Minicursos do XX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais

Autores

Fábio Borges (ed.)
LNCC
Raphael Carlos Santos Machado (ed.)
Inmetro

Sinopse

O Livro de Minicursos do SBSeg 2020 apresenta ferramentas de computação voltadas para a Segurança de Informação, bem como novos paradigmas voltados à privacidade de dados, sendo de muita utilidade para pessoas que desejem ganhar conhecimento nas respectivas áreas abordadas. O primeiro capítulo, intitulado "Processamento confidencial de dados de sensores na nuvem", apresenta como ferramentas de computação confidencial podem ser usadas para o desenvolvimento de aplicações que processam dados potencialmente sensíveis de aplicações de Internet das Coisas na nuvem. O segundo capítulo, "Processamento de Linguagem Natural para Identificação de Notícias Falsas em Redes Sociais: Ferramentas, Tendências e Desafios", apresenta métodos de pré-processamento de dados em linguagem natural, vetorização, redução de dimensionalidade, aprendizado de máquina e avaliação da qualidade de recuperação de informação. Por fim, no terceiro capítulo, "Privacidade do Usuário em Aprendizado Colaborativo: Federated Learning, da Teoria à Prática", discute-se o paradigma de Aprendizado Federado (Federated Learning), que permite a execução colaborativa de modelos de aprendizado em dados locais e posterior agregação em um modelo global centralizado. O capítulo foca em apresentar os princípios, as aplicações, assim como os desafios e os ataques ao aprendizado federado, através de uma abordagem prático-teórica com foco na privacidade dos usuários.

Capítulos:

1. Processamento confidencial de dados de sensores na nuvem
Andrey Brito, Clenimar Souza, Fábio Silva, Lucas Cavalcante, Matteus Silva
2. Processamento de Linguagem Natural para Identificação de Notícias Falsas em Redes Sociais: Ferramentas, Tendências e Desafios
Nicollas R. de Oliveira, Pedro Silveira Pisa, Bernardo Costa, Martin Andreoni Lopez, Igor Monteiro Moraes, Diogo M. F. Mattos
3. Privacidade do Usuário em Aprendizado Colaborativo: Federated Learning, da Teoria à Prática
Helio N. C. Neto, Diogo M. F. Mattos, Natalia C. Fernandes

Downloads

Não há dados estatísticos.

Referências

Afroz, S., Brennan, M. e Greenstadt, R. (2012). Detecting hoaxes, frauds, and deception in writing style online. Em 2012 IEEE Symposium on Security and Privacy, p. 461-475. IEEE.

Andreoni Lopez, M., Mattos, D. M. F., Duarte, O. C. M. B. e Pujolle, G. (2019). A fast unsupervised preprocessing method for network monitoring. Annals of Telecommunications, 74(3):139-155.

Andreoni Lopez, M., Mattos, D. M., Duarte, O. C. M. e Pujolle, G. (2019). Toward a monitoring and threat detection system based on stream processing as a virtual network function for big data. Concurrency and Computation: Practice and Experience, 31(20):e5344.

Armel, K. C., Gupta, A., Shrimali, G., Albert, A. (2013) "Is disaggregation the holy grail of energy efficiency? The case of electricity", Energy Policy.

Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., Lind, J., Muthukumaran, D., O'Keeffe, D., Stillwell, M. L., Goltzsche, D., Eyers, D., Kapitza, R., Pietzuch, P., Fetzer, C. (2016) "SCONE: Secure Linux Containers with Intel SGX". Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation.

Arthur, W., Challener, D. A practical guide to TPM 2.0: Using the new trusted platform module in the new age of security. Springer Nature, 2015.

Asuncion, A. e Newman, D. (2007). Uci machine learning repository.

Ayodele, T. O. (2010). Types of machine learning algorithms. Em New advances in machine learning. IntechOpen.

Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D. e Shmatikov, V. (2020). How to backdoor federated learning. Em Proceedings of Machine Learning Research, volume 108, p. 2938-2948, Online. PMLR.

Balage Filho, P., Pardo, T. A. S. e Aluísio, S. (2013). An evaluation of the brazilian portuguese liwc dictionary for sentiment analysis. Em Proceedings of the 9th Brazilian Symposium in Information and Human Language Technology.

Baldi, P. (2011). Autoencoders, unsupervised learning and deep architectures. Em Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning Workshop - Volume 27, UTLW'11, p. 37-50. JMLR.org.

Barbosa, P., Brito, A., Almeida, H. (2016) "A Technique to provide differential privacy for appliance usage in smart metering", Information Sciences.

Barreto, H. F., Campista, M. E. M. e Costa, L. H. M. (2014). Spammers no twitter: Quando contatos deixam de ser bem-vindos. Em Workshop de Redes P2P, Dinâmicas, Sociais e Orientadas a Conteúdo (Wp2p+2014) - SBRC 2014, volume 1, p. 23-36.

Benavent, X., Castellanos, A., de Ves, E., Garcia-Serrano, A. e Cigarran, J. (2019). Fca-based knowledge representation and local generalized linear models to address relevance and diversity in diverse social images. Future Generation Computer Systems, 100:250-265.

Bhagoji, A. N., Chakraborty, S., Mittal, P. e Calo, S. (2019). Analyzing federated learning through an adversarial lens. Em International Conference on Machine Learning, p. 634-643.

Bird, S., Klein, E. e Loper, E. (2009). Natural Language Processing with Python. O'Reilly Media, Inc., 1st edição.

Bogetoft, P., Christensen, D. L. e Damg, I. (2009). Multiparty Computation Goes Live. Review Literature And Arts Of The Americas, p. 1-13.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., Kiddon, C., Konecny, J., Mazzocchi, S., McMahan, H. B. et al. (2019). Towards federated learning at scale: System design. arXiv preprint arXiv:1902.01046.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S., Ramage, D., Segal, A. e Seth, K. (2017). Practical secure aggregation for privacy-preserving machine learning. Em Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS '17, p. 1175-1191, New York, NY, USA. Association for Computing Machinery.

