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Abstract

Mobile cloud computing (MCC) and Context-Aware Computing (CAC) are research top-
ics in growing evidence. The former seeks to leverage cloud computing features to im-
prove the performance of mobile applications and reduce the energy consumption of
mobile devices, while the latter seeks effective ways to build applications that react to
changes in its context environment. This short-course aims at presenting main concepts,
solutions, and technologies related to the integration of MCC and context-aware applica-
tions. We will present different motivational scenarios, examples of applications, as well
as a practical guide to the development of a context-aware multimedia Android applica-
tion using the framework CAOS. In addition, we will highlight research challenges and
opportunities that come with such integration.

Resumo

Mobile Cloud Computing (MCC) e a Computação Sensível ao Contexto são tópicos de
pesquisa em crescente evidência. O primeiro procura utilizar recursos da computação em
nuvem para melhorar o desempenho de aplicações móveis e reduzir o consumo de energia
dos dispositivos, enquanto o último busca formas eficazes de criar aplicações que reajam
às mudanças de contexto do ambiente. Este minicurso tem como objetivo apresentar os
principais conceitos, soluções e tecnologias relacionadas à integração de MCC e sensi-
bilidade ao contexto. Serão apresentados diferentes cenários motivacionais, exemplos de
aplicações, bem como um guia prático de como desenvolver uma aplicação multimídia
sensível ao contexto utilizando o framework CAOS. Além disso, serão discutidos desafios
e oportunidades de pesquisa relacionados à integração entre os dois tópicos.
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6.1. Contextualization
Mobile Devices such as smartphones and tablets have become important tools for daily
activities in modern society. These devices have improved their processing power due
to faster processors, increased storage resources and better network interfaces. Mobile
devices have also been gradually equipped with a plethora of sensors that gather data
from the user’s environment (e.g., location and temperature). One challenge for mobile
and distributed computing is to explore the changing environment where mobile devices
are inserted with a new kind of mobile application that take benefits from features of their
dynamic environment. These new types of systems are called context-aware applications.

Nowadays, context management and inferences are becoming complex processes,
as the amount of data increases and new algorithms are being proposed [Gomes et al. 2016].
In this scenario, cloud services can offer an interesting option by taking on more inten-
sive context management tasks and performing these tasks only once for multiple users.
However, since most contextual information is sensed and captured by mobile devices
themselves, it is not always clear whether it is wise to send all the sensor data to the cloud
for a remote processing or perform the whole processing of contextual data locally by the
mobile device. These trade-offs depend on factors such as the amount of data being trans-
ferred and the type of processing that is required. According to [Naqvi et al. 2013], the
Mobile Cloud Computing paradigm, from a context-sensitive perspective, can be seen as
a promising field of research that seeks to find effective ways of doing service in Cloud-
aware applications and clients.

Offloading is the main research topic in MCC [Fernando et al. 2013] and repre-
sents the idea of moving data and computation from mobile devices with scarce resources
to more powerful machines [Rego et al. 2016]. There are several opportunities where
computation and data offloading can bring improvements to context-aware mobile ap-
plications as well as multimedia applications. Some scenarios include: (i) devices with
low processing power can use the cloud to act on their behalf (e.g., rendering images or
videos) [Costa et al. 2015], (ii) it would be possible to leverage cloud resources to save
energy by delegating tasks away from mobile devices [Barbera et al. 2013], and (iii) to
save data storage from mobile devices.

In order to understand different approaches, concepts, and challenges about the
integration between Mobile Cloud Computing (MCC) and Context-Aware Computing
(CAC), this short-course is proposed as an opportunity to disseminate and improve the
understanding of the target audience regarding the union of these two themes. To the best
of our knowledge, until the writing of this document, there were no similar initiatives on
the subject in any major symposium or conference in Brazil. We will use a framework
developed by the GREat research group1, called CAOS - Context-Aware and Offloading
System [Gomes et al. 2017], which is a software platform for the development of context-
aware mobile applications based on the Android platform. CAOS supports both data and
computing offloading (i.e., it enables the migration of computing and contextual data from
mobile devices to cloud platforms in a transparent and an automatic way).

The integration of cloud services is an increasing trend in several areas. This short-
course aims to present how this integration for the domain of context-aware applications

1GREat website: http://www.great.ufc.br
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can be done, focusing mainly on multimedia applications.

6.2. Theoretical Background
6.2.1. Context-Aware Computing

Mobile devices, such as smartwatches, smartphones, tablets, and ultrabooks, have be-
come part of our everyday lives. They allow users to access a vast range of applica-
tions on-the-go, from personal agendas to existing social networks, from standalone ap-
plications running on the device, to distributed applications interacting with the environ-
ment [Herrmann 2010]. An important benefit of using an application on a mobile device
is the possibility to use it anywhere and anytime. In fact, it can be seen as a step toward to
achieve the Mark Weiser’s Ubiquitous Computing [Weiser 1991] vision, embedding the
computation in the user’s devices and turning the user-interaction more soft and natural.

To achieve the calm interaction between users and computers is a complex task.
Applications running on mobile devices have to interact with a dynamic environment,
where available users, devices, and resources change over time. Therefore, the software
running on these devices, interacting with users and the environment, must be designed
from scratch taking into account these changes and adapting itself in order to achieve the
desired behavior. The ability to perceive changes in the environment and adapt its behav-
ior to meet these changes is called context-awareness. [Preuveneers and Berbers 2007].

Before precisely define context-aware we must first understand what context is.
In that sense, we introduce in the following the most spread definition of context and
context-awareness given by Anind K. Dey [Dey 2001]. Next, we introduce the Viana’s et
al. [Viana et al. 2011] context-aware definition adopted in this document.

“Context is any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
applications themselves.” [Dey 2001]

“A system is context-aware if it uses context to provide relevant information
and/or services to the user, where relevancy depends on the user’s task.” [Dey 2001]

Viana et al. [Viana et al. 2011] extends Dey’s definition taking into account the
dynamic nature of the context structure and its acquisition. In that sense, not only the
values of the context elements evolve over time, but also the number of context elements
changes. According to Viana et al. [Viana et al. 2011], the elements composing the con-
text depends on the system’s interest and the chance to observe them. So, once the system
execution evolves, the set of observed context elements also evolve. In a nutshell, the con-
text can be determined by the intersection of two sets of information in an instant t. The
first one is called Zone of Interest (ZoI), comprising the set of contextual elements rele-
vant to the system. The second set is called Zone of Observation (ZoO) and it describes
the set of contextual elements that can be collected by the system. Figure 6.1 shows a
Venn diagram with these two sets of information. Their intersection is the Zone of Con-
text (ZoC) that is composed of any information that can be described and observed. All
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three zones may change over time. For instance, ZoO may change when a sensor becomes
unavailable; the ZoI may change when the system changes its interests, not requiring spe-
cific contextual information any longer. At last, the ZoC changes when changes on ZoI
and ZoO affect their intersection.

Figure 6.1. Context definition proposed by Viana et al. [Viana et al. 2011].

In short, context-awareness is the ability of the computer system to discover and
react to its context changes. Mobile applications can benefit from context-awareness to
provide personalized services to users and adapt their structure and behavior accordingly
in order to save or optimize the mobile device resources usage. The mobile devices con-
strains (e.g., battery power, bandwidth, and storage capacity) and issues related to the
context management (e.g., capture, process, and delivery), security, privacy, and trust turn
the design and development of context-aware mobile applications a challenging task.

A considerable research effort has been done to provide solutions to support the
development of context-aware systems. In particular, context management infrastructures
to support the development and execution of context-aware applications received signifi-
cant attention [Baldauf et al. 2007, Bettini et al. 2010]. These infrastructures are typically
implemented as a middleware platform or a horizontal framework, providing support to
capture, aggregate, store, infer, and delivery context information. Usually, such infras-
tructure follows a thin client/server architecture style, where the application running on
the mobile device (client) performs no or few tasks related to the context management
and all or most of the context management processing is performed on the server side. As
a drawback, these infrastructures are not adaptable, in a sense they are not able to adapt
its own context management mechanism [Da et al. 2011].

6.2.1.1. Solutions

The solutions found in the literature review were classified according to the following
taxonomy divided into seven aspects: (i) Research Subject - this aspect concerns to the
kind of software infrastructure is provided to support development of context-aware ap-
plication (e.g., framework and middleware); (ii) Target-Platform - represents the mobile
platform and development technology on which the solution was evaluated/implemented
(e.g., Java, Android, Titanium, RESTful); (iii) Interaction Paradigm - this aspect cap-
tures the kind of interaction paradigm used between applications and the context manage-
ment infrastructure (e.g., tuple-space, publish/subscribe, and request/response); (iv) Con-
text Type - this aspect comprises the type of context each solution supports, following
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the Yurur et al. [Yurur et al. 2016] classification: device context (e.g., available network
interfaces, battery load, CPU and memory usage); physical context (e.g., temperature,
noise level, light intensity and traffic conditions) user context (e.g., personal profiles, lo-
cation and people surrounding them, social situation); and temporal context (e.g., time,
day, week, month, season and year); (v) Dependency - this aspect indicates if the solution
has any software dependence, such as an external framework or library; (vi) Modularity
- this aspects indicates if the context management concerns implementation are clearly
separated from the application business logic; and (vii) Cloud Interaction - this aspect
concerns to the usage of Cloud Computing concepts to manage context information. Ta-
ble 6.1 summarized the review and classification according proposed taxonomy.

