Minicursos da XXIII Escola Regional de Alto Desempenho da Região Sul

Autores

Edson Luiz Padoin (ed.)
UNIJUÍ
Guilherme Galante (ed.)
UNIOESTE
Rodrigo Righi (ed.)
UNISINOS

Sinopse

Este livro apresenta o texto de cinco minicursos aceitos e apresentados na XXIII Escola Regional de Alto Desempenho da Região Sul (ERAD/RS). Os minicursos buscam disseminar o conhecimento técnico e científico sobre temas e assuntos relacionados à área de processamento de alto desempenho na região Sul do país. No primeiro capítulo deste livro, “Diretivas Paralelas de OpenMP: Um Estudo de Caso”, os autores apresentam diferentes tipos de diretivas de OpenMP e como cada uma delas impacta no desempenho de uma aplicação paralela. No segundo capítulo, “Projeto de Aplicações Paralelas”, o autor fornece uma visão geral do processo de projeto de aplicações paralelas. São apresentadas duas abordagens: PCAM e Padrões de Projeto. Na sequência, o terceiro capítulo, intitulado “DevOps para HPC: Como configurar um cluster para uso compartilhado?”, apresenta um conjunto de softwares e serviços que podem ser utilizados para a construção de uma infraestrutura de cluster compartilhado para a execução de aplicações paralelas. No quarto capítulo, “Aprendizado de Máquina e Computação de Alto Desempenho”, os autores abordam os fundamentos do aprendizado de máquina, suas implicações quanto à computação de alto desempenho, e as principais técnicas empregadas nesse contexto. Nesse contexto, são explorados modelos computacionais, frameworks mais utilizados e diversos trabalhos científicos do estado da arte. No quinto capítulo, “Explorando Técnicas de Compressão para Melhorar a Eficiência de Tratamento de Dados IoT”, os autores abordam diferentes técnicas de compressão de dados e de que modo podem contribuir na melhoria de desempenho nos processos de compactação e restauração da informação, levando a uma maior eficiência na sua transmissão e armazenamento de dados.

Capítulos:

1. Diretivas Paralelas de OpenMP: Um Estudo de Caso
Claudio Schepke, Natiele Lucca, João Vicente Ferreira Lima
2. Projeto de Aplicações Paralelas
Guilherme Galante
3. DevOps para HPC: Como configurar um cluster para uso compartilhado
Lucas Leandro Nesi, Lucas Mello Schnorr
4. Aprendizado de Máquina e Computação de Alto Desempenho
Manuel Binelo, Edson Luiz Padoin
5. Explorando Técnicas de Compressão para Melhorar a Eficiência de Tratamento de Dados IoT
Alexandre Luis de Andrade, Rodrigo da Rosa Righi

Downloads

Não há dados estatísticos.

Referências

Abuin et al. 2022 Abuin, A., Iradier, E., Fanari, L., Montalban, J., and Angueira, P. (2022). High efficiency wireless-noma solutions for industry 4.0. In 2022 IEEE 18th International Conference on Factory Communication Systems (WFCS), pages 1-8. IEEE.

Aggarwal and Lan 2020 Aggarwal, V. and Lan, T. (2020). Modeling and optimization of latency in erasure-coded storage systems. arXiv preprint arXiv:2005.10855.

Aheleroff et al. 2020 Aheleroff, S., Xu, X., Lu, Y., Aristizabal, M., Velásquez, J. P., Joa, B., and Valencia, Y. (2020). Iot-enabled smart appliances under industry 4.0: A case study. Advanced engineering informatics, 43:101043.

Barlas 2014 Barlas, G. (2014). Multicore and GPU Programming: An Integrated Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Berardinelli et al. 2018 Berardinelli, G., Mahmood, N. H., Rodriguez, I., and Mogensen, P. (2018). Beyond 5g wireless irt for industry 4.0: Design principles and spectrum aspects. In 2018 IEEE Globecom Workshops (GC Wkshps), pages 1-6. IEEE.

