

Chapter

7

An Introduction to Model-driven Development of
User Interfaces to realize Multimodal and
Context-sensitive Applications for Smart
Environments

Sebastian Feuerstack

Abstract

Computer systems as we know them are currently changing from single systems running
a set of applications to complex networks of connected devices heavily influencing the
users' everyday lifes. This leads to new requirements for applications and human-
computer interaction. Networks of heterogeneous devices in homes and offices require
flexible applications that can adapt to changing environments supporting the user in his
daily life - anywhere, on any device and at anytime. This requires interactive systems to
be able to switch modalities (between tangible, speech, and multi-touch interaction
modes) and devices on demand of the user and to enable user interface distribution
combining several devices to control one interactive system.

The tutorial gives an introduction to the model-driven development of user interfaces
(MDDUI). The tutorial consists of two parts: First, beneath introducing the basic terms
and definitions, multi-targeting processes and tools for the user-centered design of
interfaces for different context of use are presented. By a discussion about the pros and
cons of multi-targeting the second part about the actual switch from design-time to run-
time-based approaches in MDDUI is introduced and two exemplary approaches are
presented. Finally, current challenges in MDDUI are discussed to motivate the
participation in this promising research field.

7.1. Introduction
The change from single computing systems towards smart environments connecting
complex networks of devices leads to new requirements for applications and human-
computer interaction. A smart environment extends the potential interaction options for

181

the user from a small amount of isolated utilized devices to combinations of devices that
enable addressing a mixture of modalities, like speech, gesture or graphical-driven
interaction.

Together with various interconnected sensors that make the environment aware of the
user, interactions can be embedded in the environment: Not a specific device, but the
whole environment can be used as the interface. This enables a user to seamlessly
interact with a computer by choosing and combining a heterogeneous set of interaction
devices and modalities based on his preferences.

Addressing various different devices and modalities thus requires the possibility to
adapt the user interface to support the specific features of the device's software platform
and the provided interaction capabilities. Model-driven user interface development
(MDDUI), practiced for a long time in Human-Computer Interaction seem to be a
promising approach to support software developers, developing interactive applications.
It offers a declarative way of modelling such multi-platform user-interfaces and aims at
modelling the different aspects of the user interface on certain levels of abstraction.

Abstraction is a very natural way that people usually like to do to manage too complex
entities. To manage complex problems people usually start to discover the main aspects
that should be taken into account as well as their relations. An example for identifying
models in our daily practice is for instance our every day planning. After waking up we
typically start the new day by thinking about the main activities that we would like to
perform [53].

With the help of a software engineering process that changes the focus from (manual)
implementation to the tool-driven design of models that can be directly executed by a
run-time-system, software developers can be supported to address these challenges.
This discipline of Engineering for Human-Computer Interaction (EHCI) is a crossroad
of two disciplines: Human Computer Interaction (HCI) and Software Engineering (SE).

This article is published to accompany a tutorial held at the Webmedia 2010 conference
to introduce the concepts of MDDUI to a broader audience. Therefore I start by
reviewing some previous work in this area to introduce the basic terms and concepts of
MDDUI. Since I cannot cite all relevant work for the sake of brevity I focus on
presenting the initial efforts of MDDUI to generate multiple user interfaces for different
devices to reflect the advantages and disadvantages of MDDUI in general and in
relation to be applicable for generating and running context-sensitive and multimodal
interfaces in smart environments. This discussion is used to motivate the recent shift of
interest in MDDUI run-time systems that awake the declarative design models alive to
support interface manipulation and a more flexible reaction on context-changes at run-
time that I devote special attention to. I refer to my own research results as well as of
other research groups to explain the new possibilities multimodal and context-sensitive
interaction in smart environments that can be tackled by MDDUI run-time systems.
Finally I end up with discussing three basic research challenges that need to be
addressed in the next years to enable a seamless interaction in smart environments.

182

7.2. Model-driven User Interface Development (MDDUI)
The development of interactive systems is a complex problem that is continuously
growing with the evolving technology enabling to consider the context of use during
interaction or multi-modal access to an application. Model-based approaches, practiced
since the late 1980's in Human-Computer Interaction seem to be a promising approach
to support software developers, developing interactive applications.

MDDUI is driven by two basic ideas: First, by shifting the perspective in user interface
construction from a developer to a user-centric one and second, by reducing the
development effort for the creation of user interface that quickly gets cumbersome if an
interface should run ad on more than one context (for instance on different devices).

User interface builders that enable a developer to create interfaces and to organize
widgets in several dialog boxes are the general approach for a developer-centric
approach. The organization of the user interface layouts mainly relies on the designer’s
experience or on external and therefore loosely coupled design documentation.
Different to this, user-centered design environments focus to answer how user interface
elements in a certain dialog box can be used to accomplish a particular user task [56].

A design process that is concerned with supporting the creation of interfaces for several
contexts has been defined as muti-targeting. Multi-targeting describes a coordinated
process of building user interfaces for a set of given context of use. A context of use is
defined as a triple (U, P, E) where U represents any user stereotype, P, any computing
platform, and E, the physical environment in which the user is carrying out her task
with the designated platform [44].

The basic concept of addressing both, the user-centric development perspective and
multi-targeting is to model the different aspects of the user interface on certain levels of
abstraction. Each level of abstraction is described by a model that offers a declarative
way of designing an interface. Therefore research in MDDUI is in general concerned
with two basic efforts:

1. The identification of suitable sets of model abstractions and their relations
for analyzing, designing and evaluating interactive systems

2. The specification of software engineering processes that change the focus
from (manual) implementation to the tool-driven design of models

In the last 20 years of research various model-based approaches have been proposed.
An overview paper has been written by [67]. In 2003 the Cameleon Reference
Framework has been proposed [13] that serves as a reference for classifying MDDUI
approaches that support multi-targeting or multiple contexts of use and has been applied
to several MDDUI approaches at this time.

7.2.1 The Cameleon Unifying Reference Framework

The Cameleon Reference Framework [13] defines several design steps for the
development of multi-context interactive applications. The basic development process is
divided into four steps and is illustrated for two contexts of use in figure 1.

183

Figure 1: The Cameleon Unifying Reference Framework

7.2.2 Common declarative models of MDDUI approaches

The Framework describes every development step as a manipulation of the artifacts of
interests in form of a model or a user interface representation. In distinguishes between
ontological and archetypal models. The former one are meta-models and independent of
any domain and interactive system, the latter are instantiated ontological models and are
dependent on an interactive system for a given domain. Like illustrated in figure 1 there
are three basic ontological models: Domain, Context, and Adaptation.

The domain model describes concepts and user tasks relative to a domain. A concept
might be for instance an UML class diagram, an entity-relationship, or an ontology. The
task model might be a model that breaks down a user’s goals into several activities that
need to be either performed by him or by an interactive system and organizes each goal
through tasks into logical activities. An instantiated task model might describe how a
concrete goal – for instance: “organize meeting” has to be performed by several
subsequent tasks in a certain order. Each task is performed either by an interactive
system or a user that might be described by a role specification. Tasks are associated to
objects instantiated from a concept model and get manipulated during a task is
performing.

The ontological context of use models enable reasoning about the users, platforms, and
environments and define the targets of an MDDUI process. The user is relevant for the
task specification (e.g. by a role specification) as described earlier. The platform model
describes the targeted hardware (device capabilities like screen resolution) and software
platform (like e.g. the operating system). Further on, elementary platforms (interaction
devices) can be composed to clusters, to be addressed as a single target. Part of the
software platform is the interactor model that describes the interactors available for the
presentation of the user interface. The archetypal realization of an interactor model is
for instance a toolkit (e.g. Java Swing or HTML), which contains several widgets (a list
box, a button, a voice menu, or a set of navigation gestures). The description of an
interactor includes it’s look-and-feel, it’s input and output capabilities like e.g. required
space, the required modes (mouse, keyboard, speech), and side-effects to the context of

184

use (e.g. additional noise level in case of a speech output). Beneath information about
the user, the platform and the environment of the original context of use model
definition by [13] the ongoing time is another relevant context-information. It
influences the relevance of information that is transmitted by an interface to the user
and can be used to adapt the interface by removing information that got irrelevant or
highlighting highly relevant parts for a particular time span.

Finally the environment model considers the physical surroundings of the user and the
platforms available. This includes for instance the distances between platforms and the
users or environmental conditions like noise or lighting level.

The Cameleon Framework further defines two ontological adaptation models. The first
one, the evolution model defines triggers based on context of use changes and
appropriate reactions that specify a configuration of the interactive system to switch to.
The second, the transition model ensures by prologues and epilogues for each context-
transition how to handle discontinuities that might occur at a context-change.