All papers report solutions that were implemented as a framework (S02, S04,
S05, S07, S10, and S12-S15) or as middleware platform (S01, S03, S08, S09, and S11)
to manage context information. Only one solution (S06) combines both framework and
middleware strategies. Most of them are implemented on top of Android platform (S01-
S05, S08, S12-S15). The other three solutions focus on RESTful services (S07 and S09)
and cross-platform technology (S10). These solutions implement different coordination
models to perform interaction between context management infrastructure and the mobile
applications. Most of them support both synchronous request-response interaction (S01,
S02, S03, S07-S011) and asynchronous publish-subscribe interaction (S02-S07, S10, S11,
S13-S15). Only three solutions provide support for tuple-space interaction model (S06,
S08, and S12). All these solutions support different context data, which vary from raw
sensor data to personal user information extracted from social networks. Most solutions
do not have third-parties dependencies, except S06, S08, S11, and S13 solutions. These
four solutions depend on specific implementations of OSGi specification2. Once most
of the solutions are implemented as a framework or a middleware platform, the context
management concerns are well modularized. Finally, regarding the cloud integration as-
pect, only a few solutions (S10, S12, and S15) use cloud services to manage context
information, but none of them mention to have support for offloading techniques.

6.2.1.2. LoCCAM

The LoCCAM (Loosely Coupled Context Acquisition Middleware) [Maia et al. 2013] is
a context management infrastructure that adopts the mobile device as the center point
of context acquisition and decision. LoCCAM provides a transparent and self-adaptive
context data acquisition approach, gathering context information both locally and re-
motely from the device. It also uses a novel mechanism to support adaptation in the
way context information is collected and inferred, following the Viana et al.’s defini-
tion [Viana et al. 2011] (see Section 6.2.1). An overview of LoCCAM’s software archi-
tecture is given in the Figure. 6.2. Basically, LoCCAM can be divided into two main
parts: (1) the SysSU (System Support for Ubiquity) module; and (2) the CAM (Context
Acquisition Manager) framework.

The SysSU [Lima et al. 2011] module provides a coordination mechanism based
on tuple spaces and event-based notifications. Such mechanism enhances the coupling

2https://www.osgi.org/developer/specifications/
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Table 6.1. The Context-Awareness Solutions Survey Summary.

ID
Pa

pe
r

R
es

ea
rc

h
Su

bj
ec

t
Ta

rg
et

-P
la

tfo
rm

In
te

ra
ct

io
n

Pa
ra

di
gm

C
on

te
xt

Ty
pe

D
ep

en
de

nc
y

M
od

ul
ar

ity
C

lo
ud

In
te

ra
ct

io
n

S0
1

[M
an

e
an

d
Su

rv
e

20
16

]
M

id
dl

ew
ar

e
A

nd
ro

id
R

eq
ue

st
/R

es
po

ns
e

D
ev

ic
e

C
on

te
xt

–
Y

es
N

o
Ph

ys
ic

al
C

on
te

xt
U

se
rC

on
te

xt
Te

m
po

ra
lC

on
te

xt
S0

2
[D

a
et

al
.2

01
4a

]
Fr

am
ew

or
k

A
nd

ro
id

R
eq

ue
st

/R
es

po
ns

e
D

ev
ic

e
C

on
te

xt
–

Y
es

N
o

Ja
va

SE
Pu

bl
is

h/
Su

bs
cr

ib
e

Ph
ys

ic
al

C
on

te
xt

U
se

rC
on

te
xt

Te
m

po
ra

lC
on

te
xt

S0
3

[D
a

et
al

.2
01

4b
]

M
id

dl
ew

ar
e

A
nd

ro
id

R
eq

ue
st

/R
es

po
ns

e
D

ev
ic

e
C

on
te

xt
–

Y
es

N
o

Ja
va

SE
Pu

bl
is

h/
Su

bs
cr

ib
e

Ph
ys

ic
al

C
on

te
xt

U
se

rC
on

te
xt

Te
m

po
ra

lC
on

te
xt

S0
4

[W
ill

ia
m

s
an

d
G

ra
y

20
14

]
Fr

am
ew

or
k

A
nd

ro
id

Pu
bl

is
h/

Su
bs

cr
ib

e
D

ev
ic

e
C

on
te

xt
–

Y
es

N
o

S0
5

[F
er

ro
ni

et
al

.2
01

4]
Fr

am
ew

or
k

A
nd

ro
id

Pu
bl

is
h/

Su
bs

cr
ib

e
D

ev
ic

e
C

on
te

xt
–

Y
es

N
o

Ph
ys

ic
al

C
on

te
xt

U
se

rC
on

te
xt

Te
m

po
ra

lC
on

te
xt

S0
6

[M
ai

a
et

al
.2

01
3]

Fr
am

ew
or

k
A

nd
ro

id
Pu

bl
is

h/
Su

bs
cr

ib
e

D
ev

ic
e

C
on

te
xt

O
SG

i
Y

es
N

o
M

id
dl

ew
ar

e
Tu

pl
e-

Sp
ac

e
Ph

ys
ic

al
C

on
te

xt
U

se
rC

on
te

xt
Te

m
po

ra
lC

on
te

xt
S0

7
[C

hi
ha

ni
et

al
.2

01
3]

Fr
am

ew
or

k
R

E
ST

fu
l

R
eq

ue
st

/R
es

po
ns

e
Ph

ys
ic

al
C

on
te

xt
–

Y
es

N
o

Pu
bl

is
h/

Su
bs

cr
ib

e
S0

8
[P

un
ja

bi
et

al
.2

01
3]

M
id

dl
ew

ar
e

A
nd

ro
id

R
eq

ue
st

/R
es

po
ns

e
D

ev
ic

e
C

on
te

xt
O

SG
i

Y
es

N
o

Tu
pl

e-
Sp

ac
e

Ph
ys

ic
al

C
on

te
xt

JS
O

N
S0

9
[D

og
du

an
d

So
ye

r2
01

3]
M

id
dl

ew
ar

e
Ja

va
M

E
R

eq
ue

st
/R

es
po

ns
e

Ph
ys

ic
al

C
on

te
xt

–
Y

es
N

o
R

E
ST

fu
l

–
S1

0
[D

ou
ka

s
an

d
A

nt
on

el
li

20
13

]
Fr

am
ew

or
k

Ti
ta

ni
um

R
eq

ue
st

/R
es

po
ns

e
D

ev
ic

e
C

on
te

xt
–

Y
es

Y
es

Pu
bl

is
h/

Su
bs

cr
ib

e
Ph

ys
ic

al
C

on
te

xt
U

se
rC

on
te

xt
Te

m
po

ra
lC

on
te

xt
S1

1
[C

ur
ie

la
nd

L
ag

o
20

12
]

M
id

dl
ew

ar
e

R
E

ST
fu

l
R

eq
ue

st
/R

es
po

ns
e

D
ev

ic
e

C
on

te
xt

O
SG

i
Y

es
N

o
Pu

bl
is

h/
Su

bs
cr

ib
e

Ph
ys

ic
al

C
on

te
xt

U
se

rC
on

te
xt

S1
2

[B
ut

hp
iti

ya
et

al
.2

01
2]

Fr
am

ew
or

k
A

nd
ro

id
Tu

pl
e-

Sp
ac

e
Ph

ys
ic

al
C

on
te

xt
–

Y
es

Y
es

S1
3

[C
ar

ls
on

an
d

Sc
hr

ad
er

20
12

]
Fr

am
ew

or
k

A
nd

ro
id

Pu
bl

is
h/

Su
bs

cr
ib

e
D

ev
ic

e
C

on
te

xt
O

SG
i

Y
es

N
o

Ph
ys

ic
al

C
on

te
xt

U
se

rC
on

te
xt

Te
m

po
ra

lC
on

te
xt

S1
4

[L
ee

et
al

.2
01

2]
Fr

am
ew

or
k

A
nd

ro
id

Pu
bl

is
h/

Su
bs

cr
ib

e
Ph

ys
ic

al
C

on
te

xt
–

Y
es

N
o

S1
5

[M
itc

he
ll

et
al

.2
01

1]
Fr

am
ew

or
k

A
nd

ro
id

Pu
bl

is
h/

Su
bs

cr
ib

e
D

ev
ic

e
C

on
te

xt
–

Y
es

Y
es

Ph
ys

ic
al

C
on

te
xt

U
se

rC
on

te
xt

Te
m

po
ra

lC
on

te
xt

Anais do XXIII Simpósio Brasileiro de Sistemas Multimídia e Web: Minicursos

182



Figure 6.2. The LoCCAM Architecture [Duarte et al. 2015].

between applications and the context acquisition layer. This acquisition layer is based
on software-based sensors called CAC (Context Acquisition Component) and can be
classified into physical or logical ones. The physical CACs are those that only encap-
sulate the access to mobile device sensor information (e.g., accelerometer, temperature,
and luminosity). On the other hand, the logical CACs are those that can use more than
one mobile device sensor and information from other sources (e.g., social networks and
weather service on the Internet) to provide high-level context information. Furthermore,
LoCCAM offers a common vocabulary that allows CACs and applications exchange
context information. Applications subscribe SysSU for the contextual information ac-
cess by publishing their interests using its common vocabulary. Then, LoCCAM tries
to find the more suitable CAC to provide such information. Such communication is
based on the concept of Context Keys. They serve as a shared vocabulary to represent
each type of contextual information that can be accessed. Each Context Key provides
a unique name that must be used by CAC to determine the contextual information it
publishes. This key is used by applications to make subscriptions on SysSU. For ex-
ample, a Context Key that represents the ambient temperature in Celsius scale could be
“context.ambient.temperature.celsius”. To improve the context data se-
lection, applications can use the concept of a filter, which defines a set of fine-grained
selection criteria to precisely select the desired context information.