Binelo et al. 2021 Binelo, M. F., Sausen, A. T., Sausen, P. S., Binelo, M. O., and de Campos, M. (2021). Multi-phase method of estimation and adaptation of parameters of electrical battery models. International Journal of Energy Research, 45(1):1023-1037.

Buluç et al. 2016 Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., and Schulz, C. (2016). Recent Advances in Graph Partitioning, pages 117-158. Springer International Publishing, Cham.

Carbonell et al. 1983 Carbonell, J. G., Michalski, R. S., and Mitchell, T. M. (1983). An overview of machine learning. Machine learning, pages 3-23.

Castiglione et al. 2021 Castiglione, A., Umer, M., Sadiq, S., Obaidat, M. S., and Vijayakumar, P. (2021). The role of internet of things to control the outbreak of covid-19 pandemic. IEEE Internet of Things Journal, 8(21):16072-16082.

Cecil et al. 2022 Cecil, T., Peng, D., Abrams, D., Osher, S. J., and Yablonovitch, E. (2022). Advances in inverse lithography. ACS Photonics.

Chapman et al. 1999 Chapman, B., Mehrotra, P., and Zima, H. (1999). Enhancing OpenMP with features for locality control. In Proceedings of Eighth ECMWF Workshop on the Use of Parallel Processors in Meteorology, pages 301-13, Singapore. Towards Teracomputing. World Scientific Publishing.

Chen et al. 2020 Chen, W.-Y., Chou, P.-Y., Wang, C.-Y., Hwang, R.-H., and Chen, W.-T. (2020). Live video streaming with joint user association and caching placement in mobile edge computing. In 2020 International Conference on Computing, Networking and Communications (ICNC), pages 796-801. IEEE.

Czarnul 2018 Czarnul, P. (2018). Parallel Programming for Modern High Performance Computing Systems. Chapman, 1st edition.

Czech 2016 Czech, Z. J. (2016.). Introduction to parallel computing /. Cambridge University Press,, Cambridge:. Includes index.

da Silva et al. 2022a da Silva, H. U., Lucca, N., Schepke, C., de Oliveira, D. P., and da Cruz Cristaldo, C. F. (2022a). Parallel OpenMP and OpenACC Porous Media Simulation. The Journal of Supercomputing.

da Silva et al. 2022b da Silva, H. U., Schepke, C., da Cruz Cristaldo, C. F., de Oliveira, D. P., and Lucca, N. (2022b). An Efficient Parallel Model for Coupled Open-Porous Medium Problem Applied to Grain Drying Processing. In Gitler, I., Barrios Hernández, C. J., and Meneses, E., editors, High Performance Computing, pages 250-264, Cham. Springer International Publishing.

da Silva et al. 2022c da Silva, H. U., Schepke, C., Lucca, N., da Cruz Cristaldo, C. F., and de Oliveira, D. P. (2022c). Parallel OpenMP and OpenACC Mixing Layer Simulation. In 2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), volume 1, pages 181-188.

Dagum and Menon 1998 Dagum, L. and Menon, R. (1998). OpenMP: An Industry Standard API for Shared-Memory Programming. IEEE Computational Science and Engineering, 5(1):46-55.

Das and Rahman 2021 Das, S. K. and Rahman, M. Z. (2021). A compression technique for electronic health data through encoding. In 2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), pages 1-6. IEEE.

de Oliveira 2020 de Oliveira, D. P. (2020). Fluid Flow Through Porous Media with the One Domain Approach: A Simple Model for Grains Drying. Dissertação de mestrado, Universidade Federal do Pampa, Alegrete.

Dwivedi et al. 2022 Dwivedi, S. K., Yadav, J., Ansar, S. A., Khan, M. W., Pandey, D., and Khan, R. A. (2022). A novel paradigm: Cloud-fog integrated iot approach. In 2022 3rd International Conference on Computation, Automation and Knowledge Management (ICCAKM), pages 1-5. IEEE.