An interactive application design as it is described by the Cameleon Framework is
based on initial models and transient models. Initial models a are based on manually
entered design information whereas transient models are the result of a model-to-model
transformation. There are four design models that are often used in MDDUI:

• A Tasks and Concepts model that combines tasks that have to be carried out by
the final interactive system with a description of the domain-oriented concepts
that are needed by these tasks. Concepts are represented as classes that get
instantiated to objects used to reflect the concept manipulation.

• An Abstract User Interface (AUI) is used to describe the logical structure
without targeting it to a specific modality or even a platform. An AUI refers to
interaction objects that are described in terms of abstract interactors. The AUI
groups the subtasks of the task model into interaction spaces (presentation units)
according to a set of criteria like task model structural patterns, cognitive work
load analysis or identification of the semantic relationships between tasks.
Further on the AUI defines a navigation scheme between the interaction spaces
and selects Abstract Interaction Objects (AIO) for each of the concepts that have
to be independent of any mode of interaction.

• The Concrete User Interface (CUI) that replaces each abstract interactor with a
concrete interaction object that is dependent of a modality and a set of
associated platforms that implement the same modality and are similar regarding
their capabilities (for instance the screen size, and the control features). The
Concrete User Interface model (CUI) concretizes the AUI and defines the
widget layout and interface navigation through these widgets. Different to the
AUI, the CUI is designed for a concrete modality but independent of a specific
platform. The CUI is used to present the final look and feel of the user interface
but has to be considered as a mockup that only runs within a particular
environment.

• On the lowest level of abstraction the Final User Interface (FUI) represents the
operational user interface that can be run on a platform either by interpretation

185

through a renderer (for instance a web-browser) or by execution (after
compilation into binary code).

7.2.3 Multi-path development processes

In the last section I have introduced a lot of design models that are relevant in MDDUI
to realize an interactive application. But what methods exist to generate or manually
design these models? There have been proposed several techniques that can be used that
can be used selective – based on requirements ore preconditions of a project or be can
be combined and applied in one process: Transformations, Translations, Graceful
Degration, and Factorization. Further on different Entry Points mark models that can be
used as an initial model to start the process. Finally by referring to examples the
progress in the MDDUI process can be made more transparent and feedback can be
considered earlier.

Reification, Abstraction, and Translation

There are three different types of model-to-model transformations that are applied to
generate or manipulate a design model based on information of another source model:
Reification, Abstraction and Translation.

Reification is done by performing forward engineering. Thus, like depicted in figure 1
the designer starts with an abstract design model and transforms it - after it has been
specified completely – to a more concrete design model. Concrete models in MDDUI
are more shaped to a particular platform and therefore contain more specific details as
its abstract successors.

Contrary to reification is abstraction, which is in terms of software engineering usually
called reverse engineering. Abstraction is a process of generalization of concrete
artifacts. It is often an expensive one in terms of effort and complexity. This is because
usually the abstraction process starts with an existing system and with the goal to obtain
a conceptual description of its design for analysis and evaluation purposes. There are
tools available to support model abstraction like ReversiXML [10] and WebRevenge
[38] that support partial automation for the abstraction of applications for the web, but
with the increasingly usage of dynamic pages driven by technologies - such as AJAX –
show the limits of automated reverse engineering approaches. A different approach for
reverse-engineering that relies on screenshots and manual annotation to support an
automated usability analysis based on abstracted models has been implemented in the
MeMo-workbench [29].

Translation is used to transform a design model that is designed for a specific context of
use to a different one without switching the level of abstraction. An example would be
an interface migration between two targets - for instance between a web page and a
speech interface. Although a translation maintains the level of abstraction it can be
performed for instance on the task and concepts level to change the tasks that are
relevant for each target (which allows maximal flexibility). Or a translation is executed
on a more concrete level like for instance to change widgets representing a list from a
pull-down to a radio group between different HTML targets. The latter one enables
much less flexibility since the application tasks remain the same - but offers more
consistency to the user.

186

Multi-path development offers a lot of possibilities just by model-to-model
transformations. Beneath the straight forward- and reverse-engineering approaches, in
practice often a mixture between these methods is performed. This is because of
changing requirements during the development (such as considering more targets).
Additionally the process of transformation has been adjusted to especially to overcome
the complexity that is introduced by the high level of (model-based) abstractions as well
as the relatively long development process through various models. In the following
several methods for reducing the complexity are presented: Graceful Degradation,
Factorization, Entry Points and Development by Examples.

Graceful Degradation

The method of Graceful Degradation addresses the trade-off between continuity and
adaptation and has been introduced first for safety-critical systems like for instance
systems in an aerospace. There Graceful Degradation describes the ability of a system
to continue its services proportionally to its components that fail or are malfunctioning.
Thus, under bad conditions the system is not expected to fail completely but continue
providing at least its basic functions that are offered by all the non-defect components.

Graceful Degradation can be applied to user interfaces as well [16]. There it consists of
specifying the user interface for the least constrained platform first and than it requires
to apply transformation rules to the original interface to produce interfaces to the more
constrained platforms. These transformation rules include: Splitting rules, interactor and
image transformation rules, moving and resizing rules to reuse the user interface, and
removal rules [31].

Factorization and Decoration

The idea of Factorization is to support multi-targeting from a “specific-target-at-a-time”
approach [69]. This enables the designers to focus on one target after another. After the
second target design model(s) have been realized (independently from the first),
common parts are identified by comparing the design models of both targets and are
factored out in a separate model. Instead of factoring out common parts to a separate
model, by Decoration the designers identify a reference target, which is usually like in
Graceful Degradation the least constrained target, and express exceptions by
annotations to the reference model. Factorization is similar to a refactoring process,
where repeating parts are cleaned up and placed in a separate component that is
referenced by each component from that the code has been factored out. A detailed
discussion about factorization for different context of use for task modeling has been
presented by [63]. An example of decorating task models by annotations to consider
different context of use has been proposed by [18].

Entry Points

An Entry Point defines an initial design model that is used to start a MDDUI process.
The Cameleon Framework allows entry points at any level of abstraction and in
principle engineering from any entry point in all directions (abstraction, reification,
translation). In practice most available MDDUI processes offer entry-points but
implement forward engineering only. Thus, for instance in the SEESCOA approach [41]
the abstract user interface is the entry point to a forward-engineering process, whereas
in TERESA [49] two different entry points are available: The first one at the concepts-
and task model and the second one at the abstract model level.

187

Development by Examples

Another approach two reduce the design complexity is to design model abstractions
based on concrete instances of the system by following a test-driven development
approach. In such an approach the designer creates examples after every transformation
to test if the actual design model is able to capture the original requirements. Since by
following a transformal development approach more concrete models are based on a
transformation of abstract ones, examples that have been created for a more abstract
model can be reused for testing subsequent models as well [28].

After I have introduced the basic models and processes lets take a look at the second
general effort in MDDUI: the focus on tool-driven design of models.

7.2.4 Tool-driven model design

Since the development of tools for model-based user interface engineering has been
done since the beginnings of MDDUI, there are two much tools available to discuss
them all. Tool-development has been done in two different types of categories: First
comprehensive development environments have been realized. These environments
tightly integrate several tools with the advantage of offering a constant mode of
operation that guides a developer through all models and transformations up to the final
executable user interface. Second, tool-chains have been introduced that are based on
standardized exchange formats that are defined for all ontological and archetypal
models. Hence, various tools, each offering the design of an archetypal model or a
transformation can be chained and selected based on the requirements of the project.

For the sake of brevity I focus on giving examples for both approaches in order to
discuss the pros and cons of both approaches.

Integrated Development Environments

The Model-Based Interface Designer (MOBI-D) [56, 58] was one of the first proposals
for an integrated model-based interface development environment that embraces the
idea of designing and developing user interfaces by creating interface models. MOBI-D
included model-editing tools, user-task elicitation tools, and an interface building tool
called Model-Based Interface Layout Editor (MOBILE) [57]. MOBILE includes a
knowledge-based decision support system to assist the designer. By a knowledge base
of interface guidelines an inference mechanism traverses the attributes and objects of
the domain model to propose suitable widgets to the designer.

The Transformation-based Environment for Designing and Developing Multi-Device
Interfaces (TERESA) [6, 47, 48] is composed of a method consisting of four steps that
are supported by one tool. First, by high-level task modeling of a multi-context
application, a single task model is designed that addresses all possible contexts of use,
the involved roles, as well as identifies all objects of the domain relevant for performing
the tasks. Second, a system task model is developed for all the different platforms that
should be supported. The system task model for a certain platform is allowed to refine
the task model of the first step. Third, from the system task model an abstract user
interface is derived that considers the temporal relationships and composes a set of
presentations. Each presentation is structured by the means of interactors. Finally, by a
user interface generator the final user interface presentation is generated for all
platforms. The TERESA tool supports all these steps and interactively guides the

188

developer through this top-down approach and offers a set of transformations to
generate voice and web-based applications as well.