The CAM framework is divided into two modules: Adaptation Reasoner and CAC
(Context Acquisition Component) Manager. The Adaptation Reasoner is responsible for
maintain the applications subscription list of interest and keep it updated. When any
change occurs in this list, the Adaptation Reasoner builds a reconfiguration plan to adapt
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the context acquisition layer and sends it to the CAC Manager responsible for perform-
ing it. The CAC Manager controls the CAC’s lifecycle using a specific implementation
of OSGi framework3. The CAC Manager can install, uninstall, activate, and deactivate
CACs at runtime, according to the application’s interest regarding a contextual informa-
tion access and the reconfiguration plan. A CAC is only activated when an application
subscribes SysSU asking for specific contextual information provided by such CAC.

6.2.2. Mobile Cloud Computing

Mobile cloud computing is a new paradigm that incorporates three heterogeneous tech-
nologies (mobile computing, cloud computing, and networking) and aims to reduce the
limitations of mobile devices by taking advantage of ubiquitous wireless access to local
and public cloud resources. Such resources are used to augment mobile devices comput-
ing capabilities, conserve local resources, extend storage capacity, and enrich the comput-
ing experience of mobile users.

Several authors have also defined mobile cloud computing:

“Mobile cloud computing is an integration of cloud computing technology
with mobile devices to make mobile devices resource-full in terms of com-
putational power, memory, storage, energy, and context awareness. Mobile
cloud computing is the outcome of interdisciplinary approaches comprising
mobile computing and cloud computing.” [Khan et al. 2014]

“Mobile cloud computing is a rich mobile computing technology that lever-
ages unified elastic resources of varied clouds and network technologies to-
ward unrestricted functionality, storage, and mobility to serve a multitude
of mobile devices anywhere, anytime through the channel of Ethernet or In-
ternet regardless of heterogeneous environments and platforms based on the
pay-as-you-use principle.” [Sanaei et al. 2014]

According to these definitions, the mobile cloud computing model is composed of
mobile devices, wireless networks, and remote servers, where mobile devices use wire-
less technologies to leverage remote servers to execute their compute-intensive tasks or
storage data.

Computation offloading is a popular technique to increase performance and reduce
the energy consumption of mobile devices by migrating processing or data from mobile
devices to other infrastructure, with greater computing power and storage. The concept
of offloading, also referred as cyber foraging, appeared in 2001 [Satyanarayanan 2001]
and was improved in 2002 [Balan et al. 2002], in order to allow mobile devices to use
available computing resources opportunistically.

Migrating computation to another machine is not a new idea. The traditional
client-server model is also widely used for this purpose. In fact, the ideas behind the

3Apache Felix distribution - http://http://felix.apache.org/
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concept of computation offloading date back to the era of dumb terminals that used main-
frames for processing. With the adoption of personal computers (e.g., desktops and note-
books), the need to migrate computation has decreased. Nevertheless, with the advent of
portable devices, a new need for remote computing power has emerged [Dinh et al. 2011].

According to [Verbelen et al. 2012], offloading can be executed on a remote vir-
tual machine-based environment (e.g., public clouds) or on any machine that is in the
same WLAN in which mobile devices are connected to. In the latter case, the remote ex-
ecution environment is known as cloudlet [Satyanarayanan et al. 2009], and its primary
goal is to deliver a better quality of service since Wi-Fi networks are less congested (i.e.,
they have higher speeds and lower latency) than mobile networks.

It is important to highlight that offloading is different from the traditional client-
server model, in which a thin client always migrates computation to a remote server.
Depending on the availability and the condition of the network, which is highly influ-
enced by users’ mobility, offloading may not be possible or advantageous. Therefore, it is
important to state that, in mobile cloud computing, the concept of computation offloading
is usually implemented by a special program structure, or a design pattern, that enables a
piece of code to execute locally on the mobile device or remotely, without impacting on
the correctness of the application [Zhang et al. 2012].

In the next subsections we present a further discussion about the types of mobile
applications and explore the concept of offloading, by addressing the questions How?,
When?, Where? and Why? to perform computation offloading.

6.2.2.1. Types of Mobile Applications

According to [Kovachev et al. 2011], applications for mobile devices can be classified as
offline, online and hybrid. Offline applications, which are also called native applications,
act as fat clients that process the presentation and business logic layer locally on mobile
devices, usually with data downloaded from remote servers. Also, they may periodically
synchronize data with a remote server, but most resources are available locally, rather than
distributed over the network.

Some advantages of native applications are: good integration with features of the
device, optimized performance for specific hardware and multitasking, always available
capabilities, even without Internet access. On the other hand, the main disadvantages
are: they are not portable to other platforms and dependent exclusively on storage and
processing power of the device, which may not be enough to execute certain types of
computation.

Online applications assume that the connection between mobile devices and re-
mote servers is available most of the time. They are usually based on Web technologies
and present a few advantages when compared to offline applications, such as the fact that
they are multiplatform and are accessible from anywhere. Nevertheless, they also present
some disadvantages: the typical Internet latency can be a problem for some types of ap-
plications (e.g., real-time applications), difficulty in dealing with scenarios that require
keeping the communication session opened for extended periods of time, and no access
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to device’s sensors such as camera or GPS.

Hybrid applications are targets of mobile cloud computing and offloading re-
searchers. They can execute locally (as native applications) when there is no connec-
tion to remote servers. However, when there is connectivity between mobile devices and
remote servers, they can migrate some of the computation to be performed out of the mo-
bile device or access web services (as online applications). The idea is to combine the
advantages of online and offline applications.

In the rest of this short-course, we consider only hybrid applications, which are
the ones that can benefit from offloading techniques.

6.2.2.2. Where to Perform Offloading?

Mobile devices use remote resources4 to improve application performance by leveraging
offloading techniques. These remote resources are public cloud, cloudlets or another
mobile device.

Public Cloud

The execution of services in the public cloud is common among mobile appli-
cation developers since they can leverage features such as elasticity and connectivity to
social networks to improve services. Applications such as Gmail and GoogleDocs are
examples of online applications that require smartphones to be connected to the Internet
all the time to be able to access data.

In order to connect to the public cloud, mobile devices can use mobile networks
(e.g., 2G, 3G e 4G) or a Wi-Fi hotspot. Figure 6.3 illustrates a mobile device accessing
an application that relies on Internet connection.

Figure 6.3. Public cloud as remote execution environment.

Cloudlet

The idea of using nearby servers to reduce the connection latency and improve
users’ quality of experience is being used since the emergence of the term cyber forag-
ing, introduced by [Satyanarayanan 2001]. On that time, the authors used servers in the
vicinity to handle the limited capabilities of mobile devices.

The concept of cloudlet is newer and was proposed in [Satyanarayanan et al. 2009]

4In this short-course, when we use terms such as remote servers, remote resources or remote execution
environments, we refer to any real or virtual remote equipment where the computation of mobile devices
can be migrated to.
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also to use resources of servers that are close to mobile devices. The difference is that the
authors have used virtual machines, in a trusted environment, as remote servers. Today,
several studies have used the terms offloading or cyber foraging to indicate that there is a
migration of data and/or computation of mobile devices to another location; as well as the
terms cloudlet and surrogate that have been used indiscriminately to indicate a computer
or cluster of computers directly connected to the same WLAN of mobile devices. Fig-
ure 6.4 illustrates the concept of cloudlets by showing mobile devices and remote servers
connected to the same wireless network.

Figure 6.4. Cloudlet as remote execution environment.

The vision of [Satyanarayanan et al. 2009] is that cloudlets would be conventional
equipment deployed such as access points, which would be located in public areas (e.g.,
cafes, pubs, and restaurants) so that mobile devices could connect via Wi-Fi networks
and perform offloading without facing high latency and the typical variation of Internet
bandwidth.

Other Mobile Device

There is another approach in the literature, commonly referred as “mobile cloud”,
that considers using other mobile devices as the source of resources, especially to perform
a computation. Figure 6.5 illustrates this approach, in which mobile devices are usually
connected using a peer-to-peer network and create a cluster (or cloud) of devices.

The idea behind this solution is to enable people, that are in the same place and
share the same interests, to create a cloud of mobile devices and share their resources
aiming to compute tasks more quickly or reduce energy consumption.

Figure 6.5. Cluster of mobile devices as remote execution environment.

Hybrid Environment

A hybrid environment is composed of two or more of the environments mentioned
above. In Figure 6.6, we can see an example of this type of environment, where a mobile
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device is part of a “mobile cloud” and can perform offloading by leveraging cloudlets and
public cloud as remote execution environments.

Figure 6.6. Hybrid remote execution environment composed of cloudlets, public
cloud and a cluster of mobile devices.

6.2.2.3. Why to Perform Offloading?

Given the limited resources of mobile devices, researchers have mainly used computation
offloading to enhance applications’ performance, save battery power, and execute appli-
cations that are unable to run due to insufficient resources. Therefore, the main reasons
for performing offloading are:

• Improve Performance: when performance improvement (i.e., reduce the execu-
tion time) is the main goal;

• Save Energy: when energy efficiency (i.e., reduce energy consumption) is the main
goal;

• Other: when energy and performance are not the main reasons for performing of-
floading. Instead, the main reason may be to improve collaboration, extend storage
capacity or reduce monetary costs.

6.2.2.4. When to Perform Offloading?

The reasons for performing offloading presented in the previous section are directly re-
lated to the decision of when to offload.

[Kumar et al. 2013] present an analytical model to answer the question “When the
offloading technique improves the performance of mobile devices?”. The model compares
the time to process an application task on a mobile device ( W

Pm
) and the time to transfer

the data and perform the computation out of the device (Du
Tu

+ W
Pc
+ Dd

Td
), either on a public

cloud instance or on a cloudlet. The model considers the following parameters: W is the
total computation to be performed, which may be expressed in MI (million instructions);
Pm and Pc are, respectively, the processing power of the mobile device and the cloud
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(or cloudlet), which may be expressed in MIPS (million instructions per second); Du is
the amount of data sent from the device to the cloud (bytes), while Dd is the amount
of data received by the device (bytes); and Tu and Td are the upload and download rate
(bytes/second) respectively.