Bondielli, A. e Marcelloni, F. (2019). A survey on fake news and rumour detection techniques. Information Sciences, 497:38 - 55.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. Em Proceedings of COMPSTAT'2010, p. 177-186, Heidelberg. Physica-Verlag HD.

Boutaba, R., Salahuddin, M. A., Limam, N., Ayoubi, S., Shahriar, N., Estrada-Solano, F. e Caicedo, O. M. (2018). A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. Journal of Internet Services and Applications, 9(1):16.

Boutaba, R., Salahuddin, M. A., Limam, N., Ayoubi, S., Shahriar, N., Estrada-Solano, F. e Caicedo, O. M. (2018). A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. Journal of Internet Services and Applications, 9(1):16.

Bradley, P. S., Bennett, K. P. e Demiriz, A. (2000). Constrained k-means clustering. Microsoft Research, Redmond, 20(0):0.

Brasil (2018). Lei nº 13.709, de 14 de agosto de 2018. Institui a Lei Geral de Proteção de Dados Pessoais (LGPD).

Brendan McMahan, H., Moore, E., Ramage, D., Hampson, S. e Agüera y Arcas, B. (2017). Communication-efficient learning of deep networks from decentralized data. Em Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, volume 54.

Brisimi, T. S., Chen, R., Mela, T., Olshevsky, A., Paschalidis, I. C. e Shi, W. (2018). Federated learning of predictive models from federated electronic health records. International Journal of Medical Informatics, 112:59 - 67.

Caldas, S., Konecny, J., McMahan, H. B. e Talwalkar, A. (2018). Expanding the reach of federated learning by reducing client resource requirements. arXiv preprint arXiv:1812.07210.

Camacho-Collados, J. e Pilehvar, M. T. (2018). From word to sense embeddings: A survey on vector representations of meaning. Journal of Artificial Intelligence Research, 63:743-788.

Caruana, R. (1997). Multitask learning. Machine learning, 28(1):41-75.

Chandrashekar, G. e Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1):16-28.

Chen, M., Semiari, O., Saad, W., Liu, X. e Yin, C. (2020). Federated echo state learning for minimizing breaks in presence in wireless virtual reality networks. IEEE Transactions on Wireless Communications, 19(1):177-191.

Chen, Y., Conroy, N. J. e Rubin, V. L. (2015). Misleading online content: Recognizing clickbait as false news. Em Proceedings of the 2015 ACM on Workshop on Multimodal Deception Detection, p. 15-19. ACM.

Chiu, T., Shih, Y., Pang, A., Wang, C., Weng, W. e Chou, C. (2020). Semi-supervised distributed learning with non-iid data for aiot service platform. IEEE Internet of Things Journal, p. 1-1.

Chung, J., Yoon, H.-J. e Gardner, H. J. (2010). Analysis of break in presence during game play using a linear mixed model. ETRI journal, 32(5):687-694.

Clark, M., Kim, Y., Kruschwitz, U., Song, D., Albakour, D., Dignum, S., Beresi, U. C., Fasli, M. e De Roeck, A. (2012). Automatically structuring domain knowledge from text: An overview of current research. Information Processing & Management, 48(3):552-568.

Corinzia, L. e Buhmann, J. M. (2019). Variational federated multi-task learning. arXiv preprint arXiv:1906.06268.

Costan, V., Devadas, S. (2016) "Intel SGX Explained". IACR Cryptol. ePrint Arch., v. 2016, n. 86.

Cramer, R., Damgard, I. B., Nielsen, J. B., Secure multiparty computation. Cambridge University Press (2015).

Cup, K. (1999). Available on: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

Davis, C. A., Varol, O., Ferrara, E., Flammini, A. e Menczer, F. (2016). Botornot: A system to evaluate social bots. Em Proceedings of the 25th International Conference Companion on World Wide Web, WWW '16 Companion, p. 273-274, Republic and Canton of Geneva, CHE. International World Wide Web Conferences Steering Committee.

De Haan, L. e Ferreira, A. (2007). Extreme value theory: an introduction. Springer Science & Business Media.

de Oliveira, N. R., de Medeiros, D. S. V. e Mattos, D. M. F. (2020). Syntactic-relationship approach to construct well-informative knowledge graphs representation. Em 4th Cloud and Internet of Things - CIoT'20 (a ser apresentado). IEEE.

de Oliveira, N. R., Lúcio Reis, H. A., Fernandes, N. C., Carlos Bastos, A. M., Dianne Medeiros, S. V. e Diogo Mattos, M. F. (2020a). Natural language processing characterization of recurring calls in public security services. Em 2020 International Conference on Computing, Networking and Communications (ICNC), p. 1009-1013.

de Oliveira, N. R., Medeiros, D. S. V. e Mattos, D. M. F. (2020). A sensitive stylistic approach to identify fake news on social networking. IEEE Signal Processing Letters, 27:1250-1254.

de Oliveira, N. R., Medeiros, D. S. V. e Mattos, D. M. F. (2020b). A sensitive stylistic approach to identify fake news on social networking. IEEE Signal Processing Letters, 27:1250-1254.

de Oliveira, N. R., Reis, L. H., Fernandes, N. C., Bastos, C. A. M., de Medeiros, D. S. V. e Mattos, D. M. F. (2020). Natural language processing characterization of recurring calls in public security services. Em Proceedings of the 2020 International Conference on Computing, Networking and Communications (ICNC), p. 1009-1013. IEEE.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato, M., Senior, A., Tucker, P., Yang, K. et al. (2012). Large scale distributed deep networks. Em Advances in neural information processing systems, p. 1223-1231.