The Dygimes system [39, 22] (Dynamically Generating Interfaces for Mobile and
Embedded Systems) follows the same approach as TERESA and uses a task tree as the
initial model to calculate the sets of enabled tasks (ETS). Based on the ETS a dialogue
model is derived that forms a state transition network [40]. In Dygimes a tool supports
the designer to attach XML-based user interface descriptions to all atomic tasks. After
the mappings between the task tree and the user interface fragments have been
specified, Dygimes offers a tool to describe spatial layout constraints helping the
designer to ensure that the interface is rendered in a visually consistent manner. Finally,
a run-time library can read the constructed UI specification, which includes the task
specification and adapts both to the target platform and renders the user interface based
on the calculated ETS.

The Dynamic Model-based User Interface Development (DynaMo-AID) project [17] is
based on an extended version of CTT task models and supports dynamic context
changes. They propose decision nodes and collect distinct sub-trees from which one
will be selected at run-time. Further on, DynaMo-AID includes a concrete presentation
model as well as a description of domain objects. Up to now it supports to generate an
application based on UIML [1] and SEESCOA XML [4]. DynaMo-AID follows a
prototype-driven methodology [20] that is inspired by the spiral model. It starts from a
task model, followed by the generation of a dialogue model. Combined with the
concrete presentation model a prototype can be generated, evaluated and refined. [3]
criticizes that no details are available on the exact notation used by the DynaMo-AID
tool for the textual description of the model.

The user interface generation process in DiaTask [59] works similar to DynaMo-AID. It
starts with the specification of a task model, which is transformed to a dialogue graph.
It's up to the designer to relate tasks with user interface elements that are represented
using XUL as the concrete user interface language.

Tool-chaining

Vanderdonkt et al. have developed a whole bunch of tools [44, 21, 24, 46] that are
based on a language (The USerInterface eXtensible Markup Language - UsiXML)
making the models and their associated transformations explicit.

UsiXML is aimed at offering a comprehensive approach for describing the various
levels of details and abstractions of a user interface depending on the context of use.
Therefore it is structured following the basic abstraction levels offered by the Cameleon
Reference Framework.

At the task- and concepts-level UsiXML [36, 37, 35] offers a task and a domain model
that describes the objects and classes that are presented and manipulated by the user. At
the abstract level, UsiXML's abstract user interface model specifies the groups of tasks
and domain concepts that should be presented together at the same time to the user.
Finally, the concrete user interface model is used to give a detailed specification of the
user interface appearence, that is dependent on a certain modality (for instance to
generate a graphical or a voice-based user interface).

189

Different to earlier approaches, that mainly focus on declarative descriptions of models
on certain abstraction levels (like UIML1 or XUL2), UsiXML explicitly considers two
additional aspects: the context of use and support for a transformational development
approach.

The context of use is considered by specifying three additional models: the user model
that decomposes the users of the interactive system into stereotypes and describes them
by attributes for instance to express their experience with the system or a specific task
or their motivation. The environment model describes the global environment where the
interaction between the user and the system takes place. Properties of the environment
can be physically to describe the level of noise or the lightning, or psychologically to
express the level of stress of the user. Finally the platform model is used to specify the
relevant attributes of the hardware and software of the device that is used to present the
user interface.

The transformal development support of UsiXML is based on graph transformations
and is organized by graph rewriting rules equipped with negative application conditions
and attribute conditions. This transformation can be interactively constructed or
manipulated using an Editor [65] or can be processed automatically. Up to now, the
transformations are used between the task and concepts level and the abstract user
interface level, and between the abstract and the concrete user interface level.

7.3. The pros and cons of Multi-Targeting
Several pros and cons for following a model-based development approach in user
interface design have been identified and intensively discussed in the recent years. The
following section introduces the major advantages and actual shortcomings.

7.3.1 Advantages of transformational MDDUI

Compared to “classical” interface development performed with interfaces builders, the
transformational development has advantages in methodology, re-usability, and
consistency.

Methodology

Model-based approaches are driven by specifications that are subsequently derived by a
predefined process. Starting the development cycle with a specification is a widely
accepted software engineering principle as [32] notes. User-centered and user interface-
centered development life cycles are supported. They let designers work with tasks,
users, and domain concepts instead of thinking in engineering terms [68]. These models
encourage to think more about artifacts that should be realized and force the designers
to explicitly represent the rationale of design decisions [68].

Relying on declarative models is a common representation that design tools can reason
about to criticize designs and to detect questionable features [11, 12]. Declarative
models enable realizing automated advisers that can support the designer to refine the
designs. Further on user interface construction tools can be based on declarative models

1 http://www.UIML.org, last checked 8/8/2010
2 https://developer.mozilla.org/en/xul, last checked 8/8/2010

190

http://www.uiml.org/
https://developer.mozilla.org/en/xul

that enable automated creation of portions of the user interface. During run-time a
declarative representation by models can be used to generate context-sensitive help to
assist the user like proposed in [66].

An interactive system specification by using models enable executing the system before
all details of the user interface have been designed to enable early experiments with
designs by an iterative development process before considerable coding effort has been
spent [68].

Re-usability

For multi-platform development of user interfaces and user interface support for context
dependent adaptations model-based tools can provide the fundament for an efficient
development life cycle that offers an automatic portability across different devices.
Furthermore the complete description of the whole interface in a declarative form
allows reusing the most interesting components.

Consistency

Consistency is the big issue that needs to be guaranteed between the user interfaces that
are generated for different target platforms. Model-based approaches foster consistency
since user interfaces are systematically derived by a well structured transformal process.
Since the final user interfaces share abstractions – at least at the initial design model
(like the task- or the abstract user interface model) consistency between different FUIs
is improved.

7.3.2. Disadvantages of transformational Development

Several shortcomings have been identified so far that need to be tackled down.
Commonly cited are [55, 67, 50]: The high threshold, Unpredictability, the problem of
propagating modifications, their proprietary models, the efficiency and performance.
Further on transformational development has not targeted real multimodal systems and
only support pre-defined context of use adaptations. In the following paragraphs I
present the main downsides of multi-targeting to motivate the next chapter the presents
model-driven run time environments to tackle some of these disadvantages.

High threshold

The high threshold of model-based approaches is one of the big issues that need to be
solved to get a broader acceptance. Up to now, developers need to learn a new language
in order to express the user interface specification. Thus, model-based approaches
require models to be specified in special modelling languages and therefore require a
form of programming that is not suitable for many interface developers or designers.

Design tools that enable visual programming by abstracting from a certain user interface
language and are integrated in widely deployed development environments are a
solution to lower the threshold for model-based approaches.

Unpredictability

Each abstraction by a certain model requires the designer to understand and think in the
same abstractions of the model that is utilized. The higher the abstraction that the model
offers compared to the final user interface, the harder it gets for the designer to
understand how the model specifications are connected to the final user interface.

191

[30] proposes to rely on explicit transformation rules with a tool-based preview to
reduce the unpredictability of model-based approaches. [35] applied such a graph-based
transformational approach, but the pure amount of transformations to map between the
various models of abstraction figured out hard to overview and maintain. Additionally,
the wide range of user interface element concepts of the various platforms that need to
be covered by the model-transformations is complex to handle and selecting the
appropriate transformation between several alternatives (often there are several ways to
realize a user interface) emphasizes as a difficult and challenging task.

Propagation of modifications

Supporting several models of abstraction for the design and specification of an
interactive system includes allowing changes to each of these models later on. These
changes need to be propagated to the other models to maintain consistency between all
models. Whereas it is consent that support for abstract-to-concrete and concrete-to-
abstract (reverse engineering) as well as various entry points should be supported by
model-based approaches, tools and approaches that realize these options are still
missing. [30] describes the propagation of modifications as tricky, but proposes to
determine the side effects on the other models entailed by the application of rules.

Proprietary models

Most model based approaches have been strongly tied to their associated model-based
system and cannot be exported or are not publicly available. UsiXML [36] was the first
completely available model format description. Whereas it is currently target to
standardization efforts, there is still a generally accepted set of model abstractions
missing. Further on, model syntax has been explicitly specified in the UsiXML
specification documents, but clear model semantics have not been sufficiently specified
so far.

