted by the last convolutional block was then flattened, before
being passed on to 3 FC layers with 1024, 128 and 6 neurons, respectively, totaling over
6M free parameters. Regularization and activation functions were maintained as in the
2-D CNN model.

3.4. Convolutional recurrent neural network (CRNN) model

Finally, we also experimented with the addition of a Bi-LSTM block after the convolutio-
nal layers of the model described in Section 3.3, aiming to learn with the long short-term
temporal dependencies of audio signals. The convolutional blocks have the same parame-
ters as described before, except for the number of filters, which are 16 in every block. The
bidirectional wrapper takes an LSTM layer as argument, with 100 memory units, using
ReLU as activation function, and a dropout of 0.5 as regularization. Ultimately, the Bi-
LSTM layer output is flattened and passed on to 3 FC layers, with the same characteristics
detailed in Section 3.3, totaling over 19M free parameters.

3.5. Data augmentation

In this work, we also explored suitable data augmentation (DA) techniques, i.e., creating
slightly modified new data derived from original data. Since ANNs consider these new
data as genuine, they can benefit from it, learning new parameters to achieve even better
performances, without over-fitting. For this reason, we used the Audiomentations
library, to add Gaussian noise to the original audio samples, and also shift the song’s
pitches, by 1 or 2 octaves. Models trained without DA were trained for 100 epochs, while
models trained with DA were trained for 200 epochs.

4. Results and discussion
To train our models, the data-set was split into 612 samples for training, 200 for validation
and 200 for test. In a previous work ([dos Santos et al. 2021]), it was already evinced that
2-D CNN models can surpass the overall test accuracy of MLP models. Therefore, our
MLP model was trained only without data augmentation, first using the concatenation of
5 features described in Section 3.1, and then in a feature ablation manner, as detailed in
Table 1. Next, our 2-D CNN model was trained with and without DA, to compare its
performance under these different conditions. Since the use of DA improved the system’s
metrics, as evinced in Table 1, we continued using DA for the training of our 1-D CNN and
CRNN architectures, always saving the epoch that achieved the best validation accuracy.
Results show that the 1-D and 2-D CNN models achieved the best performances compared
to all other models, while taking less time to train, compared with our CRNN model.

Moreover, we also resorted to the works of [Cunningham et al. 2018],
[Yadav and Vishwakarma 2020] and [Atmaja and Akagi 2020] to compare our results
with other works that used the same data-set, but not necessarily the same features and
model architectures.

https://github.com/iver56/audiomentations


Tabela 1. Comparative results for different audio features and ANN models, using
the song portion of the RAVDESS data-set.

Model Features Val. acc. Val. loss Test acc. Test loss Tr. time

MLP♥

Chromagram 0.78±0.07 1.5±0.01 0.77±0.03 1.54±0.08 18.24s
MFCC 0.70±0.03 3.71±0.11 0.70±0.01 3.04±0.97 28.06s

Spec. centroid 0.44±0.02 3.15±1.11 0.44±0.02 3.17±1.27 3.13s
Spec. roll-off 0.45±0.01 2.91±1.01 0.45±0.02 2.91±0.95 3.03s

ZCR 0.43±0.03 2.99±0.25 0.38±0.07 3.03±0.48 3.18s
5 feats. concat. 0.65±0.06 2.5±0.76 0.65±0.09 2.66±1.74 5.14min

2-D CNN♥

Mel spec. 0.78±0.01 0.87±0.17 0.78±0.07 0.79±0.11 16.74s
MFCC 0.70±0.01 0.81±0.04 0.63±0.02 0.86±0.01 7.74s

Chromagram 0.84±0.01 0.49±0.02 0.80±0.01 0.62±0.02 8.42s
Chromagram /

DA 0.80±0.01 0.62±0.05 0.84±0.02 0.57±0.08 17.66s

1-D CNN♥ Chromagram /
DA 0.87±0.02 0.42±0.07 0.83±0.01 0.42±0.05 44.82s

1-D CNN
+ BiLSTM♥

Chromagram /
DA 0.81±0.03 0.81±0.45 0.75±0.02 0.89±0.44 11.21min

Logistic
Regression♦

MATLAB Audio
Analysis Library - - 0.48 - -

RNN (LSTM)♠ Librosa HSF - - 0.82 - -
1-D CNN

+ BiLSTM♣
MFCC /

DA - - 0.73 - -

Results associated with: ♥ours, ♦[Cunningham et al. 2018], ♠[Atmaja and Akagi 2020] and ♣[Yadav and Vishwakarma 2020]. All
our models were trained using k-fold cross-validation, from which the mean and standard deviation values shown were computed.

According to [Priore and Stover 2014], harmony can be effectively used in song-
writing to encode hidden meanings, e.g., to imprint emotiveness regardless of rhythm, ly-
rics etc., which is corroborated by our findings, in terms of accuracy. However, according
to [Yadav and Vishwakarma 2020] and [Atmaja and Akagi 2020], we were expecting that
adding a Bi-LSTM cell would improve the accuracy of our 1-D CNN model, since a same
musical scale sang in different orders can imprint different moods. In spite of that, our
CRNN model was significantly outperformed by our 1-D and 2-D CNN models, with DA.
In terms of training time, our CRNN model was also outperformed by our 1-D and 2-D
CNN models, and while our MLP models took even less time to train, they also produced
lower accuracy in comparison. Looking into the learning curves of all 12 combinations
of audio features and ANN models tested, as illustrated in Figure 2, it’s observable that,
regarding the MLP models (without DA), the ones with chromagram and MFCC as front-
end start to diverge at around epoch 20, and start to over-fit at around epoch 60. On the
other hand, the ones with spectral centroid, spectral roll-off and ZCR as front-end start
to diverge early in their training, and over-fitting at around epoch 20, which is consistent
with their poor performances. Using 5 features concatenated as front-end, the MLP mo-
del achieves its best accuracy, which can be justified by its late divergence. Regarding the
2-D CNN models, the ones with chromagram and Mel spectrogram as front-end start to
diverge early in their training, yet stabilizing at high values of validation accuracy earlier
as well. With DA, the 2-D CNN model stabilizes even earlier than others, which justi-
fies its good performance. Finally, regarding the 1-D CNN models, it’s noticeable that,
without the Bi-LSTM layer, the model stabilizes at higher values of validation accuracy,
without ever fully over-fitting, contrary to it’s CRNN counterpart.



Figura 2. Learning curves for all 12 combinations of features and models tested.
Shadows enveloping the curves represent standard deviations.

5. Conclusions
Although the most popular computational features for MER used in recent publications
relate to tone color, the chromagram, which relates to harmony, was found to be best
suited for song emotion recognition, in our experiments. Also, our 1-D and 2-D CNN
models performed better than both our MLP and CRNN models, despite earlier works
showing that RNN layers should improve the accuracy of 1-D CNN models. Moreover,
our best result (0.84±0.02 test accuracy) was obtained using data augmentation, evincing
that ANNs do benefit from this technique. Ultimately, regarding song emotion recogni-
tion, our results are state-of-the-art, compared with recent publications, but it’s important
to mention that the data-set used in our experiments is far from being a general represen-
tation of the human population. Since it’s samples lack accent, language, ethnical and
gender diversities, disability inclusion etc., when put to test with samples different from
its own corpus, it will hardly produce exciting results, such as in Table 1.
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