Tópicos em Gerenciamento de Dados e Informações: Minicursos do SBBD 2019

Autores

Maria Cláudia Cavalcanti (ed.)
IME
Agma Traina (ed.)
USP

Sinopse

Os minicursos apresentados no XXXIV Simpósio Brasileiro de Banco de Dados (SBBD 2019) têm por objetivo apresentar temas relevantes da área de Banco de Dados e promover discussões sobre os fundamentos, tendências e desafios relacionados ao tema abordado, sendo uma excelente oportunidade de atualização para acadêmicos e profissionais que participam do evento.

Nesta edição, foram selecionadas quatro das oito propostas recebidas, para serem apresentadas durante o SBBD 2019. A seleção das propostas foi realizada por um Comitê de Avaliação formado por quatro avaliadores. Durante o processo de seleção, as propostas submetidas foram avaliadas por todos os membros do comitê. Ao final do processo, os proponentes dos minicursos selecionados prepararam os textos que constituem os capítulos deste livro.

O primeiro minicurso, “Técnicas de Privacidade de Dados de Localização”, tem por objetivo apresentar os principais conceitos relacionados ao problema da violação de privacidade de dados de localização dos indivíduos, os riscos inerentes e apontar de forma detalhada as principais técnicas existentes na literatura para a preservação de privacidade em serviços de localização. No segundo minicurso, “Uma Introdução ao Combate Automático às Fake News em Redes Sociais Virtuais”, é apresentada uma introdução conceitual e prática às principais abordagens computacionais de combate às Fake News, além de comentar sobre áreas e pesquisas recentes relacionadas a este tema. Já o terceiro minicurso, “Ecossistemas de Dados na Web: da teoria aos desafios”, discute os principais conceitos relacionados a este novo ambiente, abordando aspectos relevantes, tanto do ponto de vista teórico quanto de desafios e oportunidades de pesquisa nesta área. Por fim, o quarto minicurso, “Aprendizado de máquina e inferência em Grafos de Conhecimento”, apresenta uma introdução aos métodos e técnicas de aprendizado de máquina utilizadas em tarefas de inferência em grafos de conhecimento, discutindo-se os desafios e oportunidades tecnológicas e científicas desse tipo de tarefa.

 

Capítulos:

1. Técnicas de Privacidade de Dados de Localização
Javam Machado, Eduardo Duarte Neto, Manuel Bento Filho
2. Uma Introdução ao Combate Automático às Fake News em Redes Sociais Virtuais
Paulo Márcio Freire, Ronaldo Goldschmidt
3. Ecossistemas de Dados na Web: da teoria aos desafios
Marcelo Iury Oliveira, Bernardette Lóscio
4. Aprendizado de máquina e inferência em Grafos de Conhecimento
Daniel da Silva, Artur Ziviani, Fabio Porto

Downloads

Não há dados estatísticos.

Referências

Aggarwal, C. C. and Philip, S. Y. (2008). A framework for condensation-based anonymization of string data. Data Mining and Knowledge Discovery, 16(3):251–275.

Ajao, O., Bhowmik, D., and Zargari, S. (2019). Sentiment aware fake news detection on online social networks. In ICASSP 2019 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2507–2511.

Alfred Baars and Slinger Jansen. A framework for software ecosystem governance. In International conference of software business, pages 168–180. Springer, 2012.

Andrés, M. E., Bordenabe, N. E., Chatzikokolakis, K., and Palamidessi, C. (2013). Geo-indistinguishability: Differential privacy for location-based systems. In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pages 901–914.

Anne Immonen, Marko Palviainen, and Eila Ovaska. Requirements of an open data based business ecosystem. IEEE Access, 2:88–103, 2014.

Anneke Zuiderwijk and Marijn Janssen. Barriers and development directions for the publication and usage of open data: A socio-technical view. In Open Government, pages 115–135. Springer, 2014.

Anneke Zuiderwijk, Marijn Janssen, and Chris Davis. Innovation with open data: Essential elements of open data ecosystems. Information Polity, 19(1, 2):17–33, 2014.

Anneke Zuiderwijk, Marijn Janssen, Geerten van de Kaa, and Kostas Poulis. The wicked problem of commercial value creation in open data ecosystems: Policy guidelines for governments. Information Polity, 21:223–236, 2016.

Anneke Zuiderwijk, Marijn Janssen, Kostas Poulis, and Geerten van de Kaa. Open data for competitive advantage: insights from open data use by companies. In Proceedings of the 16th Annual International Conference on Digital Government Research, pages 79–88. ACM, 2015.

Anneke Zuiderwijk, Marijn Janssen, Sunil Choenni, Ronald Meijer, R Sheikh Alibaks, and R Sheikh_Alibaks. Socio-technical impediments of open data. Electronic Journal of e-Government, 10(2):156–172, 2012.

Ardagna, C. A., Cremonini, M., Damiani, E., De Capitani di Vimercati, S., and Samarati, P. (2007). Location privacy protection through obfuscation-based techniques. In Barker, S. and Ahn, G.-J., editors, Data and Applications Security XXI, pages 47–60.

Ardagna, C. A., Cremonini, M., De Capitani di Vimercati, S., and Samarati, P. (2011). An obfuscation-based approach for protecting location privacy. IEEE Transactions on Dependable and Secure Computing, 8(1):13–27.

B Albert. SECOGov: Um Modelo de Governança de Ecossistemas de Software para Apoiar Atividades de Arquitetura de TI. PhD thesis, Dissertação. COPPE/UFRJ, Rio de Janeiro, Brasil, 2014.

Bach, S. H. et al. (2017). Hinge-loss markov random elds and pro babilistic soft logic. Journal of Machine Learning Research (JMLR), 18:1–67.