Efficiency and Performance

Efficiency and performance of model-based systems are rarely considered. Efficiency
needs to be measured for the development cycle implementing multi-platform user
interfaces. Performance has to be evaluated at run-time to test if the various supported
adaptations do not restrict the user's performance.

Missing support for Multimodality

Multi-targeting is focused on generating isolated user interfaces by a step-by-step for
different platforms or modalities (in practice for a specific markup or programming
language), which is different to the generation of multimodal user interfaces that require
a strong connection between the different interfaces for the connected modalities. The
Cameleon Framework supports translations for user interfaces to adapt to new contexts
at run-time but still misses the possibility to interconnect different modalities for
multimodal fusion. [64] solves this by adding mappings for supporting synchronization
between Voice CUI and HTML CUI, which has the disadvantage that because of the
late introduction of the mappings for intermodal synchronization this could and up in a
cumbersome task for huge applications, because each single element of the CUI has to
be addressed manually by the developer to support synchronization.

192

Predefined Context of use

Whereas model-based approaches introduce various abstractions to design interactive
systems, each enabling a comprehensive view of the whole application, they are
currently focused on analysis- and design support. Thus, these approaches require the
developer to consider all combinations of devices, which the interactive system should
be able to adapt to during the development process. Each new mix of devices and
modalities requires going through most of these design models again to compile a new
user interface.

7.4. Beyond Multi-Targeting – Seamless Interaction in Smart Environment
In contrast to current PC-based systems, user interfaces for smart environments have a
stronger need for integration and the adaptation to the usage situation, comprising the
available devices, the situation of the user and other context information like e.g. light
and noise level of the surrounding environment.

The tight integration of user interfaces in the environment enables seamless services
that are ubiquitous available and are able to accompany the user through his daily life in
a smart environment. Therefore these services are able to adapt their behavior and
presentation continuously to maintain there usability by switching and combining
devices and interaction modes as well as transforming their presentation to reflect
context of use changes.

So far several characteristics of seamless services in smart environments have been
identified [7] that are introduced in the following section.

7.4.1. Characteristics of Seamless Services for Smart Environments

Plasticity

The term Plasticity is inspired by the property of materials that are able to expand and
contract under natural constraints without breaking and provide continuous usage. The
term has been first introduced and applied to HCI by Calvary [15, 14]. In HCI it
describes the capacity of an interactive application to withstand variations of context of
use while preserving usability. This also covers the contraction and expansion of the set
of tasks in order to preserve usability. Plasticity is similar to multi-targeting since both
terms address the diversity of context of use adaptations, but additionally express
requirements in terms of usability.

User interfaces for smart environments much more rely on the possibility to adapt to the
context of use. This on the one hand is due to the fact that interaction happens in various
situations and under different circumstances, as well as due to the fact that multiple
different devices might be used for the interaction.

Multimodality

A multimodal interface is able to “process two or more combined user input modes –
such as speech, pen, touch, manual gestures, gaze, and head and body movements – in a
coordinated manner with multimedia system output.” [52] The multimodal form of
communication with a computer allows recognizing naturally forms of human language
and behavior and is driven by the idea to support more transparent, flexible, efficient,
and powerfully expressive means of human-computer-interaction [52].

193

There are four different relations that describe how modes can be combined based on
the interaction technique that they offer: Equivalence, Assignment, Redundancy, and
Complementary (the CARE properties) that have been defined in TYCOON [42].

Equivalence describes a combination of modalities in that all can be used to lead to the
same desired meaning, but only one modality can be used at a time. Thus, a text input
prompt can be for instance either handled by a spoken response or by using a written
text typed by a keyboard.

By assignment a particular modality is defined to be the only one that can be used to
lead to the desired meaning. (e.g. a car can only be controlled by a steering wheel).

Modalities can be used redundant if they can be used individual and simultaneously to
express the desired meaning. Hence, for instance speech and direct manipulation are
used redundantly if the user articulates “show all flights to São Paulo” while pressing on
the Button “São Paulo” with the mouse.

In a complementary usage of modalities, multiple complementary modalities are
required to capture the desired meaning. For instance a “put that there” command
requires both speech and pointing gestures in order to grasp the desired meaning.

Nigay et. all [51] have detailed these relationships between modalities and applied to
tasks, interaction languages and devices. In their understanding a physical device can be
used to issue or present physical actions to the user (e.g. pushing a mouse button or
uttering a sentence). These actions a referred to from symbols and expressions of an
interaction language. An interaction language “is a language used by the user or the
system to exchange information” and “defines the set of possible well-formed
expressions […] that convey meaning”.

This allows a more formal definition of these relations and defining the equivalent and
assignment relations as permanent if they hold over any state to reach a goal and as
total of they hold for all tasks that a user can perform with a system.

The realization of redundant and complementary modality compositions is complex,
since they require fusion mechanisms to process the different input received from the
complementary modalities to grasp the desired meaning. There are two main types of
fusion: First, by early fusion (or micro-fusion) signals can be integrated at a feature
level and second information can be merged at a semantic level, which is referred to as
late fusion [52]. Early fusion is more appropriate for closely temporally synchronized
input modes, where one mode influences the recognition in the others. An example for
early fusion for redundant modes is combining lip movements with speech recognition.
Late semantic fusion (or macro-fusion) is often applied for processing less coupled
temporary information, such as speech and pen input.

There are two additional challenges in multimodal fusion, the temporal distance of
incoming data and the difference in input data structure if different types of modalities
are used and are discussed for instance in [27].

To prevent misunderstandings and interpretation often a high degree of redundancy for
multimodal interaction is chosen. But Oviatt pointed out in [52] that the dominant
theme in users’ natural organization of multimodal input actually is complementary of
input. Even during multimodal correction of system errors, where users are highly

194

motivated to clarify and reinforce their information delivery they express redundant
information less than 1% of the time (tested for speech and pen input [52]).

Session Persistence

Users tend to follow various tasks in parallel. Whereas some tasks can be accomplished
in short term, long term tasks might be interrupted by more important ones and
continued later on. This requires the handling of interruptions and the possibility to
continue a service later on. Session Persistence has been used for instance for handling
database connections (and for data persistence) and for managing communication in
stateless protocols like HTTP. Different to these technical processes of maintaining a
network connection or an application state, user interface session persistence includes
identifying a user and enabling him to stop an interaction anytime without loosing the
application as well as the interaction state. Stopped sessions can then be continued on
any devices and with any mode later on.

Migration

Different to a stationary PC setup, in a smart environment the user is able to move
around his environment while interacting with an application. Beneath mobile devices
that are continuously available to the user, other (stationary) devices that are part of the
smart environment network like for instance televisions, stereos or cameras can be
seamlessly integrated while the interaction takes place. Therefore a user interface
requires supporting migration. [2] distinguish between total and partial migration. Total
migration describes the capability of interfaces to move to another platform while
preserving their actual state. Thus, the user can comfortably continue the interaction
exactly at the point where it has been stopped on the previous platform. Migration needs
to consider a switch in modality as well. If the target platform offers for instance voice
recognition instead of a keyboard to enter text, the text input from the user can be
spoken where it has been stopped after the user has left the PC.

Partial migration describes the distribution of parts of the interface to several platforms
and modalities and is more complex to handle from both, the user’s as well as the
developer’s perspective. For the user the interface has to include tools to select which
parts of it should be distributed and offer help to indentify suitable target platforms and
modalities [62]. From the developer’s perspective the complexity is about to handle the
composing of partial distributed interfaces to a new one. Composing is required if at
least two parts of two different interfaces are targeted to run on the same
platform/modality combination and can includes merging of elements to eliminate
duplicates. Control interfaces are a typical example for partial user interface distribution
where merging can be performed. In the iCrafter service framework [54] for instance
interfaces control appliances of a presentation room can be aggregated by merging
elements. There, in a presentation scenario that includes turning off several lights, all
individual light user interface controls can be merged based on service interfaces that
implement “PowerSwitchInterface” profiles.

Similar to classical window managers or operating system frontends that offer a set of
basic user operations and forms of organization driven by the WIMP (Windows, Icons,
Menus and Pointer) interaction style and direct manipulation, a frontend to the user for
smart environments relies on these characteristics that I have presented in this section.

195

These characteristics have been utilized to realize run-time environments, which allow
the creation of user interfaces beyond multi-targeting and enable their incorporation in
different applications. In the following section I will present the actual state of run-time-
systems supporting embedding interfaces in the environment.