Elkaseer et al. 2018 Elkaseer, A., Salama, M., Ali, H., and Scholz, S. (2018). Approaches to a practical implementation of industry 4.0. Resource, 3:5.

Fischer et al. 2020 Fischer, G. S., da Rosa Righi, R., de Oliveira Ramos, G., da Costa, C. A., and Rodrigues, J. J. (2020). Elhealth: Using internet of things and data prediction for elastic management of human resources in smart hospitals. Engineering Applications of Artificial Intelligence, 87:103285.

Flexa et al. 2019 Flexa, C., Gomes, W., and Viademonte, S. (2019). An exploratory study on machine learning frameworks. In Anais do XVIII Workshop em Desempenho de Sistemas Computacionais e de Comunicação. SBC.

Foster 1995 Foster, I. (1995). Designing and Building Parallel Programs: Concepts and tools for Parallel Software Engineering. Addison Wesley, Reading, MA.

Foster 1995 Foster, I. T. (1995). Designing and building parallel programs - concepts and tools for parallel software engineering. Addison-Wesley.

Gan et al. 2020 Gan, L., Yuan, M., Yang, J., Zhao, W., Luk, W., and Yang, G. (2020). High performance reconfigurable computing for numerical simulation and deep learning. CCF Transactions on High Performance Computing, 2:196-208.

Gautier et al. 2007 Gautier, T., Besseron, X., and Pigeon, L. (2007). KAAPI: A thread scheduling runtime system for data flow computations on cluster of multi-processors. In 2007 international workshop on Parallel symbolic computation, pages 15-23, Waterloo, Canada. ACM.

Gia et al. 2019 Gia, T. N., Qingqing, L., Queralta, J. P., Tenhunen, H., Zou, Z., and Westerlund, T. (2019). Lossless compression techniques in edge computing for mission-critical applications in the iot. In 2019 Twelfth International Conference on Mobile Computing and Ubiquitous Network (ICMU), pages 1-2. IEEE.

Graham et al. 1982 Graham, S. L., Kessler, P. B., and Mckusick, M. K. (1982). Gprof: A Call Graph Execution Profiler. SIGPLAN Not., 17(6):120-126.

Hao and Ho 2019 Hao, J. and Ho, T. K. (2019). Machine learning made easy: a review of scikit-learn package in python programming language. Journal of Educational and Behavioral Statistics, 44(3):348-361.

Idrees and Khlief 2023 Idrees, A. K. and Khlief, M. S. (2023). Efficient compression technique for reducing transmitted eeg data without loss in iomt networks based on fog computing. The Journal of Supercomputing, pages 1-26.

IEEESpectrum 2023 IEEESpectrum (2023). Nvidia speeds key chipmaking computation by 40x. https://spectrum.ieee.org/inverse-lithography.

Jäger et al. 2018 Jäger, S., Zorn, H.-P., Igel, S., and Zirpins, C. (2018). Parallelized training of deep nn: comparison of current concepts and frameworks. In Proceedings of the Second Workshop on Distributed Infrastructures for Deep Learning, pages 15-20.

Ketkar et al. 2021 Ketkar, N., Moolayil, J., Ketkar, N., and Moolayil, J. (2021). Recent advances in deep learning. Deep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch, pages 287-300.

Khan et al. 2020 Khan, M. A., Pierre, J. W., Wold, J. I., Trudnowski, D. J., and Donnelly, M. K. (2020). Impacts of swinging door lossy compression of synchrophasor data. International Journal of Electrical Power & Energy Systems, 123:106182.

Khlief and Idrees 2022 Khlief, M. S. and Idrees, A. K. (2022). Efficient eeg data compression technique for internet of health things networks. In 2022 IEEE World Conference on Applied Intelligence and Computing (AIC), pages 403-409. IEEE.