Baker, C. F., Fillmore, C. J., and Lowe, J. B. (1998). The berkeley FrameNet project. In Proceedings of the 36th annual meeting on Association for Computational Linguistics -. Association for Computational Linguistics.

Barbara Ubaldi. Open government data: Towards empirical analysis of open government data initiatives. Technical report, Organisation for Economic Cooperation and Development (OECD), 2013. Acessado em 31 de agosto de 2019.

Bayardo, R. J. and Agrawal, R. (2005). Data privacy through optimal kanonymization. In 21st International conference on data engineering (ICDE’05), pages 217–228.

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation IEEE Trans. Pattern Anal. Mach. Intell., learning: A review and new perspectives. 35(8):1798–1828.

Beresford, A. R. and Stajano, F. (2003). Location privacy in pervasive computing. IEEE Pervasive computing, (1):46–55.

Bernadette Farias Lóscio, C Burle, and N Calegari. Data on the Web Best Practices. https://www.w3.org/TR/dwbp/, Janeiro 2017. Acessado em 31 de agosto de 2019.

Bernadette Farias Lóscio, Marcelo Iury S Oliveira, and Ig Ibert Bittencourt. Publicação e Consumo de Dados na Web: Conceitos e Desafios. Tópicos em Gerenciamento de Dados e Informações (Mini Cursos SBBD 2015), pages 39–69, 2015. URL http://dexl.lncc.br/sbbd2015/anais/ShortCourses.pdf.

Bernadette Lóscio, Caroline Guimarães, and Newton Calegari. Data on the web best practices: Challenges and benefits. Open Data Reserach Symposium (ODRS 2016), 2016.

Bhatt, G., Sharma, A., Sharma, S., Nagpal, A., Raman, B., and Mittal, A. (2018). Combining neural, statistical and external features for fake news stance In Companion Proceedings of the The Web Con 2018, WWW ’18, identication. pages 1353–1357, Republic and Canton of Geneva, Switzerland. International World Wide Web Con Steering Committee.

Blumberg, A. J. and Eckersley, P. (2009). On locational privacy, and how to avoid losing it forever. Electronic frontier foundation, 10(11).

Bonatti, P. A. et al. (2019). Knowledge graphs: New directions for knowledge representation on the semantic web (dagstuhl seminar 18371).

Bordes, A. et al. (2013). Translating embeddings for modeling In Proceedings of the 26th International Conference on Neumulti-relational data. ral Information Processing Systems Volume 2, NIPS’13, pages 2787–2795, USA. Curran Associates Inc.

Bouraoui, Z., Jameel, S., and Schockaert, S. (2018). Relation induction in word embeddings revisited. In Proceedings of the 27th International Conference on Computational Linguistics, pages 1627–1637, Santa Fe, New Mexico, USA. Association for Computational Linguistics.

Braz, P. and Goldschmidt, R. (2017). Um método para detecção de bots sociais baseado em redes neurais convolucionais aplicadas em mensagens textuais. In SBSeg 2017, pages 501–508. 10/11/2017.

Brito, F. T. and Machado, J. C. (2017). Preservação de privacidade de dados: Fundamentos, técnicas e aplicações. In Delicato, F. C., Pires, P. F., and Silveira, I. F., editors, Jornadas de A tualização em Informática 2017. Sociedade Brasileira de Computação SBC.

Brodie, M. L. and Mylopoulos, J. (1986). Knowledge bases vs databases. In On Knowledge Base Management Systems, pages 83–86. Springer.

Buntain, C. and Golbeck, J. (2017). Automatically identifying fake news in popular twitter threads. In 2017 IEEE International Con on Smart Cloud (SmartCloud), pages 208–215.

Campan, A., Cuzzocrea, A., and Truta, T. M. (2017). Fighting fake news spread in online social networks: Actual trends and future research directions. In 2017 IEEE International Con on Big Data (Big Data), pages 4453–4457.

Carleton Fiorina. The digital ecosystem. https://goo.gl/eSWuxN, 2000. Acessado em 31 de agosto de 2019.

Castelo, S., Almeida, T., Elghafari, A., Santos, A., Pham, K., Nakamura, E., and Freire, J. (2019). A topic-agnostic approach for identifying fake news pages. In Companion Proceedings of The 2019 World Wide Web Conference, WWW ’19, pages 975–980, New York, NY, USA. ACM.

Cazalens, S., Lamarre, P., Leblay, J., Manolescu, I., and Tannier, X. (2018). A content management perspective on fact-checking. In Companion Proceedings of the The Web Con 2018, WWW ’18, pages 565–574, Republic and Canton of Geneva, Switzerland. International World Wide Web Con Steering Committee.

Christoph Zott and Raphael Amit. Business model design: an activity system perspective. Long Range Planning, 43(2-3):216–226, 2010.

Ciampaglia, G. L., Shiralkar, P., Rocha, L. M., Bollen, J., Menczer, F., and Flammini, A. (2015). Computational fact checking from knowledge networks. PLOS ONE, 1:1–13.

CMMI Institute. Data management maturity, 2014. URL https://cmmiinstitute.com/data-management-maturity. Acessado em 31 de agosto de 2019.

Conroy, N., Rubin, V., and Chen, Y. (2015). Automatic deception detection: Methods for nding fake news. Association for Information Science and Technology, 52:1–4.

Corrado Moiso and Roberto Minerva. Towards a user-centric personal data ecosystem the role of the bank of individuals’ data. In Intelligence in Next Generation Networks (ICIN), 2012 16th International Conference on, pages 202–209. IEEE, 2012.

D. Koznov, O. Andreeva, U. Nikula, A. Maglyas, D. Muromtsev, and I. Radchenko. A survey of open government data in Russian Federation. In IC3K 2016 Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, volume 3, pages 173–180, 2016.

David J Teece. Business models, business strategy and innovation. Long Range Planning, 43(2-3):172–194, 2010.