Deepak, S. e Chitturi, B. (2020). Deep neural approach to fake-news identification. Procedia Computer Science, 167:2236 - 2243. International Conference on Computational Intelligence and Data Science.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K. e Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American society for information science, 41(6):391-407.

Dennis, R. e Owen, G. (2015). Rep on the block: A next generation reputation system based on the blockchain. Em 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST), p. 131-138.

Domingos, P. M. (2012). A few useful things to know about machine learning. ACM Commun., 55(10):78-87.

Du, W. e Zhan, Z. (2002). Building decision tree classifier on private data. Syracuse University - Electrical Engineering and Computer Science.

Du, W., Han, Y. S. e Chen, S. (2004). Privacy-preserving multivariate statistical analysis: Linear regression and classification. Em Proceedings of the 2004 SIAM international conference on data mining, p. 222-233. SIAM.

Eichner, H., Koren, T., McMahan, H. B., Srebro, N. e Talwar, K. (2019). Semi-cyclic stochastic gradient descent. arXiv preprint arXiv:1904.10120.

Eugster, P. T., Felber, P., Guerraoui, R., Kermarrec, A.-M. (2003) "The many faces of publish/subscribe". ACM computing surveys (Volume 35).

Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I., Zomaya, A. Y., Foufou, S. e Bouras, A. (2014). A survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE transactions on emerging topics in computing, 2(3):267-279.

Fan. J., Vercauteren, F., "Somewhat practical fully homomorphic encryption", IACR Cryptology ePrint Archive, vol. 2012, p. 144, 2012.

Feng, S., Niyato, D., Wang, P., Kim, D. I. e Liang, Y. (2019). Joint service pricing and cooperative relay communication for federated learning. Em 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), p. 815-820.

Ferreira, W. e Vlachos, A. (2016). Emergent: a novel dataset for stance classification. Em Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: Human language technologies, p. 1163-1168.

Firth, J. R. (1957). A synopsis of linguistic theory, 1930-1955. Studies in Linguistic Analysis.

Fredrikson, M., Jha, S. e Ristenpart, T. (2015). Model inversion attacks that exploit confidence information and basic countermeasures. Em CCS '15, p. 1322-1333, New York, NY, USA. Association for Computing Machinery.

Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D. e Ristenpart, T. (2014). Privacy in pharmacogenetics: An end-to-end case study of personalized warfarin dosing. Em 23rd {USENIX} Security Symposium ({USENIX} Security 14), p. 17-32.

Friggeri, A., Adamic, L., Eckles, D. e Cheng, J. (2014). Rumor cascades.

Fuller, C. M., Biros, D. P. e Wilson, R. L. (2009). Decision support for determining veracity via linguistic-based cues. Decision Support Systems, 46(3):695 - 703. Wireless in the Healthcare.

Fung, C., Yoon, C. J. e Beschastnikh, I. (2018). Mitigating sybils in federated learning poisoning. arXiv preprint arXiv:1808.04866.

Gabielkov, M., Ramachandran, A., Chaintreau, A. e Legout, A. (2016). Social Clicks: What and Who Gets Read on Twitter? Em ACM SIGMETRICS / IFIP Performance 2016, Antibes Juan-les-Pins, France.

Gan, J. e Tao, Y. (2015). Dbscan revisited: Mis-claim, un-fixability, and approximation. Em Proceedings of the 2015 ACM SIGMOD international conference on management of data, p. 519-530.

Gaonkar, S., Itagi, S., Chalippatt, R., Gaonkar, A., Aswale, S. e Shetgaonkar, P. (2019). Detection of online fake news : A survey. Em 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN), p. 1-6.

Gentry, C. (2010) Computing arbitrary functions of encrypted data. Communication of the ACM 53, 3 (2010).

Gentry, C. A fully homomorphic encryption scheme. Tese de doutorado, Stanford University Stanford (2009).

Golbeck, J., Mauriello, M., Auxier, B., Bhanushali, K. H., Bonk, C., Bouzaghrane, M. A., Buntain, C., Chanduka, R., Cheakalos, P., Everett, J. B., Falak, W., Gieringer, C., Graney, J., Hoffman, K. M., Huth, L., Ma, Z., Jha, M., Khan, M., Kori, V., Lewis, E., Mirano, G., Mohn IV, W. T., Mussenden, S., Nelson, T. M., Mcwillie, S., Pant, A., Shetye, P., Shrestha, R., Steinheimer, A., Subramanian, A. e Visnansky, G. (2018). Fake news vs satire: A dataset and analysis. WebSci '18, p. 17-21, New York, NY, USA. Association for Computing Machinery.

Goldreich, O., Micali, S. e Wigderson, A. (2019). How to Play Any Mental Game, or a Completeness Theorem for Protocols with Honest Majority, p. 307-328. Association for Computing Machinery, New York, NY, USA.

Govender, P. e Sivakumar, V. (2020). Application of kmeans and hierarchical clustering techniques for analysis of air pollution: A review (1980-2019). Atmospheric Pollution Research, 11(1):40-56.

Grinberg, N., Joseph, K., Friedland, L., Swire-Thompson, B. e Lazer, D. (2019). Fake news on twitter during the 2016 us presidential election. Science, 363(6425):374-378.

Gupta, A. e Jha, R. K. (2015). A survey of 5g network: Architecture and emerging technologies. IEEE Access, 3:1206-1232.

Han, S., Mao, H. e Dally, W. J. (2015). Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149.

Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays, F., Augenstein, S., Eichner, H., Kiddon, C. e Ramage, D. (2018). Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604.

Hardy, S., Henecka, W., Ivey-Law, H., Nock, R., Patrini, G., Smith, G. e Thorne, B. (2017). Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption. arXiv preprint ar-Xiv:1711.10677.