Kim et al. 2022 Kim, D., Yu, C., Xie, S., Chen, Y., Kim, J.-Y., Kim, B., Kulkarni, J. P., and Kim, T. T.-H. (2022). An overview of processing-in-memory circuits for artificial intelligence and machine learning. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 12(2):338-353.

Kunas et al. 2023 Kunas, C. A., Padoin, E. L., and Navaux, P. O. A. (2023). Accelerating deep learning model training on cloud tensor processing unit. In International Conference on Cloud Computing and Services Science (CLOSER), pages 1-8, Prague, Czech Republic. Springer.

Li et al. 2014 Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed, A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y. (2014). Scaling distributed machine learning with the parameter server. In 11th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 14), pages 583-598.

Lima et al. 2021 Lima, J. V. F., Schepke, C., and Lucca, N. (2021). Além de Simplesmente: #pragma omp parallel for. In Charão, A. and da Silva Serpa, M., editors, Minicursos da XXI Escola Regional de Alto Desempenho da Região Sul, chapter 4, pages 86-103. Sociedade Brasileira de Computação, Porto Alegre/RS.

Liu et al. 2022 Liu, J., Huang, J., Zhou, Y., Li, X., Ji, S., Xiong, H., and Dou, D. (2022). From distributed machine learning to federated learning: A survey. Knowledge and Information Systems, 64(4):885-917.

Lu et al. 2020 Lu, T., Xia, W., Zou, X., and Xia, Q. (2020). Adaptively compressing iot data on the resource-constrained edge. In HotEdge.

Lucca 2022 Lucca, N. (2022). Avaliação de estratégias de paralelismo em simulação de meios porosos. PhD thesis, Dissertação (Mestrado Profissional em Engenharia de Software) - Universidade Federal do Pampa, Campus Alegrete, Alegrete/RS.

Lucca et al. 2023 Lucca, N., Schepke, C., and Tremarin, G. D. (2023). Parallel Directives Evaluation in Porous Media Application: A Case Study. In 2023 31th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), volume 1.

Marinagi et al. 2023 Marinagi, C., Reklitis, P., Trivellas, P., and Sakas, D. (2023). The impact of industry 4.0 technologies on key performance indicators for a resilient supply chain 4.0. Sustainability, 15(6):5185.

Mattson et al. 2004 Mattson, T., Sanders, B., and Massingill, B. (2004). Patterns for Parallel Programming. Addison-Wesley Professional, first edition.

Melchiades et al. 2021 Melchiades, M. B., Crovato, C. D. P., Nedel, E., Schreiber, L. V., and Righi, R. D. R. (2021). Fastiot: an efficient and very fast compression model for displaying a huge volume of iot data in web environments. International Journal of Grid and Utility Computing, 12(5-6):605-617.

Nesi et al. 2019 Nesi, L. L., Serpa, M. S., Schnorr, L. M., and Navaux, P. O. A. (2019). Hpc resources management infraestruture description and 10-month statistics. In Proceedings do XVIII Workshop de Processamento Paralelo e Distribuído (WSPPD). GPPD, Porto Alegre.

Nesi et al. 2020 Nesi, L. L., Serpa, M. S., Schnorr, L. M., and Navaux, P. O. A. (2020). Advances in gppd-pcad management with 12-months analysis and perspectives. In Proceedings do XVIII Workshop de Processamento Paralelo e Distribuído (WSPPD). GPPD, Porto Alegre.

Netrapalli 2019 Netrapalli, P. (2019). Stochastic gradient descent and its variants in machine learning. Journal of the Indian Institute of Science, 99(2):201-213.

OpenMP 2023 OpenMP (2023). The OpenMP API Specification for Parallel Programming.

Pacheco 2011 Pacheco, P. (2011). An Introduction to Parallel Programming. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition.