Deirdre Lee Derilinx, Bernadette Farias Lóscio, and Phil Archer. Data on the web best practices use cases and requirements. https://www.w3.org/TR/dwbp-ucr/, feb 2015. Acessado em 31 de agosto de 2019.

Deirdre Lee. Building an open data ecosystem: an Irish experience. In Proceedings of the 8th International Conference on Theory and Practice of Electronic Governance, pages 351–360. ACM, 2014.

Deng, S., Huang, L., and Xu, G. (2014). Social network-based service recommendation with trust enhancement. Expert Systems with Applications, 41(18):8075 – 8084.

Dettmers, T. et al. (2018). Convolutional 2d knowledge graph em beddings. In Thirty-Second AAAI Conference on Articial Intelligence.

Dewri, R., Ray, I., Ray, I., and Whitley, D. (2008). On the optimal selection of k in the k-anonymity problem. In 24th ICDE International Conference on Data Engineering, pages 1364–1366, Cancun,Mexico.

Ding, B. et al. (2018). Improving knowledge graph embedding using simple constraints. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 110–121.

Domingo-Ferrer, J. and Torra, V. (2001). A quantitative comparison of disclosure control methods for microdata. Condentiality, disclosure and data access: theory and practical applications for statistical agencies, pages 111–134.

Dong, X. L. and Rekatsinas, T. (2018). Data integration and machine learning: A natural synergy. In Proceedings of the 2018 International Conference on Management of Data, SIGMOD ’18, pages 1645–1650, New York, NY, USA. ACM.

Dong, X. L. et al. (2014). Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 601–610.

Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S., and Zhang, W. (2014). Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In ACM SIGKDD international Con on Knowledge discovery and data mining, pages 601–610.

Dong-Hee Shin and Min Jae Choi. Ecological views of big data: Perspectives and issues. Telematics and Informatics, 32(2):311–320, 2015.

Dwork, C (2008). Differential privacy: a survey of results. InInternational conference on theory and applications of models of computation (pp. 1–19).

Dwork, C. (2006). Differential privacy. In 33rd International Colloquium on Automata, Languages and Programming, pages 1–12, Venice, Italy.

Ehrlinger, L. and Wöß, W. (2016). Towards a denition of knowledge graphs. In SEMANTiCS (Posters, Demos, SuCCESS).

Elsalamouny, E. and Gambs, S. (2016). Differential Privacy Models for LocationBased Services. Transactions on Data Privacy, 9(1):15 – 48.

Eric Yu and Stephanie Deng. Understanding software ecosystems: A strategic modeling approach. In IWSECO-2011 Software Ecosystems 2011. Proceedings of the Third International Workshop on Software Ecosystems. Brussels, Belgium, pages 65–76, 2011.

Eunice Mercado Lara and J Ramon Gil-Garcia. Open government and data intermediaries: the case of AidData. In Proceedings of the 15th Annual International Conference on Digital Government Research, pages 335–336. ACM, 2014.

Farajtabar, M., Yang, J., Ye, X., Xu, H., Trivedi, R., Khalil, E., Li, S., Song, L., and Zha, H. (2017). Fake news mitigation via point process based intervention. In Proceedings of the 34th International Con on Machine Learning Volume 70, ICML’17, pages 1097–1106. JMLR.org.

Fatemi, B. et al. (2019a). Knowledge hypergraphs: Extending kno wledge graphs beyond binary relations. CoRR, abs/1906.00137.

Fatemi, B., Ravanbakhsh, S., and Poole, D. (2019b). Improved knowledge graph embedding using background taxonomic information. Proceedings of the AAAI Conference on Articial Intelligence, 33(01):3526–3533.

Ferrara, E., Varol, O., Davis, C., Menczer, F., and Flammini, A. (2016). The rise of social bots. Commun. ACM, 59(7):96–104.

Flintham, M., Karner, C., Bachour, K., Creswick, H., Gupta, N., and Moran, S. (2018). Falling for fake news: Investigating the consumption of news via social media. In Proceedings of the 2018 CHI Con on Human Factors in Computing Systems, CHI ’18, pages 376:1–376:10, New York, NY, USA. ACM.

Francesco Nachira, Paolo Dini, and Andrea Nicolai. A network of digital business ecosystems for Europe: roots, processes and perspectives. European Commission, Bruxelles, 1 edition, 2007. ISBN 92-79-01817-5. Acessível em http://www.digitalecosystems.org/book/.

Francesco Nachira. Towards a network of digital business ecosystems. www.digital-ecosystems.org/doc/discussionpaper.pdf, 2002. Acessado em 31 de agosto de 2019.

Freeman, D. M. (2017). Can you spot the fakes?: On the limitations of user feedback in online social networks. In Proceedings of the 26th International Conference on World Wide Web, WWW ’17, pages 1093–1102, Republic and Canton of Geneva, Switzerland. International World Wide Web Conferences Steering Committee.

Fung, B. C. M., Wang, K., Chen, R., and Yu, P. S. (2010b). Privacy-preserving data publishing: A survey of recent developments. ACM Computing Surveys, 42(4):1–53.

Fung, B. C., Wang, K., Fu, A. W.-C., and Yu, P. S. (2010a). Introduction to PrivacyPreserving Data Publishing: Concepts and Techniques. Chapman & Hall/CRC, 1st edition. ISBN 978-1-4200-9148-9.

Gesese, G. A. and Russa Biswas, H. S. (2019). A comprehensive survey of knowledge graph embeddings with literals: Techniques and applications. In Workshop on Deep Learning for Knowledge Graphs.

Gilda, S. (2017). Evaluating machine learning algorithms for fake news detection. In 2017 IEEE 15th Student Con on Research and Development (SCOReD), pages 110–115.

