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Abstract. This scientific initiation work explores the emerging relationship be-
tween managing resources on high-performance computing (HPC) platforms
and the use of regression-derived scheduling heuristics to optimize performance.
Recent research has shown that machine learning (ML) techniques can be used
to generate scheduling heuristics that are simple and efficient. This work pro-
poses an alternative approach using polynomial functions to generate schedul-
ing heuristics. The simplest polynomial was found to be one of the most efficient
heuristic. We also evaluated the resilience of the regression-derived heuristics
over time. We published two papers in peer-reviewed national and international
workshops (Qualis-B3/B4).

1. Introduction

The rapid growth of consumer electronics, data centers, big data, and scientific research
has resulted in an increasing demand for computing performance that is both fast and
affordable [Shalf 2020]. High-performance computing (HPC) has become an integral tool
for managing and analyzing massive amounts of data and solving complex computational
problems in these areas. However, as HPC platforms continue to evolve, addressing the
challenges of resource management, energy efficiency, and software complexity becomes
more crucial to enable trans-petascale computing.

A common approach to managing resources on HPC platforms involves the use of
a Resource and Job Management System (RJMS). Typically, HPC applications, referred
to as jobs, are submitted to the RJMS for execution on the platform. The arrival of jobs in
the RJMS queue is unpredictable, posing a substantial challenge for the RJMS to assign
a priority order that optimizes one or more performance metrics.

The prioritization assignment problem is a complex and intricate task which
has been defined in academic literature as the parallel online job scheduling prob-
lem [Brucker 2007]. A viable and compelling solution to this problem is to use scheduling
heuristics to dictate the order of jobs in the queue. Scheduling heuristics can be defined



as functions that take as input various job characteristics, including processing time, re-
quested resources, wait time, and other relevant factors. These functions output a value
that determines the priority of the job’s execution, with First-Come-First-Served (FCFS)
based functions being the most used in practice [Feitelson et al. 1997].

Furthermore, the use of machine learning (ML) in online job scheduling predom-
inantly occurs in two specific scenarios: (i) to enhance scheduling through predicting the
traits of jobs [Li et al. 2021, Zrigui et al. 2022], and (ii) to generate novel heuristics lever-
aging techniques such as non-linear regression [Carastan-Santos and de Camargo 2017]
and evolutionary strategies [Legrand et al. 2019]. More recently, deep reinforcement
learning methods are being investigated for the execution of online job schedul-
ing [Fan et al. 2021, Zhang et al. 2020].

Regarding the second scenario, these studies have utilized ML techniques to lever-
age simulation and platform workload data in order to devise scheduling heuristics. These
approaches aim to encode the scheduling knowledge obtained through simulations into
regression-obtained scheduling heuristics that are both explainable and efficient. In this
light, this scientific initiation work was proposed in order to explore the emerging
relationship between machine learning and scheduling optimization.

This work is a step forward from the work of Carastan-Santos and de Ca-
margo [Carastan-Santos and de Camargo 2017]. We kept the same strategy of collecting
scheduling knowledge using simulations. However, we modified the functions used in the
machine learning phase. We define polynomial functions of increasing complexity with
the hypothesis that they would be both efficient and more explicable heuristics, in the
scheduling context, than the functions defined in Carastan-Santos and de Camargo work.

During the machine learning phase, the results obtained indicated the presence
of multicollinearity – a phenomenon in which more than two explanatory variables in a
multiple regression model are highly linearly related – in the more complex polynomials,
which leads to instability in the coefficients and inefficient schedules. On the other hand,
we provided experimental evidence that the simplest polynomial proved to be an efficient
scheduling heuristic.

We also evaluated the resilience of the regression-derived heuristics in light of the
changing landscape of HPC platforms and workloads over time. Our results show that the
regression-derived heuristics can generate effective schedules in all the contexts analyzed,
without requiring adjustments over time.

