Analysis of the Efficiency of Vehicular Clouds for Task Processing

  • Carlos A. P. de Souza UNICAMP
  • Ademar T. Akabane PUC-Campinas
  • Edmundo R. M. Madeira UNICAMP

Abstract


The paradigm of Vehicular Clouds is emerging as a prominent research area within the context of Intelligent Transportation Systems (ITSs), due to the dynamic nature of their topology, which offers solutions ranging from traffic management optimization to task processing. This paradigm leverages the computational resources and wireless communication systems available in vehicles. Several works in the literature exploring this paradigm focus on task allocation to optimize vehicle resource utilization, with support from road infrastructure, to efficiently fulfill requests. However, these studies often fail to conduct a detailed analysis of tasks completed after allocation within each vehicular cloud, as well as the total number of tasks left unfinished, thereby omitting a comprehensive evaluation of the system performance. Addressing this gap, this study aims to investigate the feasibility and efficiency of vehicular clouds formed by single-hop communication vehicles, without the need for a centralizing entity. Experimental results indicate that the proposed solution demonstrates potential as a viable alternative for task processing.

References

Akabane, A., Pazzi, R., Madeira, E., and Villas, L. (2018a). Sistema distribuído para gerenciamento de informação e distribuição de conhecimento em redes veiculares. In Anais do XXXVI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 740–753, Porto Alegre, RS, Brasil. SBC.

Akabane, A. T., Immich, R., Bittencourt, L. F., Madeira, E. R., and Villas, L. A. (2020). Towards a distributed and infrastructure-less vehicular traffic management system. Computer Communications, 151:306–319.

Akabane, A. T., Immich, R., Madeira, E. R., and Villas, L. A. (2018b). imob: An intelligent urban mobility management system based on vehicular social networks. In 2018 IEEE Vehicular Networking Conference (VNC), pages 1–8. IEEE.

Akabane, A. T., Immich, R., Pazzi, R. W., Madeira, E. R., and Villas, L. A. (2018c). Distributed egocentric betweenness measure as a vehicle selection mechanism in vanets: A performance evaluation study. Sensors, 18(8):2731.

Costa, J., Junior, W. L., Souza, A., Cerqueira, E., Rosário, D., and Villas, L. (2022). Nemesis: Mecanismo para formação de nuvens veiculares baseado em previsão de mobilidade. In Anais do XL Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 280–293, Porto Alegre, RS, Brasil. SBC.

da Costa, J., Peixoto, M., Meneguette, R., Rosário, D., and Villas, L. (2020). Morfeu: Mecanismo baseado em otimização combinatória para alocação de tarefas em nuvens veiculares. In Anais do XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 505–518, Porto Alegre, RS, Brasil. SBC.

Everett, M. and Borgatti, S. P. (2005). Ego network betweenness. Social Networks, 27(1):31–38.

Gong, M., Yoo, Y., and Ahn, S. (2023). Vehicular cloud forming and task scheduling for energy-efficient cooperative computing. IEEE Access, 11:3858–3871.

Hamed, N. A. and Hasson, S. T. (2023). A developed centralized stable clustering approach for vehicular networks. In 2023 IEEE 12th International Conference on Communication Systems and Network Technologies (CSNT), pages 867–872.

Jabbar, M. K. and Trabelsi, H. (2022). A review on clustering in vanet: Algorithms, phases, and comparisons. In 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD), pages 444–451.

Lieira, D. D., Quessada, M. S., da Costa, J. B. D., Cerqueira, E., Rosário, D., and Meneguette, R. I. (2021). Tovec: Task optimization mechanism for vehicular clouds using meta-heuristic technique. In 2021 International Wireless Communications and Mobile Computing (IWCMC), pages 358–363.

Marsden, P. V. (2002). Egocentric and sociocentric measures of network centrality. Social Networks, 24(4):407–422.

Mehdi, M. M., Raza, I., and Hussain, S. A. (2017). A game theory based trust model for vehicular ad hoc networks (vanets). Computer Networks, 121:152–172.

Meneguette, R. I., Boukerche, A., and Pimenta, A. H. M. (2019). Avarac: An availability-based resource allocation scheme for vehicular cloud. IEEE Transactions on Intelligent Transportation Systems, 20(10):3688–3699.

Meneguette, R. I., Boukerche, A., Pimenta, A. H. M., and Meneguette, M. (2017). A resource allocation scheme based on semi-markov decision process for dynamic vehicular clouds. In 2017 IEEE International Conference on Communications (ICC), pages 1–6.

Meneguette, R. I. and Prado Marques, H. A. (2022). A game theory-based vehicle cloud resource allocation mechanism. Revista Eletrônica de Iniciação Científica em Computação, 20(2).

Mukhtaruzzaman, M. and Atiquzzaman, M. (2020). Clustering in vehicular ad hoc network: Algorithms and challenges. Computers & Electrical Engineering, 88:106851.

Sheikh, M. S., Liang, J., and Wang, W. (2020). Security and privacy in vehicular ad hoc network and vehicle cloud computing: a survey. Wireless Communications and Mobile Computing, 2020:1–25.

Wei, W., Yang, R., Gu, H., Zhao, W., Chen, C., and Wan, S. (2021). Multi-objective optimization for resource allocation in vehicular cloud computing networks. IEEE Transactions on Intelligent Transportation Systems, 23(12):25536–25545.
Published
2024-05-20
SOUZA, Carlos A. P. de; AKABANE, Ademar T.; MADEIRA, Edmundo R. M.. Analysis of the Efficiency of Vehicular Clouds for Task Processing. In: URBAN COMPUTING WORKSHOP (COURB), 8. , 2024, Niterói/RJ. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 29-42. ISSN 2595-2706. DOI: https://doi.org/10.5753/courb.2024.2851.