Golbeck, J., Mauriello, M., Auxier, B., Bhanushali, K. H., Bonk, C., Bouzaghrane, M. A., Buntain, C., Chanduka, R., Cheakalos, P., Everett, J. B., Falak, W., Gieringer, C., Graney, J., Hoffman, K. M., Huth, L., Ma, Z., Jha, M., Khan, M., Kori, V., Lewis, E., Mirano, G., Mohn IV, W. T., Mussenden, S., Nelson, T. M., Mcwillie, S., Pant, A., Shetye, P., Shrestha, R., Steinheimer, A., Subramanian, A., and Visnansky, G. (2018). Fake news vs satire: A dataset and analysis. In Proceedings of the 10th ACM Con on Web Science, WebSci ’18, pages 17–21, New York, NY, USA. ACM.

Goldreich, O. (2003). Cryptography and cryptographic protocols. Distributed Computing, 16(2-3):177–199.

Göran Smith, Hosea Ayaba Ofe, and Johan Sandberg. Digital service innovation from open data: exploring the value proposition of an open data marketplace. In System Sciences (HICSS), 2016 49th Hawaii International Conference on, pages 1277–1286. IEEE, 2016.

Gupta, S., Thirukovalluru, R., Sinha, M., and Mannarswamy, S. (2018). Cimtdetect: A community infused matrix-tensor coupled factorization based method for fake news detection. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages 278–281.

Gustavo Magalhaes, Catarina Roseira, and Laura Manley. Business models for open government data. In Proceedings of the 8th International Conference on Theory and Practice of Electronic Governance, pages 365–370. ACM, 2014.

Gutiérrez-Basulto, V. and Schockaert, S. (2018). From knowledge graph embedding to ontology embedding? an analysis of In Principles of the compatibility between vector space representations and rules. Knowledge Representation and Reasoning: Proceedings of the Sixteenth International Conference, KR, pages 379–388.

Gutscher, A. (2006). Coordinate transformation a solution for the privacy proIn Proceedings 20th IEEE International Parallel blem of location based services? Distributed Processing Symposium, pages 7 pp.–.

Hamilton, W. L., Ying, R., and Leskovec, J. (2017). Representation learning on graphs: Methods and applications. IEEE Data Eng. Bull., 40:52–74.

Hao, J. et al. (2019). Universal representation learning of knowledge In Proceedings of bases by jointly embedding instances and ontological concepts. the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining KDD 19. ACM Press.

Helmstetter, S. and Paulheim, H. (2018). Weakly supervised learning for fake news detection on twitter. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages 274–277.

Hendrikx, F., Bubendorfer, K., and Chard, R. (2015). Reputation Journal of Parallel and Distributed Computing, systems: A survey and taxonomy. pages 184–197.

Henrik Bærbak Christensen, Klaus Marius Hansen, Morten Kyng, and Konstantinos Manikas. Analysis and design of software ecosystem architectures–towards the 4S telemedicine ecosystem. Information and Software Technology, 56(11):1476–1492, 2014.

Horne, B. D. and Adali, S. (2017). This just in: Fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news. In Association for the Advancement of Articial Intelligence.

ISO. Iso 8000 – the international standard for data quality, 2011. URL https://www.iso.org/standard/50798.html. Acessado em 31 de agosto de 2019.

James F. Moore. Creating Value in the Network Economy, chapter Predators and Prey: A New Ecology of Competition, pages 121–141. Harvard Business School Press, Boston, MA, USA, 1999. ISBN 0-87584-911-3.

Jan Bosch and Petra Bosch-Sijtsema. From integration to composition: On the impact of software product lines, global development and ecosystems. Journal of Systems and Software, 83(1):67–76, 2010.

Jan Bosch. From software product lines to software ecosystems. In Proceedings of the 13th international software product line conference, pages 111–119. Carnegie Mellon University, 2009.

Janze, C. and Risius, M. (2017). Automatic detection of fake news on social media platforms. In PACIS 2017.

Jia, Y. et al. (2016). Locally adaptive translation for knowledge graph embedding. In Proceedings of the Thirtieth AAAI Conference on Articial Intelligence, AAAI’16, pages 992–998. AAAI Press.

Jose Jacobo Zubcoff, Llorenç Vaquer, Jose-Norberto Mazón, Francisco Maciá, Irene Garrigós, Andrés Fuster, and Jose Vicente Carcel. The university as an open data ecosystem. International Journal of Design & Nature and Ecodynamics, 11(3):250–257, 2016.

Judie Attard, Fabrizio Orlandi, and Sören Auer. Data value networks: Enabling a new data ecosystem. In Web Intelligence (WI), 2016 IEEE/WIC/ACM International Conference on, pages 453–456. IEEE, 2016.

Juho Lindman, Tomi Kinnari, and Matti Rossi. Business roles in the emerging open-data ecosystem. IEEE Software, 33(5):54–59, 2016.

Kazemi, S. M. and Poole, D. (2018). Simple embedding for link prediction in knowledge graphs. In Proceedings of the 32Nd International Conference on Neural Information Processing Systems, NIPS’18, pages 4289–4300, USA. Curran Associates Inc.

Kejriwal, M. (2019). Advanced topic: Knowledge graph completion. In Domain-Specic Knowledge Graph Construction, pages 59–74. Springer International Publishing.

Kido, H., Yanagisawa, Y., and Satoh, T. (2005). An anonymous communication technique using dummies for location-based services. In Proceedings of the Int. Conf. on Pervasive Services, ICPS’05, pages 88–97. IEEE.

Kiev Gama and Bernadette Farias Lóscio. Towards ecosystems based on open data as a service. In International Conference on Information Systems, pages 659–664, 2014.