This work was executed under a FAPESP Scientific Initiation scholarship1, includ-
ing a two-month internship2 at the Grenoble Computer Science Laboratory, in France.
The research culminated in the student’s primary authorship of two publications; one in
an international workshop [Rosa et al. 2023] (Qualis-B3, Core Rank B), and another in
a national workshop [Rosa and Goldman 2022] (Qualis B4, CAPES), which received an
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2https://bv.fapesp.br/pt/bolsas/206621/avaliando-tecnicas-de-
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escalonamento-ef/
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honorable mention.

We organized the remaining of this work as follows. In Section 2, we present
the necessary background to introduce our research methodology in Section 3. Then, in
Section 4, we present and discuss the results obtained. Finally, in Section 5, we present
the concluding considerations.

2. Preliminary Background
We addressed the online scheduling problem of executing a group of simultaneous parallel
jobs on an HPC platform. The resource requirements for these jobs are predetermined
and unchangeable, also known as rigid jobs. The HPC platform is composed of a set of
m homogeneous resources, which are connected by arbitrary interconnection topologies.

Jobs arrive in the platform’s central queue in an online manner over time. A
job, denoted as j, is characterized as a workload with specific data that includes: (i)
the estimated processing time p̃j , as reported by the user; (ii) the actual processing time
pj (known only upon completion of its execution); (iii) the resource requirements qj ,
measured in terms of the number of processors; (iv) the submit time rj , also known as the
release date.

A typical approach in scheduling is to make several simplifications regarding the
characteristics of jobs. Instead, a job is often viewed as an independent entity, or “black
box”, that requires a fixed amount of resources q for an estimated processing time of p
units.

In the online scheduling problem, multiple objective functions can be evaluated.
For this study, the average bounded slowdown (AVGbsld) is chosen as the performance
metric for scheduling. This objective function in online parallel job scheduling is difficult
to handle theoretically, often requiring the use of heuristics in practice. Furthermore, the
AVGbsld expresses an expected proportional relationship between the waiting time of
jobs and their processing time [Feitelson 2001].

The bounded slowdown (bsld) value for a job j is computed as follows:

bsldj = max

{
wj + pj

max(pj, τ)
, 1

}
(1)

where wj is the time that a job waited for processing since its submission and τ is a
constant that is typically set in the order of 10 seconds, that prevents small jobs from
having excessively large slowdown values. The average bounded slowdown takes into
account the slowdown average for a set of jobs J and is defined as

AVGbsld(J) =
1

|J |
∑
j∈J

max

{
wj + pj

max(pj, τ)
, 1

}
(2)

3. Investigation Method

3.1. Simulation Design

We used the simulation approach proposed by Carastan-Santos and de Ca-
margo [Carastan-Santos and de Camargo 2017]. The primary goal of this approach is



to capture scheduling knowledge through simulations of job sets executed under different
conditions. The approach is delineated hereafter.

Let S and Q denote two sets of jobs. The proposed approach involves simulating
the scheduling of the jobs in Q on a homogeneous cluster of m resources (processors)
representing an HPC platform while the jobs in S are being processed. At the onset of
the simulation, the jobs from set S are executed in the order of their arrival to function
as a warm-up workload. Once all jobs from S have arrived, the jobs in set Q, which are
utilized to extract scheduling performance information, begin to arrive.

The job sets S and Q are generated in the following way: from a large enough
job log file (also referred to as trace) N , we randomly select a subtrace M ⊂ N with
size |S| + |Q|. The first |S| jobs from M belongs S and the remaining |Q| jobs from M
belongs Q.

For a given pair (S,Q), permutations Q∗ of the set Q are randomly sampled,
referred to as a trial of Q, and the scheduling of jobs is simulated in the order in which
they occur in (S,Q∗). The set P contains all the sampled permutations, and upon the
completion of scheduling simulation for all the trials, a score is computed and assigned to
each job j ∈ Q:

score(j) =

∑
Q∗

l ∈P(j0=j) AVGbsld(Q∗
l )∑

Q∗
k∈P

AVGbsld(Q∗
k)

. (3)

The score represents the impact of scheduling a job j ∈ Q as the first job (repre-
sented by j0 in Equation 3), in terms of the average bounded slowdown (Equation 2) of
all jobs in Q. Jobs with low scores have a positive impact on reducing the overall average
slowdown when they are executed first.