W
Pm

>
Du

Tu
+

W
Pc

+
Dd

Td
(1)

Analyzing the model presented in (1), we can see that, to improve performance,
the computation should be heavy (high value to W ) and the communication between mo-
bile device and the cloud should be brief (low value to Du

Tu
+ Dd

Td
), either by transferring

few data, or by having a high throughput.

[Kumar et al. 2013] highlight that increasing the difference between the process-
ing power of mobile devices and clouds does not bring great impact to the decision. This
fact can be observed in (2), when we consider a cloud K times faster than a smart-
phone (Pc = K ·Pm). Clearly, for large values of K, Equation (1) can be simplified to
W
Pm

> Du
Tu

+ Dd
Td

, which means that the time required to transfer the data between mobile
device and cloud has a key role in deciding when to perform offloading. Figure 6.7 de-
picts the trade-off between the amount of communication and computation for deciding
whether or not to perform offloading.

W
Pm
− W

K ·Pm
>

Du

Tu
+

Dd

Td
⇒ W

Pm
·
(

K−1
K

)
>

Du

Tu
+

Dd

Td

⇒ W
Pm

>
Du

Tu
+

Dd

Td

(2)

Figure 6.7. Offloading decision trade-off. [Kumar and Lu 2010]

Other researchers focus on different objectives such as throughput maximization
[Xia et al. 2013], energy saving [Kharbanda et al. 2012], and cost reduction [Kosta et al. 2012].

Regarding energy savings, [Kumar and Lu 2010] list four basic approaches to save
energy and extend the battery lifetime of mobile devices:

1. Adopt a new generation of semiconductor technology. Unfortunately, as tran-
sistors become smaller, more transistors are needed to provide more functionalities
and better performance; as a result, the power consumption actually increases;
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2. Avoid wasting energy. Whole systems or individual components may enter standby
or sleep modes to save power;

3. Execute programs slowly. When a processor’s clock speed doubles, the power
consumption nearly octuples. If the clock speed is reduced by half, the execution
time doubles, but only one-quarter of the energy is consumed. Therefore, executing
applications more slowly is a good option to save energy. That is indeed done in
some smartphone with DVFS to put devices in energy-saving mode. However, it is
important to assess the trade-off between performance and energy saving.

4. Eliminate computation altogether. A mobile device does not perform computa-
tions; instead, the computation is performed somewhere else, thereby extending the
battery lifetime of mobile devices.

The last approach can be realized by using offloading techniques to migrate com-
putations from mobile devices to remote servers. We refer to [Magurawalage et al. 2014]
for an energy savings analytical model for answering the question “When the offloading
technique saves energy of mobile devices?”.

Regardless of the reasons that motivate the use of offloading mechanisms, the solu-
tions also differ regarding the Offloading Decision, which is related to how an offloading
solution decides when to perform offloading. In short, the offloading is called:

1. Static: when the developer or system defines prior to execution (at design or instal-
lation time) what parts of the application should be offloaded and to where;

2. Dynamic: when the framework/system decides at runtime which parts of the ap-
plication should be offloaded and where to offload, based on metrics related to the
current condition of the network, mobile devices, and remote server.

6.2.2.5. What to Offload?

When the application is not available on a remote server, there is a need to migrate parts
of (or the whole) application to the server along to the computation request and input
data. In order to separate the intensive mobile application components that operate inde-
pendently in the distributed environment, a partitioning procedure can be used to partition
the application at different levels of granularity [Liu et al. 2015].

Partitioning of an application can be done automatically by the offloading system,
or it can be provided by developers using a code markup (e.g., annotations on Java pro-
gramming language). In the latter case, developers add some kind of syntactic metadata to
the application source code to identify the components that are candidates to be offloaded.
This markup process is usually done by applications’ developers at the design phase and
involves examining the complexity and dependency of methods.

Several strategies to perform offloading were proposed in the literature, and they
differ in relation to which parts of the application are sent to be executed out of mobile
devices. Thus, the parts of applications that are most commonly offloaded are as follows:
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• Methods: when methods are used to partition the application (e.g., remote proce-
dure calls);

• Components/Modules: when entire modules or components of an application are
executed on another resource execution environment. It involves using specific
frameworks for designing and developing modular applications (e.g., OSGi) or just
a group of classes that may or may not be coupled;

• Threads: when threads of an application are migrated between mobile devices
and remote execution environments. It usually involves performing changes on the
Android virtual machine (DalvikVM);

• Whole Application: when virtualization techniques are used to run clones of mo-
bile devices and the entire state of the application process is migrated and executed
out of mobile devices (e.g., in a virtualized clone device). In this case, a synchro-
nization module is usually required for keeping the applications running on mobile
device and clone updated, by replicating all changes.

It is common for mobile applications to interact with sensors embedded in mobile
devices (e.g., GPS and camera), thus, offloading the whole application may be imprac-
tical. That is why [Cuervo et al. 2010] defend that a fine-grain strategy leads to large
energy savings as only the parts that benefit from remote executions are offloaded.

6.2.2.6. How to Perform Offloading?

There is no unique answer to the question “How to perform offloading?”. In fact, several
offloading frameworks/systems/middlewares have been proposed to address such ques-
tion, and they usually differ regarding What?, Where?, When? and Why? to perform
offloading.

Existing offloading solutions have applied various strategies and mechanisms to
handle steps of the offloading process, such as cloudlet discovery, resources profiling,
application partitioning and offloading decision [Sharifi et al. 2012]. Since the strategies
used are quite varied, we have performed a literature review that helped us to identify the
common approaches used for performing offloading and also have allowed us to create a
taxonomy to assist in the classification of related works.

The categories of the taxonomy related to the question “How to perform offload-
ing?” are discussed below:

Method Annotation: when an offloading solution supports granularity of methods and
some type of syntax for marking methods is used to identify the methods prone to
be offloaded:

1. Yes: when syntactic metadata is added to the application source code. The
annotation is usually done by developers at design phase, and involves exam-
ining the complexity and dependency of methods;
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2. No: when there is no annotation or when the framework uses a profiler compo-
nent to collect information and annotate the relevant methods in an automatic
fashion.

Decision Module Location: the module responsible for decision-making usually exe-
cutes compute-intensive operations to decide when and where to perform offload-
ing, which inevitably consumes resources of the mobile device when the module is
executed locally. Despite the computation cost reduction when executing the de-
cision module out of a mobile device, this solution imposes more communication
costs, which is a clear trade-off that must be considered.

1. Mobile Device: when compute-intensive operations of the decision module
are executed on mobile devices;

2. Remote Execution Environment: when compute-intensive operations of the
decision module are executed out of mobile devices.

Decision Module Features: regards approaches and techniques used by a decision mod-
ule.

1. Online Profiling: when the decision module uses measurements (collected at
runtime) of different metrics of the environment, network, and application to
improve the offloading decision;

2. Historical Data: when the solution collects and uses historical data to im-
prove the decision module.

Metrics Used for Decision: regards the metrics considered by a decision module for de-
ciding when and where to offload.

1. Based on hardware: when the solution uses metrics related to the hardware
of mobile devices and remote servers (e.g., memory, CPU, battery);

2. Based on software: when the solution uses metrics related to the software of
mobile devices and remote servers (e.g., size of data that will be transferred,
execution time, code size or complexity, interdependence between modules or
components);

3. Based on network: when the solution uses metrics related to network condi-
tions (e.g., connection type, latency, jitter, packet loss, Wi-Fi signal strength,
throughput).

Supported Platform/Programming Language: regards mobile platforms and program-
ming languages supported by a solution.

1. Android;

2. Windows Phone;

3. iOS.

Discovery Mechanism: considers whether a solution uses any mechanism for discover-
ing remote execution environments (usually cloudlets or other mobile devices).
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1. Yes: when a solution automates the remote execution environment discovery;

2. No: when the address of a remote execution environment is somehow pro-
vided in advance by developers or when a DNS-based service discovery is
used.

6.2.2.7. Taxonomy

During the literature review that we have performed, we identified several approaches
used in offloading solutions. Then we categorized such approaches in groups based on
the questions What?, Why?, When?, Where? and How? to perform offloading. Inspired
by those questions and also in [Sharifi et al. 2012] and [Liu et al. 2015] taxonomies, we
propose a taxonomy for offloading solutions.

Figure 6.8 depicts the proposed taxonomy, which is based on the aforementioned
questions about offloading. Therefore, What? is related to the offloading granularity
discussed in Section 6.2.2.5, Why? is related to the offloading objective discussed in
Section 6.2.2.3, When? is related to the offloading decision discussed in Section 6.2.2.4,
while Where? is related to the remote execution environments discussed in Section 6.2.2.2
and How? is related to all categories discussed in Section 6.2.2.6.

Figure 6.8. Taxonomy for offloading solutions.
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6.2.2.8. Solutions

Several solutions have been developed in response to the challenges offered by MCC. In
this section, we present some of these solutions, and we use the proposed taxonomy to
classify them.

Regarding the offloading granularity, solutions like eXCloud [Ma et al. 2011] and
MECCA [Kakadia et al. 2013] perform offloading of the whole application by leveraging
virtualization techniques to run a clone of the mobile device. eXCloud uses a compact
version of the Java virtual machine, called JamVM, and migrates the state of the appli-
cation by transferring the Java virtual machine stack from the mobile device to its clone,
which is running on the cloud. MECCA supports the Android platform and migrates an
entire application process to a clone and allows the user to access the screen of the device
using VNC (Virtual Network Computing).