Hauch, V., Blandón-Gitlin, I., Masip, J. e Sporer, S. L. (2015). Are computers effective lie detectors? a meta-analysis of linguistic cues to deception. Personality and social psychology Review, 19(4):307-342.

Hayward, R., Chiang, C. (2015) Parallelizing fully homomorphic encryption for a cloud environment, Journal of Applied Research and Technology, Volume 13, Issue 2.

He, K., Zhang, X., Ren, S. e Sun, J. (2016). Deep residual learning for image recognition. Em Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

He, Y., Zhao, N. e Yin, H. (2018). Integrated networking, caching, and computing for connected vehicles: A deep reinforcement learning approach. IEEE Transactions on Vehicular Technology, 67(1):44-55.

Ho, Q., Cipar, J., Cui, H., Lee, S., Kim, J. K., Gibbons, P. B., Gibson, G. A., Ganger, G. e Xing, E. P. (2013). More effective distributed ml via a stale synchronous parallel parameter server. Em Advances in Neural Information Processing Systems 26, p. 1223-1231. Curran Associates, Inc.

Hu, B., Tang, B., Chen, Q. e Kang, L. (2016). A novel word embedding learning model using the dissociation between nouns and verbs. Neurocomputing, 171:1108-1117.

Huang, L., Yin, Y., Fu, Z., Zhang, S., Deng, H. e Liu, D. (2020). Loadaboost: Loss-based adaboost federated machine learning with reduced computational complexity on iid and non-iid intensive care data. Plos one, 15(4):e0230706.

IBM Security. Cost of a Data Breach Report 2020. (Online, acessado em 15/09/2020) https://www.ibm.com/security/data-breach

Indurkhya, N. e Damerau, F. J. (2010). Handbook of Natural Language Processing. Chapman & Hall/CRC, 2nd edição.

Jarmasz, M. e Szpakowicz, S. (2003). Not as easy as it seems: Automating the construction of lexical chains using roget's thesaurus. Em Advances in Artificial Intelligence, p. 544-549, Berlin, Heidelberg. Springer Berlin Heidelberg.

Kadhim, A. I. (2019). Survey on supervised machine learning techniques for automatic text classification. Artificial Intelligence Review, 52(1):273-292.

Kang, J., Xiong, Z., Niyato, D., Xie, S. e Zhang, J. (2019a). Incentive mechanism for reliable federated learning: A joint optimization approach to combining reputation and contract theory. IEEE Internet of Things Journal, 6(6):10700-10714.

Kang, J., Xiong, Z., Niyato, D., Yu, H., Liang, Y. e Kim, D. I. (2019b). Incentive design for efficient federated learning in mobile networks: A contract theory approach. Em 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS), p. 1-5.

Karr, A. F., Lin, X., Sanil, A. P. e Reiter, J. P. (2009). Privacypreserving analysis of vertically partitioned data using secure matrix products. Journal of Official Statistics, 25(1):125.

Ketchen, D. J. e Shook, C. L. (1996). The application of cluster analysis in strategic management research: an analysis and critique. Strategic management journal, 17(6):441-458.

Kim, H., Park, J., Bennis, M. e Kim, S.-L. (2018). On-device federated learning via blockchain and its latency analysis. arXiv preprint arXiv:1808.03949.

Konecny, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T. e Bacon, D. (2016). Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492.

Kwon, D., Kim, H., Kim, J., Suh, S. C., Kim, I. e Kim, K. J. (2017). A survey of deep learning-based network anomaly detection. Cluster Computing.

Kwon, S., Cha, M., Jung, K., Chen, W. e Wang, Y. (2013). Prominent features of rumor propagation in online social media. Em 2013 IEEE 13th International Conference on Data Mining, p. 1103-1108. IEEE.

Lazer, D. M., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., Metzger, M. J., Nyhan, B., Pennycook, G., Rothschild, D. et al. (2018). The science of fake news. Science, 359(6380):1094-1096.

Lecun, Y., Bottou, L., Bengio, Y. e Haffner, P. (1998). Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324.

Li, P., Li, J., Huang, Z., Li, T., Gao, C.-Z., Yiu, S.-M. e Chen, K. (2017). Multi-key privacy-preserving deep learning in cloud computing. Future Generation Computer Systems, 74:76 - 85.

Li, T., Sahu, A. K., Talwalkar, A. e Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3):50-60.

Li, W., Logenthiran, T., Phan, V. e Woo, W. L. (2018). Implemented iot-based self-learning home management system (shms) for singapore. IEEE Internet of Things Journal, 5(3):2212-2219.

Li, W., Milletarì, F., Xu, D., Rieke, N., Hancox, J., Zhu, W., Baust, M., Cheng, Y., Ourselin, S., Cardoso, M. J. e Feng, A. (2019). Privacy-preserving federated brain tumour segmentation. Em Machine Learning in Medical Imaging, p. 133-141, Cham. Springer International Publishing.

Li, Y., Xu, L., Tian, F., Jiang, L., Zhong, X. e Chen, E. (2015). Word embedding revisited: A new representation learning and explicit matrix factorization perspective. Em Twenty-Fourth International Joint Conference on Artificial Intelligence.

Liang, G. e Chawathe, S. S. (2004). Privacy-preserving interdatabase operations. Em International Conference on Intelligence and Security Informatics, p. 66-82. Springer.

Lim, W. Y. B., Luong, N. C., Hoang, D. T., Jiao, Y., Liang, Y. C., Yang, Q., Niyato, D. e Miao, C. (2020). Federated learning in mobile edge networks: A comprehensive survey. IEEE Communications Surveys Tutorials.

Liu, G., Wang, Y. e Orgun, M. A. (2010). Quality of trust for social trust path selection in complex social networks. Em Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume 1, p. 1575-1576. International Foundation for Autonomous Agents and Multiagent Systems.