We replicated the previously mentioned simulation strategy with multiple samples
of job set pairs (S,Q), and the collected data were used to generate a distribution of
scores, denoted as score(p, q, r). This distribution represents the primary outcome of the
simulations. The idea is that the scheduler of an HPC system could prioritize a job from
the queue with the smallest score(p, q, r) value for the corresponding (p, q, r) values.

3.2. Regression-Based Scheduling Heuristics
Regression methods can be employed on the scores distribution to obtain a more gener-
alized and smoother representation. This representation is in the form of functions that
can be used to prioritize jobs on an HPC platform. Carastan-Santos and de Camargo
utilized functions that relied on features based on terms such as square roots and loga-
rithms, which can be challenging to interpret in the context of scheduling. In contrast, our
proposed approach in this work involves the exploration of polynomial-based functions.

We defined a function family F , with parameterized functions of the form

f(θ,x) = θTx (4)

where θ is a parameter vector, and x is the features vector of the jobs’ characteristics p, q
and r.

We built four functions, illustrated in Table 1. The function Lin is a linear combi-
nation of the jobs’ characteristics p, q and r. The others Qdr, Cub and Qua are functions



Table 1. Vector components of the four parameterized functions used in multiple
linear regression.

Vector components Vector x
Lin Qdr Cub Qua

(1, p, q, r) ✓ ✓ ✓ ✓
(p2, q2, r2, pq) ✓ ✓ ✓

(p3, q3, r3, p2q, pq2) ✓ ✓
(p4, q4, r4, p3q, p2q2, pq3) ✓

that progressively increase the degree of the basis functions, and with multiplicative fac-
tors related to pq, which is often referred in the literature [Carastan-Santos et al. 2019] as
the area of the jobs.

Our proposed method leverages weighted multiple linear regression to minimize
the weighted sum of squared loss function, as shown in equation 5. The weighting term,
represented by (pjqj), places emphasis on accurate estimation of score values for jobs
with large p and q values. These jobs can have a significant impact on overall scheduling
performance by blocking the execution of smaller jobs.

ΣwL =
∑
j∈J

[(pjqj) · (f(θ,x)− score(j))]2 (5)

Once we have obtained the coefficients θ̂ through multiple linear regression for all
functions f(θ,x) ∈ F , we can assess the quality of the fitting using the Mean Absolute
Error (MAE) function, as shown in equation 6.

MAE(f) =
1

|J |
∑
j∈J

|f(θ̂,x)− score(j)| (6)

4. Results and discussion
4.1. Gathering scheduling knowledge through simulation
In our simulations, we considered an HPC platform comprising of 256 homogeneous
processors. To generate the distribution score(p, q, r), we employed sets of 16 and 32
jobs for the sets S and Q, respectively. Job characteristics for both sets were derived using
the Lublin and Feitelson [Lublin and Feitelson 2003] workload model, which is based on
a generalized workload derived from real HPC workload logs. This model can represent
geometry of jobs (pj and qj), as well as their release date (rj), including peak periods. All
simulations were conducted using SimGrid [Casanova et al. 2014].

Additionally, enumerating and simulating the execution of all possible permuta-
tions of a job set Q with a size of 32 is computationally infeasible. Therefore, it was
necessary to determine an appropriate number of permutations that can generate accurate
trial score distributions. For that, we selected a pair (S,Q), calculated the trial distribu-
tions with incrementally increasing numbers of trials, and measured the standard deviation
of the estimated scores ten times over. We opted to use 256,000 trials, as it offered a good
balance between quick simulations and a low standard deviation. The simulations pro-
duced a distribution of scores containing 14,081 job characteristics and their respective
scores.



4.2. Scheduling effectiveness and polynomial size relationship
We examine how the effectiveness of regression-based scheduling heuristics is influenced
by polynomial size. Table 2 presents the entire list of coefficients θ obtained from the
regression analysis. We observed instabilities in the features’ coefficients between Lin,
Qdr, Cub, and Qua across the four functions. Such instability is manifested by a change
in the sign of the coefficients within a given feature, indicating a potential impact on
the resulting schedule. For instance, the Lin function gives higher priority to jobs with
smaller q values due to its positive coefficient for q, while the Qdr function assigns higher
priority to jobs with larger q values owing to its negative coefficient for q.