Other solutions like µCloud [March et al. 2011] and MACS [Kovachev et al. 2012]
perform offloading of modules/components of the application. Such solutions usually re-
quire the use of specific frameworks for designing and developing modular applications
(e.g., OSGi and Android Services). For instance, to use MACS, developers have to design
their applications using standard Android services, where the compute-intensive compo-
nents must be implemented as services. Since Android services use inter-process commu-
nication channels to perform remote procedure call, MACS intercepts the requests sent to
the services and decide whether the request must be executed on local or cloud services.

CloneCloud [Chun et al. 2011] and COMET [Gordon et al. 2012] are examples
of frameworks that perform offloading of threads, which usually involves modifying the
Android virtual machine to allow the seamless transfer of application’s threads. Both
solutions require a modified version of the Android operation system and also a clone of
the mobile device running on the cloud.

The works that implement offloading of methods usually leverage techniques like
Java Annotations to allow developers to identify the methods that are candidates to be
offloaded. MAUI [Cuervo et al. 2010] is a framework developed in .NET for Windows
Phone 6.5 that uses remote procedure calls to execute methods outside of mobile devices.
MAUI uses an approach based on a proxy to intercept methods and redirect them to a
server running on the cloud. On the other hand, Scavenger [Kristensen and Bouvin 2010]
is a framework developed in Python that uses annotation of methods (using the concept
of Python Decorators), and its decision module uses online profiling and historical data
analysis to decide whether a method must be executed on mobile device or cloud.

The solutions AIOLOS [Verbelen et al. 2012], ThinkAir [Kosta et al. 2012], and
ARC [Ferrari et al. 2016] use methods as offloading units, and they were developed for
the Android platform. AIOLOS relies on code refactoring to generate OSGi components
for a mobile application at building time. Despite executing OSGi components on the
cloud, the decision of when to offload is based on methods provided by the components.
On the other hand, ThinkAir relies on Java annotations to identify the methods that can
be offloaded and allow such methods to be executed in parallel on multiple servers; while
ARC is a framework where a method can be opportunistically offloaded to any available
device that can be accessed through the wireless LAN (i.e., other mobile device or a dedi-
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cated server, such as in the cloudlet concept). MpOS [Costa et al. 2015][Rego et al. 2016]
is a framework that also uses methods as offloading units, but it can be used to develop
Android and Windows Phone applications. The framework was developed in our research
group and is discussed in more detail in the next section.

Regarding the remote execution environment, most works perform offloading to
cloudlets or cloud environments (e.g., eXCloud, MpOS, ThinkAir, µCloud, CloneCloud,
AIOLOS, MAUI, Scavenger). ARC and DroidCloudlet [El-Derini et al. 2014] are some
of the solutions that use mobile devices as remote execution environments. In Droid-
Cloudlet, the authors propose the creation of a mobile cloud of Android devices that can
be used to improve performance and save energy of a device by offloading methods to
other devices.

Regarding the offloading decision, µCloud uses static decision, while the other
mentioned solutions support dynamic decision. Besides that, the solutions have different
offloading objectives. While MpOS, COMET and eXCloud only focus on improving the
performance of mobile applications; and Scavenger and µCloud only care about saving
energy, ThinkAir, CloneCloud, DroidCloudlet, and AIOLOS consider both objectives
(e.g., by solving multi-objective optimization problems).

6.2.2.9. MpOS

MpOS (Multiplatform Offloading System) is a framework for developing mobile appli-
cations that support offloading of methods for Android and Windows Phone platforms.
MpOS was developed to address the lack of an offloading solution for multiple platforms,
and its main goal is to improve performance.

To use MpOS, developers must mark the methods that can be executed out of
the mobile device, and they can choose whether the offloading decision will be static or
dynamic. If the dynamic offloading is defined, the Offloading System (illustrated in the
Figure 6.9) checks if it is worthwhile to perform the offloading operation before sending
the method to the remote server. Otherwise, when the static offloading is defined, MpOS
verifies only if the remote server is available before performing offloading. In order to
decide when to offloading, the decision module uses metrics (e.g., latency, download, and
upload rate) that are online collected by the Network Profiler module.

Figure 6.9. Overview of MpOS main components

MpOS has a Discovery Service that uses a multicast-based discovery mechanism

Anais do XXIII Simpósio Brasileiro de Sistemas Multimídia e Web: Minicursos

195



to identify nearby servers (cloudlets) and applications already running on the remote
server. If the application is not running on the server, MpOS automatically sends the
application and all dependencies to the remote server by means of the Deployment Ser-
vice. All deployed applications are handled by the Remote Execution Environment (REE)
module, which instantiates the applications in different endpoints. In order to support
multiple platforms, MpOS provides Android and Windows Phone REEs, which run Java
and C# code respectively. Once an application is instantiated on the REE, the mobile de-
vice can directly access the application’s endpoint and perform offloading. More details
about MpOS can be found in [Costa et al. 2015] and [Rego et al. 2016].

6.2.3. Context-Aware and MCC Integration

The advances in mobile computing have made the use of contextual information increas-
ingly present in today’s mobile applications. The adaptation of the applications according
to contextual situations will improve the users’ quality of experience while running the
most diverse applications. However, as mentioned earlier in this document, the inference
process of the user’s contextual situation requires processing and data resources that may
sometimes be unsuitable for processing locally on mobile devices.

This issue also occurs when the multimedia data is required to infer users’ con-
textual situation. The use of complex data such as video, audio or images for determining
the current context is pointed out as a future trend for mobile applications, but also brings
processing requirements that become a problem for mobile computing environments with
uncontrolled characteristics due to resource scarcity, low storage capabilities, intermittent
connectivity, and power constraints.

In this sense, computing and data offloading fits like a glove to allow the integra-
tion of more advanced techniques for contextual inference (such as the use of machine
learning algorithms, among others), while also allowing performance gains and energy
savings for mobile devices.

It is important to notice that many research projects and reports that address the
integration between Context-aware Mobile Computing and Mobile Cloud Computing use
“context” as the situation in which a mobile application is running (network condition,
remaining battery and/or size of parameters data) to decide whether is worthy to migrate
data or processing to the cloud. This document presents a different point of view. We
focus on how the management of contextual information may be enhanced (for instance,
better or faster inference procedures) with the help of cloud services.

According to [Naqvi et al. 2013], the use of cloud services by context-aware mo-
bile applications is a future trend with no turning back, even with the lack of reports about
how this integration should be made. Once adaptation processes are becoming more and
more complex, context analysis requires appropriate and robust services.

According to a brief literature review, a few solutions seek to integrate the man-
agement of contextual information with concepts of Mobile Cloud Computing, or even
just cloud computing.

One of these is the CARMiCLOC [Aguilar et al. 2015], a reflexive middleware
architecture based on autonomic computing, which uses cloud services to provide scal-
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ability, self-adaptability, integration, and interoperability of context-aware applications.
CARMiCLOC uses reflection to inspect its state and ensures a dynamic behavior of its
operation. However, the use of cloud resources is restricted only to the storage of the
contextual data obtained by sensors. Despite its merit, the cloud potential is underutilized
in the proposal, because cloud resources are not used for data processing remotely in the
Cloud.

[OSullivan and Grigoras 2016] presents CAMCS (Context Aware Mobile Cloud
Services), a mobile cloud middleware solution that has been designed to deliver cloud-
based services to mobile users while respecting the goal of providing an integrated user
experience of mobile cloud applications and services. CAMCS supports the application
partitioning, where some functionalities run on cloud services. Integration with contex-
tual management services uses a component called Context Processor. This component
can promote the customization of actions to be taken by the applications, which is per-
formed by other component called Cloud Personal Assistant (CPA). CPA can perform
task processing in the cloud on behalf of the user, asynchronously. CAMCS allows the
use of historical data and ontologies, which are still prohibitive on mobile devices, due to
their intensive processing.

6.2.3.1. Motivating Scenarios

In order to present some examples where context-aware mobile computing and MCC
may improve the user experience, this subsection presents some possible scenarios for
such integration.

Crowdsensing. Mobile crowdsensing refers to an approach where a large group
of people uses mobile devices capable of sensing and computing (such as smartphones,
tablet computers, wearables) to collectively share data and extract information to measure,
map, analyze, estimate or infer (predict) processes of common interest[Liu et al. 2016].
This situation may enable to detect some contextual situations based on shared data from
multiple users. MCC can improve this aggregation and processing of contextual sit-
uations based on hierarchies, for example, by aggregating contextual data from users
connected to the same cloudlet, and infer some contextual situations in a collaborative
way[Xiao et al. 2013][Gomes et al. 2016].

Healthcare and Well-being. With the advancements and increasing deployment
of microsensors and low-power wireless communication technologies, the studies con-
ducted on healthcare domain have grown, particularly the studies regarding the recogni-
tion of human activities. In this case, information corresponding to human postures (e.g.,
lying, sitting, standing, etc.) and movements (e.g., walking, running, etc.) can be inferred
in order to provide useful feedbacks to the caregiver about a patient’s behavior analy-
sis [Yurur et al. 2016]. Recognizing such activities depends on monitoring and analyzing
contextual data such as vital sign (e.g., heart rate, pressure level, and respiration rate),
which might be aggregated by mobile devices. MCC can improve the execution and save
energy of mobile devices when offloading the compute intensive operations required to
recognize complex events.