Liu, Y., Kang, Y., Zhang, X., Li, L., Cheng, Y., Chen, T., Hong, M. e Yang, Q. (2019). A communication efficient vertical federated learning framework. arXiv preprint arXiv:1912.11187.

Lobato, A. G. P., Lopez, M. A., Sanz, I. J., Cardenas, A. A., Duarte, O. C. M. B. e Pujolle, G. (2018). An adaptive real-time architecture for zero-day threat detection. Em 2018 IEEE International Conference on Communications (ICC), p. 1-6.

Long, M., Cao, Y., Wang, J. e Jordan, M. (2015). Learning transferable features with deep adaptation networks. Em International conference on machine learning, p. 97-105. PMLR.

LSD. Processamento confidencial de dados de sensores na nuvem (Repositório). Laboratório de Sistemas Distribuídos, Universidade Federal de Campina Grande. (Online, acessado em 25/09/2020). https://git.lsd.ufcg.edu.br/lsd-sbseg-2020

Manning, C. e Schutze, H. (1999). Foundations of statistical natural language processing. MIT press.

Manning, C., Raghavan, P. e Schütze, H. (2010). Introduction to information retrieval. Natural Language Engineering, 16(1):100-103.

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. e McClosky, D. (2014). The stanford corenlp natural language processing toolkit. Em Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations, p. 55-60.

Mattos, D. M. F., Velloso, P. B. e Duarte, O. C. M. B. (2019). An agile and effective network function virtualization infrastructure for the internet of things. Journal of Internet Services and Applications, 10(1):6.

Mattos, D. M. F., Velloso, P. B. e Duarte, O. C. M. B. (2019). An agile and effective network function virtualization infrastructure for the internet of things. Journal of Internet Services and Applications, 10(1):6.

Medeiros, D. S. V., Cunha Neto, H. N., Andreoni Lopez, M., Magalhães, L. C. S., Silva, E. F., Vieira, A. B., Fernandes, N. C. e Mattos, D. M. F. (2019). Análise de dados em redes sem fio de grande porte: Processamento em fluxo em tempo real, tendências e desafios. Minicursos do Simpósio Brasileiro de Redes de Computadores-SBRC, 2019:142-195.

Meel, P. e Vishwakarma, D. K. (2020). Fake news, rumor, information pollution in social media and web: A contemporary survey of state-of-thearts, challenges and opportunities. Expert Systems with Applications, 153:112986.

Micali, S., Goldreich, O. e Wigderson, A. (1987). How to play any mental game. Em Proceedings of the Nineteenth ACM Symp. on Theory of Computing, STOC, p. 218-229.

Microsoft. Azure Confidential Computing Documentation. (Online, acessado em 24/09/2020). https://docs.microsoft.com/en-us/azure/confidential-computing/

Mikolov, T., Chen, K., Corrado, G. e Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Kombrink, S., Burget, L., Cernocky, J. e Khudanpur, S. (2011). Extensions of recurrent neural network language model. Em 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP), p. 5528-5531. IEEE.

Mitra, T. e Gilbert, E. (2015). Credbank: A large-scale social media corpus with associated credibility annotations. Em ICWSM, p. 258-267.

Monteiro, R. A., Santos, R. L., Pardo, T. A., de Almeida, T. A., Ruiz, E. E. e Vale, O. A. (2018). Contributions to the study of fake news in portuguese: New corpus and automatic detection results. Em International Conference on Computational Processing of the Portuguese Language, p. 324-334. Springer.

Naehrig, M., Lauter, K., Vaikuntanathan, V. (2011) "Can homomorphic encryption be practical?", Proceedings of the 3rd ACM Workshop on Cloud Computing Security.

Narayanan, A., Shmatikov, V. (2008) "Robust De-anonymization of Large Sparse Datasets", Proceedings of the IEEE Symposium on Security and Privacy.

Nascimento, J. R., Nunes, J. B. S., Falcão, E. L., Sampaio, L., Brito, A. (2020) "On the tracking of sensitive data and confidential executions", Proceedings of the 14th ACM International Conference on Distributed and Event-based Systems.

Navigli, R. (2009). Word sense disambiguation: A survey. ACM computing surveys (CSUR), 41(2):1-69.

Neely, M. J. (2010). Stochastic network optimization with application to communication and queueing systems. Synthesis Lectures on Communication Networks, 3(1):1-211.

Nguyen, H., Kim, J., Kim, Y. (2013) "Differential privacy in practice", Journal of Computing Science and Engineering.

Nguyen, K. K., Hoang, D. T., Niyato, D., Wang, P., Nguyen, D. e Dutkiewicz, E. (2018). Cyberattack detection in mobile cloud computing: A deep learning approach. Em 2018 IEEE Wireless Communications and Networking Conference (WCNC), p. 1-6.

Nguyen, T. D., Marchal, S., Miettinen, M., Fereidooni, H., Asokan, N. e Sadeghi, A. (2019). DÏot: A federated self-learning anomaly detection system for iot. Em 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), p. 756-767.

Nishio, T. e Yonetani, R. (2019). Client selection for federated learning with heterogeneous resources in mobile edge. Em ICC 2019 - 2019 IEEE International Conference on Communications (ICC), p. 1-7.

Nock, R., Hardy, S., Henecka, W., Ivey-Law, H., Patrini, G., Smith, G. e Thorne, B. (2018). Entity resolution and federated learning get a federated resolution. arXiv preprint arXiv:1803.04035.

Oleksenko, O., Trach, B., Krahn, R., Martin, A., Silberstein, M., Fetzer, C. (2018) "Varys: Protecting SGX enclaves from practical side-channel attacks", Proceedings of the 2018 USENIX Annual Technical Conference.

Orlandi, C., "Is multiparty computation any good in practice?", Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2011.

Osborne, M. J. et al. (2004). An introduction to game theory, volume 3. Oxford university press New York.

