Networks of Interest: comparing Google Places and Foursquare in capturing user choices in urban areas
Abstract
Location-Based Social Networks (LBSNs) are valuable for understanding urban behavior and provide useful data on user preferences. Modeling this data into graphs, such as Interest Network (iNET), enables significant insights. These networks can be helpful for urban area recommendations, mobility forecasts, and public policy formulation. This study uses check-in data and establishment reviews to compare the iNETs resulting from two distinct LBSNs, Foursquare and Google Places. Although the studied LBSNs differ in nature, with data varying in regularity and purpose, both modeled iNETs revealed similar urban behavior patterns, and were likewise impacted by socioeconomic and geographic factors.References
Brockmann, D., Hufnagel, L., and Geisel, T. (2006). The scaling laws of human travel. Nature, 439(7075):462–465.
Cheng, Z., Caverlee, J., Lee, K., and Sui, D. (2021). Exploring millions of footprints in location sharing services. Proceedings of the International AAAI Conference on Web and Social Media, 5(1):81–88.
Ferreira, A. P., Silva, T. H., and Loureiro, A. A. (2020). Uncovering spatiotemporal and semantic aspects of tourists mobility using social sensing. Computer Communications, 160:240–252.
Ferreira, A. P. G., Silva, T. H., and Loureiro, A. A. F. (2015). Beyond sights: Large scale study of tourists’ behavior using foursquare data. In 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pages 1117–1124.
González, M. C., Hidalgo, C. A., and Barabási, A.-L. (2008). Understanding individual human mobility patterns. Nature, 453(7196):779–782.
He, R., Kang, W.-C., and McAuley, J. (2017). Translation-based recommendation. In Proceedings of the Eleventh ACM Conference on Recommender Systems, RecSys ’17. ACM.
Huang, P. and Butts, C. T. (2023). Rooted america: Immobility and segregation of the intercounty migration network. American Sociological Review, 88(6):1031–1065.
Jordahl, K., den Bossche, J. V., Fleischmann, M., Wasserman, J., McBride, J., Gerard, J., Tratner, J., Perry, M., Badaracco, A. G., Farmer, C., Hjelle, G. A., Snow, A. D., Cochran, M., Gillies, S., Culbertson, L., Bartos, M., Eubank, N., maxalbert, Bilogur, A., Rey, S., Ren, C., Arribas-Bel, D., Wasser, L., Wolf, L. J., Journois, M., Wilson, J., Greenhall, A., Holdgraf, C., Filipe, and Leblanc, F. (2020). geopandas/geopandas: v0.8.1.
Ladeira, L., Souza, A., Filho, G. R., Silva, T. H., and Villas, L. (2019). Serviço de sugestão de rotas seguras para veículos. In Anais do XXXVII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 608–621, Porto Alegre, RS, Brasil. SBC.
Liu, X., Andris, C., and Desmarais, B. A. (2019). Migration and political polarization in the u.s.: An analysis of the county-level migration network. PLOS ONE, 14(11):e0225405.
Martí, P., Serrano-Estrada, L., and Nolasco-Cirugeda, A. (2019). Social media data: Challenges, opportunities and limitations in urban studies. Computers, Environment and Urban Systems, 74:161–174.
Nolasco-Cirugeda, A. and García-Mayor, C. (2022). Social dynamics in cities: Analysis through lbsn data. Procedia Computer Science, 207:877–886.
Pasricha, R. and McAuley, J. (2018). Translation-based factorization machines for sequential recommendation. In Proceedings of the 12th ACM Conference on Recommender Systems, RecSys ’18. ACM.
Rhee, I., Shin, M., Hong, S., Lee, K., and Chong, S. (2008). On the levy-walk nature of human mobility. In IEEE INFOCOM 2008 - The 27th Conference on Computer Communications. IEEE.
Santala, V., Miczevski, S., de Brito, S. A., Baldykowski, A. L., Gadda, T., Kozievitch, N., and Silva, T. H. (2017). Making sense of the city: Exploring the use of social media data for urban planning and place branding. In Anais do I Workshop de Computação Urbana, Porto Alegre, RS, Brasil. SBC.