Augmented Reality. A typical mobile augmented reality system comprises mo-
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bile computing platforms, software frameworks, detection and tracking support, display,
wireless communication, and data management [Chatzopoulos et al. 2017]. Contextual
data is important for providing information about the user’s environment, which might be
used to present personalized content and improve user’s experience. The problem is that
vision-based applications are almost impossible to run on wearables and very difficult on
smartphones since they require capable GPUs [Pulli et al. 2012]. MCC can, therefore, be
used to offload the execution of heavy computations to a powerful remote device.

6.3. Context-Aware and Offloading System (CAOS)
CAOS is a software platform that assists developers to create context-aware applications
for the Android platform and provides offloading mechanisms to delegate the migration
of methods and contextual data from mobile devices into cloud platforms. CAOS is
based on two solutions: (1) LoCCAM (Loosely Coupled Context Acquisition Middle-
ware) [Maia et al. 2013], a middleware that helps context-aware applications developers
to get information from sensors, as well as to separate questions related to contextual in-
formation acquisition from the applications business logic; and (2) MPoS (Multiplatform
Offloading System) [Costa et al. 2015][Rego et al. 2016], a service-oriented architecture
that enables developers to mark methods on their applications using annotations, in order
to identify which methods can be transferred to cloud servers instead of being executed
on the mobile device.

In order to conceive CAOS, we surveyed frameworks and middlewares that sup-
port both context-aware and offloading features. This survey provides us an insight of
good design decisions that were used to build CAOS. According to these design princi-
ples, we designed a software architecture that supports both method and data offloading
into cloud infrastructures. We implemented a prototype of CAOS, and we conducted
experiments to evaluate its impact on performance and energy consumption of Android
applications [Gomes et al. 2017].

Before showing how to use CAOS to develop context-aware Android applications,
the next section introduces CAOS architecture and main components.

6.3.1. Architecture and Components

CAOS rests on a traditional client/server architecture, where mobile devices act as clients
for services running on the top of cloud/cloudlets infrastructures. Figure 6.10 shows the
CAOS architecture where its main components are divided into two groups: mobile side
and cloud side components.

6.3.1.1. The Mobile Side

CAOS mobile side is composed by 10 (ten) components: CAOS (which is responsible for
synchronizing the startup of other components of the mobile side), Offloading Monitor,
Offloading Client, Discovery Client, Authentication Client, Profile Monitor, Offloading
Reasoner Client, Context-Acquisition Middleware, Tuple-Space Based Context-Bus and
Context Synchronizer. Each one of these components is detailed as follows.

The Discovery Client component uses a mechanism based on UDP/Multicast com-
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Figure 6.10. Overview of CAOS main components

munication to discover CAOS Controllers running in the user’s local network (i.e., cloud-
lets). Once the Discovery Client detects a CAOS Controller, the Authentication Client
authenticates the mobile application and sends device data to the cloud side to keep the
list of devices attached to a specific CAOS Controller.

In CAOS, application’s methods can be marked by developers with a Java annota-
tion @Offloadable, which denotes that those methods can be executed out of the mobile
device. The Offloading Monitor is the components responsible for monitoring the appli-
cation execution and intercepting the execution flow whenever an annotated method is
called. After intercepting the method call, the Offloading Monitor asks the Offloading
Reasoner Client module whether it is possible to start the offloading process or not.

The Offloading Reasoner Client assists the offloading decision using a decision
data-structure that is asynchronously received from the Offloading Reasoner Service. In
CAOS, the decision whether is worthy or not to offload a method is performed in two
steps: one at the cloud side, and another on the mobile side. The cloud side keeps receiv-
ing profiling data from each mobile device connected to its infrastructure and creates a
two-class decision tree [Rego et al. 2017] with the parameters that should be considered
to decide if it is worth to offload a method, such as latency, parameters types, and so on.
Once the decision tree is created or updated, it is sent to the mobile device, so the Of-
floading Reasoner Client only has to enforce the decision based on current values of the
monitored data and the decision tree structure.

Figure 6.11 presents an example of offloading decision tree for a dummy applica-
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tion. In this example, if the upload rate is equal to 200 Kbps and RTT is equal to 100 ms,
the method Bar must be executed locally. Moreover, in all cases the method Foo must
be executed on the remote server.

Figure 6.11. Example of offloading decision tree. [Rego et al. 2017]

By using the received data structure, the Offloading Monitor can decide locally
when it is worth performing offloading. If the answer is negative, the method execution
flow is resumed, and its execution is performed locally. Otherwise, when the answer
is positive, the Offloading Monitor requests the Offloading Client to start the method
offloading process, which in turn transfers the method and its parameters to the Offloading
Service in the cloud side.

The Profile Monitor component is responsible for monitoring the mobile device
environment (e.g., network bandwidth and latency, power and memory status) and sends
such information periodically to the Profile Services, which will be used in the Offloading
Reasoner Service (cloud side), that generates the offloading decision tree based on the
mobile device information and then sends it back to the Offloading Reasoner Client.

The Context-Acquisition Middleware component is a new version of the former
CAM component in the LoCCAM framework, which has been adapted for this project.
The original component has been extended to provide a better integration with cloud/-
cloudlets. A new optimized manager was built from the scratch to control CAC’s lifecy-
cle, removing OSGi dependency.

This component manages the software-based sensors lifecycle (i.e., search, de-
ploy, start and stop) that encapsulates how context information is acquired. These sensors
are called Context Acquisition Component - CAC and can be classified into physical or
logical ones. The physical CACs are those that only encapsulate the access to mobile de-
vice sensor information (e.g., accelerometer, temperature, and luminosity). On the other
hand, the logical CACs are those that can use more than one mobile device sensor and
information from other sources (e.g., social networks and weather service on the Internet)
to provide high-level context information. This middleware also provides an API to build
new CACs and incorporate them into new and existing applications.

All context information acquired by CACs is stored in the Tuple-Space Based
Context-Bus module, which is a new version of the former SysSU module. The Tuple-
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Space Based Context-Bus stores the context information in a tuple-based format and de-
liver such information to applications using event notification via a contextual event-bus.
This new version has a new feature, the Tuple-Space Based Context-Bus that stores more
than one tuple for a particular sensor, creating a list of samples. The initial version of
SysSU stored only the last collected sample, overlapping the previous one. This feature
may improve inferences using a larger amount of contextual data.

All context information of each mobile device connected to a CAOS Controller
is sent to the Context Service (cloud side) to keep a database of contextual information
history. The idea is to explore the global context (i.e., the context of all mobile devices) to
provide more accurate and rich context information. The Context Synchronizer exchanges
contextual data between the mobile and the cloud sides. This data migration is important
because, in CAOS, filters can be performed in both local context information repository
(Tuple-Space Based Context-Bus) and global context repository (Context Service). If an
application has an @Offloadable marked method that accesses context information using
the filter concept; it can benefit itself from the offloading process to access the global
context repository. This can be done using two filters: one to be executed locally (on the
mobile device) and another that runs in the global context repository when the method
is offloaded to the cloud. The decision of which filter will be executed is performed
automatically by CAOS.

6.3.1.2. The Cloud Side

The CAOS cloud side is composed by 11 (eleven) components: Discovery Service, Profile
Services, Authentication Service, Offloading Reasoner Service, Offloading Service, VM
Pool Manager, VM Apk Manager, VM Status Manager, VM Offloading Executor, Context
Service, and Offloading Method Invocation Service.

The Discovery Service provides correct endpoints information so that clients can
access CAOS services. The Authentication Service is responsible for saving device in-
formation and controlling which devices are currently connected to the CAOS Controller.
The Profile Services is a set of services which receives device monitored data related to
the network quality and local execution time of offloadable methods, in order to keep
historical records of executed methods. These records will be used during the offloading
decision tree creation process.

The Offloading Reasoner Service is responsible for processing the mobile device
profile data and creating the decision tree that will be used by the Offloading Reasoner
Client component (on the mobile side) to decide about the offloading process execution.
The Offloading Service receives offloading requests directly from Offloading Client and
redirects them to the VM Pool Manager. When the offloading process finishes, the Of-
floading Service returns the result to the Offloading Client and persists offloading infor-
mation.

In CAOS, offloaded methods are executed on Android Virtual Machines running
on traditional x86 machines. The VM Pool Manager component is responsible for provid-
ing an environment that redirects offloading requests to a proper Android Virtual Machine
where the offloading execution happens. In order to run a method from a specific applica-
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tion, CAOS requires that the corresponding deployment packages (a.k.a. APK) of CAOS
compliant applications must be stored in a special folder on the CAOS platform. The VM
Apk manager pushes all APK files to all reachable Android Virtual Machines listed in
this special folder. The VM Status Manager is responsible for monitoring and maintain
information (e.g., the current number of offloading executions) about each virtual ma-
chine managed by the VM Pool Manager in a repository. The VM Offloading Executor
component is responsible for requesting the offloading execution in an Android Virtual
Machines calling the Offloading Method Invocation Service, which runs on the virtual
machine and performs the offloading method execution.

The Context Service acts like a global context repository, and stores all context
information data sent from all mobile devices connected to the CAOS Services. It main-
tains this context information in a NoSQL database and provides a proper interface that
can be used by logical CACs to access this information to generate high-level context
information for an application running on the mobile device.

Related to our architecture, it is possible to store the private contextual data in
special cloudlet, called Gateway. In short, a Gateway is a cloudlet with privacy policies
where its data are chosen by each user to be sent to Cloud or not. This approach filters
all information that the user does not want to share with other users, but wants to use for
personal purposes. This information is stored in a gateway, but not sent to the cloud.

6.3.1.3. Implementation Details

The technologies employed in the CAOS reference implementation are described in the
following. In the mobile side, the CAOS modules were implemented using the Android
SDK on Android Studio IDE. The Couchbase (a NoSQL database) was adopted to main-
tain a local cache of context information history to be offload to a remote side follow-
ing the CAOS context data offloading strategy. The Bouncy Castle encryption API was
chosen to improve the CAOS wireless communication security. The JCoAP (Java Con-
strained Application Protocol) was adopted as a protocol to achieve the standardization
level requested by the project sponsor.