7.4.2. Model-driven Run-time-Environments (MRE)

In smart environments the basic challenge for an interface is to withstand the
continuously happening changes of the context of use: Users are no longer sitting in
front of a stationary PC but are moving around the environment and switching between
devices and modalities while interacting. This initiates a new level of comfort in
human-computer-interaction – the user can now focus more on her tasks since
restrictions like the limited interaction capabilities of a personal mobile device or by the
fixed position of a desktop PC do no longer exist in such environments. Hence, the
technical challenge is no longer about multi-targeting which can address the predictive
contexts of use (that can be foreseen at design-time) but on interfaces that are prepared
to consider the unpredictable context, which is called the effective contexts of use that
really occur at run-time.

Current run-time systems tackle this challenge by not only describing the static
structure and the behavior of the interface, but although include a description of the
evolution capabilities in the models. As an example I present two different approaches,
an interactor-centric and a model-centric approach for realizing such a run-time
environment. The former one puts a strong focus on a modularized way of constructing
interfaces through widgets and export the evolutionary part of the models into a
semantic network. The latter one maintains the principle design models of multi-
targeting but embeds the behavior as well as a description of the evolution capabilities
into the (design) models. Both approaches add an extension mechanism that enables to
introduce new adaptations and interaction capabilities to the models or the semantic
network respectively.

Additionally the user in a smart environment gets much more in focus. Whereas for
multi-targeting, the user was mainly the target of the design (for instance by a user-
centered design process), in a smart environment the user can manipulate or change the
system’s interaction behavior based on his preferences. Therefore run-time systems
include a meta user interface enabling the user or a designer to inspect and manipulate
the run-time state of the system.

The COMETs approach

The Context Mobile Widget (COMET) architecture style [26] offers self descriptive
interactors that support plasticity. Thus, COMETs are able to publish their quality in use
that they can guarantee for a set of contexts of use.

Following the COMETs architectural style, the user tasks of a task decomposition are
reflected by individual COMETS that can be grouped to build a presentation for a task
by recursively composing them of other COMETs. In such a graph every child COMET
expresses itself with regard to its parent. Additionally COMETs can be defined based
on task operators such as for instance the interleaving operator to render COMETs e.g.
side-by-side.

196

Figure 2: Graph of COMETs

Like illustrated by figure 2 each COMET is composed of three facets: 1) a logical
consistency (LC), 2) a set of one or more logical models (LM) that the LC is associated
to, and finally 3) a set of one or more physical models (PM) that are associated to a LM.
Even if there is no fixed rule how to use these facets, the tasks, AUI, CUI, and FUI can
be embodied in LCs, presentation LMs, PMs, and in technological primitives that target
different languages and toolkits like for instance HTML or OpenGL respectively.

So far COMETs support the redundant and equivalent relations of the CARE properties
by event propagation inside a COMET. By a domain specific language (COMET/RE)
incoming events from one PM (e.g. graphics) can be specified to only get propagated by
the LC to the other PMs if there is a redundant event incoming from another PM (e.g.
voice).

At system run-time COMETs instantiate entities from a semantic network that describes
the concepts of the different models of the CAMELEON framework like tasks, abstract
containers, or concrete list boxes. The concepts of the network are structured with
multiple types of relationships like for instance inheritance, abstraction, or composition.

If a graph of COMETs at run-time requires adapting to a new context of use an
adaptation goal is specified and the semantic network can be queried to retrieve
potential actions to transform the presentation.

The general advantage of the COMET approach lies in the fact that a COMET
application can be easily extended to support new context of use adaptations by
enhancing the semantic network without modifying the rest of a COMETs-based
application. From a user’s perspective the interactor-driven architecture has the
advantage that every COMET directly expresses elements of the interface that can be
directly manipulated by him (by specifying adaptation goals).

197

The Multi-Access Service Platform (MASP): Dynamic Executable Models

In contrast to the static design models of a multi-targeting approach, providing (only) a
snapshot of the system under study at a given point in time, executable models provide
the logic that defines the dynamic behavior as part of the model. The general idea is to
equip executable models with “everything required to produce a desired functionality of
a single Executable Models for Human-Computer Interaction problem domain” [43].
Hence, to construct an executable model, three capabilities have to be included: Beneath
static element structures, the behavior, and the evolution of the system.

Figure 3: Executeable Models of the MASP in relation to the MOF Meta-Pyramid.
Taken from [8]

Figure 3 illustrates the MOF Meta Pyramid in relation to the MASP approach that
implements executable models. The core of the MASP offers an extension mechanism
by a meta-meta model that distinguishes between three basic elements: definition-,
situation- and execution elements that generalize all executable models.

The static structure of a design model is defined by definition elements stating all
constants of a system that are not changing over time. Situation Elements define the
current state of a model and capture all information that can change over time. Situation
elements can trigger execution elements that are able to process and update the data of
other situation elements.

The separation by the MOF model offers clear boundaries in the MASP during design-
time: An application designer works with definition elements only, whereas a system
architect modifies or enhances the run-time system by manipulating the meta-models of
the M2 level (figure 3) to introduce for instance a new kind of task modeling or a next
context description.

198

Figure 4: The Mapping Meta Model. Taken from [8].

Figure 3 depicts the mapping meta-model that connects multiple executable models in
the MASP. It allows defining relations between their elements based on the structures
given by the meta-meta-model and is therefore located at M2 layer of the MOF
architecture. Defining the mappings in a separate model removes the problem of hard-
coding them into the other models

The meta-mapping model specifies both, mapping types and the mappings that are used
to synchronize elements of different models of the M1 layer, which define a particular
application.

Like illustrated in figure 4, a mapping type refers to two definition elements that should
be kept in sync. Therefore it contains links that get triggered by situation elements and
call execution elements that process the data of the situation element. For transforming
the situation element’s data in an appropriate format to be processed by the execution
element, a transformation can be specified. An example for such a mapping type
definition is for instance the information gained from a task model, that an interaction
task has been performed successfully by the user and that the interface presentation
should be updated. Different to the mapping type, a concrete mapping reference a
mapping type and relates it to actual application. Hence, an application developer can
browse through the set of available mapping types and can create new mappings that
reference the available mapping types. To implement such a mapping, the developer
therefore has to set the specific source and target model elements to the mapping.

Discussion

The basic advantage of an interactor-centric approach is that interfaces can be
composed by the same metaphors that are well known through interface builders: by
drag-and dropping widgets on to the interfaces as well as positioning them based on the
individual preferences of the user. For the user these widgets are seen as a black-box
supporting the plasticity mechanisms internally. The model-centric architecture style
abandons the functional grouping into separate interactors and directly executes the
models of an MDDUI approach. A model-centric architecture can be directly deployed
with the design models that have been developed following MDDUI as models are the

199

executing units instead of interactors. Since executable models just add further
information like describing its behavior, already existing design models could be
enhanced and already existing design tools for multi-targeting can still be used.

Meta user interfaces

Controlling services and their interfaces in a smart environment is a critical aspect in
smart environments. They provide access to various services from numerous networked
interaction devices for multiple users that accessing services in many different
situations and via diverse combinations of devices and modalities.

Meta-user interfaces (meta-UI) are a special kind of end-user development environment
that offer a set of function to control and evaluate the state of an interactive ambient
space. This set is meta- because it covers all domain-dependent services that support
human activities and is UI oriented because of its role enabling the user to control and
to evaluate the ambient space [23].

Figure 5: Meta-UI Implementation of the MASP taken from [61].

Figure 5 depicts the meta-UI of the MASP with a running service interface. So far, the
meta-UI offers four generic services that are implemented by the button bar at the
bottom of the meta-UI: modality-, migration-, adaptation-, and distribution-
configuration. By the modality configuration a user can set the utilized modalities. This
is currently limited to the definition of equivalent related modalities, but helps the user
to prevent unwanted side effects, like disabling a speech-recognition in noisy

200

environments or during a phone call for instance. The actual activated modalities are
signaled by the status bar at the top of the meta-UI.

The migration and distribution configurations enable total respectively partial migration
of interfaces. The migration is not limited to intra-modal remolding but supports a free
selection of equivalent modalities for the target platform(s) of the migration. Finally
with the adaptation functionality mixed-by-design objects [23] can be specified. Mixed-
by-design objects couple physical entities with digital services that have been
assembled during design-time. One such mixed-by-design object that is used in the
MASP meta-UI is an active RFID tag that is coupled to a follow-me digital service.
Activating this service results in a user-interface that continuously remolds to follows
the user through the environment.

The COMETs Inspector implements such a meta-UI as well. Different to the MASP
meta-UI that is so far limited by the mapping types that have been defined at system
design-time, the COMETs inspector can be used to query the semantic network that
stores and relates all instantiated interactors on all levels of the CAMELEON
framework. Thus, it supports inspecting the current state of the system as well as issuing
queries to the semantic network to retrieve potential transformation options. As stated in
[25] the inspector is actual limited to basic operations like adding, removing or
substituting elements, but coupled with the querying option to the semantic networks a
first step to end-user development has been done since in principle transformation
recipes and alternatives can be queried and applied by the user by this basic operations.