Oshikawa, R., Qian, J. eWang,W. Y. (2018). A survey on natural language processing for fake news detection. arXiv preprint arXiv:1811.00770.

Otter, D. W., Medina, J. R. e Kalita, J. K. (2020). A survey of the usages of deep learning for natural language processing. IEEE Transactions on Neural Networks and Learning Systems.

Pan, S. J. e Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345-1359.

Papadimitriou, C. H., Raghavan, P., Tamaki, H. e Vempala, S. (2000). Latent semantic indexing: A probabilistic analysis. Journal of Computer and System Sciences, 61(2):217-235.

Parlamento Europeu e Conselho da União Européia (2016). Regulamento (ue) 2016/679. https://eur-lex.europa.eu/legal-content/PT/TXT/PDF/?uri=CELEX:32016R0679&from=PT.

Pennebaker, J. W., Francis, M. E. e Booth, R. J. (2001). Linguistic inquiry and word count: Liwc 2001. Mahway: Lawrence Erlbaum Associates, 71(2001):2001.

Pennycook, G., McPhetres, J., Zhang, Y., Lu, J. G. e Rand, D. G. (2020). Fighting covid-19 misinformation on social media: Experimental evidence for a scalable accuracy-nudge intervention. Psychological science, 31(7):770-780.

Perdisci, R., Gu, G. e Lee, W. (2006). Using an ensemble of oneclass svm classifiers to harden payload-based anomaly detection systems. Em Sixth International Conference on Data Mining (ICDM'06), p. 488-498.

Phong, L. T., Aono, Y., Hayashi, T., Wang, L. e Moriai, S. (2018). Privacy-preserving deep learning via additively homomorphic encryption. IEEE Transactions on Information Forensics and Security, 13(5):1333-1345.

Poddar, K., Umadevi, K. et al. (2019). Comparison of various machine learning models for accurate detection of fake news. Em 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), volume 1, p. 1-5. IEEE.

Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J. e Stein, B. (2017). A stylometric inquiry into hyperpartisan and fake news. arXiv preprint ar-Xiv:1702.05638.

Preuveneers, D., Rimmer, V., Tsingenopoulos, I., Spooren, J., Joosen, W. e Ilie-Zudor, E. (2018). Chained anomaly detection models for federated learning: An intrusion detection case study. Applied Sciences, 8(12):2663.

Qian, F., Gong, C., Sharma, K. e Liu, Y. (2018). Neural user response generator: Fake news detection with collective user intelligence. Em Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, p. 3834-3840. International Joint Conferences on Artificial Intelligence Organization.

Rashkin, H., Choi, E., Jang, J. Y., Volkova, S. e Choi, Y. (2017). Truth of varying shades: Analyzing language in fake news and political fact-checking. Em Proceedings of the Conference on Empirical Methods in Natural Language Processing, p. 2931-2937.

Reis, L. H. A., Murillo Piedrahita, A., Rueda, S., Fernandes, N. C., Medeiros, D. S. V., de Amorim, M. D. e Mattos, D. M. F. (2020). Unsupervised and incremental learning orchestration for cyber-physical security. Transactions on Emerging Telecommunications Technologies, 31(7):e4011.

Ren, J., Wang, H., Hou, T., Zheng, S. e Tang, C. (2019). Federated learning-based computation offloading optimization in edge computing-supported internet of things. IEEE Access, 7:69194-69201.

Robnik-Å ikonja, M. e Kononenko, I. (2003). Theoretical and Empirical Analysis of ReliefF and RReliefF. Machine Learning, 53(1/2):23-69.

Rousseeuw, P. J. e Kaufman, L. (1990). Finding groups in data. Hoboken: Wiley Online Library.

Rubin, V. L. (2010). On deception and deception detection: Content analysis of computer-mediated stated beliefs. Em Proceedings of the 73rd ASIS&T Annual Meeting on Navigating Streams in an Information Ecosystem-Volume 47, p. 32. American Society for Information Science.

Rubin, V. L. (2014). Pragmatic and cultural considerations for deception detection in asian languages. Em ACM Transactions on Asian Language Information Processing.

Rubin, V. L., Chen, Y. e Conroy, N. J. (2015a). Deception detection for news: three types of fakes. Em Proceedings of the 78th ASIS&T Annual Meeting: Information Science with Impact: Research in and for the Community, p. 83. American Society for Information Science.

Rubin, V. L., Conroy, N. J. e Chen, Y. (2015b). Towards news verification: Deception detection methods for news discourse. Em Hawaii International Conference on System Sciences.

Rubin, V., Conroy, N., Chen, Y. e Cornwell, S. (2016). Fake news or truth? using satirical cues to detect potentially misleading news. Em Proceedings of the second workshop on computational approaches to deception detection, p. 7-17.

Sadeghi, A., Sheikholeslami, F. e Giannakis, G. B. (2018). Optimal and scalable caching for 5g using reinforcement learning of space-time popularities. IEEE Journal of Selected Topics in Signal Processing, 12(1):180-190.

Samarakoon, S., Bennis, M., Saad, W. e Debbah, M. (2018). Federated learning for ultra-reliable low-latency v2v communications. Em 2018 IEEE Global Communications Conference (GLOBECOM), p. 1-7.

Santia, G. C. e Williams, J. R. (2018). Buzzface: A news veracity dataset with facebook user commentary and egos. Em Twelfth International AAAI Conference on Web and Social Media, p. 531-540.

Saputra, Y. M., Hoang, D. T., Nguyen, D. N., Dutkiewicz, E., Mueck, M. D. e Srikanteswara, S. (2019). Energy demand prediction with federated learning for electric vehicle networks. Em 2019 IEEE Global Communications Conference (GLOBECOM), p. 1-6.