Kim, J., Tabibian, B., Oh, A., Schölkopf, B., and Gomez-Rodriguez, M. (2018). Leveraging the crowd to detect and reduce the spread of fake news and misinformation. In Proceedings of the Eleventh ACM International Con on Web Search and Data Mining, WSDM ’18, pages 324–332, New York, NY, USA. ACM.

Konstantinos Manikas and Klaus Marius Hansen. Reviewing the health of software ecosystems–a conceptual framework proposal. In Proceedings of the 5th International Workshop on Software Ecosystems (IWSECO), pages 33–44, 2013a.

Kshetri, N. and Voas, J. (2017). The economics of fake news. IT Professional, 19(06):8–12.

Lao, N., Mitchell, T., and Cohen, W. W. (2011). Random walk inference and learning in a large scale knowledge base. In Proceedings of the Conference on Empirical Methods in Natural Processing, EMNLP ’11, pages 529–539, Stroudsburg, PA, USA. Association for Computational Linguistics.

LeFevre, K., DeWitt, D. J., and Ramakrishnan, R. (2005). Incognito: Efcient In Proceedings of the 2005 ACM SIGMOD international full-domain k-anonymity. conference on Management of data, pages 49–60. ACM.

Lehmann, F. (1992). Semantic networks. Computers & Mathematics with Applications, 23(2-5):1–50.

Lehmann, J. et al. (2015). Dbpedia – a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web, 6(2):167–195.

Lenat, D. B. (1995). CYC: a large-scale investment in knowledge infras tructure. Communications of the ACM, 38(11):33–38.

Li Ding, Timothy Lebo, John S Erickson, Dominic DiFranzo, Gregory Todd Williams, Xian Li, James Michaelis, Alvaro Graves, Jin Guang Zheng, Zhenning Shangguan, et al. Twc logd: A portal for linked open government data ecosystems. Web Semantics: Science, Services and Agents on the World Wide Web, 9(3):325–333, 2011.

Li, H., Sun, L., Zhu, H., Lu, X., and Cheng, X. (2014). Achieving privacy preservation in wi ngerprint-based localization. In INFOCOM, 2014 Proceedings IEEE, pages 2337–2345. IEEE.

Li, N., Li, T., and Venkatasubramanian, S. (2007). t-closeness: Privacy beyond In 2007 IEEE 23rd International Conference on Data k-anonymity and l-diversity. Engineering, pages 106–115. IEEE.

Li, Y., Gao, J., Meng, C., Li, Q., Su, L., Zhao, B., Fan, W., and Han, J. (2015). A survey on truth discovery. ACM SIGKDD Explorations Newsletter, 17:1– 16.

Lin, Y. et al. (2015). Learning entity and relation embeddings for knowledge graph completion. In Proceedings of the Twenty-Ninth AAAI Conference on Articial Intelligence, AAAI’15, pages 2181–2187. AAAI Press.

Liu, B., Zhou, W., Zhu, T., Gao, L., and Xiang, Y. (2018). Location privacy and its applications: A systematic study. IEEE Access, 6:17606–17624.

Liu, H., Wu, Y., and Yang, Y. (2017). Analogical inference for multirelational embeddings. In Precup, D. and Teh, Y. W., editors, Proceedings of the 34th International Conference on Machine Learning, volume 70, pages 2168–2178, Sydney, Australia.

Liu, Y. and BrookWu, Y. (2018). Early detection of fake news on social media through propagation path classication with recurrent and convolutional networks. In AAAI Con on Articial Intelligence, pages 354–361.

Liu, Y. and Xu, S. (2016). Detecting rumors through modeling information propagation networks in a social media environment. IEEE Transactions on Computational Social Systems, 3(2):46–62.

Ma, J., Gao, W., Mitra, P., Kwon, S., Jansen, B. J., Wong, K., and Cha, M. (2016). Detecting rumors from microblogs with recurrent neural networks. In International Joint Con on Articial Intelligence.

Ma, J., Gao, W., Wei, Z., Lu, Y., and Wong, K.-F. (2015). Detect rumors using time series of social context information on microblogging websites. In Proceedings of the 24th ACM International on Con on Information and Knowledge Management, CIKM ’15, pages 1751–1754, New York, NY, USA. ACM.

Marcelo Iury S Oliveira, Glória de Fátima Barros Lima, and Bernadette Farias Lóscio. Investigations into data ecosystems: a systematic mapping study. Knowledge and Information Systems, pages 1–42, 2019.

Marcelo Iury S. Oliveira and Bernadette Farias Lóscio. What is a data ecosystem? In Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age, dg.o ’18, pages 74:1–74:9, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-6526-0.

Marcelo Iury S. Oliveira, Lairson Emanuel R. A. Oliveira, Marlos G. Ribeiro Batista, and Bernadette Farias Lóscio. Towards a meta-model for data ecosystems. In Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age, dg.o ’18, pages 72:1–72:10, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-6526-0.

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven software engineering in practice. Synthesis Lectures on Software Engineering, 1(1):1–182, 2012.

Marco Iansiti and Roy Levien. The keystone advantage: what the new dynamics of business ecosystems mean for strategy, innovation, and sustainability. Harvard Business Press, 2004.

Marijn Janssen, Yannis Charalabidis, and Anneke Zuiderwijk. Benefits, adoption barriers and myths of open data and open government. Information systems management, 29 (4):258–268, 2012.

Mark Mosley, Michael H Brackett, Susan Earley, and Deborah Henderson. DAMA guide to the data management body of knowledge. Technics Publications, 2010.

Maximilian Heimstädt, Fredric Saunderson, and Tom Heath. Conceptualizing open data ecosystems: A timeline analysis of open data development in the UK. In CeDEM14: Conference for E-Democracy an Open Government, page 245. MV-Verlag, 2014.

Meyerson, A. and Williams, R. (2004). On the complexity of optimal k-anonymity. In Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 223–228. ACM.