For a detailed discussion and characterization of meta-UIs based on a taxonomy I
recommend [23].

201

7.5. Challenges for realizing Interfaces for Smart Environments

7.5.1 Modeling Real and Flexible Multimodal Interaction

Nowadays multimodal systems that support the user by a combination of speech,
gesture and graphical-driven interaction are already part of our everyday life. Examples
are combinations of speech-driven and graphical interfaces like in-car assistance
systems, language-learning software, or tourist information systems. Recent video-game
consoles just introduced gesture-based interactions like for instance the Nintendo Wii
game console. Games can be controlled in a more natural and intuitive way by using
hand gestures, balancing and moving the body. The market success of this console
demonstrates that even new audiences can be addressed by enabling multimodal
interaction to ease the usage of interactive systems.

In the recent years of research on multimodal systems there has been great success in
demonstrating that one big research issue, the “multimodal fusion”, that is often
motivated with the “put this there” example [9], can be handled. This example describes
the problem of interpreting a user interaction spanning over several modalities (which
requires the machine to combine the gesture, voice and graphical inputs of the user with
his actual context to catch the user’s goals). In Germany for example, the SmartCom
project [33, 73] realized such a system by using the blackboard metaphor to implement
an interactive avatar that can interpret and react to multimodal user interaction. The
multimodal fusion of speech, gestures, graphical inputs, and users’ emotions is driven
by a standardized information exchange language (M3L) to enable the fusion of
(uncertain) information of the different modalities that are connected to a multimodal
setup. Beneath this large scale system, recent research combines component repositories
containing re-usable device drivers and fusion mechanisms with interactive design tools
to create and prototype various multimodal setups. One such example that receives a lot
of attention recently is the Open Interface Platform [34] another popular one is iStuff
[60].

This recent research results allow to rapidly creating sets of very different and even very
specialized multimodal setups realizing control interfaces with the help of interactive
editors. But so far they lack of efficient software engineering methods and notations to
support the application design of multimodal interaction for such heterogeneous types
of interaction devices and modalities.

Modeling multimodal systems that support various multimodal setups is an open
research issue. A recent promising work by [64] that implemented a model-based
development process to generate multimodal web interfaces stated the importance of
considering the CARE-properties, but neglected the support of modeling
complementary or redundant multimodal interaction to support multimodal fusion.
UsiXML [37] and TERESA [5] do not offer a dialogue model but distribute it to several
models (mainly the task model that specifies the interaction sequence and the abstract
user interface model containing the navigation). Since these models are considered
modality independent, supporting different navigations based on the used combination
of modalities is difficult to implement. Based on the modality (e.g. tactile, speech or
graphics (large screen vs. small screen with pagination) or the composition of
modalities the navigation needs to be realized completely different.

202

7.5.2. The Mapping Explosion and Modeling Tool Problem

The mapping problem can be seen as a direct consequence following a model-based
user interface development approach. The mapping problem has been firstly introduced
by Angel Puerta and Jakob Eisenstein [58] who state: ”if for a given user interface
design it is potentially meaningful to map any abstract model element to any concrete
one, then we would probably be facing a nearly insurmountable computation problem”.
Figure 3 illustrates the mapping problem between a set of models.

?

??

? ?

?? ?

?

??

Figure 5: The mapping explosion problem

Solving the mapping problem comprises answering, which models should be combined,
at which level of abstraction, and how the models are combined. With the introduction
of run time systems that awake the original design models alive by making them
executable, the original mapping problem explodes. Now there are two kinds of
mappings that need to be specified: transformational mappings at design time and
mappings at runtime that keep all running models in sync.

Like illustrated figure 3 the worst case would be to map every element of every model
to every element of every other model. One could argue that by a transitional
propagation the amount op mapping could be reduced. But there is an inherent
performance requirement by the keep various modes and medias in sync at run time.
Since each mapping typical requires transformational part that does the abstract-to-
concrete (or vice versa) translation this can be challenging. To my knowledge so far
performance evaluations of model-driven run time environments are missing.

There has been a lot of research about mapping mechanisms at design time that might
be adapted to run time by an automated generation of runtime mappings based on the
transformations that have been proposed at design time. For instance [71, 72] describe
three mechanisms that can be used to establish mappings between the models: model
derivation, model linking/binding, and model composition. [19] extended this

203

classification to five mechanisms: model derivation, partial model derivation, model
linking, model modification, and model update.

Beneath the challenge to solve the mapping problem between the various models, so far
the design of mapping is supported by tools only to a very limited extend - and so far
only at design time. For instance [45] define a formal mapping between the domain,
task and abstract user interface elements, which allows to establish a set of mappings
either manually or automatically (in combination with the TransformiXML tool [65]).
They offer eight different types of mapping relationships that can be defined.

Working with these transformational approaches based on mappings introduces two
major problems. First, it is very formalized and programmatic approach that is hard to
understand and to extend and second, supporting the flexible combining of modalities at
run time for multimodal interaction would result in merging these mappings and
requires them to interact which each other, which is considered even more complex to
manage.

7.5.3 Participation of a Designer and End User Development

Important groups are not involved in current MDDUI design cycles: neither the end
user as well as an interaction designer can participate actual MDDUI development
processes. The end user suffers from complexity and the designer from gap in tools
between those that support their workflow and those that are currently available in
MDDUI.

Initial efforts have been done by realizing specialized tools for designers to include
prototyping approaches on different levels of fidelity: For instance SketchiXML [24], a
sketching editor is targeted to low-fidelity prototyping and replaces paper sketching of
user interfaces, the VisiXML tool [70] supports vector drawing, whereas GrafiXML
[36] is an advanced user interface editor supporting high-fidelity prototyping. One
common aspect of all these prototyping tools is that they focus on the design of
graphical user interfaces. Supporting interaction design for smart environments that
includes considering context of use adaptation and flexible multimodal is so far not
covered.

Further on, the fundamental challenge to develop environments that enable people
without particular background in programming to realize their own interactive
applications [53] still exists. Although first approaches based on the meta-UI paradigm
have been proposed that I have presented earlier. These are targeted to enable end users
to manipulate an interactive space and can be seen as an initial step to support end user
development.

204

7.6. References
[1] Marc Abrams und Jim Helms: User Interface Markup Language (UIML)

Specification version 3.0; Techn. Ber.; Harmonia Inc.; 2002.
[2] Renata Bandelloni und Fabio Paterno: Flexible Interface Migration; in

Proceedings of the 9th International Conference on Intelligent User Interfaces; S.
148 – 155; Funchal, Madeira, Portugal; 2004; ACM Press New York, NY, USA.

[3] Jan Van den Bergh: High-Level User Interface Models for Model-Driven Design
of Context-Sensitive User Interfaces; Dissertation; Hasselt University and
transnational University of Limburg School of Information Technology; 2006.

[4] Jan Van den Bergh und Karin Coninx: Model-based design of context-sensitive
interactive applications: a discussion of notations; in TAMODIA ’04:
Proceedings of the 3rd annual conference on Task models and diagrams; S. 43–
50; New York, NY, USA; 2004; ACM Press.

[5] Silvia Berti, Francesco Correani et al.: TERESA: A Transformation-based
Environment for Designing and Developing Multi-Device Interfaces; in ACM CHI
2004, Extended Abstract; Bd. II; S. 793–794; Vienna, Austria; April 2004; ACM
Press.

[6] Silvia Berti und Fabio Paterno: Migratory MultiModal Interfaces in MultiDevice
Environments; in ICMI ’05: Proceedings of the 7th international conference on
Multimodal interfaces; S. 92–99; New York, NY, USA; 2005; ACM Press.

[7] Marco Blumendorf, Sebastian Feuerstack und Sahin Albayrak: Multimodal Smart
Home User Interfaces; in Intelligent User Interfaces for Ambient Assisted Living:
Proceedings of the First International Workshop IUI4AAL 2008 (Hg. Kizito
Mukasa, Andreas Holzinger und Arthur Karshmer). IRB Verlag; 2008.

[8] Marco Blumendorf, Grzegorz Lehmann et al.: Executable Models for Human-
Computer Interaction; in Interactive Systems. Design, Specification, and
Verification: 15th International Workshop, DSV-IS 2008 Kingston, Canada, July
16-18, 2008 Revised Papers (Hg. T. C. Nicholas Graham und Philippe Palanque);
S. 238–251; Berlin, Heidelberg; 2008; Springer-Verlag.