Senefonte, H. C. M., Delgado, M. R., Lüders, R., and Silva, T. H. (2022). Predictour: Predicting mobility patterns of tourists based on social media user’s profiles. IEEE Access, 10:9257–9270.
Silva, T. H., de Melo, P. O. S. V., Almeida, J. M., and Loureiro, A. A. F. (2017). Uma fotografia do instagram: Caracterização e aplicação. Revista Brasileira de Redes de Computadores e Sistemas Distribuídos.
Silva, T. H. and Loureiro, A. A. (2016). Computaçao urbana: Técnicas para o estudo de sociedades com redes de sensoriamento participativo. Sociedade Brasileira de Computação.
Silva, T. H. and Silver, D. (2024). Using graph neural networks to predict local culture. arXiv.
Silva, T. H., Vaz de Melo, P. O. S., Almeida, J. M., Salles, J., and Loureiro, A. A. F. (2013). A comparison of foursquare and instagram to the study of city dynamics and urban social behavior. In Proc. ACM SIGKDD Int. Workshop on Urban Computing (UrbComp’13), Chicago, USA.
Silva, T. H., Viana, A. C., Benevenuto, F., Villas, L., Salles, J., Loureiro, A., and Quercia, D. (2019). Urban computing leveraging location-based social network data: A survey. ACM Computing Surveys, 52(1):1–39.
Silver, D. and Silva, T. H. (2023). Complex causal structures of neighbourhood change: Evidence from a functionalist model and yelp data. Cities, 133:104130.
Skora, L. E., Senefonte, H. C., Delgado, M. R., Lüders, R., and Silva, T. H. (2022). Comparing global tourism flows measured by official census and social sensing. Online Social Networks and Media, 29:100204.
Veiga, D. A. M., Frizzo, G. B., and Silva, T. H. (2019). Cross-cultural study of tourists mobility using social media. In Proceedings of the 25th Brazillian Symposium on Multimedia and the Web, WebMedia ’19, page 313–316, New York, NY, USA. Association for Computing Machinery.
Cheng, Z., Caverlee, J., Lee, K., and Sui, D. (2021). Exploring millions of footprints in location sharing services. Proceedings of the International AAAI Conference on Web and Social Media, 5(1):81–88.
Ferreira, A. P., Silva, T. H., and Loureiro, A. A. (2020). Uncovering spatiotemporal and semantic aspects of tourists mobility using social sensing. Computer Communications, 160:240–252.
Ferreira, A. P. G., Silva, T. H., and Loureiro, A. A. F. (2015). Beyond sights: Large scale study of tourists’ behavior using foursquare data. In 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pages 1117–1124.
González, M. C., Hidalgo, C. A., and Barabási, A.-L. (2008). Understanding individual human mobility patterns. Nature, 453(7196):779–782.
He, R., Kang, W.-C., and McAuley, J. (2017). Translation-based recommendation. In Proceedings of the Eleventh ACM Conference on Recommender Systems, RecSys ’17. ACM.
Huang, P. and Butts, C. T. (2023). Rooted america: Immobility and segregation of the intercounty migration network. American Sociological Review, 88(6):1031–1065.
Jordahl, K., den Bossche, J. V., Fleischmann, M., Wasserman, J., McBride, J., Gerard, J., Tratner, J., Perry, M., Badaracco, A. G., Farmer, C., Hjelle, G. A., Snow, A. D., Cochran, M., Gillies, S., Culbertson, L., Bartos, M., Eubank, N., maxalbert, Bilogur, A., Rey, S., Ren, C., Arribas-Bel, D., Wasser, L., Wolf, L. J., Journois, M., Wilson, J., Greenhall, A., Holdgraf, C., Filipe, and Leblanc, F. (2020). geopandas/geopandas: v0.8.1.