Pang et al. 2020 Pang, B., Nijkamp, E., and Wu, Y. N. (2020). Deep learning with tensorflow: A review. Journal of Educational and Behavioral Statistics, 45(2):227-248.

Panwar 2020 Panwar, S. (2020). Breaking the millisecond barrier: Robots and self-driving cars will need completely reengineered networks. IEEE Spectrum, 57(11):44-49.

Park et al. 2020 Park, J., Samarakoon, S., Shiri, H., Abdel-Aziz, M. K., Nishio, T., Elgabli, A., and Bennis, M. (2020). Extreme urllc: Vision, challenges, and key enablers. arXiv preprint arXiv:2001.09683.

Pyzer-Knapp et al. 2022 Pyzer-Knapp, E. O., Pitera, J. W., Staar, P. W., Takeda, S., Laino, T., Sanders, D. P., Sexton, J., Smith, J. R., and Curioni, A. (2022). Accelerating materials discovery using artificial intelligence, high performance computing and robotics. npj Computational Materials, 8(1):84.

Roy and Nikolaidis 2022 Roy, S. K. and Nikolaidis, I. (2022). Limited size lossy compression for wsns. In 2022 IEEE 47th Conference on Local Computer Networks (LCN), pages 359-362. IEEE.

Sanchez et al. 2020 Sanchez, S., Romero, H., and Morales, A. (2020). A review: Comparison of performance metrics of pretrained models for object detection using the tensorflow framework. In IOP Conference Series: Materials Science and Engineering, volume 844, page 012024. IOP Publishing.

Schmidt et al. 2018 Schmidt, B., González-Domínguez, J., Hundt, C., and Schlarb, M. (2018). Parallel Programming. Morgan Kaufmann.

Stanimirović 2020 Stanimirović, I. (2020). Parallel Programming. Arcler Press, first edition.

Trobec et al. 2018 Trobec, R., Slivnik, B., Bulic, P., and Robic, B. (2018). Introduction to Parallel Computing - From Algorithms to Programming on State-of-the-Art Platforms. Undergraduate Topics in Computer Science. Springer.

Vaswani et al. 2017 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.

Wang et al. 2018 Wang, Z., Xiao, D., Fang, F., Govindan, R., Pain, C. C., and Guo, Y. (2018). Model identification of reduced order fluid dynamics systems using deep learning. International Journal for Numerical Methods in Fluids, 86(4):255-268.

Wang et al. 2020 Wang, X., Zhao, Y., and Pourpanah, F. (2020). Recent advances in deep learning. International Journal of Machine Learning and Cybernetics, 11:747-750.

Wang et al. 2021 Wang, H., Qu, Z., Zhou, Q., Zhang, H., Luo, B., Xu, W., Guo, S., and Li, R. (2021). A comprehensive survey on training acceleration for large machine learning models in iot. IEEE Internet of Things Journal, 9(2):939-963.

Wang et al. 2022 Wang, X., Lin, Z., Che, L., Chen, H., and Lu, D. (2022). Experimental quantum-enhanced machine learning in spin-based systems. Advanced Quantum Technologies, 5(8):2200005.

Wataya et al. 2020 Wataya, T., Nakanishi, K., Suzuki, Y., Kido, S., and Tomiyama, N. (2020). Introduction to deep learning: minimum essence required to launch a research. Japanese journal of radiology, 38:907-921.

Watson 2020 Watson, A. (2020). Deep learning techniques for super-resolution in video games. arXiv preprint arXiv:2012.09810.

Wilkinson and Allen 2005 Wilkinson, B. and Allen, M. (2005). Parallel programming - techniques and applications using networked workstations and parallel computers (2. ed.). Pearson Education.

Capa para Minicursos da XXIII Escola Regional de Alto Desempenho da Região Sul
Data de publicação
10/05/2023

Detalhes sobre o formato disponível para publicação: Volume Completo

Volume Completo
ISBN-13 (15)
978-85-7669-538-7