Table 2. Features of the four defined functions, their optimal coefficients, and
their Variance Inflation Factor (VIF).

Vector x
Coefficients θ VIF

Lin Qdr Cub Qua Lin Qdr Cub Qua

1 3.24 · 10−2 3.70 · 10−2 3.33 · 10−2 4.83 · 10−2 – – – –
p 1.15 · 10−7 2.65 · 10−7 2.83 · 10−7 −6.42 · 10−7 1.3 3.7 12.1 36.1
q 2.61 · 10−5 −3.05 · 10−5 8.71 · 10−5 −2.40 · 10−4 1.3 9.6 35.5 99.0
r −1.57 · 10−7 −3.96 · 10−7 −5.83 · 10−7 −6.50 · 10−7 1.2 6.0 21.8 58.6
p2 – −3.04 · 10−12 −6.33 · 10−14 1.66 · 10−11 – 2.6 41.8 338.5
q2 – 1.17 · 10−7 −5.06 · 10−7 2.41 · 10−6 – 8.3 275.0 2835.5
r2 – 2.75 · 10−12 6.78 · 10−12 8.81 · 10−12 – 4.8 82.1 620.8
pq – 6.77 · 10−10 −6.02 · 10−10 1.14 · 10−8 – 3.9 49.4 295.3
p3 – – −7.55 · 10−18 −2.03 · 10−16 – – 20.8 961.6
q3 – – 7.05 · 10−10 −9.52 · 10−9 – – 147.3 10491.8
r3 – – −2.14 · 10−17 −4.67 · 10−17 – – 34.6 1387.1
p2q – – −2.72 · 10−14 9.29 · 10−15 – – 9.8 393.1
pq2 – – 9.52 · 10−12 −7.94 · 10−11 – – 30.1 1032.9
p4 – – – 9.34 · 10−22 – – – 322.7
q4 – – – 1.36 · 10−11 – – – 3572.5
r4 – – – 9.84 · 10−23 – – – 373.6
p3q – – – −9.07 · 10−19 – – – 63.8
p2q2 – – – 1.89 · 10−16 – – – 125.0
pq3 – – – 1.55 · 10−13 – – – 457.2

To evaluate the scheduling performance of our functions, we performed online job
scheduling simulations. For these simulations, a task queue was generated with charac-
teristics obtained from the Lublin and Feitelson workload model, and a 256-core HPC
platform was considered. These settings are the same as those used in the scheduling
knowledge collection simulations.

The online scheduling algorithm functions as follows: jobs are received in a
central waiting queue, and the scheduler, which operates using a scheduling heuristic,
reschedules these jobs in the queue at two distinct events: (i) when a new job is added to
the queue, and (ii) when a set of cores becomes available due to the completion of a job.

We define a dynamic scheduling experiment as the simulation of the online
scheduling algorithm for different job sequences extracted from a single workload trace
and using the same scheduling policy. Each sequence consists of all job submissions over
a fifteen-day period, with no overlap between them.

In Figure 1, we present the average bounded slowdown for fifty dynamic schedul-
ing experiments using the proposed heuristics. Among the four functions that were an-
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Figure 1. Scheduling performance comparison with jobs generated from Lublin
& Feitelson workload model and using the actual processing time.

alyzed, the Lin function showed one of the best results, comparable to the SAF and
F2 heuristics, which has proven to be reliably efficient [Carastan-Santos et al. 2019,
Carastan-Santos and de Camargo 2017]. Conversely, the most complex functions, Qdr,
Cub, and Qua, did not perform as well as Lin, producing one the worst results. Although
the MAE values remained close for all functions (Lin = 4.48×10−3, Qdr = 4.66×10−3,
Cub = 10.5×10−3, and Qua = 6.42×10−3), the performance of the most complex func-
tions proved to be as inefficient as FCFS. These results emphasize the negative impact of
the coefficients stability.