Mohamed, S. et al. (2019). A comprehensive survey of knowledge graph embeddings with literals: Techniques and applications. In Workshop on Deep Learning for Knowledge Graphs.

Mona Lebied. 12 examples of big data analytics in healthcare that can save people. https://www.datapine.com/blog/big-data-examples-in-healthcare/, 2018. Acessado em 31 de agosto de 2019.

Mustafaraj, E. and Metaxas, P. T. (2017). The fake news spreading plague:was it preventable? In Web Science Con, pages 236–239.

Nasim, M., Nguyen, A., Lothian, N., Cope, R., and Mitchell, L. (2018). Real-time detection of content polluters in partially observable twitter networks. In Companion Proceedings of the The Web Con 2018, WWW ’18, pages 1331–1339, Republic and Canton of Geneva, Switzerland. International World Wide Web Con Steering Committee.

Nergiz, M. E., Atzori, M., and Clifton, C. (2007). Hiding the presence of individuals from shared databases. In Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, SIGMOD ’07, pages 665–676, New York, NY, USA. ACM.

Neto, E. R. D., Mendonça, A. L. C., Brito, F. T., and Machado, J. C. (2018). Privlbs: uma abordagem para preservação de privacidade de dados em serviços baseados em localização. In Brazilian Symposium on Databases SBBD, Rio de janeiro, Brazil.

Nickel, M. et al. (2016). A review of relational machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33.

Nickel, M., Tresp, V., and Kriegel, H.-P. (2011). A three-way model for collective learning on multi-relational data. In Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML’11, pages 809– 816, USA. Omnipress.

Niu, F. et al. (2011). Tuffy: Scaling up statistical inference in markov logic networks using an RDBMS. Proc. VLDB Endow., 4(6):373–384.

Noy, N. et al. (2019). Industry-scale knowledge graphs: Lessons and challenges. Queue, 17(2):20:48–20:75.

Noy, N. F. and Mcguinness, D. L. (2001). Ontology development 101: A guide to creating your rst ontology. Technical report, Standford.

OMG. Meta object facility (mof) core specification v2.5.1. http://www.omg.org/spec/MOF/2.5.1/PDF, 2016. Acessado em 31 de agosto de 2019.

Pan, J. Z. et al. (2018). Content based fake news detection using knowledge graphs. In Lecture Notes in Computer Science, pages 669–683. Springer International Publishing.

Paulheim, H. (2017). Knowledge graph renement: A survey of appro aches and evaluation methods. Semantic Web, 8(3):489–508.

Pérez-Rosas, V., Kleinberg, B., Lefevre, A., and Mihalcea, In International Conference on R. (2018). Automatic detection of fake news. Computational Linguistics, pages 3391–3401.

Peter Sondergaard. Ecosystems are the future of digital. http://www.gartner.com/technology/topics/digital-ecosystems.jsp, 2017. Acessado em 31 de agosto de 2019.

Pezeshkpour, P., Chen, L., and Singh, S. (2018). Embedding multimodal relational data for knowledge base completion. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics.

Primault, V., Boutet, A., Mokhtar, S. B., and Brunie, L. (2018). The long road to computational location privacy: A survey. IEEE Communications Surveys & Tutorials.

Pujara, J., Augustine, E., and Getoor, L. (2017). Sparsity and noise: Where knowledge graph embeddings fall short. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1751–1756, Copenhagen, Denmark. Association for Computational Linguistics.

Qian, F., Gong, C., Sharma, K., and Liu, Y. (2018). Neural user response generator: Fake news detection with collective user intelligence. In International Joint Con on Articial Intelligence, pages 3834–3840.

Raedt, L. D., Kersting, K., and Natarajan, S. (2016). Statistical Relational Articial Intelligence: Logic, Probability, and Computation. Morgan & Claypool Publishers.

Ratner, A. J. et al. (2016). Data programming: Creating large training sets, quickly. In Advances in neural information processing systems, pages 3567–3575.

Ratner, A., Ré, C., and Bailis, P. (2018). Research for practice: Knowledge base construction in the machine-learning era. Commun. ACM, 61(11):95–97.

Rebele, T. et al. (2016). YAGO: A multilingual knowledge base from wikipedia, wordnet, and geonames. In The Semantic Web ISWC 2016 15th International Semantic Web Conference, Kobe, Japan, October 17-21, 2016, Proceedings, Part II, pages 177–185.

Reis, J. C. S., Correia, A., Murai, F., Veloso, A., and Benevenuto, F. (2019). Explainable machine learning for fake news detection. In Proceedings of the 10th ACM Conference on Web Science, WebSci ’19, pages 17–26, New York, NY, USA. ACM.

Reis, J. C. S., Correia, A., Murai, F., Veloso, A., and Benevenuto, IEEE Intelligent Systems, F. (2019). Supervised learning for fake news detection. 34(2):76–81.

Richardson, M. and Domingos, P. (2006). Markov lo gic networks. Machine learning, 62(1-2):107–136.

Rubin, V. L., Conroy, N. J., and Chen, Y. (2015). Towards news verication: Deception detection methods for news discourse.

Ruchansky, N., Seo, S., and Liu, Y. (2017). Csi: A hybrid In Proceedings of the 2017 ACM on Con on deep model for fake news detection. Information and Knowledge Management, CIKM ’17, pages 797–806, New York, NY, USA. ACM.

Rufus Pollock. Building the (open) data ecosystem. https://bit.ly/2DddJ1k, 2011. Acessado em 31 de agosto de 2019.

Sang, S. et al. (2019). GrEDeL: A knowledge graph embedding based method for drug discovery from biomedical literatures. IEEE Access, 7:8404–8415.

Santia, G. C. and Williams, J. R. (2018). Buzzface: A news veracity dataset with facebook user commentary and egos. In AAAI Con on Web and Social Media, pages 531–540.