[9] Richard A. Bolt: "Put that there": Voice and Gesture at the Graphics Interface; in
Proceedings of the 7th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’80); S. 262–270; New York, NY, USA; 1980; ACM
Press.

[10] Laurent Bouillon, Jean Vanderdonckt und Kwok Chieu Chow: Flexible re-
engineering of web sites; in IUI ’04: Proceedings of the 9th international
conference on Intelligent user interfaces; S. 132–139; New York, NY, USA;
2004; ACM.

[11] Robert Eric Braudes: A framework for conceptual consistency verification;
Dissertation; George Washington University; Washington, DC, USA; 1990.

[12] Michael D. Byrne, D. Wood et al.: Automating interface evaluation; in CHI
Conference Companion (Hg. Catherine Plaisant); S. 216. ACM; 1994.

[13] Gaelle Calvary, Joelle Coutaz et al.: A Unifying Reference Framework for Multi-
Target User Interfaces; Interacting with Computers; 15(3), S. 289–308; 2003.

[14] Gaelle Calvary, Joelle Coutaz et al.: Towards a New Generation of Widgets for
Supporting Software Plasticity: The "Comet"; in Proceeidings of Engineering
Human Computer Interaction and Interactive Systems, Joint Working
Conferences EHCI-DSVIS 2004. ISSN 0302-9743 (Hg. Remi Bastide, Philippe A.

205

Palanque und Joerg Roth); Bd. 3425 von Lecture Notes in Computer Science; S.
306–324; Berlin/Heidelberg; 2004; Springer.

[15] Gaelle Calvary, Joelle Coutaz und David Thevenin: Supporting Context Changes
for Plastic User Interfaces: A Process and a Mechanism; in Joint Proceedings of
HCI’2001 and IHM’2001 (Hg. Jean Vanderdonckt A. Blandford und P. Gray); S.
349–363; Lille; September 2001; Springer-Verlag.

[16] Hao hua Chu, Henry Song et al.: Roam, A seamless application framework;
Journal of Systems and Software; 69(3), S. 209–226; 2004.

[17] Tim Clerckx, Kris Luyten und Karin Coninx: DynaMo-AID: A Design Process
and a Runtime Architecture for Dynamic Model-Based User Interface
Development; in The 9th IFIP Working Conference on Engineering for Human-
Computer Interaction Jointly with The 11th International Workshop on Design,
Specification and Verification of Interactive Systems (EHCI/DS-VIS), ISBN 3-
540-26097-8; Bd. 3425; S. 77–95; Springer, Berlin; 2004.

[18] Tim Clerckx, Kris Luyten und Karin Coninx: Generating Context-Sensitive
Multiple Device Interfaces from Design; in Pre-Proceedings of the Fourth
International Conference on Computer-Aided Design of User Interfaces CADUI
2004; 2004.

[19] Tim Clerckx, Kris Luyten und Karin Coninx: The Mapping Problem Back and
Forth: Customizing Dynamic Models while Preserving Consistency; in TAMODIA
(Hg. Pavel Slavik und Philippe A. Palanque); S. 33–42; Prague, Czech Republic;
2004; ACM International Conference Proceeding Series.

[20] Tim Clerckx, Chris Vandervelpen et al.: A Prototype-Driven Development
Process for Context-Aware User Interfaces; in Proceedings of the 5th
International Workshop,Task Models and Diagrams for Users Interface Design
(TAMODIA 2006); Bd. 4385 von Lecture Notes in Computer Science; S. 339–354;
Berlin / Heidelberg; August 2006.

[21] Benoit Collignon, Jean Vanderdonkt und Gaelle Calvary: Model-Driven
Engineering of Multi-Target Plastic User Interfaces; in The Fourth International
Conference on Autonomic and Autonomous Systems (ICAS 2008); 2008; IEEE
Computer Society Press, March 16-21, 2008 - Gosier, Guadeloupe.

[22] Karin Coninx, Kris Luyten et al.: Dygimes: Dynamically Generating Interfaces
for Mobile Computing Devices and Embedded Systems; in Mobile HCI (Hg. Luca
Chittaro); Bd. 2795 von Lecture Notes in Computer Science; S. 256–270.
Springer; 2003.

[23] Joelle Coutaz: Meta-User Interfaces for Ambient Spaces; in TAMODIA (Hg.
Karin Coninx, Kris Luyten und Kevin A. Schneider); Bd. 4385 von Lecture Notes
in Computer Science; S. 1–15. Springer; 2006.

[24] Vanderdonckt J. Coyette, A. und Q. Limbourg: SketchiXML: An Informal Design
Tool for User Interface Early Prototyping; in Proceedings of RISE 2006
Workshop on Rapid User Interface Prototyping Infrastructures Applied to Control
Systems RUIPICAS 2006 (Hg. V. Amaral M. Risoldi); Geneva; September 2006
2006.

[25] Alexandre Demeure, Gaelle Calvary et al.: The Comets Inspector: Towards Run
Time Plasticity Control based on a Sematic Network; in TAMODIA ’06:
Proceedings of the 5th annual conference on Task Models and
DIAgrams,ISBN978-3-540-70815-5; Bd. 4385 von Lecture Notes in Computer
Science; S. 324–338; Berlin / Heidelberg; 2006; Springer.

206

[26] Alexandre Demeure, Gaelle Calvary und Karin Coninx: COMET(s), A Software
Architecture Style and an Interactors Toolkit for Plastic User Interfaces; S. 225–
237; 2008; Design, Specification, and Verification, 15th International Workshop,
DSV-IS 2008, T.C.N. Graham & P. Palanque (Eds), Lecture Notes in Computer
Science 5136, Springer Berlin / Heidelberg, Kingston, Canada, July 16-18, 2008,
pp 225-237.

[27] Bruno Dumas, Denis Lalanne et al.: Strengths and weaknesses of software
architectures for the rapid creation of tangible and multimodal interfaces; in TEI
’08: Proceedings of the 2nd international conference on Tangible and embedded
interaction; S. 47–54; New York, NY, USA; 2008; ACM.

[28] Sebastian Feuerstack: A Method for the User-centered and Model-based
Development of Interactive Applications; Dissertation; Technische UniversitÃ¤t
Berlin; 2008.

[29] Sebastian Feuerstack, Marco Blumendorf et al.: Automated Usability Evaluation
during Model-Based Interactive System Development; in HCSE-TAMODIA ’08:
Proceedings of the 2nd Conference on Human-Centered Software Engineering
and 7th International Workshop on Task Models and Diagrams; S. 134–141;
Berlin, Heidelberg; 2008; Springer-Verlag.

[30] Murielle Florins: Graceful Degradation: a Method for Designing Multiplatform
Graphical User Interfaces; Dissertation; Universite Catholique de Louvain;
Louvain-la-Neuve, Belgium; July 11th 2006.

[31] Murielle Florins, Francisco Montero Simarro et al.: Splitting Rules for Graceful
Degradation of User Interfaces; in IUI ’06: Proceedings of the 11th international
conference on Intelligent user interfaces; S. 264–266; New York, NY, USA;
2006; ACM Press.

[32] Carlo Ghezzi, Mehdi Jazayeri und Dino Mandrioli: Fundamentals of software
engineering; Prentice-Hall, Inc.; Upper Saddle River, NJ, USA; 1991.

[33] Gerd Herzog und Alassane Ndiaye: Building Multimodal Dialogue Applications:
System Integration in SmartKom; in SmartKom: Foundations of Multimodal
Dialogue Systems (Hg. Wolfgang Wahlster); S. 439–452; Springer; Berlin,
Heidelberg; 2006.

[34] Jean-Yves Lionel Lawson, Ahmad-Amr Al-Akkad et al.: An open source
workbench for prototyping multimodal interactions based on off-the-shelf
heterogeneous components; in EICS ’09: Proceedings of the 1st ACM SIGCHI
symposium on Engineering interactive computing systems; S. 245–254; New
York, NY, USA; 2009; ACM.

[35] Quentin Limbourg: Multi-Path Development of User Interfaces; Dissertation;
Universite Catholique de Louvain, Institut d’Administration et de Gestion (IAG);
Louvain-la-Neuve, Belgium; September 2004.

[36] Quentin Limbourg, Jean Vanderdonckt et al.: USIXML: A Language Supporting
Multi-path Development of User Interfaces; in EHCI/DS-VIS (Hg. Remi Bastide,
Philippe A. Palanque und Joerg Roth); Bd. 3425 von Lecture Notes in Computer
Science; S. 200–220. Springer; 2004.

