Minimização do Consumo de Energia de Dispositivos Sem Fio em Ambientes Industriais
Resumo
Recentemente a era da Internet das Coisas Industrial (IIoT) emergiu a fim de garantir a produção eficiente e sustentável para o contexto de Industria 4.0. Uma abordagem promissora para implantar ambientes IIoT é o uso da tecnologia IEEE 802.11 como forma de comunicação sem fio. Contudo, a configuração usual da tecnologia IEEE 802.11 resulta em maior consumo de energia dos dispositivos IIoT, devido ao tamanho dos pacotes transmitidos. Dentro deste contexto, este artigo apresenta um método de compressão de dados para reduzir a quantidade de dados a serem transmitidos, com o objetivo de minimizar o consumo de energia dos dispositivos nesses cenários. Experimentos realizados em um cenário de teste real sugerem a redução do consumo de energia quando o método proposto é aplicado ao contexto IIoT.
Referências
Bille, P., Christiansen, A. R., Cording, P. H., Górtz, I. L., Skjoldjensen, F. R., Vildhgj,H. W., and Vind, S. (2018). Dynamic relative compression, dynamic partial sums, and substring concatenation. Algorithmica, 80(11):3207-3224.
Biswas, S., Das, R., and Chatterjee, P. (2018). Energy-efficient connected target coverage in multi-hop wireless sensor networks. In Industry interactive innovations in science, engineering and technology, pages 411-421. Springer.
Bjôrnson, E. and Larsson, E. G. (2018). How energy-efficient can a wireless communication system become? In 2018 52nd Asilomar Conference on Signals, Systems, and Computers, pages 1252-1256. IEEE.
Datasheet, E. (2015). Esp8266ex datasheet. Espressif Systems Datasheet, pages 1-31.
Davoli, L., Belli, L., Cilfone, A., and Ferrari, G. (2017). From micro to macro iot: Challenges and solutions in the integration of ieee 802.15. 4/802.11 and sub-ghz technologies. IEEE Internet of Things Journal, 5(2):784-793.
Ertaul, L. and Woodall, A. (2017). Iot security: Performance evaluation of grain, mickey, and trivium-lightweight stream ciphers. In Proceedings of the International Conference on Security and Management (SAM), pages 32-38. The Steering Committee ofThe World Congress in Computer Science, Computer ....
Kanakaris, V., Papakostas, G., and Bandekas, D. (2019). Power consumption analysis on an iot network based on wemos: a case study. Telkomnika, 17(5):2505-2511.
Leon-Salas, W. D. (2015). Encoding compressive sensing measurements with golomb-rice codes. In 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pages 2177-2180.
Li, K., Yuen, C., Kusy, B., Jurdak, R., Ignjatovic, A., Kanhere, S. S., and Jha, S. (2018a). Fair scheduling for data collection in mobile sensor networks with energy harvesting.IEEE Transactions on Mobile Computing, 18(6):1274-1287.
Li, Z., Liu, Y., Liu, A., Wang, S., and Liu, H. (2018b). Minimizing convergecast time and energy consumption in green internet of things. IEEE Transactions on Emerging Topics in Computing.
Long, N. B., Tran-Dang, H., and Kim, D.-S. (2018). Energy-aware real-time routing for large-scale industrial internet of things. IEEE Internet of Things Journal, 5(3):2190-2199.
Malleswari, M., Krishna, B. A., Madhuri, N., and Chowdary, M. K. Implementation of modified huffman coding in wireless sensor networks. International Journal of Computer Applications, 975:8887.
Mantoro, T., Ayu, M. A., and Anggraini, Y. (2017). The performance of text file compression using shannon-fano and huffman on small mobile devices. In 2017 International Conference on Computing, Engineering, and Design (ICCED), pages 1-5.
Mesquita, J., Guimarães, D., Pereira, C., Santos, F., and Almeida, L. (2018). Assessing the esp8266 wifi module for the internet of things. In 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), volume 1, pages 784-791.
Mumtaz, S., Alsohaily, A., Pang, Z., Rayes, A., Tsang, K. F., and Rodriguez, J. (2017). Massive internet of things for industrial applications: Addressing wireless iiot connectivity challenges and ecosystem fragmentation. IEEE Industrial Electronics Magazine,11(1):28-33.
Olsson, J. (2014). 6lowpan demystified. Texas Instruments, 13.
Sharma, P. K., Jeong, Y., and Park, J. H. (2018). Eh-hl: Effective communication model by integrated eh-wsn and hybrid lifi/wifi for iot. IEEE Internet of Things Journal, 5(3):1719-1726.
Shelby, Z. and Bormann, C. (2011). 6LoWPAN: The wireless embedded Internet, volume 43. John Wiley & Sons.
Sisinni, E., Saifullah, A., Han, S., Jennehag, U., and Gidlund, M. (2018). Industrial internet of things: Challenges, opportunities, and directions. IEEE Transactions on Industrial Informatics, 14(11):4724-4734.
Siu, C. (2018). IoT and Low-Power Wireless: Circuits, Architectures, and Techniques. CRC Press.
Talebi, M., Papatsimpa, C., and Linnartz, J.-P. M. (2018). Dynamic performance analysis of ieee 802.15.4 networks under intermittent wi-fi interference. In 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pages 1-7. IEEE.
Tômôskõózi, M., Seeling, P., Ekler, P., and Fitzek, F. H. (2017). Robust header compression version 2 power consumption on android devices via tunnelling. In 2017 IEEE International Conference on Communications Workshops (ICC Workshops), pages 418-423. IEEE.
Varghese, A. and Tandur, D. (2014). Wireless requirements and challenges in industry4.0. In 2014 International Conference on Contemporary Computing and Informatics (IC31), pages 634-638. IEEE.
Wollschlaeger, M., Sauter, T., and Jasperneite, J. (2017). The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0.TEEE industrial electronics magazine, 1(1):17-27.