Schiller, J. and Voisard, A. (2004). Location-based services. Elsevier.

Schlichtkrull, M. et al. (2018). Modeling relational data with graph convolutional networks. In The Semantic Web, pages 593–607, Cham. Springer International Publishing.

Seo J., Choi S., H. S. (2013). The method of trust and reputation sysIn IFIP International Con on Trust tems based on link prediction and clustering. Management, pages 223–230.

Sethi, R. J. (2017). Crowdsourcing the verication of fake news and alternative facts. In Proceedings of the 28th ACM Con on Hypertext and Social Media, HT ’17, pages 315–316, New York, NY, USA. ACM.

Sharma, K., Qian, F., Jiang, H., Ruchansky, N., Zhang, M., and Liu, Y. (2019). Combating fake news: A survey on identication and mitigation techniques. ACM Trans. Intell. Syst. Technol., 10(3):21:1–21:42.

Sharon S Dawes, Lyudmila Vidiasova, and Olga Parkhimovich. Planning and designing open government data programs: An ecosystem approach. Government Information Quarterly, 33(1):15–27, 2016.

Sherchan, W., Nepal, S., and Paris, C. (2013). A survey of trust in social networks. ACM Comput. Surv., 45(4):47:1–47:33.

Shokri, R., Theodorakopoulos, G., Le Boudec, J.-Y., and Hubaux, J.-P. (2011). Quantifying location privacy. In 2011 IEEE symposium on security and privacy, pages 247–262. IEEE.

Shu, K., Mahudeswaran, D., and Liu, H. (2019a). Fakenewstracker: A tool for fake news collection, detection, and visualization. Comput. Math. Organ. Theory, 25(1):60–71.

Shu, K., Mahudeswaran, D., Wang, S., Lee, D., and Liu, H. (2018). Fakenewsnet: A data repository with news content, social context and dynamic information for studying fake news on social media. In arXiv.

Shu, K., Sliva, A., Wang, S., Tang, J., and Liu, H. (2017a). Fake news detection on social media: A data mining perspective. SIGKDD Explor. Newsl., 19(1):22–36.

Shu, K., Wang, S., and Liu, H. (2017b). Exploiting tri-relationship for fake news detection. In arXiv.

Shu, K., Wang, S., and Liu, H. (2019b). Beyond news contents: The role of social context for fake news detection. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, WSDM ’19, pages 312– 320, New York, NY, USA. ACM.

Sjaak Brinkkemper, Ivo Van Soest, and Slinger Jansen. Modeling of product software businesses: Investigation into industry product and channel typologies. In Information Systems Development, pages 307–325. Springer, 2009.

Slinger Jansen, Sjaak Brinkkemper, and Anthony Finkelstein. Business network management as a survival strategy: A tale of two software ecosystems. In Proceedings of the 1st International Workshop on Software Ecosystems, page 34, 2009.

Srivastava, A., Kannan, R., Chelmis, C., and Prasanna, V. K. (2018). Factcheck: Keeping activation of fake news at check. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’18, pages 2079–2081, Richland, SC. International Foundation for Autonomous Agents and Multiagent Systems.

Sun, G., Chang, V., Ramachandran, M., Sun, Z., Li, G., Yu, H., and Liao, D. (2017). Efcient location privacy algorithm for internet of things (iot) services and applications. Journal of Network and Computer Applications, 89:3–13.

Sweeney, L. (2002). k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570.

Tan, V. Y. F. and Ng, S.-K. (2007). Generic probability density function reconstruction for randomization in privacy-preserving data mining. In International Workshop on Machine Learning and Data Mining in Pattern Recognition, pages 76–90. Springer.

Teresa M Harrison, Theresa A Pardo, and Meghan Cook. Creating open government ecosystems: A research and development agenda. Future Internet, 4(4):900, 2012.

Travis B Murdoch and Allan S Detsky. The inevitable application of big data to health care. Jama, 309(13):1351–1352, 2013.

Trivedi, R. et al. (2017). Know-evolve: Deep temporal reasoning for dynamic knowledge graphs. In Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 3462–3471, International Convention Centre, Sydney, Australia. PMLR.

Trouillon, T. et al. (2017). Knowledge graph completion via com plex tensor factorization. Journal of Machine Learning Research, 18(130):1–38.

Trouillon, T. et al. (2019). On inductive abilities of latent factor models for relational learning. J. Artif. Int. Res., 64(1):21–53.

Truta, T. M., Campan, A., and Meyer, P. (2007). Generating microdata with pIn Workshop on Secure Data Management, pages sensitive k-anonymity property. 124–141. Springer.

Tschiatschek, S., Singla, A., Gomez Rodriguez, M., Merchant, A., and Krause, A. (2018). Fake news detection in social networks via crowd signals. In Companion Proceedings of the The Web Con 2018, WWW ’18, pages 517–524, Republic and Canton of Geneva, Switzerland. International World Wide Web Con Steering Committee.

van Harmelen, F., Lifschitz, V., and Porter, B. W., editors (2008). Handbook of Knowledge Representation, volume 3 of Foundations of Articial Intelligence. Elsevier.

Vavilis, S., PetkoviÄ , M., and Zannone, N. (2014). A reference model for reputation systems. Decision Support Systems, 61:147 – 154.

Victoria Köster and Gustavo Suárez. Open data for development: Experience of uruguay. In Proceedings of the 9th International Conference on Theory and Practice of Electronic Governance, pages 207–210. ACM, 2016.

Vo, N. and Lee, K. (2018). The rise of guardians: Fact-checking url recommendation to combat fake news. In The 41st International ACM SIGIR Conference on Research & 38; Development in Information Retrieval, SIGIR ’18, pages 275–284, New York, NY, USA. ACM.