Sarikaya, Y. e Ercetin, O. (2020). Motivating workers in federated learning: A stackelberg game perspective. IEEE Networking Letters, 2(1):23-27.

Scannapieco, M., Figotin, I., Bertino, E. e Elmagarmid, A. K. (2007). Privacy preserving schema and data matching. Em Proceedings of the 2007 ACM SIGMOD international conference on Management of data, p. 653-664.

Schubert, E., Sander, J., Ester, M., Kriegel, H. P. e Xu, X. (2017). Dbscan revisited, revisited: why and how you should (still) use dbscan. ACM Transactions on Database Systems (TODS), 42(3):1-21.

Sharma, K., Qian, F., Jiang, H., Ruchansky, N., Zhang, M. e Liu, Y. (2019). Combating fake news: A survey on identification and mitigation techniques. ACM Transactions on Intelligent Systems and Technology (TIST), 10(3):1-42.

Sharma, S. e Sharma, D. K. (2019). Fake news detection: A long way to go. Em 2019 4th International Conference on Information Systems and Computer Networks (ISCON), p. 816-821. IEEE.

Sheth, A. P. e Larson, J. A. (1990). Federated database systems for managing distributed, heterogeneous, and autonomous databases. ACM Comput. Surv., 22(3):183-236.

Shu, K., Mahudeswaran, D. e Liu, H. (2019). Fakenewstracker: a tool for fake news collection, detection, and visualization. Computational and Mathematical Organization Theory, 25(1):60-71.

Shu, K., Mahudeswaran, D., Wang, S., Lee, D. e Liu, H. (2020). Fakenewsnet: A data repository with news content, social context, and spatiotemporal information for studying fake news on social media. Big Data, 8(3):171-188.

Shu, K., Sliva, A., Wang, S., Tang, J. e Liu, H. (2017). Fake news detection on social media: A data mining perspective. ACM SIGKDD Explorations Newsletter, 19(1):22-36.

Silva, F., Silva, M., Brito, A. (2020) "KafkaProxy: data-at-rest encryption and confidentiality support for Kafka cluster", Anais do 20º Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais.

Smith, V., Chiang, C.-K., Sanjabi, M. e Talwalkar, A. S. (2017). Federated multi-task learning. Em Advances in Neural Information Processing Systems, p. 4424-4434.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. Y. e Potts, C. (2013). Recursive deep models for semantic compositionality over a sentiment treebank. Em Proceedings of the 2013 conference on empirical methods in natural language processing, p. 1631-1642.

Sprague, M. R., Jalalirad, A., Scavuzzo, M., Capota, C., Neun, M., Do, L. e Kopp, M. (2019). Asynchronous federated learning for geospatial applications. Em ECML PKDD 2018 Workshops, p. 21-28. Springer International Publishing.

Strom, N. (2015). Scalable distributed dnn training using commodity gpu cloud computing. Em Sixteenth Annual Conference of the International Speech Communication Association.

Suresh, A. T., Felix, X. Y., Kumar, S. e McMahan, H. B. (2017). Distributed mean estimation with limited communication. Em International Conference on Machine Learning, p. 3329-3337.

Tao, Z. e Li, Q. (2018). esgd: Communication efficient distributed deep learning on the edge. Em {USENIX} Workshop on Hot Topics in Edge Computing (HotEdge 18).

Tesauro, G. (2007). Reinforcement learning in autonomic computing: A manifesto and case studies. IEEE Internet Computing, 11(1):22-30.

Thorne, J., Vlachos, A., Christodoulopoulos, C. e Mittal, A. (2018). FEVER: a large-scale dataset for fact extraction and VERification. Em Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), p. 809-819. Association for Computational Linguistics.

Triastcyn, A. e Faltings, B. (2020). Federated generative privacy. IEEE Intelligent Systems, 35(4):50-57.

Trigeorgis, G., Ringeval, F., Brueckner, R., Marchi, E., Nicolaou, M. A., Schuller, B. e Zafeiriou, S. (2016). Adieu features? end-to-end speech emotion recognition using a deep convolutional recurrent network. Em 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), p. 5200-5204.

Vaidya, J. e Clifton, C. (2002). Privacy preserving association rule mining in vertically partitioned data. Em KDD '02, p. 639-644, New York, NY, USA. Association for Computing Machinery.

Vaidya, J. e Clifton, C. (2003). Privacy-preserving k-means clustering over vertically partitioned data. Em Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '03, p. 206-215, New York, NY, USA. Association for Computing Machinery.

Vaidya, J. e Clifton, C. (2004). Privacy preserving naive bayes classifier for vertically partitioned data. Em Proceedings of the 2004 SIAM international conference on data mining, p. 522-526. SIAM.

Vaidya, J., Clifton, C., Kantarcioglu, M. e Patterson, A. S. (2008). Privacy-preserving decision trees over vertically partitioned data. ACM Trans. Knowl. Discov. Data, 2(3).

Van Bavel, J. J., Baicker, K., Boggio, P. S., Capraro, V., Cichocka, A., Cikara, M., Crockett, M. J., Crum, A. J., Douglas, K. M., Druckman, J. N. et al. (2020). Using social and behavioural science to support covid-19 pandemic response. Nature Human Behaviour, p. 1-12.

Verikas, A., Gelzinis, A. e Bacauskiene, M. (2011). Mining data with random forests: A survey and results of new tests. Pattern recognition, 44(2):330-349.

Verma, A., Pedrosa, L., Korupolu, M. R., Oppenheimer, D., Tune, E., Wilkes, J. (2015), "Large-scale cluster management at Google with Borg", Proceedings of the ACM European Conference on Computer Systems.

Verma, D., Julier, S. e Cirincione, G. (2018). Federated ai for building ai solutions across multiple agencies. arXiv preprint arXiv:1809.10036.

Vilalta, R. e Drissi, Y. (2002). A perspective view and survey of meta-learning. Artificial intelligence review, 18(2):77-95.