In the cloud/cloudlet side, the CAOS Controller modules were implemented us-
ing Java SE/EE and deployed on Apache TomCat web container. All server side services
were implemented as RESTful Web services using the Jersey framework. All data in
CAOS Controller are stored in a PostgreSQL database using the Hibernate framework.
The Context Service stores the context tuples on a MongoDB (a NoSQL database). The
VirtualBox hypervisor technology was employed in the Android environment virtualiza-
tion in the server side using an ISO Android x86 version (4.4.2) Kitkat.

6.3.2. CAOS Study Case

This section presents the steps required to develop a context-aware multimedia Android
application with offloading capability, called MyPhotos. Such application allows users
to apply filters to their photos and share them on social networks along with hashtags, to
make it easier to search for them. Also, photos can be tagged with contextual information,
such as location, date and time at which they were captured. MyPhotos uses CAOS to
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offload methods related to image filters execution and contextual data into CAOS servers.
The CAOS server will then enable MyPhotos to recommend hashtags for photos with
similar context, by leveraging contextual data offloaded by other users.

MyPhotos has two image filters that can be applied to a photo: Simple and Com-
plex. The former applies a RedTone filter. The latter is more compute intensive than
Simple because produces a cartoonized version of the image, where the new photo looks
like a pencil sketch, as depicted in Figure 6.21. MyPhotos’s main screen also shows the
time elapsed for the last filter execution.

Figure 6.12. MyPhotos main screen

6.3.2.1. Preparing CACs for MyPhotos

The first step in the MyPhotos development process it to implement the CACs that provide
the contextual data needed for the application. Two CACs need to be developed: the
first CAC provides the location of the mobile device, while the second encapsulates a
logical sensor. This second CAC uses the contextual data from the first CAC and provides
two values: the hashtags produced by the user and the location/time at which they were
produced.

Figure 6.13 illustrates the steps required to create a CAC.

Firstly, we need to configure the development environment in a Linux operating
system, by downloading a shell script that was developed to create the main structure
of a CAC project. This script generates a Maven 5 project, which can be edited in any
development environment, and has the required settings for a CAC and all methods that
need to be implemented.

5https://maven.apache.org
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Figure 6.13. Overview of the CAC creation process

The script is called mavenbuild.sh. Ideally, it should be in the PATH setting
of the operating system, so that developers can create CACs easily in any folder. The
script requires two parameters: the CAC name and the project package.

The second step is to run the script and create the CAC project. Figure 6.14 shows
an example of how to use the script to create the first CAC.

Figure 6.14. Example of how to create a CAC project.

Figure 6.15 shows a tree view of the CAC project folder. We can see that there is a
file called pom.xml, which is where Maven project developers should place the project
dependencies and other parameters (e.g., the project version). Two folders, main and
test, have been created, and a package with the name that was passed as a parameter
when launching the script. In the main folder, the CAC main class has the same name as
the project, and it is in such file that the CAC must be configured and its required methods
must be implemented. In the test folder, the main class is used to perform unit tests in
the project.

In CAOS, once the CAC project is created, the developer must write the neces-
sary codes (step 3). To configure a CAC, it is necessary to configure some parameters
that will be used by CAOS. The main parameter of the CAC is the ContextKey (CK),
which informs the type of contextual data that it provides. For the first CAC, CK was
defined as “context.device.location”. This CAC provides contextual data about latitude
and longitude of the mobile device’s location. For the second CAC, CK was defined as
“context.ambient.hashtags”.

The hashtags CAC is designed so that whenever the user of the MyPhotos appli-
cation enters with hashtags, they produce contextual data containing the location of the
mobile device and hashtags. Thus, the hashtags CAC performs a subscript of the pro-
duced hashtags, reads the device’s location and provides a new contextual data with both
information.

The last step is to generate the CAC, which consists of generating a JAR file con-
taining all class files. This JAR file must be sent to a specific folder on the mobile device
so that the CAC begins to provide contextual data according to applications’ interest (see
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Figure 6.15. Tree view of the CAC project folder.

Figure 6.16).

Figure 6.16. Generate the CAC

6.3.2.2. Developing MyPhotos

Once the CACs are built, we can implement MyPhotos. However, due to space con-
straints, we cannot show all steps and codes required for developing the application. Thus,
we will consider that the basic code is already developed6 and that we still need to config-
ure MyPhotos, so it is able to perform offloading using CAOS. Figure 6.17 illustrates all
steps a developer must follow to configure MyPhotos (or any application) to use CAOS.

6MyPhotos source code is available at: http://caos.great.ufc.br.
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Figure 6.17. Overview of the CAOS development process

The first step (I) is to add the CAOS library to the set of libraries of the Android
application project. The library contains CAOS API and TS Context API, which will be
used at build time.

After including the CAOS library to the set of libraries of the MyPhotos project,
we need to mark the methods that can be offloaded with @Offloadable annotation
(step II). The Effect interface has two methods to apply different image effects to pic-
tures. The methods simple and complex (respectively, lines 3 and 6 in Listing 6.1)
are marked with the offloading markup (respectively, lines 2 and 5 in Listing 6.1), so the
Offloading Monitor component will intercept the execution flow of these methods and
decide whether the methods must be executed locally or out of the mobile device.

1 public interface Effect {
2 @Offloadable
3 public byte[] simple(byte source[]);
4
5 @Offloadable
6 public byte[] complex(byte source[]);
7 ...
8 }
9 public class ImageEffect implements Effect {

10 public byte[] simple(byte source[]){ ... }
11 public byte[] complex(byte source[]){ ... }
12 }

Listing 6.1. MyPhotos Interface Effect Markup.

The markup process also has to be performed for the interface responsible for of-
floading contextual data. The Read interface contains the method that retrieves data, and
the concrete class ReadHashtags implements this interface and all processing related
to the data.

1 public interface Read {
2 @Offloadable
3 public String readHashTags(double latitude, double longitude,

double intervalTime, double intervalLocation);
4 }
5
6 public class ReadHashtags implements Read {
7 public String readHashTags(double latitude, double longitude,

double intervalTime, double intervalLocation){ ... }
8 }

Listing 6.2. MyPhotos Interface Read Markup.

In the next step (III), we need to mark the main class of the MyPhotos applica-
tion (MyPhotosActivity.java) with the @Caos markup (e.g., Listing 6.3, line 1)
and we configure CAOS services to start and stop along with the application. We start
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CAOS in the onCreate method and stop it in the onDestroy method, as illustrated in
Listing 6.3, lines 16 and 24 respectively.

It is also necessary to declare the interests of the application regarding contextual
data (step IV). Thus, we define MyPhotos interest in Location in Listing 6.3 line 31, while
in line 32 we define the interest in Hashtags.

1 @Caos
2 public class MyPhotosMainActivity extends Activity implements CaosContextListener {
3
4 @Inject(ImageEffect.class)
5 private Effect effect;
6 @Inject(ReadHashtags.class)
7 private Read read;
8 ...
9 String CK_TAGS = "context.ambient.noise";

10 String CK_LOCATION = "context.device.location";
11 ...
12 @Override
13 protected void onCreate(Bundle bundle) {
14 ...
15 Caos caos = Caos.getConfig().getInstance();
16 caos.start(this, this);
17 ...
18 }
19 ...
20 @Override
21 protected void onDestroy(Bundle bundle) {
22 ...
23 Caos caos = Caos.getConfig().getInstance();
24 caos.stop(this);
25 ...
26 }
27 ...
28 @Override
29 public void onServiceConnected(ISysSUService service) {
30 try {
31 caos.putInterest(CK_LOCATION);
32 caos.putInterest(CK_TAGS);
33 } catch (RemoteException e) {
34 e.printStackTrace();
35 }
36 }
37 }

Listing 6.3. Application initialization code for Android.

Finally, when all steps are done, we can build the MyPhotos project and generate
the APK file (V). Then, the APK can be installed in the mobile device and also sent to
the CAOS server, in order to support offloading of MyPhotos methods (such step will be
explained in the next section).

6.3.2.3. Configuring CAOS Services

In this section, we present how to configure CAOS Services on mobile and cloud sides.

On mobile side

In order to run CAOS on the mobile side, we need to the install the application
CAOS. This application acts as an service, in which contextual data synchronization poli-
cies are configured as well as the privacy settings of such data. Figure 6.18 shows screen-
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shots of the CAOS application.

Figure 6.18. Screenshots of the CAOS application running on mobile device

The JAR file of each CAC must be sent to a specific mobile device folder, so the
CAOS application can manage the CACs and control their use. In sum, all CACs stored in
the /storage/emulated/0/Android/data/br.ufc.great.caos/files/
components folder of the mobile device are loaded and their privacy setting are man-
aged by CAOS. The user can then use the application to configure the privacy level of
each CAC.

On cloud side

In order to run CAOS Services, we need to the install Android SDK, MongoDB,
TomCat server, PostgreSQL server, and VirtualBox in a machine running any operating
system. After installing the Android SDK, we need to include the ADB (Android Debug
Bridge) tool into the PATH variable of the system. Thus, the CAOS controller can manage
the pool of Android x86 virtual machines using ADB.

After installing the mentioned applications, the next step is to install the Android
x86 operating system in a virtual machine with at least 512 Mb of RAM and 1 GB hard
disk. Android x86 is a project that aims to port the Android open source project to the
x86 platform. In their website, we can find ISO images for different Android versions,
but we recommend to use the 4.4.3 version. Once the Android x86 is installed in a virtual
machine, we need to install the ApkLoader application on it, in order to run the Offloading
Method Invocation Service.