Vosoughi, S., Mohsenvand, M. N., and Roy, D. (2017). Rumor gauge: Predicting the veracity of rumors on twitter. ACM Trans. Knowl. Discov. Data, 11(4):50:1–50:36.

Vrandeciíc, D. and Krötzsch, M. (2014). Wikidata. Com munications of the ACM, 57(10):78–85.

Vu, M. H. et al. (2018). Statistical relational learning with unconventio nal string models. Frontiers in Robotics and AI, 5.

Wang, H. et al. (2019a). Exploring high-order user preference on the knowledge graph for recommender systems. ACM Transactions on Information Systems, 37(3):1–26.

Wang, K., Fung, B. C., and Yu, P. S. (2005). Template-based privacy preservation In Fifth IEEE International Conference on Data Mining in classication problems. (ICDM’05), pages 8–pp. IEEE.

Wang, P. et al. (2019b). Logic attention based neighborhood aggregation for inductive knowledge graph embedding. Proceedings of the AAAI Conference on Articial Intelligence, 33:7152–7159.

Wang, P., Angarita, R., and Renna, I. (2018a). Is this the era of misinformation yet: Combining social bots and fake news to deceive the masses. In Companion Proceedings of the The Web Con 2018, WWW ’18, pages 1557–1561, Republic and Canton of Geneva, Switzerland. International World Wide Web Con Steering Committee.

Wang, Q. et al. (2017). Knowledge graph embedding: A survey of approaches and applications. IEEE Transactions on Knowledge and Data Engineering, 29(12):2724–2743.

Wang, W. Y. (2017). “liar, liar pants on re”: A new benchmark dataset for fake news detection. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 422–426, Vancouver, Canada. Association for Computational Linguistics.

Wang, Y. et al. (2019c). On evaluating embedding models for knowledge base completion. In Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), pages 104–112, Florence, Italy. Association for Computational Linguistics.

Wang, Y., Ma, F., Jin, Z., Yuan, Y., Xun, G., Jha, K., Su, L., and Gao, J. (2018b). Eann: Event adversarial neural networks for multi-modal fake news detection. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & 38; Data Mining, KDD ’18, pages 849–857, New York, NY, USA. ACM.

Wang, Z. et al. (2014). Knowledge graph embedding by translating on hyperplanes. In Proceedings of the Twenty-Eighth AAAI Conference on Articial Intelligence, AAAI’14, pages 1112–1119. AAAI Press.

Wikipedia. Ecosystem. https://en.wikipedia.org/wiki/Ecosystem, 2001. Acessado em 31 de agosto de 2019.

Woloszyn, V. and Nejdl, W. (2018). Distrustrank: Spotting false news domains. In Proceedings of the 10th ACM Con on Web Science, WebSci ’18, pages 221–228, New York, NY, USA. ACM.

Wong, R. C.-W. and Fu, A. W.-C. (2010). Privacy-preserving data publishing: An overview. Synthesis Lectures on Data Management, 2(1):1–138.

Wu, L. and Liu, H. (2018). Tracing fake-news footprints: Characterizing social media messages by how they propagate. In Proceedings of the Eleventh ACM International Con on Web Search and Data Mining, WSDM ’18, pages 637–645, New York, NY, USA. ACM.

Wu, S. et al. (2018). Fonduer: Knowledge base construction from richly formatted data. In Proceedings of the 2018 International Conference on Management of Data, SIGMOD ’18, pages 1301–1316, New York, NY, USA. ACM.

Yan, J. et al. (2016). A retrospective of knowledge graphs. Frontiers of Computer Science, 12(1):55–74.

Yang, F., Pentyala, S. K., Mohseni, S., Du, M., Yuan, H., Linder, R., Ragan, E. D., Ji, S., and Hu, X. B. (2019). Xfake: Explainable fake news detector with visualizations. In The World Wide Web Conference, WWW ’19, pages 3600–3604, New York, NY, USA. ACM.

Yu, Y. et al. (2018). PreMedKB: an integrated precision medicine knowledgebase for interpreting relationships between diseases, genes, variants and drugs. Nucleic Acids Research, 47(D1):D1090–D1101.

Zhang, C. et al. (2016). Extracting databases from dark data with DeepDive. In Proceedings of the 2016 International Conference on Management of Data SIGMOD16. ACM Press.

Zhang, Q., Yilmaz, E., and Liang, S. (2018). Ranking-based method for news stance detection. In Companion Proceedings of the The Web Con 2018, WWW ’18, pages 41–42, Republic and Canton of Geneva, Switzerland. International World Wide Web Con Steering Committee.

Zhou, X. and Zafarani, R. (2018). Fake news: A survey of research, detection methods, and opportunities. In arXvi.

Zhou, X. and Zafarani, R. (2019). Fake news detection: An interdisciplinary research. In Companion Proceedings of The 2019 World Wide Web Conference, WWW ’19, pages 1292–1292, New York, NY, USA. ACM.

Zhou, X., Zafarani, R., Shu, K., and Liu, H. (2019). Fake news: Fundamental theories, detection strategies and challenges. In Proceedings of the Twelfth ACM International Con on Web Search and Data Mining, WSDM ’19, pages 836–837, New York, NY, USA. ACM.

Zhu, X., Chi, H., Niu, B., Zhang, W., Li, Z., and Li, H. (2013). Mobicache: When kanonymity meets cache. In Global Communications Conference (GLOBECOM), 2013 IEEE, pages 820–825, Atlanta, GA, USA. IEEE.

Capa para Tópicos em Gerenciamento de Dados e Informações: Minicursos do SBBD 2019
Data de publicação
07/10/2019

Detalhes sobre o formato disponível para publicação: Volume Completo

Volume Completo
ISBN-13 (15)
978-65-87003-51-1