Vosoughi, S., Roy, D. e Aral, S. (2018). The spread of true and false news online. Science, 359(6380):1146-1151.

Wan, L., Ng, W. K., Han, S. e Lee, V. C. (2007). Privacy-preservation for gradient descent methods. Em Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, p. 775-783.

Wang, L., Wang, W. e Li, B. (2019). Cmfl: Mitigating communication overhead for federated learning. Em 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), p. 954-964.

Wang, S., Tuor, T., Salonidis, T., Leung, K. K., Makaya, C., He, T. e Chan, K. (2019). Adaptive Federated Learning in Resource Constrained Edge Computing Systems. IEEE Journal on Selected Areas in Communications, 37(6):1205-1221.

Wang, W. Y. (2017). "Liar, liar pants on fire": A new benchmark dataset for fake news detection. Em Annual Meeting of the Association for Computational Linguistics - ACL 2017.

Wang, X., Han, Y., Leung, V. C. M., Niyato, D., Yan, X. e Chen, X. (2020). Convergence of edge computing and deep learning: A comprehensive survey. IEEE Communications Surveys Tutorials, 22(2):869-904.

Wang, X., Han, Y., Wang, C., Zhao, Q., Chen, X. e Chen, M. (2019a). In-edge ai: Intelligentizing mobile edge computing, caching and communication by federated learning. IEEE Network, 33(5):156-165.

Wang, X., Han, Y., Wang, C., Zhao, Q., Chen, X. e Chen, M. (2019b). In-edge ai: Intelligentizing mobile edge computing, caching and communication by federated learning. IEEE Network, 33(5):156-165.

Weng, J., Weng, J., Zhang, J., Li, M., Zhang, Y. e Luo, W. (2019). Deepchain: Auditable and privacy-preserving deep learning with blockchain-based incentive. IEEE Transactions on Dependable and Secure Computing, p. 1-1.

Wenliang Du e Atallah, M. J. (2001). Privacy-preserving cooperative statistical analysis. Em Seventeenth Annual Computer Security Applications Conference, p. 102-110.

Xie, C., Koyejo, S. e Gupta, I. (2019). Asynchronous federated optimization. arXiv preprint arXiv:1903.03934.

Xu, R. eWunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on neural networks, 16(3):645-678.

Yang, Q., Liu, Y., Chen, T. e Tong, Y. (2019). Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology, 10(2):1-19.

Yao, A. C. (1982). Protocols for secure computations. Em 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982), p. 160-164.

Yao, X., Huang, C. e Sun, L. (2018). Two-stream federated learning: Reduce the communication costs. Em 2018 IEEE Visual Communications and Image Processing (VCIP), p. 1-4.

You, P. e Yang, Z. (2014). Efficient optimal scheduling of charging station with multiple electric vehicles via v2v. Em 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), p. 716-721.

Yu, H., Jiang, X. e Vaidya, J. (2006a). Privacy-preserving svm using nonlinear kernels on horizontally partitioned data. Em Proceedings of the 2006 ACM Symposium on Applied Computing, SAC '06, p. 603-610, New York, NY, USA. Association for Computing Machinery.

Yu, H., Vaidya, J. e Jiang, X. (2006b). Privacy-preserving svm classification on vertically partitioned data. Em Advances in Knowledge Discovery and Data Mining, p. 647-656, Berlin, Heidelberg. Springer Berlin Heidelberg.

Zhai, Y., Ong, Y.-S. e Tsang, I. W. (2014). The emerging"big dimensionality". IEEE Computational Intelligence Magazine, 9(3):14-26.

Zhan, Y., Li, P., Qu, Z., Zeng, D. e Guo, S. (2020). A learningbased incentive mechanism for federated learning. IEEE Internet of Things Journal, 7(7):6360-6368.

Zhang, J., Chen, B., Yu, S. e Deng, H. (2019). Pefl: A privacyenhanced federated learning scheme for big data analytics. Em 2019 IEEE Global Communications Conference (GLOBECOM), p. 1-6.

Zhang, Y. e Xiao, L. (2018). Communication-Efficient Distributed Optimization of Self-concordant Empirical Loss, p. 289-341. Springer International Publishing, Cham.

Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D. e Chandra, V. (2018). Federated learning with non-iid data. arXiv preprint arXiv:1806.00582.

Zhou, L., Burgoon, J. K., Nunamaker, J. F. e Twitchell, D. (2004). Automating linguistics-based cues for detecting deception in text-based asynchronous computer-mediated communications. Group decision and negotiation, 13(1):81-106.

Zhou, X. e Zafarani, R. (2018). Fake news: A survey of research, detection methods, and opportunities. arXiv preprint arXiv:1812.00315.

Zhou, X., Cao, J., Jin, Z., Xie, F., Su, Y., Chu, D., Cao, X. e Zhang, J. (2015). Real-time news certification system on sina weibo. Em Proceedings of the 24th International Conference on World Wide Web, p. 983-988.

Zhou, Z., Guan, H., Bhat, M. M. e Hsu, J. (2019). Fake news detection via nlp is vulnerable to adversarial attacks. arXiv preprint arXiv:1901.09657.

Zouinina S., Bennani Y., Rogovschi N., Lyhyaoui A. (2020) "A Two-Levels Data Anonymization Approach", Artificial Intelligence Applications and Innovations. Springer.

Zubiaga, A., Liakata, M., Procter, R., Wong Sak Hoi, G. e Tolmie, P. (2016). Analysing how people orient to and spread rumours in social media by looking at conversational threads. PloS one, 11(3):e0150989.

Capa para Minicursos do XX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais
Data de publicação
13/10/2020

Detalhes sobre o formato disponível para publicação: Volume Completo

Volume Completo
ISBN-13 (15)
978-65-87003-85-6