Ladeira, L., Souza, A., Filho, G. R., Silva, T. H., and Villas, L. (2019). Serviço de sugestão de rotas seguras para veículos. In Anais do XXXVII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 608–621, Porto Alegre, RS, Brasil. SBC.
Liu, X., Andris, C., and Desmarais, B. A. (2019). Migration and political polarization in the u.s.: An analysis of the county-level migration network. PLOS ONE, 14(11):e0225405.
Martí, P., Serrano-Estrada, L., and Nolasco-Cirugeda, A. (2019). Social media data: Challenges, opportunities and limitations in urban studies. Computers, Environment and Urban Systems, 74:161–174.
Nolasco-Cirugeda, A. and García-Mayor, C. (2022). Social dynamics in cities: Analysis through lbsn data. Procedia Computer Science, 207:877–886.
Pasricha, R. and McAuley, J. (2018). Translation-based factorization machines for sequential recommendation. In Proceedings of the 12th ACM Conference on Recommender Systems, RecSys ’18. ACM.
Rhee, I., Shin, M., Hong, S., Lee, K., and Chong, S. (2008). On the levy-walk nature of human mobility. In IEEE INFOCOM 2008 - The 27th Conference on Computer Communications. IEEE.
Santala, V., Miczevski, S., de Brito, S. A., Baldykowski, A. L., Gadda, T., Kozievitch, N., and Silva, T. H. (2017). Making sense of the city: Exploring the use of social media data for urban planning and place branding. In Anais do I Workshop de Computação Urbana, Porto Alegre, RS, Brasil. SBC.
Senefonte, H. C. M., Delgado, M. R., Lüders, R., and Silva, T. H. (2022). Predictour: Predicting mobility patterns of tourists based on social media user’s profiles. IEEE Access, 10:9257–9270.
Silva, T. H., de Melo, P. O. S. V., Almeida, J. M., and Loureiro, A. A. F. (2017). Uma fotografia do instagram: Caracterização e aplicação. Revista Brasileira de Redes de Computadores e Sistemas Distribuídos.
Silva, T. H. and Loureiro, A. A. (2016). Computaçao urbana: Técnicas para o estudo de sociedades com redes de sensoriamento participativo. Sociedade Brasileira de Computação.
Silva, T. H. and Silver, D. (2024). Using graph neural networks to predict local culture. arXiv.
Silva, T. H., Vaz de Melo, P. O. S., Almeida, J. M., Salles, J., and Loureiro, A. A. F. (2013). A comparison of foursquare and instagram to the study of city dynamics and urban social behavior. In Proc. ACM SIGKDD Int. Workshop on Urban Computing (UrbComp’13), Chicago, USA.
Silva, T. H., Viana, A. C., Benevenuto, F., Villas, L., Salles, J., Loureiro, A., and Quercia, D. (2019). Urban computing leveraging location-based social network data: A survey. ACM Computing Surveys, 52(1):1–39.
Silver, D. and Silva, T. H. (2023). Complex causal structures of neighbourhood change: Evidence from a functionalist model and yelp data. Cities, 133:104130.
Skora, L. E., Senefonte, H. C., Delgado, M. R., Lüders, R., and Silva, T. H. (2022). Comparing global tourism flows measured by official census and social sensing. Online Social Networks and Media, 29:100204.
Veiga, D. A. M., Frizzo, G. B., and Silva, T. H. (2019). Cross-cultural study of tourists mobility using social media. In Proceedings of the 25th Brazillian Symposium on Multimedia and the Web, WebMedia ’19, page 313–316, New York, NY, USA. Association for Computing Machinery.
Published
2024-05-20
How to Cite
SANTOS, Gustavo H.; GUBERT, Fernanda R.; DELGADO, Myriam; SILVA, Thiago H..
Networks of Interest: comparing Google Places and Foursquare in capturing user choices in urban areas. In: URBAN COMPUTING WORKSHOP (COURB), 8. , 2024, Niterói/RJ.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 99-112.
ISSN 2595-2706.
DOI: https://doi.org/10.5753/courb.2024.3248.