We need to configure a few properties before executing the CAOS controller. First,
the database credentials have to be included in the persistence.xml file (as illus-
trated in Listing 6.4). We need to set IP, database name, username and password in the
file according to the PostgreSQL configuration.
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<persistence ... version="2.0">
<persistence-unit name="caos" transaction-type="RESOURCE_LOCAL">
<provider>org.hibernate.ejb.HibernatePersistence</provider>
<properties>
<property name="javax.persistence.jdbc.url" value="jdbc:postgresql://<IP>/<DB>"/>
<property name="javax.persistence.jdbc.driver" value="org.postgresql.Driver"/>
<property name="javax.persistence.jdbc.user" value="<USER>"/>
<property name="javax.persistence.jdbc.password" value="<PASS>"/>
...

</properties>
</persistence-unit>

</persistence>

Listing 6.4. Example of the persistence.xml file.

After that, we need to configure the vms file, which is located in the properties
folder. In this file, we have to include the endpoint of the ADB server running on the
Android x86 virtual machines. As by default ADB listens to the port 5555, the vms file
should look like the Listing 6.5. In the example, we are setting two Android x86 virtual
machines with IPs 192.168.56.110 and 192.168.56.120 to our VMs pool.

192.168.56.110:5555
192.168.56.120:5555

Listing 6.5. Example of the vms file.

The last file we need to edit is the net.properties, which is also located in
the properties folder. In this file, we have to set the network interface of the machine that
will listen for discovery messages, as well as the ports that will be used by several services.
We recommend to use all default ports and change only the network interface name. The
Listing 6.6 presents an example of the net.properties file. In the example, we use
the wireless interface (wlan0) to listen for mobile devices discovery requests.

prop.server.networkInterfaceName=wlan0
prop.server.port.authentication=8300
...
prop.server.port.discovery.reply=31002

Listing 6.6. Example of the net.properties file.

Before launching the CAOS Controller, we need to put in the apks folder a copy
of all applications (APK files) that we want to support offloading. Figure 6.19 shows the
apks folder with several APK files.

When running, the CAOS Controller will distribute the files to the Android x86
virtual machines that will run the offloading requests. Figure 6.20 shows how to run the
CAOS controller.

6.3.2.4. Running MyPhotos

MyPhotos allows users to apply filters to their photos, use hashtags, share and tag them
with contextual information. Users can use two image filters to apply effects to photos:
Simple and Complex. The Figure 6.21(a) shows the cartoonized version of the Maracanã
Stadium image after applying the filter Complex.
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Figure 6.19. APKs Folder

Figure 6.20. Run the CAOS Controller

In Figure 6.21(b), the settings available for the use of hashtags are presented.
Two parameters are required: the location range (in meters) and the time interval (in
seconds). Thus, the user defines how far and how late these data are according to his/her
geographical position and time. The “Recommended” button retrieves hashtags used
previously on images with the same context of the current photo. The “Send” button
publishes the image.

First, MyPhotos was executed with the device disconnected from the network,
which forces the image filter and tags recommendation to run locally. Figure 6.21(a)
shows that it takes more than 56 seconds to apply the filter Complex.
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(a) Applying the filter Complex (b) Recommended hashtags
when running locally

(c) Recommended hashtags
when connected to the CAOS
server

Figure 6.21. MyPhotos Screenshots

The Figure 6.21(b) shows that when the mobile device is not connected to the
CAOS server, it only retrieves hashtags stored in the local Tuple-Space Based Context
Bus. Since the user labeled the photo with two hashtags, #olympicstadium and #open-
inggames2016, these two tags are also the only hashtags that could be recommended to
the user. In Figure 6.21(c), the device is connected to the CAOS server, and when the
hashtags recommendation is requested, the application retrieves up to the five most pop-
ular hashtags with a context similar to the current user.

6.4. Trends and Research Challenges
Although the combination of context-aware Computing and MCC has great potential for
future mobile applications, it is also important to understand that there are issues that
raise new challenges to enable such integration. Some of these issues are mentioned in
this section.

6.4.1. Costs for raw data transfer to compute the context inference on cloud services

For some scenarios, the amount of data required to process a contextual situation may
be a barrier for the use of MCC. Sometimes, multiple sources of information are needed
to derive a Context information, i.e., a multi-sensory process. This is a common sce-
nario for data-intensive applications, in which some cases of context sensing may fit.
[Naqvi et al. 2013] cites that step counting or falling detection algorithms from sensor
samples such as accelerometer and gyroscope may require a reasonable amount of data
to produce good results. However, transferring a huge amount of data very frequently
may bring side effects related to energy consumption or charging fees while using mobile
operator network.
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6.4.2. High Latency between mobile devices and cloud resources

According to [Naqvi et al. 2013], certain applications such as live gaming, augmented re-
ality do not perform efficiently on most mobile devices nowadays. Although the use of
cloud resources can improve the processing of these applications, they are also sensitive
to latency in communication between mobile devices and the cloud. Some context-aware
mobile applications may suffer from the delay in processing contextual information, make
it even unpractical. As pointed out in [Khan et al. 2012], "by the time the data makes its
way to the cloud system for analysis, the opportunity to act on it might be gone". Stud-
ies conducted by our research group show how current mobile infrastructures in Brazil
do not guarantee adequate QoS to transfer processing between mobile devices and the
cloud [Costa et al. 2014]. This is mainly due to the distance between mobile devices
and the centralized resources in cloud provider data centers. In these situations, cloud-
based approaches or fog computing appear as strong candidates for meeting low latency
requirements, since they typically involve one-hop communication. However, the large-
scale dissemination of cloudlets or similar infrastructures is still in its infancy. There is
also the fact that there are no formed business models that indicate how to encourage the
popularization of these devices.

6.4.3. Security and Privacy

Cloud computing is often criticized for its centralized model of information storage on
third-party machines. When thinking about the integration of context-aware computing
with mobile cloud computing, this problem also rises, since the inference of contextual
situations typically makes use of sensitive information from users (such as their location),
which for many people, it can be seen as a breach of privacy. Traditional techniques such
as information cryptography or data anonymization may be employed, but they also im-
pose additional processing, and consequently delays and additional power consumption.

6.4.4. Power Consumption

Extending the device autonomy time is one of the biggest (if not the biggest) concerns
for mobile application applications. While there has been a significant increase in the
processing capacity of mobile devices each year, the same advancement is not seen in
relation to the device’s batteries. As a result, there are still barriers to processing or
even intense data exchange, since radio transmission is one of the biggest villains for the
power consumption of a mobile device. With this, the decision to process the contextual
situation locally or remotely becomes even more difficult, making it a trade off between
performance and energy savings. It is also possible that according to the decision, the
inference of the contextual situation can be carried out in different ways, according to the
context of the device. If the current situation allows to offload the inference of context to
the cloud, more complex processing with more accurate results may be performed, based
on larger datasets. If it is not possible, a simpler treatment can be offered, but decreasing
the quality of the result of the inference. Finally, some scenarios can lead to situations
where context management tasks can be divided between mobile device and cloud. This
decision balances a choice between improving the accuracy of contextual inference or
preserving device features.
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6.4.5. Large-scale availability of MCC infrastructures

Despite the benefits that infrastructures such as cloudlets offer, having such services
spread across multiple locations globally requires considerable investment, which is pro-
hibitive for application providers. There is currently no commercial deployments that use
MCC technology [Balan and Flinn 2017], probably due to the lack of appropriate busi-
ness models. Even if we think of specialized companies that support MCC, or even users
who want to offer resources spontaneously, aspects such as security and privacy can be
obstacles to popularizing these initiatives.

6.4.6. Missing Killer applications

Experiments reports with MCC include topics such as image processing, recommendation
systems, face recognition and language translation. However, according to [Balan and Flinn 2017],
the popularization of the use of MCC faces two main problems. First, more advanced deep
learning techniques typically used in these applications require large data sets, which im-
pacts on the overall response time on these applications. Second, advances in the pro-
cessing capability of mobile devices suppress the need of offloading tasks out of the mo-
bile device. While this statement is true, our particular view is that only a category of
mobile devices (high-end devices) meets processing capabilities for these applications.
[Balan and Flinn 2017] claims that real-time video processing applications have a good
potential to become a killer application in MCC field, since processing video streams
does not require a huge amount of data, but demands an intensive processing to obtain
data from a scene (such as subtitles on certain locations).

6.5. Conclusion
Contextual-Aware features are increasingly present in current mobile applications. Even
with advances made over the past few years in mobile devices’ capabilities, scenarios
envisioned for context-aware mobile applications indicate the use of large datasets and
machine learning techniques that will require resources not found (at least on most) in
current mobile devices. This mini-course focuses on this problem, by presenting how Mo-
bile Cloud Computing (MCC), especially offloading techniques, may improve the support
for future context-aware mobile applications.

The use of “context” is already widely used in MCC integration. However, previ-
ous research works found on a literature review use this term as the situation for decision
making if data or tasks offloading between mobile devices and cloud infrastructures are
worthy or not, regarding performance or energy savings. In this mini-course, our ap-
proach focus on how context management services can be improved with MCC concepts.
This view is presented in a practical way through the framework CAOS, an Android-based
platform that supports both data and computing offloading. A case study illustrating how
CAOS can be used to implement a context-aware multimedia application is described. To
the best of our knowledge, this is one of the few initiatives where context management
integration with cloud services is supported.

As future work, we plan to keep evolving our framework. We currently study
a complete refactoring of CAOS architecture, where its services will be designed using
MicroServices approach. We aim at improving CAOS’ scalability and flexibility by mod-
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eling its services as independent units.
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