4.3. The negative impact of multicollinearity on scheduling heuristics
The instability of the coefficients suggests that the functions suffer from the phenomenon
of multicollinearity [Alin 2010], which occurs when the features are highly correlated
with each other. To test this hypothesis, we computed the Variance Inflation Fac-
tor [Garcı́a et al. 2022] (VIF) for all features in the Lin, Qdr, Cub, and Qua functions
(see Table 2). Moderate correlation (VIF > 5) was observed for Qdr function with q, r,
and q2. The higher degree functions (Cub, and Qua) showed extremely high correlation
(VIF ≫ 10), with VIFs exceeding 10,000 for q3 in the Qua function. We conjecture that
introducing more derivative features will increase VIFs and exacerbate multicollinearity.

Table 3. Scheduling policies used for comparison. Detailed information re-
garding WFP3, UNICEF, and F2 policies can be found in [Tang et al. 2009]
and [Carastan-Santos and de Camargo 2017].

Policy name Function
FCFS rj
SPT p̃j
SAF p̃j · qj
WFP3 −(wj/p̃j)

3 · qj
UNICEF −wj/(log2(qj) · p̃j)
F2

√
p̃j · qj + 2.56× 104 · log10(rj)

4.4. Resilience evaluation of regression-derived scheduling heuristics
The following experiments were designed to evaluate the generalizability of regression-
based scheduling heuristics to different workloads. To achieve this, we compared them



with the policies listed in table 3, using workload traces obtained from large-scale HPC
platforms. The Parallel Workloads Archive [Feitelson et al. 2014] and the ALAS Repos-
itory [Amvrosiadis et al. 2018] were the sources of the traces, which were selected to
represent 19 years of development in HPC platforms and workloads, ranging from an
old IBM SP2 with a few hundred CPUs to a modern supercomputer with hundreds of
thousands of CPUs.
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Figure 2. Computed average bounded slowdown for different scheduling poli-
cies. Experiments based on user-estimated processing times, with aggres-
sive backfilling algorithm.

Two different online scheduling experiments were conducted: (i) scheduling based
on job processing time estimates, and (ii) scheduling by combining processing time es-
timates with an aggressive backfilling technique [Mu'alem and Feitelson 2001] – which
helps reduce platform idle time. The second scenario is particularly relevant to a real-
world HPC platform. However, due to the limited scope of this paper, we omit the results
of the first scenario, as they were found to be similar to those observed in the second
scenario which is more realistic.

The results shown in Figure 2 indicate that backfilling has a significant impact
on the performance of poorly-performing heuristics such as FCFS. However, it is insuffi-
cient to surpass the queue sorting methods used by SAF, F2, and Lin, which consistently
demonstrate superior performance. On the other hand, the Lin function had lower perfor-
mance compared to F2 and SAF policies, but it often resulted in lower average bounded



slowdowns and smaller differences between extreme quartiles for most workloads. This
shows that despite its simplicity, it has good scheduling performance.

The results demonstrate that regression-based scheduling heuristics, specifically
F2 and Lin, can maintain stable and efficient performance across a wide range of HPC
platforms and workloads. For instance, the Mustang trace spans a 5-year workload evo-
lution (from 2011 to 2016), and F2 and Lin showed good performance on all Mustang
workload samples. Furthermore, both F2 and Lin were designed once and did not require
any adjustments over time to maintain their efficient scheduling performance.

5. Conclusion

In conclusion, this scientific initiation work explored the relationship between manag-
ing resources on high-performance computing platforms and using regression-derived
scheduling heuristics to optimize performance. The use of polynomial functions to gen-
erate scheduling heuristics was proposed, and the simplest polynomial was found to be
particularly efficient.

In addition, our study demonstrated that the proposed regression-derived heuris-
tics can provide stable and efficient scheduling performance across a wide range of HPC
platforms and workloads without the need for adjustments over time. The findings of this
research have been published in two peer-reviewed national and international workshops.
Moving forward, we plan to further extend this work by considering job power demand as
a feature, with the objective of achieving optimized scheduling efficiency with the lowest
possible overall power consumption of the platform.
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