[37] Quentin Limbourg, Jean Vanderdonckt et al.: USIXML: A User Interface
Description Language for Context-Sensitive User Interfaces; in Proceedings of
the ACM AVI’2004 Workshop" Developing User Interfaces with XML: Advances
on User Interface Description Languages; S. 55–62; 2004.

207

[38] L.Paganelli und F.Paterno: A Tool for Creating Design Models from Web Site
Code; International Journal of Software Engineering and Knowledge
Engineering; 13(2), S. pp. 169–189; 2003.

[39] Kris Luyten: Dynamic User Interface Generation for Mobile and Embedded
Systems with Model-Based User Interface Development; Dissertation;
Transnationale Universiteit Limburg, School voor Informatietechnologie; October
2004.

[40] Kris Luyten, Tim Clerckx et al.: Derivation of a Dialog Model from a Task Model
by Activity Chain Extraction.; in Interactive Systems: Design, Specification, and
Verification, 10th International Workshop (DSV-IS); S. 203–217; Funchal,
Madeira Island, Portugal; June 2003.

[41] Kris Luyten, Tom Van Laerhoven et al.: Runtime transformations for modal
independent user interface migration; Interacting with Computers; 15(3), S. 329–
347; 2003.

[42] Jean-Claude Martin: TYCOON: Theoretical Framework and Software Tools for
Multimodal Interfaces; Intelligence and Multimodality in Multimedia interfaces,
AAAI Press; 1998.

[43] Stephen J. Mellor: Agile MDA; Techn. Ber.; Project Technology, Inc.; June 2004.
[44] Vanderdonckt-J. Michotte, B.: GrafiXML, A Multi-Target User Interface Builder

based on UsiXML; in Proceedings of 4th International Conference on Autonomic
and Autonomous Systems ICAS 2008. IEEE Computer Society Press; 16-21 March
2008.

[45] Francisco Montero, Vctor López-Jaquero et al.: Solving the Mapping Problem in
User Interface Design by Seamless Integration in IdealXML; in Proceedings of
12th Int. Workshop on Design, Specification, and Verification of Interactive
Systems (DSV-IS’2005); S. 161–172; 2005.

[46] Francisco S. Montero und Victor Lopez-Jaquero: Fast HI-FI prototyping by using
IdealXML; Techn. Ber.; Departamento de Sistemas Informaticos, Universidad de
Castilla-La Mancha; March 2006.

[47] Giulio Mori, Fabio Paterno und Carmen Santoro: CTTE: Support for Developing
and Analyzing Task Models for Interactive System Design.; IEEE Trans. Software
Eng.; 28(8), S. 797–813; 2002.

[48] Giulio Mori, Fabio Paterno und Carmen Santoro: Tool support for designing
nomadic applications; in IUI ’03: Proceedings of the 8th International
Conference on Intelligent User Interfaces; S. 141–148; New York, NY, USA;
2003; ACM Press.

[49] Giulio Mori, Fabio Paterno und Carmen Santoro: Design and Development of
Multidevice User Interfaces through Multiple Logical Descriptions; IEEE
Transactions on Software Engineering; 30(8), S. 507–520; 2004.

[50] Brad Myers, Scott E. Hudson und Randy Pausch: Past, present, and future of user
interface software tools; ACM Transactions on Human-Computer Interaction;
7(1), S. 3–28; 2000.

[51] Laurence Nigay und Joelle Coutaz: Multifeature Systems: The CARE Properties
and Their Impact on Software Design; in Intelligence and Multimodality in
Multimedia Interfaces; 1997.

[52] Sharon Oviatt: The Human-Computer Interaction Handbook: Fundamentals,
Evolving Technologies and Emerging Applications, 2nd Edition; Kap. Multimodal
Interfaces, S. 413–432; Lawrence Erlbaum; 2. Aufl.; 2008.

208

[53] Fabio Paterno: Model-based Tools for Pervasive Usability; Interacting with
Computers; 17(3), S. 291–315; 2005.

[54] Shankar Ponnekanti, Brian Lee et al.: ICrafter: A Service Framework for
Ubiquitous Computing Environments.; in Ubicomp; S. 56–75; 2001.

[55] Angel R. Puerta: The MECANO Project: Comprehensive and Integrated Support
for Model-Based Interface Development.; in Computer-Aided Design of User
Interfaces (CADUI’96); S. 19–36; 1996.

[56] Angel R. Puerta: A Model-Based Interface Development Environment; IEEE
Softw.; 14(4), S. 40–47; 1997.

[57] Angel R. Puerta, Eric Cheng et al.: MOBILE: User-centered interface building; in
CHI ’99: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems; S. 426–433; New York, NY, USA; 1999; ACM Press.

[58] Angel R. Puerta und Jacob Eisenstein: Towards a General Computational
Framework for Model-Based Interface Development Systems; in IUI99:
International Conference on Intelligent User Interfaces; S. 171–178; New York,
NY, USA; January 1999; ACM; ISBN:1-58113-098-8.

[59] Daniel Reichard, Peter Forbrig und Anke Dittmar: Task Models as Basis for
Requirements Engineering and Software Execution; in Proceedings of TAMODIA
2004; S. 51 – 57; Prague, Czeck Republic; 2004; ACM Press.

[60] Meredith Ringel, Joshua Tyler et al.: iStuff: A Scalable Architecture for
Lightweight, Wireless Devices for Ubicomp User Interfaces; Proceedings of
UBICOMP 2002; 2002.

[61] Dirk Roscher, Marco Blumendorf und Sahin Albayrak: Using Meta User
Interfaces to Control Multimodal Interaction in Smart Environments; in
Proceedings of the IUI’09 Workshop on Model Driven Development of Advanced
User Interfaces; 2009.

[62] Dirk Roscher, Marco Blumendorf und Sahin Albayrak: A Multimodal User
Interface Model For Runtime Distribution; in Proceedings of the CHI’10
Workshop on Model Driven Development of Advanced User Interfaces; Atlanta,
Georgia, USA.; 2010.

[63] N. Souchon, Q. Limbourg und Jean Vanderdonckt: Task Modelling in Multiple
contexts of Use; in Interactive Systems:Design, Specification, and Verification
(DSV-IS) 2002; Bd. 2545/2002; S. 59–73. Springer Berlin / Heidelberg; 2002.

[64] Adrian Stanciulescu: A Methodology for Developing Multimodal User Interfaces
of Information Systems; Dissertation; Universite Catholique de Louvain; 2008.

[65] Adrian Stanciulescu, Quentin Limbourg et al.: A transformational approach for
multimodal web user interfaces based on UsiXML; in ICMI ’05: Proceedings of
the 7th International Conference on Multimodal Interfaces; S. 259–266; New
York, NY, USA; 2005; ACM Press.

[66] Piyawadee Noi Sukaviriya: Dynamic Construction of Animated Help from
Application Context; in ACM Symposium on User Interface Software and
Technology; S. 190–202; 1988.

[67] Pedro A. Szekely: Retrospective and Challenges for Model-Based Interface
Development; in DSV-IS 96: 3rd International Eurographics Workshop on
Design, Specification, and Verification of Interactive Systems (Hg. François
Bodart und Jean Vanderdonckt); S. 1–27. Springer; 1996.

[68] Pedro A. Szekely, Piyawadee Noi Sukaviriya et al.: Declarative interface models
for user interface construction tools: The MASTERMIND approach; in

209

Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for
Human-Computer Interaction; S. 120 – 150; 1995; ISBN:0-412-72180-5.

[69] D. Thevenin: Adaptation en Interaction Homme-Machine: Le cas de la Plasticite.;
Dissertation; Ph.D. thesis, Universite Joseph Fourier, Grenoble I; 2001.

[70] Jean Vanderdonckt: A MDA-Compliant Environment for Developing User
Interfaces of Information Systems; in CAiSE 2005: Advanced Information Systems
Engineering. (Hg. Oscar Pastor und Joao Falcao e Cunha); Bd. 3520 von Lecture
Notes in Computer Science; S. 16–31. Springer; 2005.

[71] Jean Vanderdonckt, Quentin Limbourg et al.: Using a Task Model to Derive
Presentation and Dialog Structure.

[72] Jean Vanderdonckt, Quentin Limbourg und Murielle Florins: Deriving the
Navigational Structure of a User Interface; in Proceedings of IFIP
INTERACT’03: Human-Computer Interaction; 2: HCI methods; S. 455; 2003.

[73] Wolfgang Wahlster: SmartKom: Fusion and Fission of Speech, Gestures, and
Facial Expressions; in Proc. of the 1st International Workshop on Man-Machine
Symbiotic Systems; 2002.

210

